JP6061239B2 - Flame retardant imparting agent, flame retardant article and method for producing them - Google Patents
Flame retardant imparting agent, flame retardant article and method for producing them Download PDFInfo
- Publication number
- JP6061239B2 JP6061239B2 JP2012048586A JP2012048586A JP6061239B2 JP 6061239 B2 JP6061239 B2 JP 6061239B2 JP 2012048586 A JP2012048586 A JP 2012048586A JP 2012048586 A JP2012048586 A JP 2012048586A JP 6061239 B2 JP6061239 B2 JP 6061239B2
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- flame retardant
- fluorine
- hexagonal boron
- flame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、難燃性付与剤、難燃性物品及びそれらの製造方法に関する。 The present invention relates to a flame retardant imparting agent, a flame retardant article, and a production method thereof.
電子機器、通信機器の小型化、高性能化に伴い、放熱の重要性が強調され、放熱効果の高い樹脂部材の開発が進められている。一方、成形加工性に優れ、設計の自由度が高い樹脂部材は、自動車関連分野においても利用されている。自動車製品の小型化・性能向上により、今まで重視されなかった発熱に対する対策が見直され、高熱伝導率化の要求が高まっている。 With the miniaturization and high performance of electronic devices and communication devices, the importance of heat dissipation has been emphasized, and the development of resin members with high heat dissipation effects has been underway. On the other hand, resin members that are excellent in moldability and have a high degree of design freedom are also used in the field of automobiles. Due to miniaturization and performance improvement of automobile products, measures against heat generation, which has not been emphasized so far, are reviewed, and the demand for higher thermal conductivity is increasing.
樹脂の放熱効果を高めるために、一般に酸化物等の無機粉末をフィラーとして添加して高熱伝導率化することが行われているが、さらなる高熱伝導率化と不燃化の実現のために、酸化物より熱伝導率が高く、放熱効果の向上が見込まれる窒化物の粉末フィラーを使用することが試みられている。 In order to increase the heat dissipation effect of the resin, it is common to increase the thermal conductivity by adding inorganic powders such as oxides as fillers, but in order to achieve further higher thermal conductivity and incombustibility, oxidation is required. Attempts have been made to use nitride powder fillers that have higher thermal conductivity than those of the materials and are expected to improve the heat dissipation effect.
これに対して、特許文献1には、ポリイミド樹脂中に分散させる六方晶系窒化ホウ素をオルガノシランで表面被覆して濡れ性を向上させ、ポリイミド樹脂との接着力を高め、難燃性や熱伝導性に優れた樹脂材料を提供する技術が開示されている。 On the other hand, Patent Document 1 discloses that hexagonal boron nitride dispersed in a polyimide resin is surface-coated with organosilane to improve wettability, increase adhesion with the polyimide resin, flame retardancy and heat A technique for providing a resin material having excellent conductivity is disclosed.
また、特許文献2には、窒化ホウ素粉末を多量に充填した熱伝導性シリコーンゴム組成物において、内部添加用離型剤としてフッ素変性シリコーン界面活性剤を添加し、シート状に成形する技術が開示されている。 Patent Document 2 discloses a technique in which a fluorine-modified silicone surfactant is added as a release agent for internal addition in a thermally conductive silicone rubber composition filled with a large amount of boron nitride powder and molded into a sheet shape. Has been.
しかしながら、一般的に窒化物の粉末フィラーは樹脂への均一な分散が困難であり、上記特許文献1及び特許文献2記載の技術によっても、依然として有機高分子材料において分散性は不足しており、充分な難燃性を付与するには至っていない。また、例えばSi−Oで構成される網目構造を有さないため、有機低分子化合物を網目構造内に包摂することができず、当該有機低分子化合物の難燃性を向上することができない。また、特許文献1記載の技術では、有機高分子材料に添加した場合に、例えばフッ素由来の化合物によって得られるような表面特性(潤滑性など)を付与することができない。 However, nitride powder fillers are generally difficult to uniformly disperse in resin, and even with the techniques described in Patent Document 1 and Patent Document 2, dispersibility is still insufficient in organic polymer materials, It has not reached sufficient flame retardancy. In addition, since it does not have a network structure composed of, for example, Si—O, the organic low molecular weight compound cannot be included in the network structure, and the flame retardancy of the organic low molecular weight compound cannot be improved. Further, in the technique described in Patent Document 1, when added to an organic polymer material, surface characteristics (such as lubricity) obtained by a fluorine-derived compound cannot be imparted.
本発明は、上述した事情に鑑みてなされたものであり、高い難燃性を有機高分子材料に付与する難燃性付与剤を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a flame retardancy imparting agent that imparts high flame retardancy to an organic polymer material.
本発明の第1の観点に係る難燃性付与剤は、下一般式(1)で表されるフッ素含有オリゴマーを構成単位とするゲル化物と、六方晶系窒化ホウ素とからなることを特徴とする。
本発明の第2の観点に係る難燃性付与剤は、下一般式(1)で表されるフッ素含有オリゴマーを構成単位とするゲル化物によって六方晶系窒化ホウ素粉末が覆われてなり、平均粒子径が10〜5000nmである。
前記六方晶系窒化ホウ素粉末100質量部に対する前記フッ素含有オリゴマーの比率が、10〜400質量部であることが好ましい。 The ratio of the fluorine-containing oligomer to 100 parts by mass of the hexagonal boron nitride powder is preferably 10 to 400 parts by mass.
前記六方晶系窒化ホウ素が、窒化ホウ素の微粒子表面に−OH基、−NH2基の官能基を有し、窒化ホウ素結晶の端面上のホウ素原子に共有結合で結びついているものであることが好ましい。 The hexagonal boron nitride has a functional group of —OH group and —NH 2 group on the surface of boron nitride fine particles and is covalently bonded to a boron atom on the end face of the boron nitride crystal. preferable.
本発明の第3の観点に係る難燃性物品は、第1及び第2の観点に係る難燃性付与剤が有機材料に分散されてなることを特徴とする。
前記有機材料は、樹脂、ゴムであることが好ましい。
The flame retardant article according to the third aspect of the present invention is characterized in that the flame retardant imparting agent according to the first and second aspects is dispersed in an organic material.
The organic material is preferably resin or rubber.
本発明の第4の観点に係る難燃性付与剤の製造方法は、下一般式(2)で表されるフッ素含有オリゴマーと六方晶系窒化ホウ素粉末とを含んでなるゾル化状態の溶液を得ることと、
〔Rf−(VM)n−Rf〕 ・・・式(2)
(上式(2)中、Rfはフルオロアルキル基を含有する基を表し、VMはCH 2 −CH−Si(OCH 3 ) 3 を表す。nは自然数である。)
前記ゾル化状態の溶液をアルカリ性とすることでゲル化状態の溶液を得ることと、
前記ゲル化状態の溶液から溶媒を除去することと、
を備えることを特徴とする。
According to a fourth aspect of the present invention, there is provided a method for producing a flame retardant imparting solution comprising a solated solution containing a fluorine-containing oligomer represented by the following general formula (2) and a hexagonal boron nitride powder. Getting and
[Rf− (VM) n−Rf] (2)
(In the above formula (2), Rf represents a group containing a fluoroalkyl group, VM represents CH 2 —CH—Si (OCH 3 ) 3, and n is a natural number.)
Obtaining a gelled solution by making the solated solution alkaline,
Removing the solvent from the gelled solution;
It is characterized by providing.
本発明の第5の観点に係る難燃性物品の製造方法は、第1及び第2の観点に係る難燃性付与剤を有機材料に分散することを特徴とする。
前記有機材料は、樹脂、ゴムであることが好ましい。
The method for producing a flame retardant article according to the fifth aspect of the present invention is characterized in that the flame retardant imparting agent according to the first and second aspects is dispersed in an organic material.
The organic material is preferably resin or rubber.
本発明の第6の観点に係る難燃性物品は、第1及び第2の観点に係る難燃性付与剤に有機化合物が包摂されてなることを特徴とする。 The flame-retardant article according to the sixth aspect of the present invention is characterized in that an organic compound is included in the flame-retardant imparting agent according to the first and second aspects.
本発明の第7の観点に係る難燃性物品の製造方法は、第1及び第2の観点に係る難燃性付与剤に有機化合物を包摂させることを特徴とする。 The method for producing a flame retardant article according to the seventh aspect of the present invention is characterized in that the flame retardant imparting agent according to the first and second aspects includes an organic compound.
本発明の難燃性付与剤によれば、有機材料における窒化物の分散性が高められ、樹脂、ゴムなどの有機材料に高い難燃性を付与することができる。 According to the flame retardant imparting agent of the present invention, the dispersibility of nitrides in organic materials can be enhanced, and high flame retardancy can be imparted to organic materials such as resins and rubbers.
本発明者らは、表面に官能基を持つものの、官能基の数が少ないため、単体としては依然として有機溶媒や樹脂との親和性が低い窒化ホウ素粉末と、特定の置換基を有するフッ素含有オリゴマーとからなる複合材料を用いることで、上述したような問題を解消し、難燃性に優れる化合物を開発するに至った。 The present inventors have a functional group on the surface, but since the number of functional groups is small, boron nitride powder having a low affinity with an organic solvent or resin as a simple substance, and a fluorine-containing oligomer having a specific substituent By using a composite material consisting of the above, the above-mentioned problems were solved and a compound having excellent flame retardancy was developed.
なお、以下の記載において「難燃性物品」とは、例えば常温常圧の大気中で該物品に裸火を近づけても引火しない物品、又は一度引火しても焼失する前に自己消火する物品、として定義できる。このような物品は例えば酸素指数によって定義することもできる。また、以下の記載において「難燃性付与」とはこのような難燃性物品を得ることに限定されない。例えば酸素指数をある一定値以上にする場合のみならず、単に酸素指数を難燃性付与前よりも高くすることも含まれる。 In the following description, the term “flame retardant article” means, for example, an article that does not ignite even if an open flame is brought close to the article in an atmosphere at normal temperature and pressure, or an article that self-extinguishes before being burned even if ignited once , Can be defined as Such articles can also be defined, for example, by the oxygen index. Moreover, in the following description, "providing flame retardancy" is not limited to obtaining such a flame retardant article. For example, it includes not only the case where the oxygen index is set to a certain value or more, but also that the oxygen index is simply set higher than that before imparting flame retardancy.
また、以下の記載において、「窒化ホウ素粉末」とは、窒化ホウ素の粉末といい、粉末を構成する粒子の直径は、10〜5000nm程度である。また、「粒子径」は、SEM写真を画像解析することにより得られる微粒子の直径であり、「平均粒子径」は、粒子径の相加平均値(n=40)である。 Further, in the following description, “boron nitride powder” is referred to as boron nitride powder, and the diameter of the particles constituting the powder is about 10 to 5000 nm. The “particle diameter” is the diameter of fine particles obtained by image analysis of SEM photographs, and the “average particle diameter” is an arithmetic average value (n = 40) of particle diameters.
以下、本発明の実施形態に係る難燃性付与剤、難燃性物品及びそれらの製造方法について説明する。 Hereinafter, the flame retardancy imparting agent, the flame retardant article, and the production method thereof according to the embodiment of the present invention will be described.
(難燃性付与剤)
本発明の実施形態に係る難燃性付与剤は、下一般式(1)で表されるフッ素含有オリゴマーを構成単位とするゲル化物と、下記する六方晶系窒化ホウ素(以下、「h-BN」と略記する場合あり。)とからなる複合材料である。
〔フッ素含有オリゴマー〕
The flame retardancy imparting agent according to the embodiment of the present invention includes a gelled product having a fluorine-containing oligomer represented by the following general formula (1) as a constituent unit, and a hexagonal boron nitride (hereinafter referred to as “h-BN”). Is sometimes abbreviated as “.”).
[Fluorine-containing oligomer]
上一般式(1)において、Rfは、分子両末端における基であり、フルオロアルキル基を含有する基、具体的には、−CF(CF3 )OC3 F7 で表される基であることが好ましい。 In the above general formula (1), Rf is a group at both ends of the molecule and is a group containing a fluoroalkyl group, specifically, a group represented by —CF (CF 3 ) OC 3 F 7. Is preferred.
上一般式(1)で示される化合物は、一般式(2)のフッ素含有オリゴマーを酸性又はアルカリ性条件下でゾル−ゲル反応させることで得られる。換言すると、上一般式(1)で表されるフッ素含有オリゴマーを構成単位とするゲル化物は、中間鎖にSiOから構成される網目構造(マトリックス)が存在していることを表す。 The compound represented by the above general formula (1) can be obtained by subjecting the fluorine-containing oligomer of the general formula (2) to a sol-gel reaction under acidic or alkaline conditions. In other words, the gelled product having the fluorine-containing oligomer represented by the general formula (1) as a structural unit represents that a network structure (matrix) composed of SiO exists in the intermediate chain.
上一般式(1)で表されるフッ素含有オリゴマーを構成単位とするゲル化物は、ゲル化される以前のオリゴマーの状態(後述する一般式(2)参照)では、その構成単位の分子量が500〜1000程度であるものが使用できる。また、nは例えば2〜3の自然数である。 The gelled product having the fluorine-containing oligomer represented by the general formula (1) as a structural unit has a molecular weight of 500 in the state of the oligomer before gelation (see the general formula (2) described later). What is about -1000 can be used. Moreover, n is a natural number of 2-3, for example.
フッ素含有オリゴマーは、複合材料の状態では、ゲル化され、網目構造を有する。このフッ素含有オリゴマーは、1分子中に占めるフッ素原子(表面特性の向上に寄与する原子)の割合が大きいために、最終的に得られる樹脂成型品やゴム成形品の表面に高い効率でフッ素原子を存在させることができる。これにより、有機高分子成形品、即ち、樹脂成型品やゴム成形品の表面特性(潤滑性など)が向上する。 The fluorine-containing oligomer is gelled and has a network structure in the state of the composite material. Since this fluorine-containing oligomer has a large proportion of fluorine atoms (atoms contributing to the improvement of surface characteristics) in one molecule, the fluorine atoms are efficiently applied to the surface of the finally obtained resin molded product or rubber molded product. Can exist. Thereby, the surface characteristics (such as lubricity) of the organic polymer molded product, that is, the resin molded product or the rubber molded product are improved.
〔六方晶系窒化ホウ素粉末〕
六方晶系窒化ホウ素粉末は、窒化ホウ素からなる微粒子の表面に−OH基、−NH2基等の官能基を有し、窒化ホウ素結晶の端面上のホウ素原子に共有結合で化学結合しているものを使用することが好ましい。ここで、窒化ホウ素結晶の端面とは、ホウ素原子と窒素原子が交互に結合した六角網面構造を持つ積層面と直交する側面をいう。
[Hexagonal boron nitride powder]
Hexagonal boron nitride powder has functional groups such as —OH groups and —NH 2 groups on the surface of fine particles made of boron nitride, and is chemically bonded to boron atoms on the end face of the boron nitride crystal by covalent bonds. It is preferable to use one. Here, the end face of the boron nitride crystal refers to a side face perpendicular to the laminated face having a hexagonal network structure in which boron atoms and nitrogen atoms are alternately bonded.
〔複合材料(ナノコンポジット)〕
本発明の実施形態に係る複合材料は、粒子状であり、個々の粒子は、球形または球形に近い形状である(図7参照)。詳しくは、複合材料は、上一般式(1)で表されるフッ素含有オリゴマーを構成単位とするゲル化物によって六方晶系窒化ホウ素粉末が覆われてなる粒子状の化合物である。その平均粒子径は、10〜5000nm、好ましくは、20〜1000nm、より好ましくは20〜500nmである。10nm未満であると、一次粒子が凝集してしまい、取り扱いが困難となるためである。一方、5000nmを超えると、得られる有機高分子成形品の機械的特性の低下を招くことがあるためである。このように、個々の粒子のサイズは、ナノスケールであるため、本複合材料は、「ナノコンポジット」とも呼ばれる。
[Composite material (nanocomposite)]
The composite material according to the embodiment of the present invention is in the form of particles, and each particle has a spherical shape or a shape close to a spherical shape (see FIG. 7). Specifically, the composite material is a particulate compound in which a hexagonal boron nitride powder is covered with a gelled product having the fluorine-containing oligomer represented by the general formula (1) as a constituent unit. The average particle diameter is 10 to 5000 nm, preferably 20 to 1000 nm, and more preferably 20 to 500 nm. If the thickness is less than 10 nm, the primary particles aggregate and the handling becomes difficult. On the other hand, if it exceeds 5000 nm, the mechanical properties of the resulting organic polymer molded product may be deteriorated. Thus, because the size of individual particles is nanoscale, this composite material is also called “nanocomposite”.
[複合材料の製造方法]
本発明の実施形態に係る複合材料は、下一般式(2)で表されるフッ素含有オリゴマーと、下記する六方晶系窒化ホウ素粉末とを所定の方法によって反応させることで製造できる。
[Production method of composite material]
The composite material according to the embodiment of the present invention can be produced by reacting the fluorine-containing oligomer represented by the following general formula (2) with the hexagonal boron nitride powder described below by a predetermined method.
例えば、下記一般式(2)で表されるフッ素含有オリゴマーと、上記した六方晶系窒化ホウ素粉末と含んでなるゾル化状態の溶液を得ることと、このゾル化状態の溶液をアルカリ性とすることでゲル化状態の溶液を得ることと、このゲル化状態の溶液から溶媒を除去することと、を有する方法によって得られる。 For example, obtaining a solated state solution comprising a fluorine-containing oligomer represented by the following general formula (2) and the above hexagonal boron nitride powder, and making the solated state solution alkaline To obtain a gelled solution and to remove the solvent from the gelled solution.
〔フッ素含有オリゴマー〕
〔Rf−(VM)n−Rf〕 ・・・式(2)
(上式(2)中、Rfは分子両末端における置換基であり、フルオロアルキル基を含有する基、具体的には、−CF(CF3 )OC3 F7 で表される基を表し、VMはビニルトリメトキシシラン(化学式:CH2=CH−Si(OCH3 )3 で表される。)由来の単量体単位(化学式:CH 2 −CH−Si(OCH 3 ) 3 で表される。)を表す。nは2〜3の自然数である。)
[Fluorine-containing oligomer]
[Rf− (VM) n−Rf] (2)
(In the above formula (2), Rf is a substituent at both ends of the molecule and represents a group containing a fluoroalkyl group, specifically a group represented by -CF (CF 3 ) OC 3 F 7 ; VM is vinyltrimethoxysilane (formula:. CH 2 = CH-Si (OCH 3) represented by 3) derived from the monomer units (chemical formula represented by CH 2 -CH-Si (OCH 3 ) 3 . represents a) .n is a natural number of 2-3.)
六方晶系窒化ホウ素粉末100質量部に対するフッ素含有オリゴマーの比率としては、例えば10〜400質量部とすることが好ましい。400質量部を超えると、六方晶系窒化ホウ素粉末の有機高分子材料中の分散性が飽和し、材料費用によって製造コストが上昇することがあり、10重量部未満であると、六方晶系窒化ホウ素粉末の分散性が低下したり、有機高分子材料に十分な表面特性(潤滑性など)が得られないことがあるためである。 The ratio of the fluorine-containing oligomer to 100 parts by mass of the hexagonal boron nitride powder is preferably 10 to 400 parts by mass, for example. When the amount exceeds 400 parts by mass, the dispersibility of the hexagonal boron nitride powder in the organic polymer material is saturated, and the manufacturing cost may increase due to the material cost. When the amount is less than 10 parts by weight, the hexagonal nitriding This is because the dispersibility of the boron powder is lowered, and sufficient surface characteristics (such as lubricity) may not be obtained for the organic polymer material.
上記フッ素含有オリゴマーと六方晶系窒化ホウ素とから上記複合材料を得る反応式を、以下の式(3)で示す。
<第1実施形態>
本第1実施形態では、上記難燃性付与剤(複合材料)を、下記するような有機高分子化合物(基材)に添加する場合について説明する。これにより、当該有機高分子化合物の熱伝導性を向上させ、その結果、得られる難燃性物品に高い難燃性を付与することができる。
<First Embodiment>
In the first embodiment, a case will be described in which the flame retardant imparting agent (composite material) is added to an organic polymer compound (base material) as described below. Thereby, the thermal conductivity of the organic polymer compound can be improved, and as a result, high flame retardancy can be imparted to the obtained flame-retardant article.
(有機高分子化合物)
難燃性を付与する有機高分子材料としては、例えば樹脂、ゴムが使用できる。
(Organic polymer compound)
As the organic polymer material imparting flame retardancy, for example, resin and rubber can be used.
樹脂としては、例えばポリイミド樹脂、ポリメチルメタクリレート(PMMA)、ナイロン6(Tm=215℃)、ナイロン66(Tm=255℃)、ポリイミド、ポリフェニレンオキシド、ノリル、ポリスルホン、TPX(三井化学株式会社の登録商標;ポリメチルペンテンの一種)、ポリアセタール、ポリカーボネートなどの難燃性を有する熱可塑性樹脂を挙げることができるが、これらには限定されない。中でもポリイミド樹脂は、難燃性だけでなく、耐寒性、機械特性、電気特性に優れることから好ましく使用できる。 Examples of the resin include polyimide resin, polymethyl methacrylate (PMMA), nylon 6 (Tm = 215 ° C.), nylon 66 (Tm = 255 ° C.), polyimide, polyphenylene oxide, noryl, polysulfone, TPX (registered by Mitsui Chemicals, Inc.) (Trademark; a kind of polymethylpentene), a thermoplastic resin having flame retardancy such as polyacetal, polycarbonate and the like, but is not limited thereto. Among these, a polyimide resin is preferably used because it is excellent not only in flame retardancy but also in cold resistance, mechanical properties, and electrical properties.
ゴムとしては、例えば、クロロプレンゴム(CR)、フッ素ゴム(FKM,FEPM)、クロロスルフォン化ポリエチレン(CSM)、塩素化ポリエチレン、エピクロロヒドリンゴム等の難燃性ゴム(エラストマー)の他、ニトリルゴム(NBR)、ブチルゴム(IIR)、エチレンプロピレンゴム(EPM、EPDM)、シリコーン等、通常は難燃性ではないゴム(エラストマー)も挙げることができる。 As rubber, for example, chloroprene rubber (CR), fluorine rubber (FKM, FEPM), chlorosulfonated polyethylene (CSM), chlorinated polyethylene, epichlorohydrin rubber and other flame retardant rubber (elastomer), nitrile rubber Mention may also be made of rubbers (elastomers) which are not usually flame retardant, such as (NBR), butyl rubber (IIR), ethylene propylene rubber (EPM, EPDM), silicone and the like.
その他、難燃性を付与できる有機高分子材料としては、紙、木材、布帛などが挙げられるが、これらの物質の場合では、後述するように、その表面に塗布される等して使用される。 In addition, examples of the organic polymer material that can impart flame retardancy include paper, wood, and fabric. In the case of these substances, as described later, they are used by being applied to the surface thereof. .
[難燃性物品の製造方法]
これらの有機高分子材料は、一般に加熱溶融され、難燃性付与剤と混合された後、金型で所定形状に成形された状態とすることで難燃性物品とされる。
[Method for producing flame-retardant article]
These organic polymer materials are generally heated and melted, mixed with a flame retardant imparting agent, and then molded into a predetermined shape with a mold to form a flame retardant article.
有機高分子材料に対する複合材料の含有量としては、有機高分子材料100質量部に対して、0.01〜1000質量部、好ましくは0.5〜100質量部、より好ましくは1〜100質量部とすることがよい。0.01質量部未満であると、得られる成形品の熱伝導性、難燃性、潤滑性、化学安定性、耐食性、表面特性を十分に向上させることができず、1000質量部を超えると、得られる樹脂成形品の柔軟性、弾性などの機械的特性の低下を招くことがあるためである。 The content of the composite material with respect to the organic polymer material is 0.01 to 1000 parts by mass, preferably 0.5 to 100 parts by mass, more preferably 1 to 100 parts by mass with respect to 100 parts by mass of the organic polymer material. It is good to do. If it is less than 0.01 parts by mass, the heat conductivity, flame retardancy, lubricity, chemical stability, corrosion resistance, and surface properties of the obtained molded product cannot be sufficiently improved, and if it exceeds 1000 parts by mass This is because mechanical properties such as flexibility and elasticity of the obtained resin molded product may be deteriorated.
例えば、有機高分子材料がポリイミド樹脂の場合には、ポリイミド樹脂100質量部に対して、複合材料は、0.01〜1000質量部、好ましくは0.5〜100質量部、より好ましくは1〜100質量部とすることがよい。 For example, when the organic polymer material is a polyimide resin, the composite material is 0.01 to 1000 parts by weight, preferably 0.5 to 100 parts by weight, more preferably 1 to 100 parts by weight of the polyimide resin. It is good to set it as 100 mass parts.
また、有機高分子材料がクロロプレンゴムの場合には、クロロプレンゴム100質量部に対して、複合材料は、0.01〜1000質量部、好ましくは0.5〜100質量部、より好ましくは1〜100質量部とすることがよい。 When the organic polymer material is chloroprene rubber, the composite material is 0.01 to 1000 parts by weight, preferably 0.5 to 100 parts by weight, and more preferably 1 to 100 parts by weight with respect to 100 parts by weight of chloroprene rubber. It is good to set it as 100 mass parts.
本実施形態において、有機高分子材料に複合材料を添加することで難燃性が発現するメカニズムは、以下のように推定できる。
即ち、図7に示すように、上記フッ素含有オリゴマーを用いた場合には、アルカリ条件下でゾル−ゲル反応が起き、コア−シェル(BN−VM−表面にRf基を有する)構造を形成する。このため、有機高分子材料を有する複合材料を800℃で焼成すると、RF基とVMの炭化水素部は燃焼してしまう。しかしながら、Si−OマトリックスとBNは有機高分子材料中に残存しており、特にBNの熱伝導性によって、高分子材料の難燃性が高められることが考えられる。
In this embodiment, the mechanism by which flame retardancy is exhibited by adding a composite material to an organic polymer material can be estimated as follows.
That is, as shown in FIG. 7, when the above fluorine-containing oligomer is used, a sol-gel reaction occurs under an alkaline condition to form a core-shell (BN-VM-surface having Rf group) structure. . For this reason, when a composite material having an organic polymer material is baked at 800 ° C., the hydrocarbon group of the RF group and the VM burns. However, the Si—O matrix and BN remain in the organic polymer material, and it is considered that the flame retardancy of the polymer material is enhanced particularly by the thermal conductivity of BN.
また、本実施形態によれば、フッ素含有オリゴマーが、Rf基、即ち、フッ素を含むので、フッ素由来の化合物によって得られるような表面特性(潤滑性など)を付与することができる。 In addition, according to the present embodiment, since the fluorine-containing oligomer contains an Rf group, that is, fluorine, surface characteristics (such as lubricity) that can be obtained by a fluorine-derived compound can be imparted.
<第2実施形態>
本発明の実施形態に係る複合材料は、上述した第1実施形態のように、有機高分子化合物に添加して難燃性を高めること以外に、本第2実施形態のように、複合材料中に有機低分子化合物を包摂させ、得られる難燃性物品の難燃性を高めることもできる。
Second Embodiment
The composite material according to the embodiment of the present invention, as in the second embodiment, is added to the organic polymer compound as in the first embodiment to enhance the flame retardancy. It is also possible to increase the flame retardancy of the resulting flame retardant article by incorporating an organic low molecular weight compound.
(有機低分子化合物)
難燃性を高める有機低分子化合物としては、ビスフェノールAF(BPAF)(2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン)、ビスフェノールA(2,2−ビス(4−ヒドロキシフェニル)プロパン)、ビスフェノールF(ビス(4―ヒドロキシフェニル)メタン)、バイノールA((2R,7Z)−3−メチレン−7,11,11―トリメチルビシクロ[8.1.0]ウンデカ−7−エン−2β,6α―ジオール)などの有機化合物を挙げることができる。
(Organic low molecular weight compound)
Examples of organic low molecular weight compounds that increase flame retardancy include bisphenol AF (BPAF) (2,2-bis (4-hydroxyphenyl) hexafluoropropane), bisphenol A (2,2-bis (4-hydroxyphenyl) propane) Bisphenol F (bis (4-hydroxyphenyl) methane), binol A ((2R, 7Z) -3-methylene-7,11,11-trimethylbicyclo [8.1.0] undec-7-ene-2β, Organic compounds such as 6α-diol).
[難燃性物品の製造方法]
本実施形態では、複合材料中に有機低分子化合物を包摂させることで難燃性物品を得る。
[Method for producing flame-retardant article]
In this embodiment, a flame retardant article is obtained by including a low molecular weight organic compound in a composite material.
この場合、複合材料100質量部に対する有機低分子化合物の添加量は、50質量部以下であることが好ましい。50質量部を超えると、有機低分子化合物を網目構造中に包摂(カプセル化)することが困難になる場合があるためである。 In this case, it is preferable that the addition amount of the organic low molecular weight compound with respect to 100 parts by mass of the composite material is 50 parts by mass or less. This is because if it exceeds 50 parts by mass, it may be difficult to encapsulate (encapsulate) the organic low-molecular compound in the network structure.
(カプセル化の反応式)
本実施形態では、例えば、以下の式(4)で示される反応式によって、フッ素含有オリゴマー/六方晶系窒化ホウ素(h-BN)複合材料と、有機低分子化合物であるBPAFとからフッ素含有オリゴマー/六方晶系窒化ホウ素/BPAF複合材料を得ることができる。
(Encapsulation reaction formula)
In the present embodiment, for example, a fluorine-containing oligomer is obtained from a fluorine-containing oligomer / hexagonal boron nitride (h-BN) composite material and BPAF, which is an organic low-molecular compound, by the reaction formula shown by the following formula (4). / Hexagonal boron nitride / BPAF composite material can be obtained.
本実施形態において、フッ素含有オリゴマー/六方晶系窒化ホウ素複合材料に有機低分子化合物であるBPAFを包摂させることで、難燃性が高められる理由は、BPAFが、フッ素含有オリゴマーのゲル化物の網目構造(Si−O結合のもの)中にカプセル化された状態で存在しているためと考えられる。 In the present embodiment, the reason why flame retardancy is enhanced by including BPAF, which is a low molecular weight organic compound, in the fluorine-containing oligomer / hexagonal boron nitride composite material is that BPAF is a network of gelled products of fluorine-containing oligomers. This is presumably because they are encapsulated in the structure (Si—O bond).
本実施形態によれば、有機低分子化合物が本来もっている特性、例えば蛍光特性などを、高温あるいは有炎環境下でも使用できるようになる。 According to this embodiment, the characteristics inherent to the low molecular weight organic compound, such as fluorescence characteristics, can be used even at high temperatures or in a flammable environment.
[実施例]
以下、実施例によって本発明をより具体的に説明する。しかし、本発明に係る難燃性付与剤(上記複合材料)及びその製造方法は以下の実施例に限定されるものではない。なお、単位%は、特に指定のない場合は質量%を表す。
[Example]
Hereinafter, the present invention will be described more specifically with reference to examples. However, the flame retardancy imparting agent (the composite material) and the production method thereof according to the present invention are not limited to the following examples. Note that the unit% represents mass% unless otherwise specified.
<実施例1〜6>
実施例1〜6は、上記第1実施形態に対応するものであり、有機高分子材料に複合材料を添加し、有機高分子材料の難燃性や表面特性を向上させる場合についての実施例である。
<Examples 1-6>
Examples 1 to 6 correspond to the first embodiment, and are examples of cases where a composite material is added to an organic polymer material to improve the flame retardancy and surface characteristics of the organic polymer material. is there.
まず、下記表1に示す配合処方に従い、室温(25℃)下で、メタノール12mlを入れた50mlのサンプル瓶に、それぞれ下表1に示す添加量で、フッ素含有オリゴマー、六方晶系窒化ホウ素フィラー(平均粒子径:約70nm)、株式会社MARUKA製)を加え、数分〜数時間攪拌を行った。さらに、室温(25℃)下で、25%アンモニア水5mlを加えて5時間反応させた。ここで反応の終了は白濁や、沈殿物の沈降によって確認することができる。 First, in accordance with the formulation shown in Table 1 below, a fluorine-containing oligomer and a hexagonal boron nitride filler were added to a 50 ml sample bottle containing 12 ml of methanol at room temperature (25 ° C.) in the amounts shown in Table 1 below. (Average particle diameter: about 70 nm), manufactured by MARUKA Co., Ltd.) was added, and the mixture was stirred for several minutes to several hours. Furthermore, at room temperature (25 ° C.), 5 ml of 25% aqueous ammonia was added and reacted for 5 hours. Here, the completion of the reaction can be confirmed by cloudiness or sedimentation of the precipitate.
反応終了後、エバポレーター(80〜100℃)を用いて溶液から溶媒を除去し、1日真空乾燥(50℃)することで、溶媒を完全に除去した。 After completion of the reaction, the solvent was removed from the solution using an evaporator (80 to 100 ° C.), and the solvent was completely removed by vacuum drying (50 ° C.) for 1 day.
その後、溶媒除去後の反応物を再度メタノール中に数時間攪拌し分散させ、さらに遠心分離器を用い、フッ素含有オリゴマー/六方晶系窒化ホウ素のナノコンポジット(以下、「複合材料」という。)を沈殿物として得た。以上の結果を下表1に纏めて示す。 Thereafter, the reaction product after removal of the solvent is again stirred and dispersed in methanol for several hours, and further, a fluorine-containing oligomer / hexagonal boron nitride nanocomposite (hereinafter referred to as “composite material”) is used using a centrifugal separator. Obtained as a precipitate. The above results are summarized in Table 1 below.
測定は、動的光散乱法(DLS:Dynamic Light Scattering Measurement)(大塚電子株式会社製、型番:DLS−7000HL)で行った。
Rf:−CF(CF3 )OC3 F7 で表される分子鎖末端基
VM:CH2−CH−Si(OCH3 )3で表される分子鎖中間基
h-BN:六方晶系窒化ホウ素粉末
また、焼成は、空気雰囲気中、昇温速度10℃/分、室温から800℃まで昇温の条件で行った(以下の説明において同様である)。
The measurement was performed by a dynamic light scattering method (DLS: Dynamic Light Scattering Measurement) (manufactured by Otsuka Electronics Co., Ltd., model number: DLS-7000HL).
Rf: molecular chain terminal group represented by —CF (CF 3 ) OC 3 F 7 VM: molecular chain intermediate group represented by CH 2 —CH—Si (OCH 3 ) 3 h-BN: hexagonal boron nitride Powder was also fired in an air atmosphere at a temperature rising rate of 10 ° C./min and a temperature rising from room temperature to 800 ° C. (the same applies in the following description).
[複合材料の熱安定性]
実施例1〜6において得られたフッ素含有オリゴマー/六方晶系窒化ホウ素複合材料の熱安定性について、高温型示差走査熱量計(TGA)を用い、空気雰囲気中、昇温速度10℃/分で、室温から800℃まで測定した。高温型示差走査熱量計は、ブルカー・エイエックスエス株式会社製、型番:TG−DTA2000SAを使用した。得られた結果を図1に示す。
[Thermal stability of composite materials]
Regarding the thermal stability of the fluorine-containing oligomer / hexagonal boron nitride composite material obtained in Examples 1 to 6, using a high-temperature differential scanning calorimeter (TGA) in an air atmosphere at a heating rate of 10 ° C./min. Measured from room temperature to 800 ° C. As the high-temperature differential scanning calorimeter, model number: TG-DTA2000SA manufactured by Bruker AXS Co., Ltd. was used. The obtained results are shown in FIG.
図1に示すTGAの結果より、六方晶系窒化ホウ素に対するフッ素含有オリゴマーの割合が増加するに従って、300℃を超えたときの重量の減少度合いが大きくなっていることが確認できる。室温時に対する、800℃における質量の減少率%は、六方晶系窒化ホウ素(h-BN)単体:1%、実施例1:7%、実施例2:10%、実施例3:20%、実施例4:30%、実施例5:43%、実施例6:54%、上記一般式(1)で表されるフッ素含有オリゴマー単体が62%であった。この変化は、六方晶系窒化ホウ素の加熱による重量の減少が殆どなく(1〜2%程度)、かつ、フッ素含有オリゴマーの500℃以上での加熱による重量減少率が高い(60%程度)ことから、フッ素含有オリゴマーに由来するものであるといえる。 From the result of TGA shown in FIG. 1, it can be confirmed that the degree of weight decrease when the temperature exceeds 300 ° C. increases as the ratio of the fluorine-containing oligomer to the hexagonal boron nitride increases. The percentage reduction in mass at 800 ° C. with respect to room temperature is as follows: hexagonal boron nitride (h-BN) alone: 1%, Example 1: 7%, Example 2: 10%, Example 3: 20%, example 4: 30%, example 5: 43%, example 6 54%, a fluorine-containing oligomer over single body represented by the general formula (1) was 62%. This change shows that there is almost no decrease in weight due to heating of hexagonal boron nitride (about 1 to 2%), and the weight reduction rate due to heating of the fluorine-containing oligomer at 500 ° C. or higher is high (about 60%). Therefore, it can be said that it originates from a fluorine-containing oligomer.
実施例1〜6において得られた複合材料について、以下の(1)、(2)に示す方法で、有機高分子材料に添加(混合)し、さらに以下に示す方法で、複合材料添加後の有機高分子材料の分散性、表面特性、難燃性を評価した。なお、(3)のように有機高分子材料に添加することもできるが、この内容については実験内容を示していない。 About the composite material obtained in Examples 1-6, it adds to an organic polymer material by the method shown in the following (1) and (2), and also after the composite material addition by the method shown below. Dispersibility, surface characteristics, and flame retardancy of organic polymer materials were evaluated. In addition, although it can also add to an organic polymer material like (3), the content of experiment is not shown about this content.
(1)溶融状態の有機高分子材料に複合材料を添加し、攪拌して、複合材料を分散させ、その後、金型キャビティ内に射出ないし注型、冷却して、成型する。 (1) A composite material is added to an organic polymer material in a molten state and stirred to disperse the composite material. Thereafter, the composite material is injected or cast into a mold cavity, cooled, and molded.
(2)有機高分子材料を溶剤に溶解させた溶液に、複合材料を添加、分散させ、さらに溶剤を除去することにより成形する。詳しくは、複合材料を添加し、分散させてなる高分子溶液を、シャーレ中に注入し、その後、溶剤を除去し、高分子フィルムを調製する。 (2) A composite material is added and dispersed in a solution in which an organic polymer material is dissolved in a solvent, and then the solvent is removed to form. Specifically, a polymer solution in which a composite material is added and dispersed is poured into a petri dish, and then the solvent is removed to prepare a polymer film.
(3)基材(金属、ガラス、ゴム、樹脂、布帛、木材、紙等)に、複合材料の分散溶液をスプレー、ディップ等で塗布し、基材表面に皮膜を形成する。ここでは、基材の表面を改質する程度であってもよい。 (3) A composite material dispersion solution is applied to a base material (metal, glass, rubber, resin, fabric, wood, paper, etc.) by spraying, dipping, or the like to form a film on the surface of the base material. Here, it may be a degree to modify the surface of the substrate.
[分散性]
実施例1〜6において得られた複合材料の分散性を、以下のようにして評価した。
[Dispersibility]
The dispersibility of the composite materials obtained in Examples 1 to 6 was evaluated as follows.
即ち、六方晶系窒化ホウ素フィラーをメタノールに分散させて調整した溶液(比較例)と、フッ素含有オリゴマー/六方晶系窒化ホウ素複合材料(ここでは実施例4)をメタノールに分散させて調整した溶液の2種について、FE−SEM(電界放出型(Field Emission)走査電子顕微鏡)(日本電子株式会社製、型番:JSM−7000F)を使用して評価した。 That is, a solution prepared by dispersing a hexagonal boron nitride filler in methanol (comparative example) and a solution prepared by dispersing a fluorine-containing oligomer / hexagonal boron nitride composite material (here, Example 4) in methanol. Were evaluated using an FE-SEM (Field Emission scanning electron microscope) (manufactured by JEOL Ltd., model number: JSM-7000F).
図2(比較例)に示すように、六方晶系窒化ホウ素フィラー単体では粒子同士が凝集してしまう。これに対して、六方晶系窒化ホウ素とフッ素含有オリゴマーとを上述した方法によって複合材料とすることによって、図3(実施例4)に示すように、複合材料を粒子ごとに分離させ、メタノール中に分散させることができた(図3の左側写真参照)。ところで、FE−SEM写真は示していないが、六方晶系窒化ホウ素は−OH基を有することで単独(単体)で水に良く分散する。これに対して、六方晶系窒化ホウ素とフッ素含有オリゴマーとを上述した方法によって複合材料とすることによって、水に分散しなくなる。つまり、撥水性が高まる。なお、また、焼成後に複合材料の粒子形態に変化はなかった(図3の右側写真参照)。 As shown in FIG. 2 (Comparative Example), particles are aggregated in a single hexagonal boron nitride filler. On the other hand, by making hexagonal boron nitride and fluorine-containing oligomer into a composite material by the above-described method, the composite material is separated into particles as shown in FIG. (See the left-side photo in FIG. 3). By the way, although an FE-SEM photograph is not shown, hexagonal boron nitride has a —OH group and is well (single) dispersed well in water. On the other hand, when the hexagonal boron nitride and the fluorine-containing oligomer are made into a composite material by the above-described method, they are not dispersed in water. That is, water repellency is increased. In addition, there was no change in the particle form of the composite material after firing (see the right-hand photo in FIG. 3).
[表面特性]
実施例1〜6において得られた複合材料から、上記(2)の方法によって作成した、複合材料が混合、分散された有機高分子材料の表面特性を、以下のようにして評価した。
[Surface characteristics]
From the composite materials obtained in Examples 1 to 6, the surface characteristics of the organic polymer material prepared and mixed and dispersed by the method (2) were evaluated as follows.
即ち、まず、実施例1〜6において作成した、フッ素含有オリゴマー/六方晶系窒化ホウ素複合材料を分散、混合し、改質したポリメチルメタクリレート(PMMA)フィルムの上に、ドデカン(以下、油という)及び水を滴下し、フィルムと油滴及び水滴の接触部位で形成される角度(単位:°(度))を、接触角測定器(協和界面科学株式会社製、型番:DropMaster−301(DM−301))により測定した。この接触角の値が高いほど、油や水を弾きやすい、即ち、高い防汚性や撥水性を有することになる。 That is, first, dodecane (hereinafter referred to as oil) is formed on a polymethyl methacrylate (PMMA) film obtained by dispersing, mixing, and modifying a fluorine-containing oligomer / hexagonal boron nitride composite material prepared in Examples 1 to 6. ) And water are dropped, and the angle (unit: ° (degree)) formed at the contact portion between the film, the oil droplet, and the water droplet is measured by a contact angle measuring device (manufactured by Kyowa Interface Science Co., Ltd., model number: DropMaster-301 (DM -301)). The higher the value of the contact angle, the easier it is to repel oil and water, that is, higher antifouling properties and water repellency.
下表2に示すように、実施例1〜6に対応する被検体(PMMAフィルム)の接触角から、そのPMMAフィルムの表(おもて)面(surface side)において高い撥油性及び撥水性を示した。さらに、VM添加量が50〜400mgの場合には、当該PMMAフィルムの裏面(reverse side、シャーレとの接触面)においては、油接触角は0(ゼロ)となった。 As shown in Table 2 below, from the contact angle of the subject (PMMA film) corresponding to Examples 1 to 6, high oil repellency and water repellency are exhibited on the front side of the PMMA film. Indicated. Furthermore, when the VM addition amount was 50 to 400 mg, the oil contact angle was 0 (zero) on the back surface (reverse side, contact surface with the petri dish) of the PMMA film.
上表2の結果から、フッ素含有オリゴマーの添加量が多い場合(例えば、50〜400mg;実施例3〜6)では、油の場合に、裏面の接触角が0°となって撥油性が発現せず、フッ素化アルキレン基(Rf)がPMMAフィルムの表(おもて)面に配向していることが推定できる。換言すると、実施例3〜6では、溶液状態では複合材料は溶媒中に均一に分散している(図3参照)が、上記した方法で改質されたPMMAフィルムを作成する際、複合材料を分散した溶液をシャーレ内で溶剤を除去する過程で、複合材料がフィルム表面近傍に移動するものと推定できる。 From the results shown in Table 2 above, when the amount of fluorine-containing oligomer added is large (for example, 50 to 400 mg; Examples 3 to 6), the contact angle on the back surface is 0 ° and oil repellency is exhibited in the case of oil. It can be estimated that the fluorinated alkylene group (Rf) is oriented on the front surface of the PMMA film. In other words, in Examples 3 to 6, in the solution state, the composite material is uniformly dispersed in the solvent (see FIG. 3), but when the PMMA film modified by the above-described method is formed, the composite material is used. It can be presumed that the composite material moves to the vicinity of the film surface in the process of removing the solvent from the dispersed solution in the petri dish.
一方、フッ素含有オリゴマーの添加量が少ない場合(例えば、10〜20mg;実施例1、2)には、フッ素の表面配向性が低くなるため、フィルムの裏面(reverse side)にも撥油性が発現するようになる。換言すると、フッ素含有オリゴマーの添加量が少ない実施例1、2では、フィルム状態において、複合材料は、フィルムの平面方向に加え、フィルムの厚さ方向にも均一に分散しているものと推定できる。以上のように、六方晶系窒化ホウ素とフッ素含有オリゴマーとを上述した方法によって複合材料とすることで、フッ素含有オリゴマーの配合量に応じ、フッ素化アルキレン基(Rf)の作用により、撥水・撥油性を発現できる。 On the other hand, when the addition amount of the fluorine-containing oligomer is small (for example, 10 to 20 mg; Examples 1 and 2), the surface orientation of fluorine becomes low, so that oil repellency is also exhibited on the reverse side of the film. To come. In other words, in Examples 1 and 2 in which the amount of fluorine-containing oligomer added is small, it can be estimated that in the film state, the composite material is uniformly dispersed in the thickness direction of the film in addition to the plane direction of the film. . As described above, by making the hexagonal boron nitride and the fluorine-containing oligomer into a composite material by the above-described method, depending on the blending amount of the fluorine-containing oligomer, the action of the fluorinated alkylene group (Rf) causes water repellency / Oil repellency can be expressed.
(六方晶系窒化ホウ素の分散性)
図4(a)〜図4(f)に、それぞれ、実施例1〜6の複合材料の添加によって改質されたPMMAフィルムの写真を示す。このように、上記(2)の方法において、各実施例1〜6の複合材料によって、六方晶系窒化ホウ素は凝集せず、均一かつ透明性の高いPMMAフィルムを作成することができた。このように、各実施例1〜6におけるフッ素含有オリゴマー/六方晶系窒化ホウ素複合材料において、六方晶系窒化ホウ素は高い分散性を示すことが確認できた。
(Dispersibility of hexagonal boron nitride)
4 (a) to 4 (f) show photographs of PMMA films modified by adding the composite materials of Examples 1 to 6, respectively. As described above, in the method (2), the composite materials of Examples 1 to 6 did not aggregate hexagonal boron nitride, and were able to produce a uniform and highly transparent PMMA film. Thus, in the fluorine-containing oligomer / hexagonal boron nitride composite material in each of Examples 1 to 6, it was confirmed that the hexagonal boron nitride showed high dispersibility.
<実施例7、8>
実施例7、8は、上記第2実施形態に対応するものであり、複合材料中に低分子有機化合物を包摂させ、難燃性物品を得る場合についての実験例である。実施例7、8において、難燃性物品は、以下のように作成し、その難燃性を評価した。
<Examples 7 and 8>
Examples 7 and 8 correspond to the second embodiment, and are experimental examples in which a low-molecular organic compound is included in a composite material to obtain a flame-retardant article. In Examples 7 and 8, flame retardant articles were prepared as follows, and the flame retardancy was evaluated.
まず、下表3に示す配合処方に従って、メタノール12mlを入れた50mlのサンプル瓶に、フッ素含有オリゴマー、六方晶系窒化ホウ素フィラー(平均粒子径:約70nm、株式会社MARUKA製)、ビスフェノールAF(BPAF)を加え、室温(25℃)下、数分〜数時間、攪拌を行った。 First, in accordance with the formulation shown in Table 3 below, a fluorine-containing oligomer, a hexagonal boron nitride filler (average particle size: about 70 nm, manufactured by MARUKA Corporation), bisphenol AF (BPAF) were placed in a 50 ml sample bottle containing 12 ml of methanol. ) And stirred at room temperature (25 ° C.) for several minutes to several hours.
続いて、室温(25℃)下、25%アンモニア水5mlを加え、5時間反応させた。反応終了後、エバポレーター(80〜100℃)により溶媒を除去し、1日真空乾燥(50℃)を行い、溶媒を完全に除去した。 Subsequently, 5 ml of 25% aqueous ammonia was added at room temperature (25 ° C.) and reacted for 5 hours. After completion of the reaction, the solvent was removed by an evaporator (80 to 100 ° C.), followed by vacuum drying (50 ° C.) for 1 day to completely remove the solvent.
その後、溶媒除去後の反応物を再度メタノール中に数時間攪拌し分散させ、遠心分離器を用い、目的とするフッ素含有オリゴマー/六方晶系窒化ホウ素/BPAFのナノコンポジット(以下、「複合材料」という。)を沈殿物として得た。以上の結果を下表3に纏めて示す。 Thereafter, the reaction product after removal of the solvent is again stirred and dispersed in methanol for several hours, and the target fluorine-containing oligomer / hexagonal boron nitride / BPAF nanocomposite (hereinafter referred to as “composite material”) is used. Was obtained as a precipitate. The above results are summarized in Table 3 below.
測定は、動的光散乱法(DLS:Dynamic Light Scattering Measurement)で行った。
The measurement was performed by a dynamic light scattering method (DLS: Dynamic Light Scattering Measurement).
実施例7で得られた生成物について、UV−vis装置(株式会社島津製作所製、型番UV−1800)によって、UV−visスペクトルを測定した。得られたスペクトルの結果を図5に示す。 About the product obtained in Example 7, the UV-vis spectrum was measured with the UV-vis apparatus (Shimadzu Corporation make, model number UV-1800). The obtained spectrum result is shown in FIG.
図5に示すUV−visスペクトルの結果より、フッ素含有オリゴマー/六方晶系窒化ホウ素複合材料内にBPAFが包摂されていることが分かる。 From the results of the UV-vis spectrum shown in FIG. 5, it can be seen that BPAF is included in the fluorine-containing oligomer / hexagonal boron nitride composite material.
〔熱安定性〕
実施例4、7、8において得られたフッ素含有オリゴマー/六方晶系窒化ホウ素/BPAF複合材料の熱安定性(難燃性)について、高温型示差走査熱量計(TGA)を用い、空気雰囲気中、昇温速度10℃/分で、室温から800℃まで測定した。得られたTGAの結果を図6に示す。ここで、室温時に対する、800℃における質量の減少率%は、六方晶系窒化ホウ素(h-BN)単体:1%、実施例4:30%、実施例7:31%、実施例8:31%、上記一般式(1)で表されるフッ素含有オリゴマー単体が62%であった。
[Thermal stability]
Regarding the thermal stability (flame retardancy) of the fluorine-containing oligomer / hexagonal boron nitride / BPAF composite material obtained in Examples 4, 7, and 8, using a high-temperature differential scanning calorimeter (TGA) in an air atmosphere The temperature was measured from room temperature to 800 ° C. at a heating rate of 10 ° C./min. The obtained TGA results are shown in FIG. Here, the percentage reduction in mass at 800 ° C. with respect to room temperature is as follows: hexagonal boron nitride (h-BN) alone: 1%, Example 4: 30%, Example 7: 31%, Example 8: 31%, the fluorine-containing oligomer over single body represented by the general formula (1) was 62%.
図6より、フッ素含有オリゴマー/六方晶系窒化ホウ素/BPAF複合材料は、BPAFが複合材料内に含まれているにもかかわらず、フッ素含有オリゴマー/六方晶系窒化ホウ素の複合材料と同様な熱重量減少カーブを描いている。この結果より、カプセル化されたBPAFは800℃において燃焼していないことが推定できる。したがって、低分子有機化合物の不燃化が実現されているといえる。 FIG. 6 shows that the fluorine-containing oligomer / hexagonal boron nitride / BPAF composite material has the same heat as the fluorine-containing oligomer / hexagonal boron nitride composite material even though BPAF is included in the composite material. Draw a weight loss curve. From this result, it can be estimated that the encapsulated BPAF is not combusted at 800 ° C. Therefore, it can be said that incombustibility of the low molecular weight organic compound has been realized.
Claims (11)
〔Rf−(VM)n−Rf〕 ・・・式(2)
(上式(2)中、Rfはフルオロアルキル基を含有する基を表し、VMはCH 2 −CH−Si(OCH 3 ) 3 を表す。nは自然数である。)
前記ゾル化状態の溶液をアルカリ性とすることでゲル化状態の溶液を得ることと、
前記ゲル化状態の溶液から溶媒を除去することと、
を備えることを特徴とする難燃性付与剤の製造方法。 Obtaining a solated solution comprising a fluorine-containing oligomer represented by the following general formula (2) and a hexagonal boron nitride powder;
[Rf− (VM) n−Rf] (2)
(In the above formula (2), Rf represents a group containing a fluoroalkyl group, VM represents CH 2 —CH—Si (OCH 3 ) 3, and n is a natural number.)
Obtaining a gelled solution by making the solated solution alkaline,
Removing the solvent from the gelled solution;
A method for producing a flame retardant imparting agent, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012048586A JP6061239B2 (en) | 2012-03-05 | 2012-03-05 | Flame retardant imparting agent, flame retardant article and method for producing them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012048586A JP6061239B2 (en) | 2012-03-05 | 2012-03-05 | Flame retardant imparting agent, flame retardant article and method for producing them |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013184984A JP2013184984A (en) | 2013-09-19 |
JP6061239B2 true JP6061239B2 (en) | 2017-01-18 |
Family
ID=49386731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012048586A Expired - Fee Related JP6061239B2 (en) | 2012-03-05 | 2012-03-05 | Flame retardant imparting agent, flame retardant article and method for producing them |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6061239B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6678044B2 (en) * | 2015-03-06 | 2020-04-08 | 日本化学工業株式会社 | Composite particles, method for producing the same, and oil / water separation material |
KR101975497B1 (en) * | 2017-05-30 | 2019-05-07 | 주식회사 대유플러스 | Method for manufacturing fire retardant coating composition |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09227692A (en) * | 1996-02-20 | 1997-09-02 | Nitto Denko Corp | Tubular body and its preparation |
JP3407269B2 (en) * | 1997-01-20 | 2003-05-19 | 信越化学工業株式会社 | Thermally conductive silicone rubber composition |
-
2012
- 2012-03-05 JP JP2012048586A patent/JP6061239B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013184984A (en) | 2013-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Oh et al. | Fabrication of polymethyl methacrylate composites with silanized boron nitride by in-situ polymerization for high thermal conductivity | |
US9925559B2 (en) | Graphene-containing coating film, and method for preparing the same | |
JP5074012B2 (en) | Function-enhanced boron nitride composition and composition made therefrom | |
Aparna et al. | Recent advances in boron nitride based hybrid polymer nanocomposites | |
KR101765585B1 (en) | Ceramic hybrid coating film, ceramic hybrid multi-layer coating film, method for preparing the same, and head lamp for automobile including the same | |
JP2008001812A (en) | Mixture including fluorinated nano diamond, and heat-treated products thereof | |
TW200304475A (en) | Flame-retardant aromatic polycarbonate resin composition | |
JP2023501780A (en) | Telecommunications articles and methods comprising crosslinked fluoropolymers | |
TW201823362A (en) | Thermoconductive silicone composition | |
WO2014007922A1 (en) | Nanocomposite and method of making the same | |
TWI574913B (en) | The method of granulating insulating fins and boron nitride | |
EP2804904B1 (en) | Led containing silicone-grafted core-shell particles in a polymer matrix. | |
TW201333091A (en) | Thermoplastic resin composition having thermal conductivity and articles thereof | |
CN108475552B (en) | Composites for high frequency electromagnetic interference (EMI) applications | |
KR101765587B1 (en) | Coating composition for preparing graphene oxide-containing organic-inorganic hybrid coating film, and method for preparing the same | |
CN105111475A (en) | Colorless and transparent polyimide nanocomposite membrane and preparation method thereof | |
JP2015044718A (en) | Method for producing thermally conductive particles | |
JP6061239B2 (en) | Flame retardant imparting agent, flame retardant article and method for producing them | |
JP4997705B2 (en) | Surface-coated flame-retardant particles and production method thereof, and flame-retardant resin composition and production method thereof | |
CN114729193B (en) | Thermally conductive silicone composition and thermally conductive silicone sheet | |
Hao et al. | Progression from graphene and graphene oxide to high-performance epoxy resin-based composite | |
Wang et al. | Thermally conductive electrically insulating polymer nanocomposites | |
Kong et al. | Conformal BN coating to enhance the electrical insulation and thermal conductivity of spherical graphite fillers for electronic encapsulation field | |
Kang et al. | Preparation and characteristics of liquid silicone rubber nanocomposite containing ultrafine magnesium ferrite powder | |
US20240052191A1 (en) | Electronic Telecommunications Articles Comprising Crosslinked Fluoropolymer and Fluoropolymer Particles, Compositions and Methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160524 |
|
RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20160711 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160725 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160823 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160926 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161205 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6061239 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |