JP6059918B2 - Method for manufacturing fuel cell electrode material - Google Patents

Method for manufacturing fuel cell electrode material Download PDF

Info

Publication number
JP6059918B2
JP6059918B2 JP2012188969A JP2012188969A JP6059918B2 JP 6059918 B2 JP6059918 B2 JP 6059918B2 JP 2012188969 A JP2012188969 A JP 2012188969A JP 2012188969 A JP2012188969 A JP 2012188969A JP 6059918 B2 JP6059918 B2 JP 6059918B2
Authority
JP
Japan
Prior art keywords
oxide film
oxygen
fuel cell
reaction
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012188969A
Other languages
Japanese (ja)
Other versions
JP2014047082A (en
Inventor
泰男 石川
泰男 石川
正己 奥山
正己 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TI KK
Original Assignee
TI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TI KK filed Critical TI KK
Priority to JP2012188969A priority Critical patent/JP6059918B2/en
Publication of JP2014047082A publication Critical patent/JP2014047082A/en
Application granted granted Critical
Publication of JP6059918B2 publication Critical patent/JP6059918B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、吸水性能、水素吸蔵性能を有し、燃料電池の電極の高い燃料電池の電極材の製造方法に関する。 The present invention water-absorbing performance, have a hydrogen storage performance, a method of manufacturing of an electrode material of high fuel cell of the electrode of the fuel cell.

鉄(Fe)イオンは、赤錆であるヘマタイト(Fe 3+)や磁石となるマグネタイト(Fe2+Fe3+)に見られるように、通常は酸化物の中で2価(Fe2+)や3価(Fe3+)のイオン状態をとる。ところが、「異常原子価」と呼ばれる高い酸化状態の鉄イオンを含んだ酸化物が、エレクトロニクス上の特異な機能特性を含むことが以下に示す先行技術文献1に開示されている。 Iron (Fe) ions are usually divalent (Fe 2+ ) among oxides, as seen in red rust hematite (Fe 2 3+ O 3 ) and magnetite (Fe 2+ Fe 3+ O 4 ). Or a trivalent (Fe 3+ ) ion state. However, it is disclosed in Prior Art Document 1 shown below that an oxide containing an iron ion in a high oxidation state called “abnormal valence” includes unique functional characteristics on electronics.

京都大学ホームページ:異常原子価鉄イオンが示す機能特性原理の解明Kyoto University homepage: Elucidation of functional characteristic principles of abnormal valence iron ions

前記先行技術文献1においては、高次の鉄酸化物LaCuFe12等が開示され、これら鉄酸化物は、スイッチセンサー等に使用できると開示しているのみで、アルカリ金属−鉄酸化物についての記載はない。本件発明者は、アルカリ金属と遷移金属酸化物との化合物の種々の特殊機能について発見している。 The prior art document 1 discloses higher-order iron oxides LaCu 3 Fe 4 O 12 and the like, and only discloses that these iron oxides can be used for switch sensors or the like. There is no description about things. The inventor has discovered various special functions of a compound of an alkali metal and a transition metal oxide.

そこで、本発明の燃料電池の電極材の製造方法は、空気中の酸素が無い無酸素雰囲気内にステンレス材又は鉄材と反応剤を設置し、前記雰囲気内を加熱して反応剤の微粒子を雰囲気内に飛散せしめ、この雰囲気内に水蒸気を供給して前記ステンレス材又は鉄材表面に酸素数の多い高次の酸化物を形成するようした。 Therefore, the method for producing an electrode material for a fuel cell according to the present invention includes placing a stainless steel material or an iron material and a reactant in an oxygen-free atmosphere free from oxygen in the air, and heating the atmosphere to produce fine particles of the reactant. allowed scattered within, and to form an oxide of higher order high oxygen number to the stainless steel or iron surface by supplying steam into the atmosphere.

また、前記ステンレス材はニッケルを含むオーステナイト系ステンレスであり、前記反応剤は水酸化ナトリウム(NaOH)又は水酸化カリウム(KOH)であることが好ましい。   The stainless material is austenitic stainless steel containing nickel, and the reactant is preferably sodium hydroxide (NaOH) or potassium hydroxide (KOH).

更にまた、前記無酸素雰囲気内を500〜700℃以上に加熱することが好ましい。   Furthermore, it is preferable to heat the oxygen-free atmosphere to 500 to 700 ° C. or higher.

更にまた、前記無酸素雰囲気を真空ポンプで吸引しながら一気圧より低い気圧に維持しつつ薄膜として形成されることが好ましい。   Furthermore, it is preferable that the oxygen-free atmosphere is formed as a thin film while being maintained at a pressure lower than 1 atm while being sucked with a vacuum pump.

NaOH又はKOHがその融点以上に加熱されるとナノオーダーの微粒子がその液面から空気中の酸素のない雰囲気に飛散し、供給された水蒸気の分子を捕捉した状態でステンレス元素雰囲気(Cr−Ni−Fe)で反応して、Na3Fe59、K3Fe59、NaxFeyCrzw(x、y、z、wは整数)等の酸素数の多い高次のアルカリ金属−遷移金属酸化膜が生じ、この膜は、導電性、親水性で且つ硬度が高く、磁性を有し、耐熱性で1000℃でも溶融しないし、水素吸蔵能力が高く、水素を水素イオン(H+)と電子(e-)とに分離する能力があり、燃料電池の電極(負極)として使用可能であり、更にステンレス表面に前記アルカリ金属−遷移金属酸化物を作るときに核反応が生じる可能性を高くする。 When NaOH or KOH is heated above its melting point, nano-order fine particles are scattered from the liquid surface to an oxygen-free atmosphere in the air, and in a state where the supplied water vapor molecules are captured, a stainless element atmosphere (Cr-Ni -Fe), the higher order of the number of oxygen such as Na 3 Fe 5 O 9 , K 3 Fe 5 O 9 , Na x Fe y Cr z O w (x, y, z and w are integers) An alkali metal-transition metal oxide film is formed, and this film is electrically conductive, hydrophilic, high in hardness, magnetic, heat resistant, does not melt even at 1000 ° C., has a high hydrogen storage capacity, and converts hydrogen into hydrogen ions. (H + ) and electron (e ) can be separated, and can be used as an electrode (negative electrode) of a fuel cell. Further, when the alkali metal-transition metal oxide is formed on the stainless steel surface, a nuclear reaction occurs. Increase the likelihood that it will occur.

また、ステンレス材としては、高次酸化物を作る時の触媒の作用をなすNiが含まれているオーステナイト系ステンレスが好ましく、アルカリ金属供給反応剤としては、手に入り易く安価なNaOH又はKOHが好ましいし、雰囲気の加熱温度はNaOH、KOHの融点(308℃、316℃)以上であればよいが、反応性の高くなる500〜700℃が好ましく、常時減圧以下で酸化膜を形成すれば、反応時の不要な反応生成物を系外に排出しつつ酸化膜を形成できるので、純度の高い酸化膜の形成が可能となる。   The stainless material is preferably an austenitic stainless steel containing Ni that acts as a catalyst when producing higher-order oxides. The alkali metal supply reactant is an easily available and inexpensive NaOH or KOH. Preferably, the heating temperature of the atmosphere may be higher than the melting point (308 ° C., 316 ° C.) of NaOH and KOH, but preferably 500 to 700 ° C. where the reactivity is high, and if the oxide film is always formed under reduced pressure, Since an oxide film can be formed while discharging unnecessary reaction products during the reaction to the outside of the system, a highly purified oxide film can be formed.

本発明の高次のアルカリ金属−遷移金属酸化膜の生成方法説明図である。It is explanatory drawing of the production | generation method of the higher-order alkali metal-transition metal oxide film of this invention. アルカリ金属−遷移金属酸化膜の生成状態説明図である。It is a production | generation state explanatory drawing of an alkali metal-transition metal oxide film. アルカリ金属−遷移金属酸化膜の破砕状態説明図である。It is a crushing state explanatory drawing of an alkali metal-transition metal oxide film. 吸湿材としての使用状態説明図である。It is use condition explanatory drawing as a hygroscopic material. 水素吸蔵材としての使用状態説明図である。It is use condition explanatory drawing as a hydrogen storage material. 燃料電池の電極板としての使用状態説明図である。It is explanatory drawing of the use condition as an electrode plate of a fuel cell. 核反応時の機能説明図である。It is function explanatory drawing at the time of a nuclear reaction.

以下、図面を参照して本発明を実施するための実施形態について説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1において、酸素数の多い高次アルカリ金属−遷移金属酸化膜(以下、酸化膜という)を製造するための装置Mは、筒形の反応セル1を有し、この中に反応剤2が収納され、前記反応セル1の周囲はマントルヒータ3によって加熱される。前記反応セル1の上面には、水又は水蒸気を供給するための水管4が設けられるとともに反応により生じた水素を排出するための水素管5が設けられ、この水素管5には真空ポンプ6が設けられ、この真空ポンプ6により反応セル1内の空気(酸素)が排出される。 In FIG. 1, an apparatus M for producing a high-order alkali metal-transition metal oxide film (hereinafter referred to as an oxide film) having a large number of oxygen has a cylindrical reaction cell 1 in which a reactant 2 is contained. The surrounding of the reaction cell 1 is heated by a mantle heater 3. On the upper surface of the reaction cell 1, a water pipe 4 for supplying water or water vapor and a hydrogen pipe 5 for discharging hydrogen generated by the reaction are provided, and a vacuum pump 6 is provided in the hydrogen pipe 5. The air (oxygen) in the reaction cell 1 is exhausted by the vacuum pump 6.

前記反応セルは、ステンレス材又は鉄材からなり、特にニッケル(Ni)を含むオーステナイト系ステンレスが好ましく、SUS304(Cr18%−Ni8%−残Fe)が好適である。これはニッケル(Ni)は反応時に触媒的作用を果たし、反応性を高めるからである。   The reaction cell is made of stainless steel or iron, and is preferably austenitic stainless steel containing nickel (Ni), and SUS304 (Cr18% -Ni8% -residual Fe) is preferred. This is because nickel (Ni) plays a catalytic action during the reaction and increases the reactivity.

前記反応剤としては、アルカリ金属水酸化物(例えば、水酸化ナトリウム(NaOH)又は水酸化カリウム(KOH)が好ましく、これらの反応剤はその融点以上に加熱されると(300〜350℃)、液化し、その液面からは、ナノオーダーの微細な微粒子7が反応セル1内に飛散する。また、反応剤としては、アルカリ金属−遷移金属酸化物、例えば、固体のチタン酸カリウム(KTiO)、チタン酸ナトリウム(NaTiO)、クロム酸カリウム(KCr)等であってもよい。 The reactant is preferably an alkali metal hydroxide (for example, sodium hydroxide (NaOH) or potassium hydroxide (KOH)). When these reactants are heated to the melting point or higher (300 to 350 ° C.), From the liquid surface, the nano-order fine particles 7 scatter into the reaction cell 1. Further, as the reactant, an alkali metal-transition metal oxide such as solid potassium titanate (K 2) is used. TiO 3 ), sodium titanate (Na 2 TiO 3 ), potassium chromate (K 2 Cr 2 O 7 ) and the like may be used.

前記アルカリ金属水酸化物は溶融塩として飛散微粒子密度を増大できるが、アルカリ金属−遷移金属酸化物は融点が高く、700℃以下では溶融塩は作らない。固体反応剤の場合に微細粒子を無数に飛散させるには、500〜600℃の温度に加熱するのが好ましい。前記アルカリ金属水酸化物の場合にもこの温度に加熱するのが好ましい。なお、電極板表面に前記酸化膜を形成したい場合には、電極板(SUS304)8を反応セル1内に設置する。   Although the alkali metal hydroxide can increase the density of scattered fine particles as a molten salt, the alkali metal-transition metal oxide has a high melting point and does not produce a molten salt at 700 ° C. or lower. In order to disperse countless fine particles in the case of a solid reactant, it is preferable to heat to a temperature of 500 to 600 ° C. In the case of the alkali metal hydroxide, it is preferable to heat to this temperature. If it is desired to form the oxide film on the surface of the electrode plate, an electrode plate (SUS304) 8 is installed in the reaction cell 1.

前記装置Mの操作時には、真空ポンプ6の作動により、反応セル1内から空気(酸素)を排出しマントルヒータ3を作動させて反応セル1内の雰囲気を500〜700℃に加熱する。このとき、反応剤としてアルカリ水酸化物を使用した場合には、溶融塩となり、その液面から微粒子7が反応セル1内に飛散する。また、KTiO等のアルカリ金属−遷移金属酸化物を使用した場合には、固定のままその表面から微粒子を飛散せしめる。この状態で水又は水蒸気を反応セル1内に供給すると、微粒子が親水性のため水蒸気の分子を捕捉し反応セル1の内壁に作用して高次のアルカリ金属−遷移金属酸化膜を生ぜしめる。この反応は、真空ポンプ6を常時作動させて1気圧より低い圧力、いわゆる減圧下で行ってもよいし、当初空気を排出した後に、常圧にして水蒸気を供給してもよい。減圧下で反応を継続すると、反応不純生成物が排出され易いので不純物の少ない酸化膜を得ることができる。 When the apparatus M is operated, the vacuum pump 6 is operated to discharge air (oxygen) from the reaction cell 1 and the mantle heater 3 is operated to heat the atmosphere in the reaction cell 1 to 500 to 700 ° C. At this time, when an alkali hydroxide is used as the reactant, it becomes a molten salt, and the fine particles 7 scatter from the liquid surface into the reaction cell 1. Further, when an alkali metal-transition metal oxide such as K 2 TiO 3 is used, fine particles are scattered from the surface while being fixed. When water or water vapor is supplied into the reaction cell 1 in this state, since the fine particles are hydrophilic, water vapor molecules are captured and act on the inner wall of the reaction cell 1 to form a higher-order alkali metal-transition metal oxide film. This reaction may be carried out under a pressure lower than 1 atm, that is, a so-called reduced pressure by always operating the vacuum pump 6, or may be supplied with water vapor at normal pressure after initially discharging the air. When the reaction is continued under reduced pressure, reaction impure products are easily discharged, so that an oxide film with few impurities can be obtained.

具体的に説明すれば、例えば反応剤としてNaOHを使用した場合、鉄材又はステンレス材の内壁にはFeが存在しており、ここに水蒸気が供給されると、
O+Fe → FeO+1/2H …(1)
の反応によりFeOが生じ、
FeO+NaOH(微粒子) → NaFeO+1/2H …(2)
となり、更に、このNaFeOが水蒸気と鉄(Fe)に反応して、
3NaFeO +2Fe+3HO →NaFe+3H …(3)
高次のアルカリ金属−鉄酸化物9を生じる。このとき、酸素分圧の差によりNaFe、NaFe11、NaFeO等のアルカリ金属−鉄酸化物が生じる。
Specifically, for example, when NaOH is used as a reactant, Fe is present on the inner wall of the iron material or stainless steel, and when steam is supplied thereto,
H 2 O + Fe → FeO + 1 / 2H 2 (1)
The reaction yields FeO,
FeO + NaOH (fine particles) → NaFeO 2 + 1 / 2H 2 (2)
Furthermore, this NaFeO 2 reacts with water vapor and iron (Fe),
3NaFeO 2 + 2Fe + 3H 2 O → Na 3 Fe 5 O 9 + 3H 2 (3)
A higher order alkali metal-iron oxide 9 is produced. At this time, alkali metal-iron oxides such as Na 3 Fe 5 O 8 , Na 4 Fe 6 O 11 , and Na 5 FeO 4 are generated due to the difference in oxygen partial pressure.

この際、ステンレス材の場合には、Niは触媒であり、酸化物は作らないが、CrがNaFeに加わり、NaFeCr(x、y、z、wは整数)のアルカリ金属−遷移金属(Fe、Cr)酸化物を作ることが考えられる。 In this case, in the case of a stainless steel, Ni is a catalyst and does not form an oxide, but Cr is added to Na 3 Fe 5 O 9 to form Na x Fe y Cr z O w (x, y, z, w). Is an integer) alkali metal-transition metal (Fe, Cr) oxide.

このアルカリ金属−遷移金属(Fe単独、FeとCrの両者)酸化物は、吸水性が著しく強く、空気中に放置すると著しく水を吸うし、導電性で磁性を有し、水素吸蔵能力が著しく高い。また、著しく硬く、モース硬度6以上で脆い。更に、パラジウム(Pd)と同様な機能を有し、水素原子(H)を水素イオン(H)と電子(e)に分離する機能を有する。更に、この酸化膜に反応剤のナノオーダーの微粒子が付着し、この微粒子内に水素又は重水素(水の中に7000分の1含まれる)が吸引されると核反応が起き易くなる。 This alkali metal-transition metal oxide (Fe alone, both Fe and Cr) has extremely strong water absorption, absorbs water when left in the air, has conductivity and magnetism, and has a remarkable hydrogen storage capacity. high. It is extremely hard and is brittle with a Mohs hardness of 6 or more. Further, it has a function similar to that of palladium (Pd), and has a function of separating a hydrogen atom (H) into a hydrogen ion (H + ) and an electron (e ). Further, when nano-order fine particles of the reactant adhere to the oxide film and hydrogen or deuterium (containing 1/7000 in water) is sucked into the fine particles, a nuclear reaction is likely to occur.

なお、反応剤としてTiOを使用した場合も、その微粒子が鉄又はステンレス表面に作用してNaTiFe、NaTiCrの酸化膜を作る。 Even when TiO 2 is used as a reactant, the fine particles act on the iron or stainless steel surface to form an oxide film of Na x Ti y Fe z O w and Na x Ti y Cr z O w .

これらの膜lは、長期間反応させると、図2に示すように鉄又はステンレス表面に多層に形成され、最初に形成された第1酸化膜lが所定厚になると、内壁から剥離し、新しい内壁面が露出したところで、次の第2酸化膜lが、更に、この第2酸化膜lが剥離して次の第3酸化膜lが形成されていく。そして、これら酸化膜l(l、l、l)表面から500〜700℃で微細粒子が飛散し、この微細粒子と水蒸気との反応性は著しく高い。 When these films l are reacted for a long time, they are formed in multiple layers on the iron or stainless steel surface as shown in FIG. 2, and when the first oxide film 11 formed first has a predetermined thickness, it peels off from the inner wall, When the new inner wall surface is exposed, the second oxide layer l 2 of the following, further the second oxide layer l 2 is peeled off the third oxide film l 3 of the following will be formed. Fine particles scatter from the surface of the oxide film l (l 1 , l 2 , l 3 ) at 500 to 700 ° C., and the reactivity between the fine particles and water vapor is extremely high.

次に、前記酸化膜の用途について説明する。
1.吸湿材
前記酸化膜lは、アルカリ金属を含んでいるので吸湿性(親水性)が高く、高温で(500〜700℃)そこから飛散した微細粒子は、水蒸気の捕捉力が高く、反応性も高いが、常温でも吸湿性は著しく高く、乾燥材としての用途がある。その吸湿率は、30%以上であり、シリカゲルよりも高い。
Next, the use of the oxide film will be described.
1. Hygroscopic material Since the oxide film 1 contains an alkali metal, the hygroscopic property (hydrophilicity) is high, and the fine particles scattered from the high temperature (500 to 700 ° C.) have high water vapor capturing ability and reactivity. Although it is high, the hygroscopicity is remarkably high even at room temperature, and there is a use as a desiccant. Its moisture absorption is 30% or more, which is higher than that of silica gel.

すなわち、先ず前記酸化膜l(l、l、l)を金属表面(Fe、SUS304)から剥ぎ取り、図3に示すような真空容器30内に設けられた破砕台31と上下に駆動する破砕ピストン32で酸化膜lを破砕して粒状とし、図4に示すように、網状バッグ40内に入れて使用する。
2.水素吸蔵材
前記酸化膜lは、水素吸蔵性が著しく高く、軽いためその吸蔵率は2%を越え、しかも安価に製造できる。500℃位で吸蔵し、一旦常温まで戻し、100〜200℃で吸蔵した水素を吐き出す。また、常温でも、圧力を数気圧以上とすれは、多量の水素を吸蔵する。
That is, first, the oxide film l (l 1 , l 2 , l 3 ) is peeled off from the metal surface (Fe, SUS304) and driven up and down with the crushing table 31 provided in the vacuum vessel 30 as shown in FIG. The oxide film l is crushed by the crushing piston 32 to be granulated, and is put in a mesh bag 40 and used as shown in FIG.
2. Hydrogen storage material The oxide film 1 has extremely high hydrogen storage properties and is light, so that the storage rate exceeds 2% and can be manufactured at low cost. Occluded at about 500 ° C., once returned to room temperature, expelled hydrogen occluded at 100-200 ° C. Further, even at room temperature, if the pressure is set to several atmospheres or more, a large amount of hydrogen is occluded.

具体的装置としては、図5に示すように、水素吸蔵装置50は、圧力容器51を有し、この圧力容器51内には上下に複数の棚52、52…52が設けられ、これら棚上に酸化膜l又はそれを破砕した粒状体53を載置し、この棚52の下側には、加熱装置としてのヒータ54、54…54が設けられ、水素(H)はポンプ55によって所定圧で圧力容器51内に供給され、一般には常温で数気圧で吸蔵し、ヒータ54により200℃程度に加熱することにより吸蔵した水素を放出させる。
3.燃料電池の電極材
前記酸化膜lは、パラジウム(Pd)と同じように水素イオン(H)と電子(e)に分離する機能を有しているので燃料電池の電極として使用可能である。図6は、燃料電池60を示すもので、この燃料電池60は図1に示すようにして酸化膜lを形成した電極板8の一方を負極8、他方を正極8とし、その間に電解質膜61を狭持させ、電解質膜61は、例えば、濃厚リン酸溶液を保持させた炭化ケイ素の微粉末を固めたもので構成され、負極8側には、水素ガス(H)が供給されるとともに残ガスが上部から排出される。一方、正極8側には酸素Oが供給され、水として排出される。このようにして負荷62が動作する。
4.核反応誘起材
この点に関しては、種々の実験が行われ、各実験を総合すると前記酸化膜は核反応を誘起しているものと思われる。その根拠は、以下の通りである。
As a specific device, as shown in FIG. 5, the hydrogen storage device 50 includes a pressure vessel 51, and a plurality of shelves 52, 52... 52 are provided in the pressure vessel 51. On the lower side of the shelf 52, heaters 54, 54... 54 as heating devices are provided, and hydrogen (H 2 ) is predetermined by a pump 55. The pressure is supplied into the pressure vessel 51, and is generally occluded at a few atmospheres at room temperature, and the occluded hydrogen is released by heating to about 200 ° C. by the heater 54.
3. Fuel Cell Electrode Material The oxide film 1 has a function of separating hydrogen ions (H + ) and electrons (e ) in the same manner as palladium (Pd), and can therefore be used as a fuel cell electrode. . FIG. 6 shows a fuel cell 60. In the fuel cell 60, one of the electrode plates 8 on which the oxide film 1 is formed as shown in FIG. 1 is a negative electrode 8 , the other is a positive electrode 8 + , and an electrolyte therebetween. The membrane 61 is sandwiched, and the electrolyte membrane 61 is made of, for example, a solidified silicon carbide powder holding a concentrated phosphoric acid solution. Hydrogen gas (H 2 ) is supplied to the negative electrode 8 side. At the same time, residual gas is discharged from the top. On the other hand, oxygen O 2 is supplied to the positive electrode 8 + side and discharged as water. In this way, the load 62 operates.
4). Nuclear Reaction Inducing Material Various experiments have been conducted in this regard, and it is considered that the oxide film induces a nuclear reaction when these experiments are combined. The grounds are as follows.

1)前記化学反応式(1)、(2)、(3)をまとめると、
3Fe+2NaOH+NaFeO+FeO+4H
→NaFe +5H …(4)
となり、水1モルに対して1.25倍の水素が発生することになるが、この論理値以上の水素が発生している。すなわち、注入した水の1.5倍以上の水素が発生している。
1) The chemical reaction formulas (1), (2) and (3) are summarized as follows:
3Fe + 2NaOH + NaFeO 2 + FeO + 4H 2 O
→ Na 3 Fe 5 O 9 + 5H 2 (4)
Thus, 1.25 times as much hydrogen is generated with respect to 1 mol of water, but more hydrogen than this logical value is generated. That is, hydrogen more than 1.5 times the injected water is generated.

2)反応時に中性子、γ線が検出される。   2) Neutrons and γ rays are detected during the reaction.

3)反応時に反応セル1の内壁に反応前に存在しない元素(例えばAl、Zn)が検出される。   3) During the reaction, elements (for example, Al, Zn) that are not present before the reaction are detected on the inner wall of the reaction cell 1.

4)反応セル1内にKTiOを入れ、400〜600℃に加熱すると水を注入することなしで、水素、質量16、27のガスが質量分析器で検出される。質量32の酸素ガスは検出されない。 4) When K 2 TiO 3 is placed in the reaction cell 1 and heated to 400 to 600 ° C., hydrogen and gases of mass 16 and 27 are detected by the mass analyzer without injecting water. An oxygen gas with a mass of 32 is not detected.

5)図1の装置Mの反応時に、水素管5内の温度は200℃以上瞬時に降下し、通常の化学反応では起き得ない反応が生じる。   5) During the reaction of the apparatus M in FIG. 1, the temperature in the hydrogen pipe 5 is instantaneously lowered by 200 ° C. or more, and a reaction that cannot occur in a normal chemical reaction occurs.

これら事実から判断すると、前記酸化物は核反応を誘起する機能を有し、反応剤として
TiO3を水なしで使用した場合にも、酸素(O)よりも質量数が小さい元素ガスが発生する。したがって、KTiFeの化合物の中のいずれかの元素の核分裂が生じているものと思われる。なお、酸素ガスは発生せず、それよりも質量が小さいガス(水素、窒素を含む)が生じていることから類推すると、酸素の原子の僅かな量が核分裂して種々のガスとなっているものと思われる。そのトリガーとしては、高温の酸化膜内に水素イオン(H)と酸素原子が取り込まれ、この水素イオン(H)が酸素原子の核に作用し、トンネル効果を伴って核分裂を起こすものと思われる。酸化膜の元素の中で酸素の結合エネルギーが最も小さいため酸素の核の分裂が起き易い。
Judging from these facts, the oxide has a function of inducing a nuclear reaction, and even when K 2 TiO 3 is used as a reactant without water, an element gas having a mass number smaller than that of oxygen (O 2 ). Occurs. Therefore, it is considered that fission of any element in the compound of K x Ti y Fe z O w has occurred. By analogy with the fact that oxygen gas is not generated and gas with a smaller mass (including hydrogen and nitrogen) is generated, a small amount of oxygen atoms are fissioned into various gases. It seems to be. The trigger is that hydrogen ions (H + ) and oxygen atoms are taken into the high-temperature oxide film, and these hydrogen ions (H + ) act on the nuclei of the oxygen atoms, causing fission with the tunnel effect. Seem. Since the binding energy of oxygen is the smallest among the elements of the oxide film, the splitting of oxygen nuclei is likely to occur.

すなわち、図7に示すように、反応セル1の内壁に形成された酸化膜lに水蒸気を捕捉したNaOH粒子が接触すると、水を電離させて水素イオン(H)と酸素原子(O)と電子(e)に分離して水素イオン(H)を膜内に吸蔵し、酸素は他の元素と結び付いて化合物を作り、電子(e)は、特に流出回路を作らなければ膜内及びステンレス材内に滞留する。膜内の水素イオン(H)は反応が進むにつれて多くなり、その一部は、酸素原子核に作用して核分裂を生じさせ、また、その一部は外部に移動するときに付近の電子(e)と結合して水素ガス(H)となる。特に図1の水素管5内での反応が活発なのは、水素管5内にも酸化膜は生じているし、水蒸気を捕捉したNaOH微粒子の濃度が他の場所に比較して著しく大きいためである。 That is, as shown in FIG. 7, when NaOH particles capturing water vapor come into contact with the oxide film 1 formed on the inner wall of the reaction cell 1, the water is ionized to generate hydrogen ions (H + ) and oxygen atoms (O). It separates into electrons (e ) and occludes hydrogen ions (H + ) in the film, oxygen combines with other elements to form a compound, and electrons (e ) have no special outflow circuit in the film. And stay in the stainless steel. The hydrogen ions (H + ) in the film increase as the reaction progresses, and some of them act on oxygen nuclei to cause fission, and some of them move to the nearby electrons (e - ) To form hydrogen gas (H 2 ). In particular, the reaction in the hydrogen pipe 5 in FIG. 1 is active because an oxide film is also formed in the hydrogen pipe 5 and the concentration of the NaOH fine particles capturing water vapor is significantly higher than in other places. .

料電池の電極材としては、燃料電池業界、自動車業界、エネルギー業界に適用可能である。 The electrode material of the fuel cell is applicable fuel cell industry, automotive industry, the energy industry.

1…反応セル
2…反応剤
3…マントルヒータ
6…真空ポンプ
l…酸化膜

DESCRIPTION OF SYMBOLS 1 ... Reaction cell 2 ... Reactant 3 ... Mantle heater 6 ... Vacuum pump l ... Oxide film

Claims (4)

空気中の酸素が無い無酸素雰囲気内にステンレス材又は鉄材と水酸化ナトリウム又は水酸化カリウムからなる反応剤を設置し、前記雰囲気内を加熱して反応剤の微粒子を雰囲気内に飛散せしめ、この雰囲気内に水蒸気を供給して前記ステンレス材又は鉄材表面に酸化膜を形成するようにした燃料電池の電極材の製造方法A reactive agent made of stainless steel or iron and sodium hydroxide or potassium hydroxide is installed in an oxygen-free atmosphere free from oxygen in the air, and the atmosphere is heated to disperse the fine particles of the reactant into the atmosphere. A method for producing an electrode material for a fuel cell, wherein water vapor is supplied into the atmosphere to form an oxide film on the surface of the stainless steel or iron material. 前記酸化膜は、Na 3 Fe 5 7 ,K 3 Fe 5 9 ,Na x Fe y Cr z w (x、y、z、wは整数)のうち、少なくとも一種である請求項1記載の燃料電池の電極材の製造方法 2. The oxide film according to claim 1, wherein the oxide film is at least one of Na 3 Fe 5 O 7 , K 3 Fe 5 O 9 , and Na x Fe y Cr z O w (where x, y, z, and w are integers). Manufacturing method of electrode material of fuel cell . 前記無酸素雰囲気内を500〜700℃以上に加熱することを特徴とする請求項1又は2記載の燃料電池の電極材の製造方法The method for producing an electrode material for a fuel cell according to claim 1 or 2, wherein the inside of the oxygen-free atmosphere is heated to 500 to 700 ° C or higher. 前記無酸素雰囲気を真空ポンプで吸引しながら一気圧より低い気圧に維持しつつ薄膜として形成された請求項1乃至3の燃料電池の電極材の製造方法4. The method for producing an electrode material for a fuel cell according to claim 1, wherein the oxygen-free atmosphere is formed as a thin film while being maintained at a pressure lower than 1 atm while being sucked by a vacuum pump.
JP2012188969A 2012-08-29 2012-08-29 Method for manufacturing fuel cell electrode material Expired - Fee Related JP6059918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012188969A JP6059918B2 (en) 2012-08-29 2012-08-29 Method for manufacturing fuel cell electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012188969A JP6059918B2 (en) 2012-08-29 2012-08-29 Method for manufacturing fuel cell electrode material

Publications (2)

Publication Number Publication Date
JP2014047082A JP2014047082A (en) 2014-03-17
JP6059918B2 true JP6059918B2 (en) 2017-01-11

Family

ID=50607125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012188969A Expired - Fee Related JP6059918B2 (en) 2012-08-29 2012-08-29 Method for manufacturing fuel cell electrode material

Country Status (1)

Country Link
JP (1) JP6059918B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915759A (en) * 1974-01-08 1975-10-28 Coral Chemical Co Black oxide coating for stainless steels
JP2547752B2 (en) * 1986-11-29 1996-10-23 株式会社東芝 Surface treatment method for structural member of molten carbonate fuel cell
JP2002003221A (en) * 2000-06-15 2002-01-09 Japan Storage Battery Co Ltd Lithium and iron compound oxide, method for producing it and nonaqueous electrolyte secondary battery using it
JP4065943B2 (en) * 2002-12-16 2008-03-26 独立行政法人産業技術総合研究所 Transition metal composite oxide and method for producing the same
JP4579893B2 (en) * 2006-12-07 2010-11-10 株式会社神戸製鋼所 Radioactive waste disposal method
JP5600011B2 (en) * 2010-02-08 2014-10-01 川崎重工業株式会社 Hydrogen gas production method
JP2011201730A (en) * 2010-03-25 2011-10-13 Tama Tlo Ltd Hydrogen generator and method for generating hydrogen
JP4659923B1 (en) * 2010-04-30 2011-03-30 エナジー・イノベーション・ワールド・リミテッド Catalyst for hydrogen generation
JP2013237599A (en) * 2012-05-17 2013-11-28 Ti:Kk Hydrogen generation method to collect hydrogen from water
JP6110088B2 (en) * 2012-08-07 2017-04-05 株式会社Ti Hydrogen generator and hydrogen generation method
JP2014037996A (en) * 2012-08-13 2014-02-27 Tadahiko Mizuno Nuclear fusion reaction method

Also Published As

Publication number Publication date
JP2014047082A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
JP4261566B2 (en) Hydrogen storage alloy, hydrogen separation membrane, hydrogen storage tank, and hydrogen storage / release method
EP1386881B1 (en) Method for producing hydrogen and apparatus for supplying hydrogen
KR20150028775A (en) Ciht power system
CN104518204B (en) A kind of rare earth-yttrium-nickel base hydrogen storage alloy and the secondary cell containing the hydrogen bearing alloy
Thaler et al. Storage and separation of hydrogen with the metal steam process
CN104152749A (en) A5B19 type rare earth-yttrium-nickel system hydrogen storage alloy added with zirconium and titanium elements
JP2011148664A (en) Hydrogen generation material, fuel cell, and method for producing the hydrogen generation material
JP2014520207A (en) Nickel alloys for hydrogen storage and energy generation therefrom
CN104513916B (en) Zirconium and titanium-doped A2B7 type rare earth-yttrium-nickel family hydrogen storage alloy
JP2009096707A (en) Method for generating hydrogen, method for producing hydrogen-generating material, hydrogen production apparatus, and fuel cell system
JP6059918B2 (en) Method for manufacturing fuel cell electrode material
JP2012001407A (en) Hydrogen generation method of generating hydrogen from water
US11482717B2 (en) Dehydrogenation method for hydrogen storage materials
US8623113B2 (en) Metal component collection agent and method for collecting metal component
JP2015229630A (en) Hydrogen-generating alloy, method for production thereof, hydrogen-generating cartridge, hydrogen production device, hydrogen production method, and fuel cell system
JP2014025743A (en) Nuclear transformation method
CN101778683A (en) Nanostructured of forming by valve metal and valve metal protoxide and preparation method thereof
JP6178870B2 (en) Metal oxygen battery with multistage oxygen compressor
JP6130655B2 (en) Periodic table Group 1 and 2 hydride production method, production apparatus and method of use thereof
TW201031604A (en) Electrodialysis method for purifying of silicate-containing potassium hydroxide etching solution
JP2008021514A (en) Hydrogen gas generating device for fuel cell
JP2014049270A (en) Fuel battery
WO2013021243A1 (en) Hydrogen generator, its realization and use
Anisur et al. Corrosion of AISI 310 and 316 in molten hydroxide under steam electrolysis conditions
JP6110088B2 (en) Hydrogen generator and hydrogen generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R150 Certificate of patent or registration of utility model

Ref document number: 6059918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees