JP2002003221A - Lithium and iron compound oxide, method for producing it and nonaqueous electrolyte secondary battery using it - Google Patents

Lithium and iron compound oxide, method for producing it and nonaqueous electrolyte secondary battery using it

Info

Publication number
JP2002003221A
JP2002003221A JP2000179800A JP2000179800A JP2002003221A JP 2002003221 A JP2002003221 A JP 2002003221A JP 2000179800 A JP2000179800 A JP 2000179800A JP 2000179800 A JP2000179800 A JP 2000179800A JP 2002003221 A JP2002003221 A JP 2002003221A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
secondary battery
electrolyte secondary
iron composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000179800A
Other languages
Japanese (ja)
Inventor
Atsushi Funabiki
厚志 船引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2000179800A priority Critical patent/JP2002003221A/en
Publication of JP2002003221A publication Critical patent/JP2002003221A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which has a high electric discharge capacity, shows a good cycle characteristic of electric charge and discharge, high density charge and discharge performance and moreover is inexpensive and small environmental load. SOLUTION: The nonaqueous electrolyte secondary battery uses as anode activating material, the lithium and iron compound oxide whose characteristic is that it includes alkaline metal and halogen and that according to the X-ray diffraction method using CuKα ray, a half numerical value B of diffraction peak which appears in 15 deg.<2<25 deg., 28 deg.<2<40 deg., 40 deg.<2<45 deg., 58 deg.<2<65 deg. is 2 deg.<B<10 deg. (2).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム鉄複合酸化
物及びその製造方法並びにそれを備えた非水電解質二次
電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium iron composite oxide, a method for producing the same, and a non-aqueous electrolyte secondary battery having the same.

【0002】[0002]

【従来の技術】近年、携帯用電話、ビデオカメラ等の小
型電源および電気自動車、電力平準化用大型電源とし
て、高エネルギー密度、高出力密度を有するリチウム二
次電池が大きな注目を受けている。リチウム二次電池の
正極にはリチウム遷移金属酸化物が、負極には黒鉛、非
晶質炭素、酸化物、リチウム合金およびリチウム金属が
提案されている。
2. Description of the Related Art In recent years, lithium secondary batteries having a high energy density and a high output density have attracted much attention as small power supplies for portable telephones, video cameras and the like, electric vehicles, and large power supplies for power leveling. Lithium transition metal oxides have been proposed for the positive electrode of lithium secondary batteries, and graphite, amorphous carbon, oxides, lithium alloys and lithium metal have been proposed for the negative electrode.

【0003】正極活物質として使われているコバルト酸
リチウム(LiCoO2)は高価であり、将来予測され
るリチウム二次電池の大量消費に対応するためには、よ
り安価で埋蔵量が豊富な正極活物質の開発が重要であ
る。
[0003] Lithium cobalt oxide (LiCoO 2 ) used as a positive electrode active material is expensive, and in order to cope with the mass consumption of lithium secondary batteries expected in the future, a positive electrode with a lower cost and abundant reserves is required. Development of active materials is important.

【0004】現在、マンガンやニッケル、鉄を含む酸化
物がリチウム二次電池用正極活物質として精力的に研究
されている。中でも鉄は最も安価で環境負荷の小さい材
料であるため、鉄化合物は次世代リチウム二次電池用正
極活物質として大変魅力的である。
[0004] At present, oxides containing manganese, nickel and iron are being vigorously studied as positive electrode active materials for lithium secondary batteries. Of these, iron is the most inexpensive and environmentally friendly material, so iron compounds are very attractive as a positive electrode active material for next-generation lithium secondary batteries.

【0005】リチウム二次電池用鉄含有正極活物質とし
て、これまで種々の鉄化合物、例えば、トンネル構造ま
たは層状ジグザグ構造を有するLiFeO2(J.El
ectrochem.Soc.,143,2435(1
996))、オリビン型LiFePO4(J.Elec
trochem.Soc.,144,1609(199
7))、スピネル型LiFe58(J.Electro
chem.Soc.,146,4371(199
9))、六方晶層状岩塩型構造を有するLiFeO
2(特開平10―67519)、b−FeOOH(J.P
ower Sources,81−82,221(19
99))、非晶質含銅水酸化鉄(第40回電池討論会講
演要旨集、3C08)が提案されてきた。
As iron-containing positive electrode active materials for lithium secondary batteries, various iron compounds such as LiFeO 2 having a tunnel structure or a layered zigzag structure (J. El.
electrochem. Soc. , 143, 2435 (1
996)), olivine type LiFePO 4 (J. Elec)
trochem. Soc. , 144, 1609 (199
7)), spinel type LiFe 5 O 8 (J. Electro
chem. Soc. , 146, 4371 (199
9)), LiFeO having a hexagonal layered rock salt type structure
2 (JP-A-10-67519), b-FeOOH (JP
lower Sources, 81-82, 221 (19
99)), amorphous copper-containing iron hydroxide (Abstracts of the 40th Battery Symposium, 3C08) have been proposed.

【0006】[0006]

【発明が解決しようとする課題】上記トンネル構造また
は層状ジグザグ構造を有するLiFeO2は10サイク
ルの寿命試験で放電容量が初期容量の80%以下に低下
し、充放電サイクル特性が低い問題点がある.オリビン
型LiFePO4、スピネル型LiFe58、および非
晶質含銅水酸化鉄の放電容量は180mAh/g以下で
あり、電池活物質として不十分である。一方、六方晶層
状岩塩型構造を有するLiFeO2は、J.Elect
rochem.Soc.,144,L177(199
7)で示されているように、充放電容量が極めて低く
(10mAh/g以下)、さらに充放電サイクル特性が
低い課題がある。また、b−FeOOHはサイクル特性
は良好で、260mAh/g以上の高い放電容量を示す
が、トンネル構造を有するために、高率充放電性能を期
待することができない。
The LiFeO 2 having the tunnel structure or the layered zigzag structure has a problem that the discharge capacity is reduced to 80% or less of the initial capacity in a 10-cycle life test, and the charge / discharge cycle characteristics are low. . The discharge capacity of olivine-type LiFePO 4 , spinel-type LiFe 5 O 8 , and amorphous copper-containing iron hydroxide is 180 mAh / g or less, which is insufficient as a battery active material. On the other hand, LiFeO 2 having a hexagonal layered rock salt type structure is disclosed in J. Am. Elect
rochem. Soc. , 144, L177 (199
As shown in 7), there is a problem that the charge / discharge capacity is extremely low (10 mAh / g or less) and the charge / discharge cycle characteristics are low. Further, b-FeOOH has good cycle characteristics and shows a high discharge capacity of 260 mAh / g or more, but cannot have high charge / discharge performance due to its tunnel structure.

【0007】従って、これまで200mAh/g以上の
高い放電容量を有し、良好な充放電サイクル特性を示
し、さらに高率充放電性能に優れたリチウム鉄複合酸化
物は得られていない。そこで、従来にない新しい構造を
もつリチウム鉄複合酸化物が求められてきた。
Therefore, a lithium iron composite oxide having a high discharge capacity of 200 mAh / g or more, exhibiting good charge / discharge cycle characteristics, and having excellent high rate charge / discharge performance has not been obtained. Therefore, there has been a demand for a lithium iron composite oxide having an unprecedented new structure.

【0008】本発明は、従来にない新規なリチウム鉄複
合酸化物を製造し、それを正極活物質として適用するこ
とにより、高い放電容量を有し、良好な充放電サイクル
特性を示し、さらに高率充放電性能に優れ、しかも安価
で環境負荷が小さい非水電解質二次電池を提供すること
を目的とする。
According to the present invention, a novel lithium-iron composite oxide, which has never existed before, is produced and applied as a positive electrode active material. It is an object of the present invention to provide a nonaqueous electrolyte secondary battery having excellent charge / discharge performance, being inexpensive, and having a small environmental load.

【0009】[0009]

【課題を解決するための手段】請求項1にかかる発明
は、リチウム鉄複合酸化物に関する発明であって、リチ
ウム鉄複合酸化物が、アルカリ金属およびハロゲンを含
有し、CuKα線を用いたX線回折法で15°<2θ<
25°、28°<2θ<40°、40°<2θ<45
°、58°<2θ<65°に現れる回折ピークの半値幅
Bが2°<B<10°(2θ)であることを特徴とす
る。
The invention according to claim 1 relates to a lithium iron composite oxide, wherein the lithium iron composite oxide contains an alkali metal and a halogen, and the X-ray using CuKα ray is used. 15 ° <2θ <by diffraction method
25 °, 28 ° <2θ <40 °, 40 ° <2θ <45
°, 58 ° <2θ <65 °, the half width B of the diffraction peak appearing at 2 ° <B <10 ° (2θ).

【0010】請求項2にかかる発明は、請求項1記載の
リチウム鉄複合酸化物の製造方法に関する発明であっ
て、4価以上の酸化数をもつ鉄化合物を還元する工程を
含むことを特徴とする。
A second aspect of the present invention relates to a method for producing a lithium iron composite oxide according to the first aspect, which comprises a step of reducing an iron compound having an oxidation number of four or more. I do.

【0011】請求項3にかかる発明は、請求項2記載の
リチウム鉄複合酸化物の製造方法に関する発明であっ
て、4価以上の酸化数をもつ鉄化合物が、M4FeO4
3FeO3、X2FeO4またはYFeO4(ただし、M
は一価の元素、Xはアルカリ金属、YはMg、Ca、S
r、Ba、Ag、Cu、Pb、Co、Niで表される鉄
化合物の群から選ばれる少なくとも1種)であることを
特徴とする。
The invention according to claim 3 relates to the method for producing a lithium iron composite oxide according to claim 2, wherein the iron compound having an oxidation number of 4 or more is M 4 FeO 4 ,
M 3 FeO 3 , X 2 FeO 4 or YFeO 4 (where M
Is a monovalent element, X is an alkali metal, Y is Mg, Ca, S
r, Ba, Ag, Cu, Pb, Co, and at least one selected from the group of iron compounds represented by Ni).

【0012】請求項4にかかる発明は、非水電解質二次
電池に関する発明であって、正極活物質として請求項1
記載のリチウム鉄複合酸化物を用いることを特徴とす
る。
A fourth aspect of the present invention relates to a non-aqueous electrolyte secondary battery, wherein the positive electrode active material is a non-aqueous electrolyte secondary battery.
It is characterized by using the above-mentioned lithium iron composite oxide.

【0013】[0013]

【発明の実施の形態】本発明のリチウム鉄複合酸化物
は、アルカリ金属およびハロゲンを含有し、CuKα線
を用いたX線回折測定で、15°<2θ<25°、28
°<2θ<40°、40°<2θ<45°、58°<2
θ<65°に半値幅Bが2°<B<10°(2θ)であ
る回折ピークを示すアモルファス状化合物である。
BEST MODE FOR CARRYING OUT THE INVENTION The lithium-iron composite oxide of the present invention contains an alkali metal and a halogen, and has an angle of 15 ° <2θ <25 °, 28
° <2θ <40 °, 40 ° <2θ <45 °, 58 ° <2
The amorphous compound shows a diffraction peak in which the half width B is 2 ° <B <10 ° (2θ) at θ <65 °.

【0014】本発明リチウム鉄複合酸化物は、リチウム
イオンよりもイオン半径が大きなナトリウム、カリウム
等のアルカリ金属から選ばれた少なくとも一種の元素、
およびよう素、臭素等のハロゲンから選ばれた少なくと
も一種の元素を含む。
The lithium-iron composite oxide of the present invention comprises at least one element selected from alkali metals such as sodium and potassium having an ionic radius larger than that of lithium ions;
And at least one element selected from halogens such as iodine and bromine.

【0015】4価以上の鉄化合物として、4価および6
価の化合物が存在するが、4価の鉄化合物にはM4Fe
4またはM3FeO3(Mは一価の元素)、6価の鉄化
合物にはX2FeO4(Xはアルカリ金属、例えばNa、
K)またはYFeO4(YはMg、Ca、Sr、Ba、
Ag、Cu、Pb、Co、Ni)を用いることができ
る。この場合、生成物にはMまたはXまたはYが混入す
る。
As the iron compound having a valence of 4 or more, tetravalent and hexavalent
There is a trivalent compound, but M 4 Fe
O 4 or M 3 FeO 3 (M is a monovalent element), and X 6 FeO 4 (X is an alkali metal such as Na,
K) or YFeO 4 (Y is Mg, Ca, Sr, Ba,
Ag, Cu, Pb, Co, Ni) can be used. In this case, the product is contaminated with M or X or Y.

【0016】4価以上の鉄化合物を還元する際に用いる
還元剤としては、C49Li、LiAlH4、LiB
4、およびハロゲン化物を用いることができる。ハロ
ゲン化物には、還元力の強い臭化物またはよう化物を用
いることが好ましい。
The reducing agent used for reducing the iron compound having a valence of 4 or more includes C 4 H 9 Li, LiAlH 4 , LiB
H 4 and halides can be used. As the halide, a bromide or iodide having a strong reducing power is preferably used.

【0017】臭化物にはZnBr2、AlBr3、NH4
Br、IrBr3、CdBr2、KBr、CaBr2、C
oIBr2、CoIBr2、HBr、SrBr2、CsB
r、FeBr2、FeBr3、C77Br、NaBr、N
iBr2、VBr3、BaBr2、MgBr2、LiBr、
RbBrを用いることができ、よう化物にはZnI2
AlI3、NH4I、InI3、CdI2、KI、Zr
4、HI、CsI、TiI、NaI、BaI2、Li
I、RbIを用いることができる。
The bromide includes ZnBr 2 , AlBr 3 , NH 4
Br, IrBr 3 , CdBr 2 , KBr, CaBr 2 , C
oIBr 2 , CoIBr 2 , HBr, SrBr 2 , CsB
r, FeBr 2 , FeBr 3 , C 7 H 7 Br, NaBr, N
iBr 2 , VBr 3 , BaBr 2 , MgBr 2 , LiBr,
RbBr can be used, and the iodide includes ZnI 2 ,
AlI 3 , NH 4 I, InI 3 , CdI 2 , KI, Zr
I 4 , HI, CsI, TiI, NaI, BaI 2 , Li
I and RbI can be used.

【0018】ハロゲン化物にはこれらの水和物を用いる
ことができ、それぞれの単独あるいは2種以上の混合物
を用いることができる。ハロゲン化物としてハロゲン化
リチウム以外を用いた場合は、さらにリチウム塩との反
応を用いることによって本発明のリチウム鉄複合酸化物
が得られる。また、ハロゲン化物を用いてリチウム鉄複
合酸化物を製造すると、生成物にはハロゲンが混入す
る。
As the halide, these hydrates can be used, and each of them can be used alone or in combination. When a halide other than lithium halide is used, the lithium iron composite oxide of the present invention can be obtained by further using a reaction with a lithium salt. Further, when a lithium iron composite oxide is produced using a halide, a halogen is mixed in the product.

【0019】本発明の非水電解質二次電池で用いられる
負極材料においては、金属リチウムまたは/およびリチ
ウムイオンを吸蔵放出することが可能な物質が用いられ
る。リチウムイオンを吸蔵、放出することが可能な物質
としては、黒鉛、非晶質炭素、酸化物、窒化物およびリ
チウム合金が例示される。リチウム合金としては、例え
ばリチウムとアルミニウム、亜鉛、ビスマス、カドミウ
ム、アンチモン、シリコン、鉛、錫との合金を用いるこ
とができる。
In the negative electrode material used in the non-aqueous electrolyte secondary battery of the present invention, a substance capable of inserting and extracting lithium metal and / or lithium ions is used. Examples of the substance capable of inserting and extracting lithium ions include graphite, amorphous carbon, oxides, nitrides, and lithium alloys. As the lithium alloy, for example, an alloy of lithium, aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, and tin can be used.

【0020】本発明の非水電解質二次電池で用いられる
非水電解質としては、非水電解液でも固体電解質であっ
てもかまわない。非水電解液に用いられる溶媒として
は、エチレンカーボネート、プロピレンカーボネート、
ジメチルカーボネート、ジエチルカーボネート、メチル
エチルカーボネート、γ−ブチロラクトン、スルホラ
ン、ジメチルスルホキシド、アセトニトリル、ジメチル
ホルムアミド、ジメチルアセトアミド、1,2−ジメト
キシエタン、1,2−ジエトキシエタン、テトラヒドロ
フラン、2−メチルテトラヒドロフラン、ジオキソラ
ン、メチルアセテート等の極性溶媒およびこれらの混合
溶媒が例示され、また、その溶質としては、LiP
6、LiBF4、LiAsF6、LiClO4、LiSC
N、LiCF3CO2、LiCF3SO3、LiN(SO2
CF32、LiN(SO2CF2CF32、LiN(CO
CF32およびLiN(COCF2CF32などの塩も
しくはこれらの混合物が例示される。
The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention may be a non-aqueous electrolyte or a solid electrolyte. As the solvent used for the non-aqueous electrolyte, ethylene carbonate, propylene carbonate,
Dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane , Methyl acetate and other polar solvents and mixed solvents thereof are exemplified.
F 6, LiBF 4, LiAsF 6 , LiClO 4, LiSC
N, LiCF 3 CO 2 , LiCF 3 SO 3 , LiN (SO 2
CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (CO
Salts such as CF 3 ) 2 and LiN (COCF 2 CF 3 ) 2 or mixtures thereof are exemplified.

【0021】本発明のリチウム鉄複合酸化物をリチウム
二次電池の正極活物質に用いると、200mAh/g以
上の高い放電容量を有し、良好な充放電サイクル特性を
示し、さらに高率充放電性能に優れる。
When the lithium-iron composite oxide of the present invention is used as a positive electrode active material of a lithium secondary battery, it has a high discharge capacity of 200 mAh / g or more, exhibits good charge / discharge cycle characteristics, and has a high rate of charge / discharge. Excellent performance.

【0022】この理由はまだ明らかではないが、本発明
のリチウム鉄複合酸化物はアモルファス状化合物であ
り、サイクルにともなう活物質の結晶構造の変化が小さ
く、従ってサイクル特性に優れると推察される。
The reason for this is not clear yet, but it is presumed that the lithium-iron composite oxide of the present invention is an amorphous compound, and the change in the crystal structure of the active material with cycling is small, and therefore the cycle characteristics are excellent.

【0023】また、該酸化物はリチウムイオンよりもイ
オン半径が大きいアルカリ金属イオンおよびハロゲンを
含有し、これらのイオンが活物質内で柱の役目を果たす
ために、構造が安定化し、よってサイクル特性に優れる
と考えられる。
Further, the oxide contains an alkali metal ion and a halogen having an ionic radius larger than that of a lithium ion, and since these ions serve as pillars in the active material, the structure is stabilized, and thus the cycle characteristics are improved. It is considered to be excellent.

【0024】さらに、本発明のリチウム鉄複合酸化物は
アモルファス状化合物であり、活物質内で3次元的なリ
チウムイオンの拡散が可能であり、よって高率充放電性
能に優れると考えられる。
Further, the lithium iron composite oxide of the present invention is an amorphous compound, is capable of three-dimensional diffusion of lithium ions in the active material, and is considered to be excellent in high-rate charge / discharge performance.

【0025】[0025]

【実施例】以下に本発明のリチウム鉄複合酸化物を正極
活物質に備えた非水電解質二次電池を実施例に基づいて
さらに詳細に説明する。しかし、本発明は以下の実施例
に限定されるものではない。
EXAMPLES A nonaqueous electrolyte secondary battery comprising the lithium iron composite oxide of the present invention as a positive electrode active material will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

【0026】[実施例]本実施例では、リチウム鉄複合
酸化物を、酸化力の強い6価の鉄化合物を溶液中で還元
することによって得た。まず、6価の鉄化合物であるK
2FeO4が溶解した水溶液の製造過程を説明する。
Example In this example, a lithium-iron composite oxide was obtained by reducing a highly oxidizable hexavalent iron compound in a solution. First, the hexavalent iron compound K
A process for producing an aqueous solution in which 2 FeO 4 is dissolved will be described.

【0027】次亜鉛素酸ナトリウム溶液(アンチホルミ
ン)100ml中に硝酸鉄(III)水和物を10g溶
解させ、さらに30℃に保ちながら水酸化ナトリウムを
飽和するまで加え、よく混合した。沈殿物をろ過し、ろ
液に飽和水酸化カリウム溶液を150ml加え、5分間
かきまぜた後ろ過した。ろ過物を3M水酸化カリウム溶
液10mlで4、5回にわけて完全に溶解させた。
10 g of iron (III) nitrate hydrate was dissolved in 100 ml of sodium hypochlorite solution (antiformin), and sodium hydroxide was added to the solution while maintaining the temperature at 30 ° C. until the solution was saturated, and mixed well. The precipitate was filtered, 150 ml of a saturated potassium hydroxide solution was added to the filtrate, and the mixture was stirred for 5 minutes and filtered. The filtrate was completely dissolved in 4 or 5 times with 10 ml of a 3M potassium hydroxide solution.

【0028】次に、溶液を100mlの氷冷された飽和
水酸化カリウム溶液に注ぎ込み、さらに100mlの氷
冷された飽和水酸化カリウム溶液を追加して、20℃で
5分間かき混ぜた。沈殿物をろ過した後、ろ過物を再び
3M水酸化カリウム溶液10mlで4、5回にわけて完
全に溶解させた。以上の結果、K2FeO4が溶解した水
溶液を得た。
Next, the solution was poured into 100 ml of an ice-cooled saturated potassium hydroxide solution, and 100 ml of an ice-cooled saturated potassium hydroxide solution was further added, followed by stirring at 20 ° C. for 5 minutes. After the precipitate was filtered, the filtrate was completely dissolved again with 10 ml of a 3M potassium hydroxide solution four or five times. As a result, an aqueous solution in which K 2 FeO 4 was dissolved was obtained.

【0029】次に、このK2FeO4が溶解した水溶液に
よう化リチウム粉末を3g加え、30分攪拌し、沈殿物
をろ過した。ろ過物をエタノールでよく洗浄し、過剰の
よう化リチウムを除去した。最後に乾燥させることによ
り、リチウム鉄複合酸化物を得た。最終生成物のX線回
折パターンを図1に示す。また、比較例として公知のβ
−FeOOH(J.Power Sources,81
−82,221(1999))のX線回折パターンを図
2に示す。
Next, 3 g of lithium iodide powder was added to the aqueous solution in which K 2 FeO 4 was dissolved, the mixture was stirred for 30 minutes, and the precipitate was filtered. The filtrate was thoroughly washed with ethanol to remove excess lithium iodide. Finally, by drying, a lithium iron composite oxide was obtained. The X-ray diffraction pattern of the final product is shown in FIG. In addition, a known β as a comparative example
-FeOOH (J. Power Sources, 81
-82, 221 (1999)) is shown in FIG.

【0030】図1から明らかなように、本発明のリチウ
ム鉄複合酸化物は、約18°、31°、43°、62°
にブロードな回折ピークを示し、アモルファス状化合物
であることが分かった。
As is apparent from FIG. 1, the lithium iron composite oxide of the present invention has a temperature of about 18 °, 31 °, 43 °, and 62 °.
In addition, a broad diffraction peak was shown, indicating that the compound was an amorphous compound.

【0031】さらに、ICP発光分光分析によって、得
られたリチウム鉄複合酸化物にはカリウムとよう素が含
まれることが確認された。
Further, ICP emission spectroscopy confirmed that the obtained lithium iron composite oxide contained potassium and iodine.

【0032】次に、正極活物質としての上記リチウム鉄
複合酸化物75重量部に、導電剤としてのアセチレンブ
ラック20重量部と、結着剤としてのポリフッカビニリ
デン5重量部を加え、溶剤であるN―メチル―2―ピロ
リドンと湿式混合してスラリーにした。このスラリーを
集電体であるアルミニウムメッシュの両面に塗付した
後、1t/cm2で加圧成形し、真空下にて乾燥し、大
きさ15mm×15mm×0.5mmの正極を製作し
た。
Next, 20 parts by weight of acetylene black as a conductive agent and 5 parts by weight of polyfukkavinylidene as a binder were added to 75 parts by weight of the lithium iron composite oxide as a positive electrode active material, and the mixture was used as a solvent. A slurry was obtained by wet mixing with N-methyl-2-pyrrolidone. The slurry was applied to both sides of an aluminum mesh as a current collector, pressed under a pressure of 1 t / cm 2 , and dried under vacuum to produce a positive electrode having a size of 15 mm × 15 mm × 0.5 mm.

【0033】最後に、上記正極を用いて、リチウム鉄複
合酸化物を正極活物質に備えた本発明電池を製作した。
負極にリチウム金属、非水電解液にエチレンカーボネー
トとジメチルカーボネートを体積比率1:1で混合し、
1mol/lのLiPF6の電解液を用い、フラッデド
タイプの電池を製作した。
Finally, using the above positive electrode, a battery of the present invention comprising a lithium iron composite oxide as a positive electrode active material was manufactured.
Lithium metal for the negative electrode, ethylene carbonate and dimethyl carbonate in the non-aqueous electrolyte were mixed at a volume ratio of 1: 1.
Using a 1 mol / l LiPF 6 electrolyte, a flooded battery was manufactured.

【0034】[比較例]正極活物質として、従来放電容
量が大きいことで知られる、b−FeOOHを前出の
J.Power Sources,81−82,221
(1999)を参考にして合成した。この正極活物質を
用いたこと以外は実施例と同様にして、比較電池を製作
した。
Comparative Example As a positive electrode active material, b-FeOOH, which is conventionally known for having a large discharge capacity, is described in J. Am. Power Sources, 81-82, 221
(1999). A comparative battery was manufactured in the same manner as in the example except that this positive electrode active material was used.

【0035】上記のようにして製作した本発明電池およ
び比較電池について、一定電流で10サイクルの充放電
試験を実施した。充電、放電終始電圧をそれぞれ4.5
V、1.5Vとした。
The battery of the present invention and the comparative battery manufactured as described above were subjected to a 10-cycle charge / discharge test at a constant current. Charge and discharge end-to-end voltages are 4.5
V and 1.5 V.

【0036】図3は本発明電池および比較電池の正極活
物質1g当たりの初期放電容量(mAh/g)と電流密
度との関係を示す図である。図3において、記号●は本
発明電池、記号▲は比較電池を示す。
FIG. 3 is a graph showing the relationship between the initial discharge capacity (mAh / g) per 1 g of the positive electrode active material and the current density of the battery of the present invention and the comparative battery. In FIG. 3, the symbol ● indicates the battery of the present invention, and the symbol ▲ indicates the comparative battery.

【0037】0.05mA/cm2の低電流密度の場
合、本発明電池、比較電池ともに200mAh/g以上
の容量を示した。しかし、本発明電池はより大きな電流
密度においても高い放電容量を維持し、比較電池と比べ
て高率充放電性能に優れることが分かる。なお、本発明
電池は、電流密度が0.05mA/cm2の場合、10
サイクルの寿命試験で初期放電容量の80%以上を維持
し、サイクル特性に優れていた。
At a low current density of 0.05 mA / cm 2 , both the battery of the present invention and the comparative battery exhibited a capacity of 200 mAh / g or more. However, it can be seen that the battery of the present invention maintains a high discharge capacity even at a higher current density, and is superior in high-rate charge / discharge performance as compared with the comparative battery. Note that the battery of the present invention has a current density of 0.05 mA / cm 2 ,
In the cycle life test, 80% or more of the initial discharge capacity was maintained, and the cycle characteristics were excellent.

【0038】本実施例では、リチウム鉄複合酸化物の製
造方法として、6価の鉄化合物、中でもK2FeO4を還
元する方法を選んだが、他の6価の鉄化合物を用いた方
法を用いた場合においても同様にして、高い放電容量を
持ち、サイクル特性に優れ、高率充放電性能に優れてい
た。
In this embodiment, a method for reducing a hexavalent iron compound, especially K 2 FeO 4 , was selected as a method for producing a lithium iron composite oxide, but a method using another hexavalent iron compound was used. In the same case, the battery had high discharge capacity, excellent cycle characteristics, and excellent high-rate charge / discharge performance.

【0039】また、本発明のリチウム鉄複合酸化物には
カリウムおよびよう素が含まれていたが、他のアルカリ
金属やハロゲンを含む場合においても同様にして、高い
放電容量を持ち、サイクル特性に優れ、高率充放電性能
に優れていた。
Although the lithium iron composite oxide of the present invention contains potassium and iodine, it also has a high discharge capacity and a good cycle characteristic even when it contains other alkali metals or halogens. Excellent, high rate charge / discharge performance.

【0040】[0040]

【発明の効果】以上述べたように、本発明によれば、ア
ルカリ金属およびハロゲンを含有し、CuKα線を用い
たX線回折法で15°<2θ<25°、28°<2θ<
40°、40°<2θ<45°、58°<2θ<65°
に現れる回折ピークの半値幅Bが2°<B<10°(2
θ)であるリチウム鉄複合酸化物を正極活物質に備えた
非水電解質二次電池は、高い放電容量を示し、良好な充
放電サイクル特性を有し、さらに高率充放電性能に優れ
るものである。
As described above, according to the present invention, an alkali metal and a halogen are contained, and 15 ° <2θ <25 ° and 28 ° <2θ <by X-ray diffraction using CuKα ray.
40 °, 40 ° <2θ <45 °, 58 ° <2θ <65 °
The half width B of the diffraction peak appearing at 2 ° <B <10 ° (2
The non-aqueous electrolyte secondary battery provided with the lithium iron composite oxide (θ) as the positive electrode active material has a high discharge capacity, good charge / discharge cycle characteristics, and excellent high rate charge / discharge performance. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例において得られた活物質のX線回折パタ
ーンを示す図。
FIG. 1 is a diagram showing an X-ray diffraction pattern of an active material obtained in an example.

【図2】β−FeOOHのX線回折パターンを示す図。FIG. 2 is a view showing an X-ray diffraction pattern of β-FeOOH.

【図3】本発明電池および比較電池の初期放電容量と電
流密度との関係を示す図。
FIG. 3 is a diagram showing the relationship between the initial discharge capacity and the current density of the battery of the present invention and the comparative battery.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G002 AA06 AA08 AA10 AB02 AE05 4G048 AA03 AA04 AA05 AB02 AC06 AD03 AE05 AE07 5H029 AJ00 AJ02 AJ03 AJ05 AK03 AL07 AL08 AM02 AM03 AM04 AM05 AM07 DJ17 HJ00 HJ02 HJ13 5H050 AA00 AA02 AA07 AA08 AA17 BA16 BA17 CA07 CA08 CB01 CB02 CB05 CB08 CB09 CB12 HA00 HA02 HA13  ──────────────────────────────────────────────────の Continued on the front page F term (reference) 4G002 AA06 AA08 AA10 AB02 AE05 4G048 AA03 AA04 AA05 AB02 AC06 AD03 AE05 AE07 5H029 AJ00 AJ02 AJ03 AJ05 AK03 AL07 AL08 AM02 AM03 AM04 AM05 AM07 DJ17 HJ00HJA A07 A13 A07 BA16 BA17 CA07 CA08 CB01 CB02 CB05 CB08 CB09 CB12 HA00 HA02 HA13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ金属およびハロゲンを含有し、
CuKα線を用いたX線回折法で15°<2θ<25
°、28°<2θ<40°、40°<2θ<45°、5
8°<2θ<65°に現れる回折ピークの半値幅Bが2
°<B<10°(2θ)であることを特徴とするリチウ
ム鉄複合酸化物。
Claims: 1. An alkali metal and a halogen,
15 ° <2θ <25 by X-ray diffraction using CuKα ray
°, 28 ° <2θ <40 °, 40 ° <2θ <45 °, 5
When the half width B of the diffraction peak appearing at 8 ° <2θ <65 ° is 2
° <B <10 ° (2θ), wherein the lithium iron composite oxide is characterized in that:
【請求項2】 4価以上の酸化数をもつ鉄化合物を還元
する工程を含むことを特徴とする請求項1記載のリチウ
ム鉄複合酸化物の製造方法。
2. The method for producing a lithium iron composite oxide according to claim 1, further comprising a step of reducing an iron compound having an oxidation number of four or more.
【請求項3】 4価以上の酸化数をもつ鉄化合物が、M
4FeO4、M3FeO3、X2FeO4またはYFeO
4(ただし、Mは一価の元素、Xはアルカリ金属、Yは
Mg、Ca、Sr、Ba、Ag、Cu、Pb、Co、N
iで表される鉄化合物の群から選ばれる少なくとも1
種)であることを特徴とする請求項2記載のリチウム鉄
複合酸化物の製造方法。
3. An iron compound having an oxidation number of 4 or more is represented by M
4 FeO 4 , M 3 FeO 3 , X 2 FeO 4 or YFeO
4 (where M is a monovalent element, X is an alkali metal, Y is Mg, Ca, Sr, Ba, Ag, Cu, Pb, Co, N
at least one selected from the group of iron compounds represented by i
3. The method for producing a lithium iron composite oxide according to claim 2, wherein
【請求項4】 正極活物質として、請求項1記載のリチ
ウム鉄複合酸化物を用いることを特徴とする非水電解質
二次電池。
4. A non-aqueous electrolyte secondary battery using the lithium iron composite oxide according to claim 1 as a positive electrode active material.
JP2000179800A 2000-06-15 2000-06-15 Lithium and iron compound oxide, method for producing it and nonaqueous electrolyte secondary battery using it Pending JP2002003221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000179800A JP2002003221A (en) 2000-06-15 2000-06-15 Lithium and iron compound oxide, method for producing it and nonaqueous electrolyte secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000179800A JP2002003221A (en) 2000-06-15 2000-06-15 Lithium and iron compound oxide, method for producing it and nonaqueous electrolyte secondary battery using it

Publications (1)

Publication Number Publication Date
JP2002003221A true JP2002003221A (en) 2002-01-09

Family

ID=18681005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000179800A Pending JP2002003221A (en) 2000-06-15 2000-06-15 Lithium and iron compound oxide, method for producing it and nonaqueous electrolyte secondary battery using it

Country Status (1)

Country Link
JP (1) JP2002003221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525059A (en) * 2001-04-10 2004-08-19 ツェントゥルム フューア ゾンネンエネルギー−ウント ヴァッサーシュトッフ−フォルシュング バーデン−ヴァルテムベルク ゲマインニュッツィヒ シュティフトゥング Binary, ternary and quaternary lithium phosphates, their preparation and use
JP2014047082A (en) * 2012-08-29 2014-03-17 Ti:Kk Higher alkali metal-transition metal oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525059A (en) * 2001-04-10 2004-08-19 ツェントゥルム フューア ゾンネンエネルギー−ウント ヴァッサーシュトッフ−フォルシュング バーデン−ヴァルテムベルク ゲマインニュッツィヒ シュティフトゥング Binary, ternary and quaternary lithium phosphates, their preparation and use
JP4932130B2 (en) * 2001-04-10 2012-05-16 ツェントゥルム フューア ゾンネンエネルギー−ウント ヴァッサーシュトッフ−フォルシュング バーデン−ヴァルテムベルク ゲマインニュッツィヒ シュティフトゥング Binary, ternary and quaternary lithium phosphates, methods for their production and use
JP2014047082A (en) * 2012-08-29 2014-03-17 Ti:Kk Higher alkali metal-transition metal oxide

Similar Documents

Publication Publication Date Title
US7459238B2 (en) Positive electrode active material for lithium ion secondary battery
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JPH08138669A (en) Cathode active material, manufacture thereof, and non-aqueous solvent secondary battery using the same
JP2008034368A (en) Lithium ion storage battery containing contains tio2-b as anode active substance
US6270923B1 (en) Non-aqueous electrolyte secondary battery
JP2004253174A (en) Positive pole active material for nonaqueous electrolytic secondary battery
JP2003034534A (en) Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP2002151070A (en) Nonaqueous electrolyte secondary battery
JP3819940B2 (en) Nonaqueous electrolyte secondary battery
JP2005281128A (en) Method for producing lithium-containing iron oxyhydroxide and nonaqueous electrolyte electrochemical cell using electrode containing lithium-containing iron oxyhydroxide obtained by the same
KR20150062724A (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP3667468B2 (en) Nonaqueous electrolyte lithium secondary battery and method for producing positive electrode material thereof
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP2004047448A (en) Positive electrode activator for nonaqueous electrolyte secondary battery
JP2002003221A (en) Lithium and iron compound oxide, method for producing it and nonaqueous electrolyte secondary battery using it
US6716555B2 (en) Positive active material for secondary battery, process for preparation thereof and non-aqueous secondary battery comprising same
JPH07235295A (en) Nonaqueous secondary battery
JPH1145742A (en) Nonaqueous electrolytic secondary battery
JPH1064520A (en) Lithium ion secondary battery
JP2002184404A (en) Positive electrode material and nonaqueous electrolyte battery
JP4562824B2 (en) Nonaqueous electrolyte secondary battery
JP4923324B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2002151068A (en) Positive electrode active material for secondary battery and its manufacturing method and non aqueous electrolyte secondary battery equipped with it
JP4539139B2 (en) Nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode mixture for nonaqueous electrolyte secondary battery
JP4770069B2 (en) Positive electrode active material for secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery including the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213