JP2013237599A - Hydrogen generation method to collect hydrogen from water - Google Patents

Hydrogen generation method to collect hydrogen from water Download PDF

Info

Publication number
JP2013237599A
JP2013237599A JP2012113161A JP2012113161A JP2013237599A JP 2013237599 A JP2013237599 A JP 2013237599A JP 2012113161 A JP2012113161 A JP 2012113161A JP 2012113161 A JP2012113161 A JP 2012113161A JP 2013237599 A JP2013237599 A JP 2013237599A
Authority
JP
Japan
Prior art keywords
reactant
hydrogen
oxide film
water
reaction cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012113161A
Other languages
Japanese (ja)
Inventor
Yasuo Ishikawa
泰男 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TI KK
Original Assignee
TI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TI KK filed Critical TI KK
Priority to JP2012113161A priority Critical patent/JP2013237599A/en
Publication of JP2013237599A publication Critical patent/JP2013237599A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen generation method for generating a large amount of hydrogen from water.SOLUTION: The inside of a reaction cell 1 formed of stainless steel, iron, or the like is made to be in an oxygen-free state with no oxygen in the air; NaOH or KOH is supplied into the reaction cell 1 as a reaction agent 5; the reaction cell 1 is heated from a peripheral wall thereof to 300°C or higher so as to make fine particles be scattered from a reaction agent surface and to form a reaction space S; water vapor is supplied thereto so as to form special oxide films l, l, lon the inner wall of the reaction cell 1; oxygen in water, oxygen in the reaction agent, and sodium or potassium in the reaction agent are absorbed in the special oxide films; and the special oxide films are made to further decompose water; and as a result, a large amount of hydrogen is made to be taken out from water.

Description

本発明は、水を使用して水素を発生させるための水素発生方法に関する。   The present invention relates to a hydrogen generation method for generating hydrogen using water.

アルカリ金属溶融塩にニッケル、クロム及び鉄元素を接触せしめ、前記溶融塩の液面から微細粒子群を反応空間内に飛散せしめ、この微細粒子群に水蒸気を接触せしめて水から水素を採集する手段に関して本件発明者は数件の出願を行っている。   Means for bringing nickel, chromium and iron elements into contact with an alkali metal molten salt, scattering fine particles from the surface of the molten salt into a reaction space, and bringing hydrogen from water by bringing water into contact with the fine particles. The present inventor has filed several applications.

特願2009−009733号Japanese Patent Application No. 2009-009733 特願2009−039485号Japanese Patent Application No. 2009-039485 特願2009−120757号Japanese Patent Application No. 2009-120757 特願2009−178741号Japanese Patent Application No. 2009-178741

しかしながら、これらの出願においては、反応原理について不十分であり、水素が大量に発生する理由説明が不十分であった。   However, in these applications, the reaction principle is insufficient and the reason why hydrogen is generated in large quantities is insufficient.

本発明の水から水素を採集するための水素発生方法においては、空気中の酸素の存在しない無酸素状態の密閉雰囲気内に金属元素供給体を存在せしめ、前記密閉雰囲気内にアルカリ金属水酸化物を配設するとともに前記密閉雰囲気を加熱して前記アルカリ金属水酸化物を溶融塩とし、その表面から金属水酸化物の微粒子を飛散せしめて反応空間を形成し、この反応空間内に水蒸気を供給し、前記金属元素供給体表面に一定厚の酸化膜を形成し、この酸化膜が一定厚になった時にその酸化膜を金属元素供給体表面から剥離せしめ、更に新しい金属元素供給体表面に新しい酸化膜を形成し、これらの酸化膜が供給される水蒸気と反応して水素を発生させるようにした。   In the hydrogen generation method for collecting hydrogen from water of the present invention, a metal element supplier is present in an oxygen-free sealed atmosphere free from oxygen in the air, and an alkali metal hydroxide is contained in the sealed atmosphere. And heating the sealed atmosphere to convert the alkali metal hydroxide into a molten salt, spattering metal hydroxide fine particles from the surface to form a reaction space, and supplying water vapor into the reaction space Then, an oxide film having a certain thickness is formed on the surface of the metal element supplier, and when the oxide film becomes a certain thickness, the oxide film is peeled off from the surface of the metal element supplier, and a new metal element supplier surface is newly formed. Oxide films were formed, and these oxide films reacted with water vapor supplied to generate hydrogen.

前記アルカリ金属水酸化物は水酸化ナトリウム(NaOH)、又水酸化カリウム(KOH)であることが好ましい。更に、これらのアルカリ金属水酸化物は溶融して液化させるために雰囲気温度を300℃以上に加熱することが好ましい。更に、また、前記酸化膜は、鉄酸ナトリウム(Na3Fe5O9)、クロム酸ナトリウム(Na3Cr5O9)又は、これらの混合物からなることが好ましい。更に、また、前記金属元素供給体は、筒状のステンレス材からなり、このステンレス材の内壁にリング状に酸化膜を形成するようにすることが好ましい。 The alkali metal hydroxide is preferably sodium hydroxide (NaOH) or potassium hydroxide (KOH). Furthermore, in order to melt and liquefy these alkali metal hydroxides, it is preferable to heat the atmospheric temperature to 300 ° C. or higher. Furthermore, the oxide film is preferably made of sodium ferrate (Na 3 Fe 5 O 9 ), sodium chromate (Na 3 Cr 5 O 9 ), or a mixture thereof. Furthermore, it is preferable that the metal element supply body is made of a cylindrical stainless steel material, and an oxide film is formed in a ring shape on the inner wall of the stainless steel material.

ステンレス又は鉄等の金属元素供給体はフィンとして密閉容器(反応セル)内に供給されるか、あるいは、密閉容器そのものを金属元素供給体とし、この密閉容器から空気(酸素)を除去し、その中にNaOH又はKOH等のアルカリ金属水酸化物を収納し、金属元素供給体とアルカリ金属水酸化物を溶融液化させるために300℃以上に加熱すると、アルカリ金属水酸化物から微細粒子が飛散して反応空間を形成し、この反応空間内に水蒸気を供給する。これにより、金属元素供給体表面に特殊酸化膜が生じ、水の中の酸素は、酸素ガスとしては一切密閉容器内には存在しないで前記特殊酸化膜として吸収され、この特殊酸化膜はNa3Fe5O9又はK3Fe5O9を主成分とし、これ自体からも微粒子が飛び出て水蒸気と反応して更に新しい特殊酸化膜を金属元素供給体の表面に作っていく。これとともに、生成した特殊酸化膜は一定厚になるとその表面から剥離し、更に新たな金属元素供給体表面が露出し、この露出面に特殊酸化膜が形成され、こうして特殊酸化膜が次第に発達していき、大量の水素を発生させることができる。 The metal element supply body such as stainless steel or iron is supplied into the sealed container (reaction cell) as fins, or the sealed container itself is used as the metal element supply body, and air (oxygen) is removed from the sealed container. When an alkali metal hydroxide such as NaOH or KOH is housed inside and heated to 300 ° C or higher in order to melt and liquefy the metal element supplier and the alkali metal hydroxide, fine particles are scattered from the alkali metal hydroxide. Thus, a reaction space is formed, and water vapor is supplied into the reaction space. This produces special oxide film on the metal element supply surface, oxygen in the water, the oxygen gas is absorbed as the special oxide film is not present in any closed container, the special oxide film Na 3 Fe 5 O 9 or K 3 Fe 5 O 9 is the main component, and fine particles come out of this, react with water vapor, and make a new special oxide film on the surface of the metal element supplier. At the same time, the generated special oxide film is peeled off from the surface when the thickness is constant, and a new metal element supplier surface is exposed. A special oxide film is formed on the exposed surface, and the special oxide film gradually develops. Can generate a large amount of hydrogen.

すなわち、水の中の酸素は特殊酸化膜として完全に吸収され、この特殊酸化膜が更に水を分解して新たな特殊酸化膜を作っていき、密閉容器内が特殊酸化膜で充満し、水蒸気の流れを妨害する状態になったらその一部を取り除き、水蒸気の流れを作る必要がある。なお、取り除いた特殊酸化膜は別の密閉容器に移して、水蒸気を供給すれば、更に水素を発生させることができることが確認されている。   That is, oxygen in the water is completely absorbed as a special oxide film, and this special oxide film further decomposes the water to form a new special oxide film. If it becomes a state that obstructs the flow of water, it is necessary to remove a part of it and create a flow of water vapor. It has been confirmed that if the removed special oxide film is transferred to another sealed container and water vapor is supplied, further hydrogen can be generated.

本発明に係る第1の水素発生装置の概略構成図、The schematic block diagram of the 1st hydrogen generator which concerns on this invention, 図1の装置の破断図、1 is a cutaway view of the apparatus of FIG. 図1の装置の特殊酸化膜の成長状態図、FIG. 1 shows a growth state diagram of a special oxide film in the apparatus of FIG. フィン状に生成される特殊酸化膜の成長工程図、Growth process diagram of special oxide film generated in fin shape, 本発明に係る第2の水素発生装置の概略構成図、The schematic block diagram of the 2nd hydrogen generator which concerns on this invention, 第2の水素発生装置内に収納される反応剤容器の斜視図、A perspective view of a reactant container accommodated in the second hydrogen generator; 発生した水素ガスの成分を示す質量分析器の原子比スペクトル図、Atomic ratio spectrum diagram of mass spectrometer showing components of generated hydrogen gas, 本発明に係る第3の水素発生装置の開放図、An open view of a third hydrogen generator according to the present invention, 特殊酸化膜を円筒セル内に収納した状態を示す破断図、A cutaway view showing a state in which the special oxide film is stored in the cylindrical cell, 反応剤の微粒子に含まれるイオン成分を示す図。The figure which shows the ionic component contained in the microparticles | fine-particles of a reactive agent.

以下図面を参照して本発明の実施態様について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1において、本発明の水素発生方法を実施するための第1の水素発生装置Mは、円筒状のステンレス製(SUS304)又は鉄製(SS)の反応セル1を有し、この一端部には、水を供給するための水管2が設けられ、その他端部には水素を排出するための水素管3が設けられ、反応セル1はその外周壁がバーナ4によって加熱され、反応セル1内には、水酸化ナトリウム(NaOH)又は水酸化カリウム(KOH)等のアルカリ金属水酸化物が反応剤5として収納されている。反応セル1の加熱方式は、ガス加熱又は面状電気ヒータでよいが、反応セル1内が反応剤の微粒子が十分に飛散するように十分に加熱されることが必要であり、反応セル内に加熱手段を設けると構造が複雑になり好ましくなく、反応セルの外壁面を加熱するのが構造上好ましい。この方式では、反応セルの直径に制約があり、セル内を均一に加熱するためには、直径10cm以下が好ましい。前記反応セル1内からは空気が真空ポンプ等によって完全に排出される必要があり、反応セルは前記反応剤が液化溶融する温度(約300℃)以上に加熱される。 In FIG. 1, a first hydrogen generator M 1 for carrying out the hydrogen generation method of the present invention has a cylindrical stainless steel (SUS304) or iron (SS) reaction cell 1 at one end thereof. Is provided with a water pipe 2 for supplying water and a hydrogen pipe 3 for discharging hydrogen at the other end, and the reaction cell 1 is heated by a burner 4 at its outer peripheral wall. Contains an alkali metal hydroxide such as sodium hydroxide (NaOH) or potassium hydroxide (KOH) as the reactant 5. The heating method of the reaction cell 1 may be gas heating or a planar electric heater, but it is necessary that the reaction cell 1 is sufficiently heated so that the fine particles of the reactant are sufficiently scattered. Providing a heating means is not preferable because the structure becomes complicated, and it is preferable in terms of structure to heat the outer wall surface of the reaction cell. In this system, the diameter of the reaction cell is limited, and in order to uniformly heat the inside of the cell, a diameter of 10 cm or less is preferable. Air needs to be completely discharged from the reaction cell 1 by a vacuum pump or the like, and the reaction cell is heated to a temperature (about 300 ° C.) or higher at which the reactant is liquefied and melted.

前記反応セル1及びその中の反応剤5は300℃以上(特に500℃程度が好ましい)に加熱されると液化した反応剤5の液面からは無数のナノオーダーの微粒子6が飛散して液面上に反応空間Sが形成される。   When the reaction cell 1 and the reactant 5 therein are heated to 300 ° C. or higher (particularly preferably about 500 ° C.), innumerable nano-order fine particles 6 scatter from the liquid surface of the liquefied reactant 5 and are liquid. A reaction space S is formed on the surface.

前記水管2から所定量の水が水室1a内に供給されると、その水は直ちに120〜130℃程度の水蒸気となり、この水蒸気が反応空間6に供給され、この水蒸気の粒子と反応剤の微粒子とは互いに衝突して反応する。なお、反応剤の微粒子は親水性が異常に大きく、水蒸気の粒子を完全に捕捉する。   When a predetermined amount of water is supplied from the water pipe 2 into the water chamber 1a, the water immediately becomes water vapor of about 120 to 130 ° C., and this water vapor is supplied to the reaction space 6, and the particles of the water vapor and the reactants. Microparticles collide with each other and react. Note that the fine particles of the reactant are abnormally large in hydrophilicity and completely capture the water vapor particles.

なお、前記反応セル1の底部には、必要に応じてステンレス製又は鉄製のフィン7が所定間隔で設けられ、フィン7には、反応剤が移動できるように、多数の孔8が設けられている(図2)。水を分解するには、金属元素の存在の下に、反応剤が水蒸気と反応することが必要であり、金属元素は反応セル1の内壁及び必要に応じて設けられる前記フィン7から供給され、反応セル1の内壁又はフィン7が金属元素供給体の機能を果たし、反応セル1がセラミック等の非金属材料で形成される場合には、フィン7等の金属元素供給体が必ず必要となる。   The bottom of the reaction cell 1 is provided with stainless steel or iron fins 7 at predetermined intervals as required, and the fins 7 are provided with a number of holes 8 so that the reactant can move. (Fig. 2). In order to decompose water, it is necessary for the reactant to react with water vapor in the presence of the metal element, and the metal element is supplied from the inner wall of the reaction cell 1 and the fin 7 provided as necessary, When the inner wall of the reaction cell 1 or the fin 7 functions as a metal element supplier, and the reaction cell 1 is formed of a non-metallic material such as ceramic, a metal element supplier such as the fin 7 is indispensable.

前記反応剤(NaOHの場合)の微粒子は、反応剤が高温の金属壁(フィン7の表面、反応セルの内壁)に接触しているためNa+、OH、Fe2+、Cr2+、Ni2+等(鉄材を反応セル1、フィン7に使用した場合は、Cr2+、Ni2+はない)のイオンを含んでおり(図10)、前記微粒子が水蒸気の粒子と衝突すると、 The fine particles of the reactant (in the case of NaOH) are Na + , OH , Fe 2+ , Cr 2+ , since the reactant is in contact with a high-temperature metal wall (the surface of the fin 7 and the inner wall of the reaction cell) It contains ions such as Ni 2+ (if iron material is used for reaction cell 1 and fin 7, there is no Cr 2+ , Ni 2+ ) (FIG. 10), and when the fine particles collide with water vapor particles,

(数1)
10M(Fe,Cr) + 6NaOH + 12H2O → 2Na3M(Fe5,Cr5)O9 + 15H2↑ …式(1)
の反応式により、鉄酸ナトリウム(Na3Fe5O9)及びクロム酸ナトリウム(Na3Cr5O9)が生成される。なお、Ni2+イオンは、酸化物を作らず、実験において、Ni酸化物が検出されたことはない。なお、反応剤としてKOHを使用した場合には、Naの代わりにKを置き換えたものとなり、酸化物としてはK3Fe5O9、K3Cr5O9が生成される。
(Equation 1)
10M (Fe, Cr) + 6NaOH + 12H 2 O → 2Na 3 M (Fe 5, C r5) O 9 + 15H 2 ↑ ... formula (1)
According to the reaction formula, sodium ferrate (Na 3 Fe 5 O 9 ) and sodium chromate (Na 3 Cr 5 O 9 ) are generated. Ni 2+ ions do not form oxides, and Ni oxides have never been detected in experiments. When KOH is used as the reactant, K is substituted for Na, and K 3 Fe 5 O 9 and K 3 Cr 5 O 9 are generated as oxides.

また、空気中の酸素が反応セル1内に存在すると、   When oxygen in the air is present in the reaction cell 1,

(数2)
2M(Fe,Cr) + 2NaOH + 2H2O →2NaM(Fe,Cr)O2 + 3H2↑ …式(2)
により、酸素数の少ない鉄酸ナトリウム(NaFeO2)およびクロム酸ナトリウム(NaCrO2)が生成されることが確認されている。
(Equation 2)
2M (Fe, C r) + 2NaOH + 2H 2 O → 2NaM (Fe, C r) O 2 + 3H 2 ↑ ... formula (2)
It has been confirmed that sodium ferrate (NaFeO 2 ) and sodium chromate (NaC r O 2 ) with a small number of oxygen are produced.

前記酸素数の多い(O9)、Na3Fe5O9およびNa3Cr5O9は半導体で導電性で、硬く、しかも親水性で1000℃程度に加熱しても溶融することはないが、常温で空気中に放置すると、親水性の故に吸湿して潮解してしまう。K3Fe5O9、K3Cr5O9の場合も同様である。これに反し、酸素数の少ないNaFeO2、NaCrO2は親水性ではあるが、絶縁性で脆く硬度も低く、この酸化物が生成されると、短期間で反応剤としても機能が低下して少量の水素しか採集できない。 Although the above-mentioned oxygen number (O 9 ), Na 3 Fe 5 O 9 and Na 3 Cr 5 O 9 are semiconductors, they are conductive, hard, and hydrophilic, and even when heated to about 1000 ° C., they do not melt. If left in the air at room temperature, it absorbs moisture and deliquesces due to its hydrophilicity. The same applies to K 3 Fe 5 O 9 and K 3 Cr 5 O 9 . On the other hand, NaFeO 2 and NaC r O 2 with a low oxygen number are hydrophilic, but they are insulating, brittle and low in hardness. When this oxide is formed, its function as a reactant is reduced in a short period of time. Only a small amount of hydrogen can be collected.

なお、前記Na3Fe5(Cr5)O9は、図3に示すように、反応セル1の内壁に膜状に複数層(l1、l2、l3)に亘って形成され、その中心部が水蒸気の通路となっている。その形成状況をフィン7の場合について説明すると、図4に示すように、先ずフィン7の表面に0.1mm〜0.5mm厚の膜(Na3Fe5(Cr5)O9)l1が形成され(図4a)、この膜が所定厚になると、フィン7の表面から剥離され(図4b)、フィン7の新たな表面(7a)が露出し、この露出面7aに新たな膜l2が形成され、この膜l2もフィン7の表面から剥離すると、新たな膜l3が形成され、この膜l3も剥離し、こうして特殊膜が順次層状に形成されていく。反応セル1の内壁にも同様にして特殊膜l1、l2、l3が順次剥離しながら形成されていく。すなわち、図3(a)に示すように反応剤5の表面から飛散した微粒子は、水蒸気を捕捉しながら、反応セル1の内壁で特殊酸化膜l1を形成し、この膜l1が所定厚になると内壁から剥離して新たな露出面が出て、この露出面に新たな酸化膜l2が形成され、この酸化膜l2が剥離して更に次の酸化膜l3が形成され、結局図3(b)に示すように、リング状の酸化膜の集合体(図3(b))が形成されていく。これらの特殊膜l1、l2、l3の表面から溶融塩の(NaOH、KOH)の場合と同様に、Na+(K+)、Fe2、Cr2+、Ni2+、O2-のイオンを含む粒子が水蒸気の粒子と衝突して、 The Na 3 Fe 5 (Cr 5 ) O 9 is formed on the inner wall of the reaction cell 1 as a film over a plurality of layers (l 1 , l 2, l 3 ), as shown in FIG. The center is a water vapor passage. The formation of the fin 7 will be described below. First, as shown in FIG. 4, a film (Na 3 Fe 5 (Cr 5 ) O 9 ) l 1 having a thickness of 0.1 mm to 0.5 mm is formed on the surface of the fin 7. When the film is formed (FIG. 4a) and this film has a predetermined thickness, it is peeled off from the surface of the fin 7 (FIG. 4b), and a new surface (7a) of the fin 7 is exposed, and a new film l 2 is exposed on the exposed surface 7a. When this film l 2 is also peeled off from the surface of the fin 7, a new film l 3 is formed, and this film l 3 is also peeled off, so that the special film is sequentially formed in layers. Similarly, special films l 1 , l 2, and l 3 are formed on the inner wall of the reaction cell 1 while being sequentially peeled off. That is, as shown in FIG. 3A, fine particles scattered from the surface of the reactant 5 form a special oxide film l 1 on the inner wall of the reaction cell 1 while capturing water vapor, and this film l 1 has a predetermined thickness. Then, a new exposed surface comes out from the inner wall and a new oxide film l 2 is formed on this exposed surface, and this oxide film l 2 is peeled off to form a further oxide film l 3. As shown in FIG. 3B, a ring-shaped oxide film aggregate (FIG. 3B) is formed. Similar to the case of molten salt (NaOH, KOH) from the surface of these special films l 1 , l 2, l 3 , Na + (K + ), Fe 2 , Cr 2+ , Ni 2+ , O 2− Particles containing ions collide with water vapor particles,

(数3)
3Na(K) + 5Fe(Cr) + 3O2 + 3 H 2O → Na3(K3)Fe5(Cr5)O9 + 3H2・・・式(3)
の反応により、同じように、特殊酸化物Na3(K3)Fe5(Cr5)O9が生じ、フィン7の表面及び反応セル1の内壁に特殊膜を逐次形成していく。この反応は金属元素が豊富に存在する金属元素供給体表面で起き易く、所定厚の膜が剥離したら、新たな金属表面に新しい膜を形成していき、この反応は、空気中の酸素が反応セル1内に流入しない限り長く続き、実験によれば、1日7時間程度加熱して190日以上継続していることが確認されている。
(Equation 3)
3Na (K) + 5Fe (Cr ) + 3O 2 + 3 H 2 O → Na 3 (K 3) Fe 5 (Cr 5) O 9 + 3H 2 ··· (3)
In the same manner, the special oxide Na 3 (K 3 ) Fe 5 (Cr 5 ) O 9 is generated, and a special film is sequentially formed on the surface of the fin 7 and the inner wall of the reaction cell 1. This reaction is likely to occur on the surface of the metal element supplier that is rich in metal elements, and when the film of a predetermined thickness is peeled off, a new film is formed on the new metal surface. This reaction is performed by oxygen in the air. As long as it does not flow into the cell 1, it continues for a long time, and according to experiments, it has been confirmed that it is heated for about 7 hours a day and continued for 190 days or more.

[実験1]
前記特殊酸化膜の形成状態を確認するために、図5、図6に示すように、第2水素発生装置Mが作られた。すなわち、SUS304(Cr18% − Ni8% − Fe残)材の円筒形の反応セル10の一端を蓋筒11で開閉自在とし、封止部12をバーナ13による加熱部分から離すようにしている。
[Experiment 1]
In order to confirm the formation state of the special oxide film, as shown in FIGS. 5 and 6, a second hydrogen generator M < b > 2 was made. That is, one end of a cylindrical reaction cell 10 made of SUS304 (Cr18% -Ni8% -Fe residue) can be opened and closed by the lid cylinder 11, and the sealing portion 12 is separated from the heating portion by the burner 13.

前記蓋筒11は、余分な空間をなくすためのスペーサ筒14を備え、前記反応セル10内の加熱部分に対応する部分には、長箱状の反応剤入れ15が収納され、この中には、NaOH5モル(200g)の反応剤16が入れられている。また、反応セル10の他端には水管17aが、蓋筒11側には水素排出管17bが形成されている。   The lid cylinder 11 is provided with a spacer cylinder 14 for eliminating an extra space, and a long box-like reactant container 15 is accommodated in a part corresponding to the heating part in the reaction cell 10. , 5 moles (200 g) of NaOH is added. A water pipe 17a is formed at the other end of the reaction cell 10, and a hydrogen discharge pipe 17b is formed at the lid cylinder 11 side.

1回に0.3ccの水を水管17aより供給し、その水素発生量を流量計により測定するとともに、反応セル10全体の重量変化を測定した。   At one time, 0.3 cc of water was supplied from the water pipe 17a, the amount of hydrogen generated was measured with a flow meter, and the change in the weight of the entire reaction cell 10 was measured.

Figure 2013237599
前記反応剤入れ15の周壁15aの内壁、外壁にもNa3Fe5O9の膜が形成されており、反応セル10の上部内壁にも同様の膜が検出された。前記反応剤入れ(反応剤を含む)15の重量変化は28gであり、これはNaOHが28g減少していることを示す。
Figure 2013237599
Na 3 Fe 5 O 9 films were also formed on the inner and outer walls of the peripheral wall 15 a of the reactant container 15, and similar films were detected on the upper inner wall of the reaction cell 10. The change in the weight of the reactants containing (including the reactants) 15 was 28 g, indicating that the NaOH was reduced by 28 g.

また、反応セル10全体として60g増加していた。注水量は38.4ccであり、この中の酸素の量は34.1gであり、ここで、NaOH中のNaOが全てセル内に残り、注入された水の中の酸素と酸化物を作ったとすると、   Further, the reaction cell 10 as a whole increased by 60 g. The amount of water injected was 38.4 cc, and the amount of oxygen in this was 34.1 g. Here, all the NaO in NaOH remained in the cell, and oxygen and oxygen in the injected water were produced. Then

Figure 2013237599
61.4gの重量が増加することとなるが、実測では60gであることから、1.4gのNaOHが水素と共に外部に流出したものと思われる。すなわち、注入した水の中の酸素と消費したNaOH中の酸素とナトリウムは、ほぼ完全に反応セル内でNa3Fe5(Cr5)O9の特殊酸化膜を形成しているものと判断できる。
Figure 2013237599
Although the weight of 61.4 g is increased, it is 60 g in actual measurement, so that it seems that 1.4 g of NaOH flows out together with hydrogen. That is, it can be determined that oxygen in injected water and oxygen and sodium in consumed NaOH almost completely form a special oxide film of Na 3 Fe 5 (Cr 5 ) O 9 in the reaction cell. .

因みに、水素排出管17bから排出するガスを質量分析器で分析し原子比を測定したところ、図7に示すように、99.5%以上が水素であり質量32の酸素は全く検出されず、酸素はガスとしては全く存在しない事が判明した。   Incidentally, when the gas discharged from the hydrogen discharge pipe 17b was analyzed with a mass analyzer and the atomic ratio was measured, as shown in FIG. 7, 99.5% or more was hydrogen and oxygen with a mass of 32 was not detected at all. It turned out that oxygen does not exist as a gas at all.

[実験2]
前記特殊酸化膜Na3Fe5O9およびNa3Cr5O9は導電性で且つ吸湿性で硬度が高く耐熱性があり、その酸化物自体が水を分解することを確認した。先ず、図8に示すように、浅い箱形の第3の水素発生装置Mを準備した。水素発生装置Mは、SUS304製の本体30(30cm×30cm×5cm)と、この中に所定間隔でフィン31、31…31を設置し、蓋32で閉塞し、NaOH4モル(160g)を分散させて収納した。6日間、ガス加熱した後、特殊酸化膜が付着したフィン31、31…31と本体30の表面に付着した特殊酸化膜l、l…lを剥がして図9に示すような円筒形(SUS304)の反応セル40(第4の水素発生装置M)内に収納してバーナ41で加熱して水素を発生せしめた。
[Experiment 2]
The special oxide films Na 3 Fe 5 O 9 and Na 3 Cr 5 O 9 were confirmed to be conductive, hygroscopic, hard and heat-resistant, and the oxide itself decomposes water. First, as shown in FIG. 8, it was prepared third hydrogen generator M 3 of a shallow box shape. The hydrogen generator M 3 has a main body 30 (30 cm × 30 cm × 5 cm) made of SUS304, fins 31, 31... 31 installed at predetermined intervals in the main body 30, closed with a lid 32, and dispersed in 4 mol of NaOH (160 g). Stored. After heating the gas for 6 days, the fins 31, 31... 31 to which the special oxide film is attached and the special oxide films l, l... L attached to the surface of the main body 30 are peeled off to form a cylindrical shape (SUS304) as shown in FIG. In the reaction cell 40 (fourth hydrogen generator M 4 ) and heated by the burner 41 to generate hydrogen.

Figure 2013237599
第3水素発生装置Mは、その本体30は比較的大きいため注水量72.2ccに対して水素141.6lが発生しており、注水量に対する水素発生量が著しく多いことが注目される。
Figure 2013237599
Since the main body 30 of the third hydrogen generator M 3 is relatively large, hydrogen 141.6 l is generated with respect to the water injection amount 72.2 cc, and it is noted that the hydrogen generation amount with respect to the water injection amount is remarkably large.

Figure 2013237599
1〜4日間は、注水量に対する水素収量がある程度確保されていたが、5日目以降はその比率が低下している。しかしながら、18日間のみデータとして掲載したが、50日目以降も水素を出し続けている。これにより、特殊酸化膜はそれ自体反応剤の機能を有していることが判明した。
Figure 2013237599
The hydrogen yield relative to the amount of water injected was secured to some extent for 1 to 4 days, but the ratio decreased after the 5th day. However, although it was published as data only for 18 days, it continues to produce hydrogen after the 50th day. This revealed that the special oxide film itself has the function of a reactant.

なお、反応剤としては、NaOH、KOHそれぞれ単独で使用しているが、これらを適宜の割合で混合しても反応性は著しく劣えないが、NaOH単独は、KOHあるいはこれらの混合よりも良好であることが判明している。   In addition, as a reactant, NaOH and KOH are used alone, respectively, but even if they are mixed in an appropriate ratio, the reactivity is not significantly inferior, but NaOH alone is better than KOH or a mixture thereof. It has been found that

更に反応剤にモリブデン(Mo)を反応剤の重量の1/4〜1/2添加すると、反応剤の反応がより活発となることが確認されている。   Furthermore, it has been confirmed that the reaction of the reactant becomes more active when molybdenum (Mo) is added to the reactant as 1/4 to 1/2 of the weight of the reactant.

1…反応セル
2…水管
3…水素管
4…バーナ
5…反応剤
7…フィン
10…反応セル
11…蓋筒
14…スペーサ筒
15…反応剤入れ
30…本体
40…反応セル。
DESCRIPTION OF SYMBOLS 1 ... Reaction cell 2 ... Water pipe 3 ... Hydrogen pipe 4 ... Burner 5 ... Reactant 7 ... Fin 10 ... Reaction cell 11 ... Lid cylinder 14 ... Spacer cylinder 15 ... Reactant container 30 ... Main body 40 ... Reaction cell.

Claims (6)

空気中の酸素が存在しない無酸素状態の密閉雰囲気内に金属元素供給体を存在せしめ、
前記密閉雰囲気内に反応剤としてのアルカリ金属水酸化物を配設するとともに前記密閉雰囲気を加熱して前記反応剤を溶融塩とし、その表面から反応剤の微粒子を密閉雰囲気内に飛散せしめて反応空間を形成し、この反応空間内に水蒸気を供給し、前記金属元素供給体表面に酸化膜を形成し、この酸化膜が所定厚になったときにその酸化膜を金属元素供給体表面から剥離せしめて新たな金属元素供給体表面を露出せしめ、この新たな表面に更に酸化膜を形成し、これら酸化膜と水蒸気とを反応させるようにして水から水素を発生させるようにした、水から水素を採集するための水素発生方法。
Let the metal element supplier exist in an oxygen-free sealed atmosphere where there is no oxygen in the air,
An alkali metal hydroxide as a reactant is disposed in the sealed atmosphere, and the sealed atmosphere is heated to form the molten salt of the reactant, and the reactant fine particles are scattered from the surface into the sealed atmosphere to react. A space is formed, water vapor is supplied into the reaction space, an oxide film is formed on the surface of the metal element supplier, and when the oxide film reaches a predetermined thickness, the oxide film is peeled off from the surface of the metal element supplier At least, a new metal element supplier surface was exposed, an oxide film was further formed on the new surface, and hydrogen was generated from water by reacting these oxide film and water vapor. Hydrogen generation method for collecting water.
前記反応剤は、水酸化カリウムおよび水酸化ナトリウムのうち、少なくとも一種である請求項1に記載の水素発生方法。   The method for generating hydrogen according to claim 1, wherein the reactant is at least one of potassium hydroxide and sodium hydroxide. 前記反応剤が溶融するように、密閉雰囲気内を反応剤の融点以上に加熱するようにした請求項1に記載の水素発生方法。   The method for generating hydrogen according to claim 1, wherein the inside of the sealed atmosphere is heated to a temperature equal to or higher than the melting point of the reactant so that the reactant is melted. 前記反応剤にモリブデン(Mo)を添加した請求項1に記載の水素発生方法。   The method for generating hydrogen according to claim 1, wherein molybdenum (Mo) is added to the reactant. 前記酸化膜は、鉄酸ナトリウム(Na3Fe5O9)、クロム酸ナトリウム(Na3Cr5O9)、鉄酸カリウム(K3Fe5O9)及びクロム酸カリウム(K3Cr5O9)のうち、少なくとも一種である、請求項1に記載の水素発生方法。 The oxide film includes sodium ferrate (Na 3 Fe 5 O 9 ), sodium chromate (Na 3 Cr 5 O 9 ), potassium ferrate (K 3 Fe 5 O 9 ), and potassium chromate (K 3 Cr 5 O). The hydrogen generation method according to claim 1, which is at least one of 9 ). 前記金属元素供給体を円筒形状のステンレス材料で形成して反応セルとし、この反応セル内に反応剤を供給し、前記反応セルの外周壁を反応剤の融点以上に加熱して前記酸化膜を反応セルの内壁に沿ってリング状に形成するようにした、請求項1に記載の水素発生方法。   The metal element supply body is formed of a cylindrical stainless steel material to form a reaction cell. The reactant is supplied into the reaction cell, and the outer peripheral wall of the reaction cell is heated to a temperature equal to or higher than the melting point of the reactant to form the oxide film. The hydrogen generation method according to claim 1, wherein the hydrogen generation method is formed in a ring shape along the inner wall of the reaction cell.
JP2012113161A 2012-05-17 2012-05-17 Hydrogen generation method to collect hydrogen from water Pending JP2013237599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012113161A JP2013237599A (en) 2012-05-17 2012-05-17 Hydrogen generation method to collect hydrogen from water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012113161A JP2013237599A (en) 2012-05-17 2012-05-17 Hydrogen generation method to collect hydrogen from water

Publications (1)

Publication Number Publication Date
JP2013237599A true JP2013237599A (en) 2013-11-28

Family

ID=49762974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012113161A Pending JP2013237599A (en) 2012-05-17 2012-05-17 Hydrogen generation method to collect hydrogen from water

Country Status (1)

Country Link
JP (1) JP2013237599A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001407A (en) * 2010-06-18 2012-01-05 Yasuo Ishikawa Hydrogen generation method of generating hydrogen from water
JP2014047082A (en) * 2012-08-29 2014-03-17 Ti:Kk Higher alkali metal-transition metal oxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915759A (en) * 1974-01-08 1975-10-28 Coral Chemical Co Black oxide coating for stainless steels
WO2010084790A1 (en) * 2009-01-20 2010-07-29 Ishikawa Yasuo Catalyst for hydrogen generation, method for generating hydrogen, and hydrogen generator
JP2012001407A (en) * 2010-06-18 2012-01-05 Yasuo Ishikawa Hydrogen generation method of generating hydrogen from water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915759A (en) * 1974-01-08 1975-10-28 Coral Chemical Co Black oxide coating for stainless steels
WO2010084790A1 (en) * 2009-01-20 2010-07-29 Ishikawa Yasuo Catalyst for hydrogen generation, method for generating hydrogen, and hydrogen generator
JP2012001407A (en) * 2010-06-18 2012-01-05 Yasuo Ishikawa Hydrogen generation method of generating hydrogen from water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001407A (en) * 2010-06-18 2012-01-05 Yasuo Ishikawa Hydrogen generation method of generating hydrogen from water
JP2014047082A (en) * 2012-08-29 2014-03-17 Ti:Kk Higher alkali metal-transition metal oxide

Similar Documents

Publication Publication Date Title
JP6130872B2 (en) Hydrogen generating method and hydrogen generating apparatus
US20130188763A1 (en) Method of and apparatus for nuclear transformation
Ley et al. From M (BH4) 3 (M= La, Ce) borohydride frameworks to controllable synthesis of porous hydrides and ion conductors
RU2014142683A (en) HYDROGEN FUEL CONTAINER
JP6715985B2 (en) Method for producing lithium sulfide
JP5271545B2 (en) Hydrogen generating method, hydrogen generating apparatus and catalyst
Yao et al. Local photothermal effect enabling Ni3Bi2S2 nanoarray efficient water electrolysis at large current density
JP2013237599A (en) Hydrogen generation method to collect hydrogen from water
JP2016150860A (en) Method for producing lithium sulfide
JP2007326742A (en) Manufacturing method of hydrogen
JP6130655B2 (en) Periodic table Group 1 and 2 hydride production method, production apparatus and method of use thereof
JP5883240B2 (en) Hydrogen production method
JP2006232593A (en) Hydrogen producing cell and hydrogen producing apparatus
JP6718774B2 (en) Lithium sulfide manufacturing method and manufacturing apparatus
JP6084404B2 (en) Manufacturing method of electrode plate of fuel cell
CN104953117B (en) A kind of lithium ion battery negative material and preparation method thereof
Sato et al. Hydrogen storage and transportation system through lithium hydride using molten salt technology
JP5887148B2 (en) Hydrogen generating method and hydrogen generating apparatus
JP5925521B2 (en) How to use oxides for hydrogen generation
JP6203523B2 (en) Carbon dioxide treatment method
JP2013112576A (en) Method and apparatus for generating hydrogen
JP5733653B2 (en) Sodium power generation
CN204310820U (en) Device for preparing magnesium nitride by laser irradiation
WO2004020330A9 (en) Method of thermochemical decomposition of water
JP6110088B2 (en) Hydrogen generator and hydrogen generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160712