JP6059029B2 - Vibration compaction method of sand layer and its management method - Google Patents

Vibration compaction method of sand layer and its management method Download PDF

Info

Publication number
JP6059029B2
JP6059029B2 JP2013013006A JP2013013006A JP6059029B2 JP 6059029 B2 JP6059029 B2 JP 6059029B2 JP 2013013006 A JP2013013006 A JP 2013013006A JP 2013013006 A JP2013013006 A JP 2013013006A JP 6059029 B2 JP6059029 B2 JP 6059029B2
Authority
JP
Japan
Prior art keywords
vibration
sand layer
sand
water
compaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013013006A
Other languages
Japanese (ja)
Other versions
JP2014145157A (en
Inventor
博 新舎
博 新舎
寿康 海野
寿康 海野
健児 宮本
健児 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2013013006A priority Critical patent/JP6059029B2/en
Publication of JP2014145157A publication Critical patent/JP2014145157A/en
Application granted granted Critical
Publication of JP6059029B2 publication Critical patent/JP6059029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は、真空吸引を併用した砂層の振動締固め工法およびその管理方法に関する。   The present invention relates to a vibration compaction method for a sand layer using vacuum suction and a management method thereof.

地震時には飽和したゆるい砂層が液状化を起こし、甚大な被害を与えることがある。砂層の液状化対策としては、密度増加、排水(地震時)、固化処理、せん断変形抑止(格子状固化改良)、不飽和化などがある。このうち、密度増加を図る締固め工法に着目し、かつ地盤内に砂の供給を伴うSCP工法を除くと、締固め工法には振動棒締固め工法(RC工法)と、吸水型振動締固め工法(吸水RC工法)がある(非特許文献1参照)。振動締固め工法の公知文献として特許文献1〜3がある。また、排水(地震時)にはグラベルドレーン工法(砕石排水層の形成)、グリッドドレーン工法(GD工法、大断面PBD:幅161mm×厚さ30mmの打設)などがある。   During an earthquake, a saturated loose sand layer can liquefy and cause severe damage. Measures for liquefaction of sand layers include density increase, drainage (at the time of earthquake), solidification treatment, shear deformation suppression (lattice solidification improvement), desaturation, and the like. Of these, paying attention to the compaction method for increasing the density and excluding the SCP method with sand supply in the ground, the compaction method includes the vibration rod compaction method (RC method) and the water absorption vibration compaction method. There is a construction method (water absorption RC construction method) (see Non-Patent Document 1). There are Patent Documents 1 to 3 as well-known documents of the vibration compaction method. In addition, there are gravel drain method (formation of crushed stone drainage layer) and grid drain method (GD method, large cross section PBD: placement of width 161mm x thickness 30mm) for drainage (earthquake).

RC工法は地盤内に振動棒を挿入して、振動エネルギーで地盤の初期構造を破壊し、地盤を締め固める工法である。一方、吸水RC工法は、図9に示すように、振動源(図示省略)に接続された振動棒100を振動させながら、同時に、ゆるい砂層G0内に配置されかつ振動棒100の先端近傍に位置する給水管101により吸水を行う方法である。この吸水RC工法には、振動ロッドの鉛直振動を利用したロッドコンパクションタイプのSIMAR工法(登録商標)およびロッド先端の水平振動を利用したバイブロフロットタイプのSVF工法がある。   The RC method is a method in which a vibration rod is inserted into the ground, the initial structure of the ground is destroyed by vibration energy, and the ground is compacted. On the other hand, as shown in FIG. 9, the water absorption RC method is arranged in the loose sand layer G0 and vibrated near the tip of the vibrating rod 100 while vibrating the vibrating rod 100 connected to a vibration source (not shown). In this method, water is absorbed by the water supply pipe 101. This water absorption RC method includes a rod compaction type SIMAR method (registered trademark) using the vertical vibration of the vibrating rod and a vibro flot type SVF method using the horizontal vibration of the rod tip.

なお、GD工法は大断面PBD(プラスチックボードドレーン)を打設し、地震時に発生した過剰間隙水圧を、ドレーンを通じて消散させる工法であり、地震時が発生した際に効果を発揮する工法であり、締固め工法とは異なる。   The GD method is a method of placing a large cross-section PBD (plastic board drain) to dissipate excess pore water pressure generated during an earthquake through the drain, and it is effective when an earthquake occurs. Different from compaction method.

特開平04-161608号公報Japanese Patent Laid-Open No. 04-161608 特開平04-272313号公報Japanese Unexamined Patent Publication No. 04-272313 特開平04-272314号公報JP 04-272314 A

「吸水型振動締固め工法」パンフレット(吸水型振動締固め工法協会発行)"Water absorption type vibration compaction method" pamphlet (published by the water absorption type vibration compaction method association)

しかし、上記従来の各工法には以下のような問題点(1)〜(4)がある。   However, the above conventional methods have the following problems (1) to (4).

(1)RC工法は振動エネルギーの減衰が大きいため、1箇所あたりの改良範囲が小さく、かつ締固め効果も小さい。   (1) Since the RC method has a large attenuation of vibration energy, the improvement range per place is small and the compaction effect is also small.

(2)振動締固め工法は、液状化対策が必要でない砂層の沈下を生じさせることがあり、この沈下が好ましくない場合がある。   (2) The vibration compaction method may cause sedimentation of the sand layer that does not require liquefaction countermeasures, which may be undesirable.

(3)吸水RC工法はRC工法を改良し、振動時に吸水を併用することで、改良効果をより高めた工法である。しかしながら、(a)振動棒先端に取り付けた吸水口に細粒分が塊状に張り付き、塊状の砂が透水係数を低下させて締固め時間が長くなる、(b)締固め後に張り付けた砂を取り除く必要があるなど、施工効率が大きく低下する場合がある。   (3) The water absorption RC method is a method that improves the improvement effect by improving the RC method and using water absorption during vibration. However, (a) the fine particles stick to the water suction port attached to the tip of the vibrating rod, and the bulky sand lowers the hydraulic conductivity and lengthens the compaction time. (B) Removes the sand stuck after compaction. The construction efficiency may be greatly reduced, such as necessity.

(4)吸水RC工法の締固め原理は、液状化対策が必要な砂層(たとえば、図9の振動影響範囲A)を液状化させ同時に吸水によって、液状化により発生した過剰間隙水圧を同時に消散させることにある。しかしながら、細粒分含有率Fcが高い砂層の場合には、十分な締固め効果を得るための振動・吸水時間の管理方法が不明である。また、上記SIMAR工法の適用範囲はFcが30%以下となっており、細粒分含有率Fcの高い砂には適用できない。   (4) The compaction principle of the water absorption RC method is to dissipate the excess pore water pressure generated by liquefaction at the same time by liquefying the sand layer (for example, vibration influence range A in FIG. 9) that requires liquefaction countermeasures. There is. However, in the case of a sand layer having a high fine particle content Fc, the management method of vibration and water absorption time for obtaining a sufficient compaction effect is unknown. Moreover, the application range of the above SIMAR method is Fc of 30% or less, and cannot be applied to sand having a high fine particle content Fc.

本発明は、上述のような従来技術の問題に鑑み、他の砂層の沈下を低減可能で、細粒分含有率Fcが高い砂層の場合であっても十分な締固め効果を得ることができる振動締固め工法およびその管理方法を提供することを目的とする。   In view of the problems of the prior art as described above, the present invention can reduce the settlement of other sand layers and can obtain a sufficient compacting effect even in the case of a sand layer having a high fine particle content Fc. The object is to provide a vibration compaction method and its management method.

上記目的を達成するために、本実施形態による砂層の振動締固め工法は、液状化対策が必要とされる砂層にキャップ付プラスチックドレーンを打設する工程と、前記キャップ付プラスチックドレーンを介して前記砂層に負圧を作用させて間隙水を吸引する工程と、前記負圧を作用させた状態で前記砂層に振動を与えることで生じた余剰間隙水を吸引する工程と、前記負圧の作用により吸引された水量を測定し、前記振動を与えた後に測定された吸引水量の時間による増分値である増分吸引水量がほぼ一定値に収束した時点で前記振動・吸引工程の完了を判断する工程と、を含むことを特徴とする。
In order to achieve the above object, the vibration compaction method of the sand layer according to the present embodiment includes a step of placing a plastic drain with a cap on a sand layer that requires countermeasures against liquefaction, and the above-mentioned via the plastic drain with a cap. A step of sucking pore water by applying a negative pressure to the sand layer, a step of sucking excess pore water generated by applying vibration to the sand layer in a state of applying the negative pressure, and a function of the negative pressure. A step of measuring the amount of sucked water and determining completion of the vibration / suction step when an incremental amount of sucked water, which is an incremental value according to the time of the amount of sucked water measured after applying the vibration, converges to a substantially constant value ; , Including.

この砂層の振動締固め工法によれば、液状化対策が必要とされる砂層に対し、振動のみではなく負圧吸引による吸水を併用することで締固め効果を向上させることができ、しかもキャップ付プラスチックドレーンにより液状化対策が必要な砂層のみを対象として吸水を行うので、他の砂層の沈下を低減できる。また、負圧吸引による水量に関する測定結果に基づいて振動・吸引工程の完了を判断するので、細粒分含有率Fcが高い砂層の場合であっても十分な締固め効果を得ることができるとともに、振動締固め工程の終期を精度よく管理することができる。負圧吸引による水量に関する測定結果として測定した吸引水量の時間による増分値を用い、この増分吸引水量がほぼゼロまたはほぼ一定値(砂層内に浸透流がある場合)になった時点を振動・吸引工程の完了と判断することができる。
According to this vibration compaction method for sand layers, sand compacts that require countermeasures against liquefaction can improve the compaction effect by using not only vibration but also water absorption by negative pressure suction. Water absorption is performed only for the sand layer that needs to be liquefied by the plastic drain, so that settlement of other sand layers can be reduced. In addition, since the completion of the vibration / suction process is determined based on the measurement result relating to the amount of water by negative pressure suction, a sufficient compaction effect can be obtained even in the case of a sand layer having a high fine particle content Fc. The final stage of the vibration compaction process can be managed accurately. As the measurement result for the water volume by negative pressure suction, an incremental value by the time of the measured suction water volume is used, and the time when this incremental suction water volume becomes almost zero or almost constant (when there is an osmotic flow in the sand layer) is vibrated. It can be determined that the suction process is completed.

上記砂層の振動締固め工法において、前記判断工程において前記振動を与えた後に生じた余剰間隙水の吸引された水量の時間変化に基づいて前記完了を判断することが好ましい余剰間隙水の増分吸引水量の時間変化がほぼゼロになった時点を振動・吸引工程の完了と判断することができる。また、余剰間隙水の増分吸引水量がほぼゼロまたはほぼ一定値になった時点でもよい。
In the vibration compaction method of the sand layer, it is preferable to determine the completion based on a temporal change in the amount of excess pore water sucked after the vibration is applied in the determination step . It can be determined that the vibration / suction process is completed when the time variation of the incremental suction water amount of the excess pore water becomes almost zero. Further, it may be a point in time when the incremental suction water amount of the excess pore water becomes substantially zero or substantially constant.

また、前記キャップ付プラスチックドレーンは、キャップを介してドレーン材と非透水性の排水ホースとが連結されており、前記ドレーン材は、前記ドレーン材の下端が前記砂層の最下部近傍に、上端が前記砂層の最上部近傍に位置するように打設されることで、液状化対策が必要な砂層のみを対象とした吸水を確実に行うことができ、上部に液状化対策の不要な砂層等が存在しても非透水性の排水ホースを用いるのでかかる効果がいっそう確実になる。   The plastic drain with cap is connected to a drain material and a non-permeable drainage hose via a cap, and the drain material has a lower end of the drain material near the bottom of the sand layer and an upper end. By being placed so as to be located in the vicinity of the uppermost part of the sand layer, it is possible to reliably perform water absorption only for the sand layer that requires liquefaction countermeasures, and there is a sand layer that does not require liquefaction countermeasures on the upper part. Even if it is present, the non-water-permeable drainage hose is used, so this effect is further ensured.

また、前記砂層に対する振動は、前記砂層内に挿入した振動装置により行い、複数の前記キャップ付プラスチックドレーンを、前記振動装置から離して配置することで、細粒分含有率Fcが高い砂層であっても、従来技術のように吸水口に砂が塊状に張り付くことがないので、施工効率を改善できる。なお、複数のキャップ付プラスチックドレーンを、振動装置を包囲するように配置することが好ましい。   The sand layer is vibrated by a vibration device inserted into the sand layer, and the plurality of plastic drains with caps are arranged away from the vibration device, so that the sand layer has a high fine particle content Fc. However, unlike the prior art, sand does not stick to the water inlet in a lump shape, so that the construction efficiency can be improved. In addition, it is preferable to arrange a plurality of plastic drains with caps so as to surround the vibration device.

前記振動装置の振動部を前記砂層内で上下に移動させながら前記砂層に振動を与えることが好ましい。   It is preferable to apply vibration to the sand layer while moving the vibration part of the vibration device up and down in the sand layer.

本実施形態による砂層の振動締固め工法の管理方法は、液状化対策が必要とされる砂層にキャップ付プラスチックドレーンを打設する工程と、前記キャップ付プラスチックドレーンを介して前記砂層に負圧を作用させて間隙水を吸引する工程と、前記負圧を作用させた状態で前記砂層に振動を与えることで生じた余剰間隙水を吸引する工程と、を含む砂層の振動締固め工法の管理方法であって、前記負圧の作用により吸引された水量を測定し、前記振動を与えた後に測定された吸引水量の時間による増分値である増分吸引水量がほぼ一定値に収束した時点で前記振動・吸引工程の完了を判断することを特徴とする。
The management method of the vibration compaction method of the sand layer according to the present embodiment includes a step of placing a plastic drain with a cap on a sand layer that requires countermeasures against liquefaction, and a negative pressure is applied to the sand layer through the plastic drain with a cap. A method for managing the vibration compaction method of the sand layer, comprising: a step of sucking pore water by acting; and a step of sucking excess pore water generated by applying vibration to the sand layer in a state where the negative pressure is applied. The amount of water sucked by the action of the negative pressure is measured, and the vibration when the incremental suction water amount, which is an incremental value according to the time of the suction water amount measured after applying the vibration , converges to a substantially constant value. -It is characterized by judging completion of the suction process.

この砂層の振動締固め工法の管理方法によれば、負圧吸引による水量に関する測定結果に基づいて振動・吸引工程の完了を判断するので、振動固締め工程の終期を精度よく管理することができる。   According to the management method of the vibration compaction method of the sand layer, the completion of the vibration / suction process is determined based on the measurement result regarding the amount of water by negative pressure suction, so that the final stage of the vibration compaction process can be accurately managed. .

本発明によれば、他の砂層の沈下を低減可能で、細粒分含有率Fcが高い砂層の場合であっても十分な締固め効果を得ることができる振動締固め工法およびその管理方法を提供することができる。   According to the present invention, there is provided a vibration compaction method and its management method capable of reducing settlement of other sand layers and obtaining a sufficient compaction effect even in the case of a sand layer having a high fine particle content Fc. Can be provided.

本実施形態による振動締固め工法を説明するための改良対象地盤の縦断面を概略的に示す図である。It is a figure which shows roughly the longitudinal cross-section of the ground for improvement for demonstrating the vibration compaction construction method by this embodiment. 図1の地盤の平面を概略的に示す図である。It is a figure which shows schematically the plane of the ground of FIG. 本実施形態による振動締固め工法の施工サイクルの一例を説明するためのグラフである。It is a graph for demonstrating an example of the construction cycle of the vibration compaction construction method by this embodiment. 本実施形態による振動締固め工法の各工程を説明するためのフローチャートである。It is a flowchart for demonstrating each process of the vibration compaction construction method by this embodiment. 本実験例に使用した実験装置を概略的に示す図であって、実験装置の平面図(a)および縦断面図(b)である。It is a figure which shows schematically the experimental apparatus used for this experiment example, Comprising: It is the top view (a) and longitudinal cross-sectional view (b) of an experimental apparatus. 図5の実験装置に用いた真空ポンプ設備を概略的に示す図である。It is a figure which shows roughly the vacuum pump equipment used for the experimental apparatus of FIG. 本実験例で得られた振動・負圧吸水時間と吸引水量との関係を示すグラフである。It is a graph which shows the relationship between the vibration and negative-pressure water absorption time obtained by this experiment example, and the amount of suction water. 図7の積算吸引水量から求めた1分毎の増分吸引水量と、振動・負圧吸水時間との関係を示すグラフである。It is a graph which shows the relationship between the incremental suction water amount for every minute calculated | required from the integrated suction water amount of FIG. 7, and a vibration and negative pressure water absorption time. 従来の吸水RC工法を示す概略図である。It is the schematic which shows the conventional water absorption RC construction method.

以下、本発明を実施するための形態について図面を用いて説明する。図1は本実施形態による振動締固め工法を説明するための改良対象地盤の縦断面を概略的に示す図、図2は図1の地盤の平面を概略的に示す図、図3は本実施形態による振動締固め工法の施工サイクルを説明するためのグラフ、図4は本実施形態による振動締固め工法の各工程S01〜S11を説明するためのフローチャートである。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing a longitudinal section of a ground to be improved for explaining the vibration compaction method according to the present embodiment, FIG. 2 is a diagram schematically showing a plane of the ground of FIG. 1, and FIG. FIG. 4 is a flowchart for explaining the steps S01 to S11 of the vibration compaction method according to this embodiment.

図1〜図4により本実施形態による振動締固め工法およびその管理方法を説明する。   The vibration compaction method and its management method according to this embodiment will be described with reference to FIGS.

図4を参照し説明すると、まず、液状化対策が必要とされる地盤改良対象域において、土質調査(標準貫入試験、粒度試験など)を行い(S01)、この土質調査の結果(N値や粒度分布など)から、各砂層の液状化の可能性について判定をする(S02)。   Referring to FIG. 4, first, a soil survey (standard penetration test, grain size test, etc.) is conducted in the ground improvement target area where liquefaction measures are required (S01), and the results of this soil survey (N value and The possibility of liquefaction of each sand layer is determined from the particle size distribution (S02).

液状化の可能性が高いと判定された砂層の最大・最小密度(最大・最小間隙比emax・emin)試験を実施し、砂層が相対密度Dr=80%(締固め完了時の想定密度)になった際の排水量VWを次式(1)で求める。
VW=V0×(0.8-Dr)(emax-emin)/{1+ Dr×(emax-emin)+ emin} (1)
ただし、Dr:N値から換算できる現地土の相対密度、V0:ドレーンの打設間隔と改良対象の砂層厚で決まる数値で、たとえば、ドレーンの打設平面間隔(m)を2×2、砂層厚(m)を3とすると、2×2×3=12m3である。
Conducted maximum / minimum density (maximum / minimum gap ratio emax / emin) tests for sand layers that have been determined to have high liquefaction potential, and the sand layer has a relative density Dr = 80% (assumed density when compaction is completed) The amount of drainage VW is calculated by the following formula (1).
VW = V0 × (0.8-Dr) (emax-emin) / {1+ Dr × (emax-emin) + emin} (1)
However, Dr: Relative density of local soil that can be converted from N value, V0: Value determined by drain placement interval and sand layer thickness to be improved. For example, drain placement plane interval (m) is 2 × 2, sand layer When the thickness (m) is 3, 2 × 2 × 3 = 12 m 3 .

上述のようにして排水量VW、ドレーンの打設間隔、液状化対策のための改良対象の砂層等を決めることで締固め仕様を決定する(S03)。たとえば、図1のように、改良対象の地盤Gにおいて、上部から順に、液状化対策を必要としない砂層G1,液状化対策が必要な砂層G2,硬い砂層G3が存在すると判定された場合には、砂層G2に対する締固めを行うように仕様が決められる。かかる仕様に基づいて締固め施工を以下のようにして行う(S04)。   As described above, the compaction specification is determined by determining the amount of drainage VW, the interval between drains, the sand layer to be improved for liquefaction countermeasures, and the like (S03). For example, as shown in FIG. 1, in the ground G to be improved, in the order from the top, when it is determined that there are a sand layer G1, which does not require liquefaction countermeasures, a sand layer G2 that requires liquefaction countermeasures, and a hard sand layer G3. The specifications are determined so that the sand layer G2 is compacted. Based on such specifications, compaction is performed as follows (S04).

本実施形態では、キャップ付プラスチックボードドレーン10(キャップ付PBD)を用いるが、このキャップ付PBD10は、図1のように、地盤内に打設されて地盤中の間隙水を吸引するためのプラスチックボードからなるドレーン材11と、非透水性の排水ホース13と、ドレーン材11の上端と排水ホース13の端部とを接続するキャップ12と、を有する。このようなキャップ付PBDの具体例は、たとえば、特開2006-241872号公報に開示されている。   In this embodiment, a plastic board drain 10 with a cap (PBD with a cap) is used. The PBD 10 with a cap is a plastic that is placed in the ground and sucks pore water in the ground as shown in FIG. A drain member 11 made of a board, a water-impermeable drain hose 13, and a cap 12 connecting the upper end of the drain member 11 and the end of the drain hose 13 are provided. A specific example of such a cap-equipped PBD is disclosed in, for example, Japanese Patent Laid-Open No. 2006-241872.

改良対象の地盤内に複数のキャップ付PBD(たとえば、幅94mm×厚さ3.6mm)10を図2のようにドレーン間隔aがたとえば、2mとなるような正方形配置で打設する(S05)。   A plurality of PBDs with caps (for example, width 94 mm × thickness 3.6 mm) 10 are placed in the ground to be improved in a square arrangement such that the drain interval a is 2 m, for example, as shown in FIG. 2 (S05).

液状化対策が必要な砂層G2がたとえば、-5.0〜-8.0m間にあるとすると、キャップ付PBD10は、図1のように、ドレーン材11の下端が-8mの位置、上端が-5mの位置になるように打設される。図1,図2のように、キャップ12は砂層G2の直上にあり、その上部から排水ホース(たとえば直径19mm)13が地上へと延び、真空ポンプ設備Pに接続される。このように、キャップ付PBD10のドレーン材11を液状化対策が必要な砂層G2の最下部から最上部まで配置し、液状化対策が必要でない上部の砂層G1については改良の必要がないので、非透水性の排水ホース13としている。   If the sand layer G2 requiring liquefaction measures is, for example, between -5.0 and -8.0 m, the PBD 10 with a cap has a lower end of the drain material 11 at a position of -8 m and an upper end of -5 m as shown in FIG. It is placed so as to be in position. As shown in FIGS. 1 and 2, the cap 12 is directly above the sand layer G <b> 2, and a drain hose (for example, a diameter of 19 mm) 13 extends from the upper part to the ground and is connected to the vacuum pump facility P. In this way, the drain material 11 of the cap-equipped PBD 10 is disposed from the bottom to the top of the sand layer G2 that requires countermeasures against liquefaction, and the upper sand layer G1 that does not require countermeasures for liquefaction does not need to be improved. A water-permeable drainage hose 13 is provided.

図1,図2のように、振動源として、地上に配置されて鉛直方向Vに振動を与える鉛直振動装置21と地盤内に配置されて水平方向Hに振動を与える水平振動装置22を備える振動装置20を用いる。このような振動装置20として、たとえば、上部にバイブロハンマ、下部にバイブロフロットを装備した直径300mmの鋼管ロッドからなる振動棒を利用することができる。かかる鋼管ロッドの具体例は、たとえば、大久保泰宏等による論文「吸水式振動締め固め工法の開発と現場実験」(第35回地盤工学研究発表会(2000年6月))に開示されている。   As shown in FIG. 1 and FIG. 2, as a vibration source, a vibration including a vertical vibration device 21 disposed on the ground and vibrating in the vertical direction V and a horizontal vibration device 22 disposed in the ground and vibrating in the horizontal direction H is provided. Device 20 is used. As such a vibration device 20, for example, a vibration rod made of a steel pipe rod having a diameter of 300 mm and equipped with a vibro hammer at the upper portion and a vibro flot at the lower portion can be used. A specific example of such a steel pipe rod is disclosed in, for example, a paper by Yasuhiro Okubo et al. “Development and Field Experiment of Water Absorption-Type Vibration Compaction Method” (35th Geotechnical Research Conference (June 2000)).

この振動装置20の振動棒を図2のようにキャップ付PBDの正方形配置の中央部にセットし、鉛直振動装置21のバイブロハンマの鉛直振動を利用して図1のように地盤G内に挿入する(S06)。これにより、振動装置20は、砂層G2内において複数のドレーン材11から離れて複数のドレーン材11により包囲される状態となる。   The vibration rod of the vibration device 20 is set at the center of the square arrangement of the PBD with cap as shown in FIG. 2, and is inserted into the ground G as shown in FIG. 1 using the vertical vibration of the vibrator hammer of the vertical vibration device 21. (S06). As a result, the vibration device 20 is separated from the plurality of drain materials 11 and surrounded by the plurality of drain materials 11 in the sand layer G2.

地盤に打設されたキャップ付PBD10は、真空ポンプ等を備える真空ポンプ設備Pに接続されているが、次に、この真空ポンプ設備Pを作動させ、たとえば、-60kN/m2の負圧を砂層G2に作用させ(S07)、砂層G2から間隙水を図1の矢印方向に吸引することで砂層G2を締める。なお、負圧の絶対値は、60kN/m2以上であってもよい。 The PBD 10 with a cap placed on the ground is connected to a vacuum pump facility P equipped with a vacuum pump or the like. Next, the vacuum pump facility P is operated, for example, a negative pressure of −60 kN / m 2 is applied. Acting on the sand layer G2 (S07), the sand layer G2 is tightened by sucking pore water from the sand layer G2 in the direction of the arrow in FIG. The absolute value of the negative pressure may be 60 kN / m 2 or more.

続いて、上記負圧を作用させた状態で、液状化対策が必要な砂層G2の下端近傍に達した水平振動装置22のバイブロフロットを作動させ、このバイブロフロット部分の横振動により砂層G2を液状化させ、砂の構造の破壊(沈下)時に生じる余剰間隙水をキャップ付PBD10により図1の矢印方向に吸引して砂層G2を締め固める(S08)。   Subsequently, in the state in which the negative pressure is applied, the vibratory lot of the horizontal vibration device 22 that has reached the vicinity of the lower end of the sand layer G2 that needs countermeasures against liquefaction is operated, and the sand layer G2 is caused by the lateral vibration of the vibratory lot part. 1 is liquefied, and excess pore water generated when the sand structure is destroyed (sinking) is sucked in the direction of the arrow in FIG. 1 by the cap-equipped PBD 10 to compact the sand layer G2 (S08).

上記工程S08において、水平振動装置22のバイブロフロット部分を砂層G2内で上下に1〜1.5往復させる。たとえば、図3のように、水平振動装置22のバイブロフロット部分を砂層G2の下端→上端→下端→上端と移動させながら振動時間Tで横振動させる。   In the step S08, the vibro flot portion of the horizontal vibration device 22 is reciprocated up and down 1 to 1.5 within the sand layer G2. For example, as shown in FIG. 3, the vibratory lot portion of the horizontal vibration device 22 is laterally vibrated with the vibration time T while moving from the lower end → the upper end → the lower end → the upper end of the sand layer G2.

工程S07,S08の真空ポンプ設備Pによる負圧吸引で排水された水を真空ポンプ設備Pのタンクに貯留して積算吸引水量を測定する。この積算吸引水量から所定時間間隔の増分吸引水量を求め、この増分吸引水量がほぼ一定値に収束したと判断されると(S09)、真空ポンプ設備Pおよび水平振動装置22を停止する。   The water drained by the negative pressure suction by the vacuum pump equipment P in steps S07 and S08 is stored in the tank of the vacuum pump equipment P, and the integrated suction water amount is measured. An incremental suction water amount at a predetermined time interval is obtained from this cumulative suction water amount, and if it is determined that the incremental suction water amount has converged to a substantially constant value (S09), the vacuum pump equipment P and the horizontal vibration device 22 are stopped.

次に、振動装置20の振動棒を地盤Gから引き上げる(S10)。次に、振動棒の引き抜き後のくぼ地部分に砂を投入する(S11)。   Next, the vibration rod of the vibration device 20 is pulled up from the ground G (S10). Next, sand is poured into the recessed portion after the vibration rod is pulled out (S11).

以上のように、本実施形態の振動締固め工法によれば、液状化対策が必要とされる砂層に対し、振動のみではなく負圧吸引による吸水を併用することで締固め効果を向上させることができる。   As described above, according to the vibration compaction method of the present embodiment, the compaction effect is improved by using not only vibration but also water absorption by negative pressure suction for the sand layer that requires countermeasures against liquefaction. Can do.

また、キャップ付PBDにより液状化対策が必要な砂層のみを対象として吸水を行うので、他の砂層の沈下を低減できる。   Further, water absorption is performed only for the sand layer that needs to be liquefied by the PBD with a cap, so that settlement of other sand layers can be reduced.

PBDに負圧を作用させると、PBDのドレーン材と振動源との距離(L)の間に作用する導水勾配iは、次式(2)で表される。
i=(u1+u2)/L (2)
ただし、u1:振動源で発生した過剰間隙水圧、u2:作用負圧
When a negative pressure is applied to the PBD, the water guide gradient i acting between the distance (L) between the drain material of the PBD and the vibration source is expressed by the following equation (2).
i = (u1 + u2) / L (2)
However, u1: Excess pore water pressure generated at the vibration source, u2: Working negative pressure

したがって、塊状の砂が透水係数を低下させた場合においても、負圧を作用させることによって導水勾配iが増加するので、余剰間隙水の排水をすみやかに行うことができる。   Therefore, even when the massive sand has a reduced hydraulic conductivity, the water guide gradient i is increased by applying a negative pressure, so that excess pore water can be drained promptly.

本実施形態では、従来技術のように振動棒先端の吸水口(図9の給水管101の吸水口)を繰り返し使用するのではなく、図1のようにキャップ付PBDの打設により、多数の吸水口を振動棒先端とは別に離れて振動棒を包囲するように設けている。このため、吸水口に砂が塊状に張り付くことがないので、施工効率を改善できる。なお、PBDは大断面PBDを使用するのではなく、粘土地盤の圧密改良に使用されている幅94mm×厚さ3.6mmの寸法の汎用のドレーン材を用いることができるので経済的である。   In this embodiment, the water inlet at the tip of the vibrating rod (the water inlet of the water supply pipe 101 in FIG. 9) is not repeatedly used as in the prior art, but a large number of PBDs with caps are placed as shown in FIG. The water suction port is provided separately from the tip of the vibrating bar so as to surround the vibrating bar. For this reason, since sand does not stick to the water inlet in a lump shape, construction efficiency can be improved. The PBD is economical because it does not use a large-section PBD, but can use a general drain material having a width of 94 mm and a thickness of 3.6 mm, which is used for consolidation consolidation of clay ground.

また、始めに負圧を作用させ間隙水を吸引して砂層を締め、次に振動源による振動で砂層を液状化させて砂の構造の破壊(沈下)時に生じる余剰間隙水を負圧吸引して砂層を締め固めることで、効率よく砂層を締め固めることができる。   First, negative pressure is applied to suck the pore water to tighten the sand layer, and then the sand layer is liquefied by vibration by the vibration source to suck the excess pore water generated when the sand structure is destroyed (subsidence) by negative pressure. By compacting the sand layer, the sand layer can be compacted efficiently.

また、負圧吸引による積算吸引水量を測定し、積算吸引水量から所定時間間隔の増分吸引水量を求め、増分吸引水量がほぼ一定値に収束した時点を振動・吸引工程の完了と判断することで、振動・吸引工程の終了時期を精度よく把握できる。   Also, by measuring the cumulative amount of suction water by negative pressure suction, obtaining the incremental amount of suction water at a predetermined time interval from the cumulative amount of suction water, and determining that the vibration / suction process is complete when the incremental amount of suction water converges to a substantially constant value. It is possible to accurately grasp the end time of the vibration / suction process.

上述のように、積算吸引水量の測定結果を振動・吸引工程(振動固締め工程)の管理に用いることで、振動締め固め工程を精度よく管理することができる。また、締固めに長い時間を要する細粒分含有率Fcが高い砂層の締固めを十分に行うことができる。このため、細粒分含有率Fcが高い砂層であっても十分な締固めを実現することができる。   As described above, the vibration compaction process can be accurately managed by using the measurement result of the integrated suction water amount for the management of the vibration / suction process (vibration tightening process). Further, the sand layer having a high fine particle content Fc that requires a long time for compaction can be sufficiently compacted. For this reason, sufficient compaction can be realized even with a sand layer having a high fine particle content Fc.

なお、本発明者等が実際に行った図4と同様の振動締固め工法によれば、施工の前後で、標準貫入試験を実施してN値の変化を調べたところ、締固め前のN値が2〜5程度であった砂層が、締固め後にN値が20〜24となり、大きな締固め効果を得ることが可能であることを確認した。   According to the vibration compaction method similar to that shown in FIG. 4 actually conducted by the present inventors, the standard penetration test was conducted before and after the construction to examine the change in the N value. It was confirmed that a sand layer having a value of about 2 to 5 had an N value of 20 to 24 after compaction, and a large compaction effect could be obtained.

〈実験例〉
次に、本実施形態による振動締固め工法について実験によりその効果を確認した。
<Experimental example>
Next, the effect of the vibration compaction method according to the present embodiment was confirmed by experiments.

実験装置を図5(a)(b)に示す。直径30cm×高さ1.0mの円筒容器内に、1/4の平面位置に2箇所振動棒(コンクリート用)を設置し、次に珪砂5号を水中落下方式で、相対密度Dr=51%、高さ65cmで作製し、その後、キャップ付PBDを土層の中央部にジェット水を利用して挿入した。砂層の上部には厚さ20cmの粘土層を設け、負圧の維持を確保した。この砂層に図6の真空ポンプ設備を用いて-60kN/ m2の負圧を作用させると、2.1L(リットル)の間隙水が排出されたが、沈下はほぼゼロであった(砂層の不飽和化と有効応力の増加)。 An experimental apparatus is shown to Fig.5 (a) (b). In a cylindrical container with a diameter of 30 cm and a height of 1.0 m, two vibrating bars (for concrete) are installed at 1/4 flat positions, and then quartz sand No. 5 is dropped in water, relative density Dr = 51%, It was produced with a height of 65 cm, and then a PBD with a cap was inserted into the center of the soil layer using jet water. A 20 cm thick clay layer was provided on the top of the sand layer to ensure the maintenance of negative pressure. When a negative pressure of -60 kN / m 2 was applied to this sand layer using the vacuum pump equipment shown in Fig. 6, 2.1 L (liter) of pore water was discharged, but the settlement was almost zero (no sand layer failure). Saturation and effective stress increase).

次に、上記負圧を作用させた状態で振動棒を稼動させ、液状化による砂の構造の破壊と余剰間隙水の吸引を行った。その際の振動・負圧吸水時間と積算吸引水量との関係を図7に示すが、間隙水の積算吸引水量は5.1 L(リットル)で、最終高さは60.4cmとなった。また、図8に、図7の積算吸引水量から求めた1分毎の増分吸引水量と、振動・負圧吸水時間との関係を示す。本実験による主な結果は次のとおりである。   Next, the vibrating rod was operated with the negative pressure applied, and the sand structure was destroyed by liquefaction and the excess pore water was sucked. FIG. 7 shows the relationship between the vibration / negative pressure water absorption time and the cumulative suction water volume at that time. The cumulative suction water volume of the pore water was 5.1 L (liter) and the final height was 60.4 cm. FIG. 8 shows the relationship between the incremental suction water amount per minute obtained from the integrated suction water amount in FIG. 7 and the vibration / negative pressure water absorption time. The main results of this experiment are as follows.

(1)沈下量から求めた締固め後の砂層の相対密度Drは91%となり、十分な締固め効果を得ることができた。   (1) The relative density Dr of the sand layer after compaction determined from the amount of settlement was 91%, and a sufficient compaction effect was obtained.

(2)図8の振動・負圧吸水時間と増分吸引水量との関係より、締固めが終了すると、増分吸引水量の時間による変化は、急激に減少してから、ほぼゼロとなることがわかる。また、図7,図8から積算吸引水量の時間による増加(増分吸引水量)は、締固めが終了すると(図7,図8の2〜3分の間)、ほぼゼロになる。ただし、増分吸引水量がほぼゼロになるのは、実験装置によるもので、実際は砂層内の定常浸透流により、増分吸引水量はほぼ一定値(ゼロではない)になると考えられる。   (2) From the relationship between the vibration / negative pressure water absorption time and the amount of incremental suction water in FIG. 8, it can be seen that when the compaction is completed, the change in the amount of incremental suction water with time decreases rapidly and then becomes almost zero. . 7 and 8, the increase in the accumulated suction water amount with time (incremental suction water amount) becomes almost zero when compaction is completed (between 2 and 3 minutes in FIGS. 7 and 8). However, the amount of the incremental suction water becomes almost zero because of the experimental apparatus, and it is considered that the incremental suction water amount is actually a constant value (not zero) due to the steady osmotic flow in the sand layer.

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、キャップ付PBDの平面の打設間隔a(図2)は2mとしたが、これは一例であって、たとえば1.0〜5.0m程度の範囲内の正方形配置であってよい。   As described above, the modes for carrying out the present invention have been described. However, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, although the placement distance a (FIG. 2) on the plane of the PBD with cap is 2 m, this is an example, and may be a square arrangement within a range of about 1.0 to 5.0 m, for example.

本発明の振動締固め工法およびその管理方法によれば、砂層に対し経済的な液状化対策が可能であり、細粒分含有率Fcが高い砂層に対しても有効である。   According to the vibration compaction method and its management method of the present invention, an economical liquefaction countermeasure can be taken for a sand layer, and it is also effective for a sand layer having a high fine particle content Fc.

10 キャップ付プラスチックボードドレーン、キャップ付PBD
11 ドレーン材
12 キャップ
13 排水ホース
20 振動装置
21 鉛直振動装置
22 水平振動装置
a ドレーン間隔、打設間隔
G1 液状化対策を必要としない砂層
G2 液状化対策が必要な砂層
P 真空ポンプ設備
10 Plastic board drain with cap, PBD with cap
11 Drain material 12 Cap 13 Drainage hose 20 Vibration device 21 Vertical vibration device 22 Horizontal vibration device a Drain interval, placement interval G1 Sand layer G2 that does not require liquefaction measures Sand layer P that requires liquefaction measures Vacuum pump equipment

Claims (5)

液状化対策が必要とされる砂層にキャップ付プラスチックドレーンを打設する工程と、
前記キャップ付プラスチックドレーンを介して前記砂層に負圧を作用させて間隙水を吸引する工程と、
前記負圧を作用させた状態で前記砂層に振動を与えることで生じた余剰間隙水を吸引する工程と、
前記負圧の作用により吸引された水量を測定し、前記振動を与えた後に測定された吸引水量の時間による増分値である増分吸引水量がほぼ一定値に収束した時点で前記振動・吸引工程の完了を判断する工程と、を含むことを特徴とする砂層の振動締固め工法。
A process of placing a plastic drain with a cap on a sand layer that requires countermeasures against liquefaction;
A step of sucking pore water by applying a negative pressure to the sand layer through the plastic drain with the cap;
Sucking excess pore water generated by applying vibration to the sand layer in a state where the negative pressure is applied;
The amount of water sucked by the action of the negative pressure is measured, and the incremental suction water amount, which is an incremental value according to the time of the suction water amount measured after applying the vibration, converges to a substantially constant value when the vibration / suction process is completed. A sand compaction method comprising: a step of judging completion.
前記キャップ付プラスチックドレーンは、キャップを介してドレーン材と非透水性の排水ホースとが連結されており、前記ドレーン材は、前記ドレーン材の下端が前記砂層の最下部近傍に、上端が前記砂層の最上部近傍に位置するように打設される請求項に記載の砂層の振動締固め工法。 The plastic drain with cap is connected to a drain material and a non-water-permeable drainage hose via a cap. The sand compaction vibration compaction method according to claim 1 , wherein the sand compaction is placed so as to be positioned in the vicinity of the uppermost portion of the sand layer. 前記砂層に対する振動は、前記砂層内に挿入した振動装置により行い、
複数の前記キャップ付プラスチックドレーンを前記振動装置から離して配置する請求項1または2に記載の砂層の振動締固め工法。
The vibration to the sand layer is performed by a vibration device inserted in the sand layer,
The sand compaction compaction method according to claim 1 or 2 , wherein the plurality of plastic drains with caps are arranged apart from the vibration device.
前記振動装置の振動部を前記砂層内で上下に移動させながら前記砂層に振動を与える請求項に記載の砂層の振動締固め工法。 The sand compaction method according to claim 3 , wherein the sand layer is vibrated while moving a vibration part of the vibration device up and down in the sand layer. 液状化対策が必要とされる砂層にキャップ付プラスチックドレーンを打設する工程と、
前記キャップ付プラスチックドレーンを介して前記砂層に負圧を作用させて間隙水を吸引する工程と、
前記負圧を作用させた状態で前記砂層に振動を与えることで生じた余剰間隙水を吸引する工程と、を含む砂層の振動締固め工法の管理方法であって、
前記負圧の作用により吸引された水量を測定し、前記振動を与えた後に測定された吸引水量の時間による増分値である増分吸引水量がほぼ一定値に収束した時点で前記振動・吸引工程の完了を判断することを特徴とする砂層の振動締固め工法の管理方法。
A process of placing a plastic drain with a cap on a sand layer that requires countermeasures against liquefaction;
A step of sucking pore water by applying a negative pressure to the sand layer through the plastic drain with the cap;
A step of sucking excess pore water generated by applying vibration to the sand layer in a state in which the negative pressure is applied, and a management method of the vibration compaction method of the sand layer,
The amount of water sucked by the action of the negative pressure is measured, and the incremental suction water amount, which is an incremental value according to the time of the suction water amount measured after applying the vibration, converges to a substantially constant value when the vibration / suction process is completed. A management method for the vibration compaction method of the sand layer, characterized by judging completion.
JP2013013006A 2013-01-28 2013-01-28 Vibration compaction method of sand layer and its management method Active JP6059029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013013006A JP6059029B2 (en) 2013-01-28 2013-01-28 Vibration compaction method of sand layer and its management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013013006A JP6059029B2 (en) 2013-01-28 2013-01-28 Vibration compaction method of sand layer and its management method

Publications (2)

Publication Number Publication Date
JP2014145157A JP2014145157A (en) 2014-08-14
JP6059029B2 true JP6059029B2 (en) 2017-01-11

Family

ID=51425616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013013006A Active JP6059029B2 (en) 2013-01-28 2013-01-28 Vibration compaction method of sand layer and its management method

Country Status (1)

Country Link
JP (1) JP6059029B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6453719B2 (en) * 2015-06-16 2019-01-16 五洋建設株式会社 Vacuum consolidation method and drain material
CN105064372B (en) * 2015-08-04 2017-06-23 中交二航局第四工程有限公司 A kind of foundation ditch Cast-in-situ Piles in Sand-filling shakes densification process
JP6586342B2 (en) * 2015-10-05 2019-10-02 中国電力株式会社 Underwater compaction method
CN109505294A (en) * 2018-12-12 2019-03-22 中交天津港湾工程研究院有限公司 A kind of vibroflotation device and its construction method suitable for unsaturation Extra-fine sand
CN110552340B (en) * 2019-09-20 2021-05-18 杨显亮 Tamping device for slope surfaces on two sides of water channel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2886355B2 (en) * 1991-02-28 1999-04-26 前田建設工業株式会社 Vibration compaction method
JP3723460B2 (en) * 2001-02-16 2005-12-07 株式会社間組 Ground improvement method by vacuum consolidation and its construction structure
JP2002302932A (en) * 2001-04-05 2002-10-18 Mirai Group Co Ltd Soft ground improving construction method
JP4493522B2 (en) * 2005-03-04 2010-06-30 五洋建設株式会社 Soft ground improvement method by vacuum consolidation
JP2008002237A (en) * 2006-06-26 2008-01-10 Toa Harbor Works Co Ltd Drain device, soil improvement device, and soil improvement method
JP5735329B2 (en) * 2011-04-07 2015-06-17 株式会社P・V・C Sinking amount measuring device, soft ground improvement method using the same, ground dynamics grasping method where embankment structure is built, and ground dynamics grasping method where underground buried object is buried

Also Published As

Publication number Publication date
JP2014145157A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP6059029B2 (en) Vibration compaction method of sand layer and its management method
CA2730150C (en) Shielded tamper and method of use for making aggregate columns
CN103410139B (en) Foundation ditch narrow zone backfill densification process
CN105064372B (en) A kind of foundation ditch Cast-in-situ Piles in Sand-filling shakes densification process
CN104131546A (en) Collapsible loess foundation treatment method
CN101581092A (en) Method for processing soft ground by rapid pressurizing pre-compression
CN101220589B (en) Soil engineering bag and method for dynamically squeezing and synthetically reinforcing soft groundwork
CN101311418A (en) Exchange filling method for deep-foundation pit and large area equipment foundation
JP2015183419A (en) Ground formation method and ground structure
CN109137872B (en) Reinforced structure bag and method for processing soft foundation by using reinforced structure bag
CN201436323U (en) Drainage structure of dynamic compaction foundation
CN106869153B (en) A kind of method of the quick soft soil foundation treatment of well-points dewatering
JP2010196464A (en) Construction method for countermeasure against liquefaction of sandy ground
KR100421540B1 (en) VCPS : Process for Treating Weak Soil with Vibrated Crushed Stone Compaction Pile Reinforced with Sand
Minaev Russian methods and equipment for spatial vibrocompaction foundations and structures
JP6304813B2 (en) Saturated ground compaction method
CN103758109B (en) For setting and the processing method of the draining rotary churning pile ground of underconsolidated soil
JP2014001539A (en) Artificial tideland structure and repair method of artificial tideland
CN102966089B (en) Plate plug method capable of realizing vibratory compaction
CN106917396B (en) A kind of taper foundation reinforcement method
CN106192980B (en) A kind of method of the closely knit sandstone ground of dither
CN108385651A (en) A kind of design and construction method carrying out reinforcing soft foundation using composite geotextile
Massarsch et al. Liquefaction assessment by full-scale vibratory testing
Tandel et al. Deformation behaviour of ground improved by reinforced stone columns
CN205954647U (en) Miniature stake professional equipment of real airborne water high frequency compaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161208

R150 Certificate of patent or registration of utility model

Ref document number: 6059029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250