JP6055735B2 - High frequency heating device - Google Patents

High frequency heating device Download PDF

Info

Publication number
JP6055735B2
JP6055735B2 JP2013165727A JP2013165727A JP6055735B2 JP 6055735 B2 JP6055735 B2 JP 6055735B2 JP 2013165727 A JP2013165727 A JP 2013165727A JP 2013165727 A JP2013165727 A JP 2013165727A JP 6055735 B2 JP6055735 B2 JP 6055735B2
Authority
JP
Japan
Prior art keywords
dielectric
conductor pin
waveguide
shaft
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013165727A
Other languages
Japanese (ja)
Other versions
JP2015035332A (en
Inventor
窪田 哲男
哲男 窪田
本間 満
満 本間
佐知 田中
佐知 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013165727A priority Critical patent/JP6055735B2/en
Publication of JP2015035332A publication Critical patent/JP2015035332A/en
Application granted granted Critical
Publication of JP6055735B2 publication Critical patent/JP6055735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

本発明は、回転アンテナを用いてマイクロ波エネルギーを加熱室内に放射し、食品などを加熱する高周波加熱装置に関するものである。   The present invention relates to a high-frequency heating apparatus that uses a rotating antenna to radiate microwave energy into a heating chamber to heat food and the like.

特許文献1の高周波加熱装置は、加熱室の底面に固着された誘電体からなる載置台と、加熱室天井中央部に設けた導波管の励振口部分に回転アンテナを備え、導波管によって導かれるマイクロ波エネルギーを回転アンテナに結合させた後、回転アンテナより加熱室内に放射し、載置台に載置された食品などを高周波加熱するものである。   The high-frequency heating device of Patent Document 1 includes a mounting base made of a dielectric material fixed to the bottom surface of a heating chamber, and a rotary antenna at the excitation opening portion of the waveguide provided at the center of the heating chamber ceiling. After the microwave energy to be guided is coupled to the rotating antenna, it is radiated from the rotating antenna into the heating chamber, and the food placed on the mounting table is heated at high frequency.

特開2006−351220号公報JP 2006-351220 A

特許文献1の請求項1には、「被加熱物を収容する加熱室と、前記加熱室へ高周波エネルギーを供給する高周波発振器と、前記高周波発振器で発振された高周波電磁波を加熱室へ伝送する導波管と、前記導波管と加熱室を高周波的に結合する回転アンテナと、前記回転アンテナに連結したアンテナ駆動軸と、前記アンテナ駆動軸を貫通させる導波管に設けた貫通孔とを備え、前記アンテナ駆動軸は、先端を金属からなる先端金属部、その他の部分を誘電体からなる誘電体部で構成し、前記先端金属部にメネジを切り、前記回転アンテナをネジにより前記アンテナ駆動軸に接合する構成とした高周波加熱装置」が開示されている。   Claim 1 of Patent Document 1 states that “a heating chamber that accommodates an object to be heated, a high-frequency oscillator that supplies high-frequency energy to the heating chamber, and a high-frequency electromagnetic wave oscillated by the high-frequency oscillator is transmitted to the heating chamber. A wave tube, a rotating antenna that couples the waveguide and the heating chamber at a high frequency, an antenna driving shaft coupled to the rotating antenna, and a through hole provided in the waveguide that penetrates the antenna driving shaft. The antenna drive shaft includes a tip metal portion made of metal at the tip, and a dielectric portion made of a dielectric at the other portion, a female screw is cut in the tip metal portion, and the antenna drive shaft is screwed to the rotating antenna. A high-frequency heating device configured to be bonded to the substrate is disclosed.

そして、同引用文献の段落0027には、「回転アンテナ垂直成分7は導波管4の中に突出しており、回転アンテナ水平成分6と有機的に関連して加熱室2に高周波電磁波を放出する回転アンテナを構成している。アンテナ駆動軸8は駆動モータ9の回転軸10と、連結ピン11により連結されている。アンテナ駆動軸8はその先端を金属からなる先端金属部12とし、先端金属部12以外は誘電体からなる誘電体部8aとし、先端金属部12にはメネジが切られており、ネジ13をメネジ部に締結することにより回転アンテナ5をアンテナ駆動軸8に接合している。」と説明されている。すなわち、アンテナ駆動軸は、導波管の貫通孔外部に設けられた駆動モータの回転軸と材質不明の連結ピンで連結されることで、アンテナ回転軸を駆動モータの回転軸に吊り下げており、アンテナ回転軸はその先端を金属からなる先端金属部とし、先端金属部以外は誘電体からなる誘電体部としている。   In paragraph 0027 of the cited document, “the rotating antenna vertical component 7 protrudes into the waveguide 4 and organically relates to the rotating antenna horizontal component 6 and emits high-frequency electromagnetic waves to the heating chamber 2. The antenna drive shaft 8 is connected to a rotation shaft 10 of a drive motor 9 by a connecting pin 11. The antenna drive shaft 8 has a tip metal portion 12 made of metal as a tip, and a tip metal. A portion other than the portion 12 is a dielectric portion 8a made of a dielectric, and a female screw is cut in the tip metal portion 12, and the rotating antenna 5 is joined to the antenna drive shaft 8 by fastening the screw 13 to the female screw portion. . " That is, the antenna drive shaft is connected to the rotation shaft of the drive motor provided outside the through-hole of the waveguide with a connection pin of unknown material, so that the antenna rotation shaft is suspended from the rotation shaft of the drive motor. The antenna rotation shaft has a tip metal portion made of metal at the tip, and a dielectric portion made of a dielectric other than the tip metal portion.

また、その先端金属部と回転アンテナはネジで固定され、回転アンテナとアンテナ回転軸を接合している。これにより、回転アンテナは駆動モータに保持され、駆動モータの回転力が回転アンテナに伝達され、回転アンテナの回転とともに加熱室内に高周波エネルギーが放射される。   The tip metal part and the rotating antenna are fixed with screws, and the rotating antenna and the antenna rotating shaft are joined. Thus, the rotating antenna is held by the drive motor, the rotational force of the drive motor is transmitted to the rotating antenna, and high-frequency energy is radiated into the heating chamber as the rotating antenna rotates.

さらに、特許文献1のアンテナ駆動軸はその先端部以外が誘電体であるため、導波管の貫通孔の孔径を適当な大きさに設定すれば、貫通穴から高周波エネルギーが外へ漏れるのを抑制できると記載している。   Furthermore, since the antenna drive shaft of Patent Document 1 is a dielectric except for its tip, if the hole diameter of the through hole of the waveguide is set to an appropriate size, high-frequency energy leaks out from the through hole. It describes that it can be suppressed.

しかしながら、一般にアンテナの駆動軸には、テフロン(登録商標)等の誘電率の小さい誘電体を使用するが、回転アンテナを安定的に回転駆動させるためには、その誘電体軸の軸方向に垂直な断面の外寸を大きくとる必要がある。また、導波管の貫通孔をアンテナ誘電体軸が貫通する構造は電波が漏れ易くなるが、むやみに貫通孔を小さくすれば、回転時の軸触れが生じ易くなり、誘電体軸と貫通孔の接触による放電などの不具合も起こり易くなるので、アンテナの誘電体軸外寸を小さくできない。   However, in general, a dielectric having a low dielectric constant such as Teflon (registered trademark) is used for the driving shaft of the antenna. However, in order to stably rotate the rotating antenna, it is perpendicular to the axial direction of the dielectric shaft. It is necessary to take a large outer dimension of the cross section. In addition, the structure in which the antenna dielectric shaft passes through the through-hole of the waveguide easily leaks radio waves. However, if the through-hole is made too small, the shaft is easily touched during rotation. As a result of problems such as electric discharge due to contact, it is difficult to reduce the outer dimension of the antenna dielectric axis.

電子レンジのような高周波加熱装置では、回転するアンテナの誘電体軸の外径は上記問題点を考慮して約10mm程度としているので、加熱室内の負荷が少ない場合や無負荷の場合に、貫通孔とアンテナ誘電体軸の隙間や、アンテナ誘電体軸自体を介して外部へマイクロ波エネルギーが漏洩し易くなるという課題がある。   In a high-frequency heating apparatus such as a microwave oven, the outer diameter of the dielectric shaft of the rotating antenna is set to about 10 mm in consideration of the above-mentioned problems. Therefore, when the load in the heating chamber is small or no load is applied, There is a problem that microwave energy easily leaks to the outside through the gap between the hole and the antenna dielectric shaft or the antenna dielectric shaft itself.

本発明は上記課題を解決するために、請求項1では、被加熱物を収容する加熱室と、マイクロ波エネルギーを発生するマグネトロンと、該マグネトロンを取り付け、前記加熱室に前記マイクロ波エネルギーを伝送する導波管と、前記加熱室又は前記導波管を貫通する開口と、該開口に挿入した誘電体軸とを備えた高周波加熱装置において、前記加熱室と前記導波管の両者の外方に位置する前記誘電体軸の内部に、該誘電体軸の軸方向と略垂直に、該誘電体軸の中心軸断面を挟んで前記導体ピンを設けたものである。   In order to solve the above-described problems, the present invention provides a heating chamber that accommodates an object to be heated, a magnetron that generates microwave energy, and the magnetron that is attached to the microwave chamber to transmit the microwave energy to the heating chamber. In a high-frequency heating apparatus comprising: a waveguide to be opened; an opening penetrating the heating chamber or the waveguide; and a dielectric shaft inserted into the opening. The outside of both the heating chamber and the waveguide The conductor pin is provided inside the dielectric shaft located at a position substantially perpendicular to the axial direction of the dielectric shaft and sandwiching the cross section of the central axis of the dielectric shaft.

また、請求項2では、被加熱物を収容する加熱室と、該加熱室の底面に設けた誘電体からなる被加熱物載置板と、この被加熱物載置板の下方で前記加熱室の底面略中央部に設けた高周波供給室と、マイクロ波エネルギーを発生するマグネトロンと、該マグネトロンを取り付ける導波管と、前記高周波供給室底面中央部に設けた結合孔と、該結合孔を貫通して前記高周波供給室内へ略垂直に臨んで設けた内導体と、前記高周波供給室に収納し前記内導体の一端に連結した金属製の回転アンテナと、前記内導体の前記導波管内で連結し該導波管を貫通して設けられた誘電体軸と、該誘電体軸の前記導波管外部の一端に連結された駆動部とを備えた高周波加熱装置において、前記導波管外部の前記誘電体軸の内部に該誘電体軸の軸方向と略垂直に、該誘電体軸の中心軸断面を挟んで導体ピンを設けたものである。   According to a second aspect of the present invention, there is provided a heating chamber for accommodating a heated object, a heated object placing plate made of a dielectric provided on a bottom surface of the heated chamber, and the heating chamber below the heated object placing plate. A high-frequency supply chamber provided in the substantially central portion of the bottom surface of the substrate, a magnetron for generating microwave energy, a waveguide for mounting the magnetron, a coupling hole provided in the central portion of the bottom surface of the high-frequency supply chamber, and the coupling hole penetrating therethrough Then, an inner conductor provided substantially vertically into the high-frequency supply chamber, a metal rotating antenna housed in the high-frequency supply chamber and connected to one end of the inner conductor, and a connection within the waveguide of the inner conductor A high-frequency heating apparatus comprising a dielectric shaft provided through the waveguide and a drive unit connected to one end of the dielectric shaft outside the waveguide; In the interior of the dielectric axis, substantially perpendicular to the axial direction of the dielectric axis, It is provided with a conductive pin with respect to the center axis cross-section of the dielectric axis.

本発明では、加熱室又は導波管に貫通して設けた誘電体軸から漏洩するマイクロ波エネルギーを抑制できる。このため、加熱室と導波管の外方に配置される電子部品の誤動作を抑制し、高周波加熱装置を安定して動作させることができる。また、加熱室に導波管を介して、高い入力のマイクロ波エネルギーを供給することができ、加熱室に収納した被加熱物を効率よく加熱することができる。   In the present invention, it is possible to suppress microwave energy leaking from a dielectric shaft provided penetrating the heating chamber or the waveguide. For this reason, malfunction of the electronic component arrange | positioned outside a heating chamber and a waveguide can be suppressed, and a high frequency heating apparatus can be operated stably. In addition, high input microwave energy can be supplied to the heating chamber via the waveguide, and the object to be heated stored in the heating chamber can be efficiently heated.

実施例1の高周波加熱装置の縦断面図Longitudinal sectional view of the high-frequency heating device of Example 1 実施例1の高周波給電口部の要部拡大縦断面図The principal part expansion longitudinal cross-sectional view of the high frequency electric power feeding port part of Example 1 実施例1の誘電体軸部の要部拡大断面図The principal part expanded sectional view of the dielectric material shaft part of Example 1. 実施例1の導体ピンの有無における減衰効果の解析結果Analysis result of attenuation effect with and without conductor pin of Example 1 実施例1の導体ピンの各部寸法を決めるための解析モデルAnalytical model for determining the dimensions of each part of the conductor pin of Example 1 実施例1の導体ピンの軸長さLによる減衰効果の解析結果Analysis result of attenuation effect by axial length L of conductor pin of Example 1 実施例1の導体ピンの軸方向に垂直な断面の外寸D1による減衰効果の解析結果Analysis result of damping effect by outer dimension D1 of cross section perpendicular to axial direction of conductor pin of example 1 実施例1の導体ピンの誘電体軸内での軸長さLのとり方を示した図The figure which showed how to take the axial length L in the dielectric material axis | shaft of the conductor pin of Example 1 実施例1の導体ピンの誘電体軸内での外寸D1のとり方を示した図The figure which showed how to take the outer dimension D1 in the dielectric material axis | shaft of the conductor pin of Example 1. 実施例1の導体ピンの形状の一例を示した斜視図The perspective view which showed an example of the shape of the conductor pin of Example 1. 実施例1の導体ピン、誘電体軸の軸方向に垂直な断面の外寸D1を示した図The figure which showed the outer dimension D1 of the cross section perpendicular | vertical to the axial direction of the conductor pin and dielectric material axis | shaft of Example 1. FIG. 実施例2のスリット形状を設けた導体ピンの斜視図The perspective view of the conductor pin which provided the slit shape of Example 2. 実施例3の加熱室底面に設けられた重量センサーを備えた高周波加熱装置の縦断面図The longitudinal cross-sectional view of the high frequency heating apparatus provided with the weight sensor provided in the heating chamber bottom face of Example 3 実施例3の高周波加熱装置の斜視図The perspective view of the high frequency heating apparatus of Example 3.

以下、本発明の高周波加熱装置の実施例を、マグネトロンを用いて被加熱物を加熱調理する電子レンジを例にとって説明するが、電子レンジに加熱ヒータを設け、オーブン加熱やグリル加熱を行うオーブンレンジや、ボイラを設け、スチーム加熱を行うスチームオーブンレンジであっても差し支えない。また、本発明は金属で密閉された空間、つまり共振器内にマイクロ波エネルギーを供給して加熱する構造であれば、ごみ処理機などにも適用できる。   Hereinafter, embodiments of the high-frequency heating device of the present invention will be described by taking a microwave oven that heats an object to be heated by using a magnetron as an example, but a microwave oven provided with a heater and performing oven heating or grill heating is described. Or, a steam microwave oven with a boiler and steam heating may be used. In addition, the present invention can be applied to a waste disposal machine or the like as long as it is a space sealed with metal, that is, a structure in which microwave energy is supplied and heated in the resonator.

図1は実施例1の高周波加熱装置の縦断面図、図2は高周波給電口部100の拡大斜視図、図3は誘電体軸部の要部拡大断面図、図4は導体ピンの有無における減衰効果の解析結果、図5は導体ピンの各部寸法を決めるための解析モデル、図6は導体ピンの軸長さLによる減衰効果の解析結果、図7は導体ピンの軸方向に垂直な断面の外寸D1による減衰効果の解析結果、図8および図9は導体ピンを内蔵した誘電体軸において、導体ピンのアンテナ誘電体軸内での軸長さLおよび外寸D1のとり方、図10は導体ピンの形状の一例を示した斜視図、図11は導体ピン、誘電体軸の軸方向に垂直な断面の外寸D1を示した図である。   1 is a longitudinal sectional view of the high-frequency heating device of Example 1, FIG. 2 is an enlarged perspective view of a high-frequency power supply port portion 100, FIG. 3 is an enlarged sectional view of a principal portion of a dielectric shaft portion, and FIG. FIG. 5 is an analysis model for determining the dimensions of each part of the conductor pin, FIG. 6 is an analysis result of the attenuation effect due to the axial length L of the conductor pin, and FIG. 7 is a cross section perpendicular to the axial direction of the conductor pin. FIG. 8 and FIG. 9 show how to determine the axial length L and the outer dimension D1 of the conductor pin in the antenna dielectric axis in the dielectric shaft with the built-in conductor pin. FIG. 11 is a perspective view showing an example of the shape of a conductor pin, and FIG. 11 is a view showing an outer dimension D1 of a cross section perpendicular to the axial direction of the conductor pin and the dielectric axis.

図1に示すように、本実施例の高周波加熱装置は、被加熱物11を収容する加熱室1と、加熱室1の底面に設けられた誘電体からなる被加熱物載置板2と、この被加熱物載置板2の下方に設けられた高周波供給室3と、マイクロ波エネルギーを発生するマグネトロン4と、マグネトロン4が取り付けられ、マイクロ波ネルギーを伝送する導波管5と、導波管5に導かれたマイクロ波エネルギーを高周波供給室3に放射するために高周波供給室3の底面(例えば中央部)に設けた結合孔6と、結合孔6を貫通して高周波供給室3内へ略垂直に設けた内導体7と、高周波供給室3内で内導体7の一端に略水平に連結された金属製の回転アンテナ8と、導波管5内で内導体7に連結された誘電体軸9と、誘電体軸9を回転駆動する駆動部10とを備えており、回転アンテナ8の回転は駆動部10により回転制御される。   As shown in FIG. 1, the high-frequency heating device of the present embodiment includes a heating chamber 1 that accommodates an object to be heated 11, an object mounting plate 2 that is a dielectric provided on the bottom surface of the heating chamber 1, and A high-frequency supply chamber 3 provided below the object placing plate 2, a magnetron 4 for generating microwave energy, a waveguide 5 to which the magnetron 4 is attached and transmitting microwave energy, and a waveguide In order to radiate the microwave energy guided to the tube 5 to the high-frequency supply chamber 3, a coupling hole 6 provided in the bottom surface (for example, the central portion) of the high-frequency supply chamber 3 and the coupling hole 6 pass through the inside of the high-frequency supply chamber 3. An inner conductor 7 provided substantially vertically to the metal, a metal rotating antenna 8 connected substantially horizontally to one end of the inner conductor 7 in the high-frequency supply chamber 3, and an inner conductor 7 connected in the waveguide 5. A dielectric shaft 9 and a drive unit 10 that rotationally drives the dielectric shaft 9 are provided. And, the rotation of the rotating antenna 8 is rotated controlled by a drive unit 10.

マグネトロン4で発生したマイクロ波エネルギーは導波管5に導かれ、結合孔6を貫通する内導体7との同軸モード結合により回転アンテナ8に伝搬され、高周波供給室3、被加熱物載置板2を通じて加熱室1内に放射される。ここで、マイクロ波ネルギーを伝送する導波管5が伝送路を、内導体7を介して導波管5からマイクロ波ネルギーが供給される高周波供給室3及び加熱室1で共振器を構成する。   Microwave energy generated by the magnetron 4 is guided to the waveguide 5 and propagated to the rotating antenna 8 by coaxial mode coupling with the inner conductor 7 penetrating the coupling hole 6, and the high-frequency supply chamber 3, the heated object mounting plate 2 radiates into the heating chamber 1. Here, the waveguide 5 that transmits the microwave energy forms a transmission path, and the high-frequency supply chamber 3 and the heating chamber 1 to which the microwave energy is supplied from the waveguide 5 through the inner conductor 7 constitute a resonator. .

導波管5外側(駆動部10側)の誘電体軸9内部には、図2に示すように、誘電体軸9の回転軸方向に略垂直に、該誘電体軸の中心軸断面を挟んで導体ピン12が例えばインサート成型などで内蔵される。ここで、略垂直とは誘電体軸9の軸方向と直角に交わる角度が90°±10°程度を示しており、この角度範囲であれば、本実施例の遮蔽性能が維持される。なお、誘電軸9内の導体ピン12の位置は、軸中央にあることが望ましい。   As shown in FIG. 2, the dielectric shaft 9 outside the waveguide 5 (on the drive unit 10 side) sandwiches the section of the central axis of the dielectric shaft substantially perpendicular to the rotation axis direction of the dielectric shaft 9. Thus, the conductor pin 12 is incorporated by, for example, insert molding. Here, “substantially perpendicular” means that the angle perpendicular to the axial direction of the dielectric shaft 9 is about 90 ° ± 10 °, and the shielding performance of this embodiment is maintained within this angle range. The position of the conductor pin 12 in the dielectric shaft 9 is preferably in the center of the shaft.

また、図3に示す導体ピン12の軸長さL、導体ピン12の軸方向と直交する断面における外寸D1、誘電体軸9の外寸D0とした場合、前記導体ピン12は導体ピン12の軸長さLと誘電体軸9の外寸D0の比L/D0が、0.58≦L/D0≦1.12、且つ導体ピン12の軸方向と直交する断面における外寸D1と誘電体軸9の外寸D0の比D1/D0が、0.08≦D1/D0≦0.52となる形状とした。   In addition, when the axial length L of the conductor pin 12 shown in FIG. 3, the outer dimension D1 in the cross section orthogonal to the axial direction of the conductor pin 12, and the outer dimension D0 of the dielectric shaft 9, the conductor pin 12 is the conductor pin 12. The ratio L / D0 of the shaft length L to the outer dimension D0 of the dielectric shaft 9 is 0.58 ≦ L / D0 ≦ 1.12, and the outer dimension D1 and the dielectric in the cross section orthogonal to the axial direction of the conductor pin 12 A shape D1 / D0 of the outer dimension D0 of the body axis 9 was 0.08 ≦ D1 / D0 ≦ 0.52.

導体ピン12は導体であれば如何なる金属でも構わないが、導電率の大きな導体がより望ましい。また、誘電体軸9は、本実施例のように回転による負荷がかかる場合、例えばアルミナなど強度の高いセラミックが用いればよい。   The conductor pin 12 may be any metal as long as it is a conductor, but a conductor having a high conductivity is more desirable. The dielectric shaft 9 may be made of a high strength ceramic such as alumina when a load due to rotation is applied as in this embodiment.

次に、上記構成の作用について説明する。図4は図1の構造をもとに導波管5に誘電体軸9を設置し、TE10モード解析信号をY軸方向に与えた図5の解析モデルにより、本実施例の効果を電磁波解析で計算したものである。   Next, the operation of the above configuration will be described. FIG. 4 shows an electromagnetic wave analysis of the effect of this embodiment based on the analysis model of FIG. 5 in which a dielectric shaft 9 is installed in the waveguide 5 based on the structure of FIG. 1 and a TE10 mode analysis signal is given in the Y-axis direction. It is calculated by.

計算では図5に示す導波管5外側のアンテナの誘電体軸9の先端から5mm離した軸中心に電界強度観測点におき、その変化量を比較した。図4に導体ピン12の有無による漏洩マイクロ波エネルギーの電界強度の解析結果を示す。   In the calculation, an electric field intensity observation point is placed at the axis center 5 mm away from the tip of the dielectric shaft 9 of the antenna outside the waveguide 5 shown in FIG. FIG. 4 shows the analysis result of the electric field strength of the leaked microwave energy depending on the presence or absence of the conductor pin 12.

図4より、誘電体軸9の先端からの距離S=5mmの軸中心を電界強度観測点とした場合、2450MHz〜2470MHzの周波数範囲では、導体ピン12を設けた本実施例の構成は、導体ピン12を備えていない構成に対し、約−15dBの減衰効果がある。つまり、本実施例では表面波の形で誘電体軸9に沿って導波管5外側に漏洩するマイクロ波エネルギーを抑制することができる。尚、上記の解析条件では誘電体軸9の材質をアルミナとし、一般的に使用される材料物性値である比誘電率εr’=9.5、誘電正接tanδ=0.0005を用いたが、他の誘電体材料であっても電波漏洩の抑制効果が得られる。   From FIG. 4, when the axial center of the distance S = 5 mm from the tip of the dielectric shaft 9 is an electric field intensity observation point, the configuration of the present embodiment in which the conductor pin 12 is provided in the frequency range of 2450 MHz to 2470 MHz is There is an attenuation effect of about −15 dB for the configuration without the pin 12. That is, in this embodiment, the microwave energy leaking to the outside of the waveguide 5 along the dielectric axis 9 in the form of surface waves can be suppressed. In the above analysis conditions, the material of the dielectric shaft 9 is alumina, and a dielectric constant εr ′ = 9.5 and a dielectric loss tangent tan δ = 0.0005, which are generally used physical properties, are used. Even with other dielectric materials, the effect of suppressing radio wave leakage can be obtained.

また、図6は導体ピン12の軸長さLによる減衰効果の解析結果、図7は導体ピン12の軸方向に垂直な断面の外寸D1による減衰効果の解析結果である。   FIG. 6 shows an analysis result of the attenuation effect by the axial length L of the conductor pin 12, and FIG. 7 shows an analysis result of the attenuation effect by the outer dimension D1 of the cross section perpendicular to the axial direction of the conductor pin 12.

この結果から、マイクロ波エネルギーの漏洩抑制に効果がある導体ピン12の形状は、導体ピン12の軸長さLと誘電体軸9の軸方向に垂直な断面の外寸D0の比L/D0が、0.58≦L/D0≦1.12、且つ導体ピン12の外寸D1と誘電体軸9の外寸D0の比D1/D0が、0.08≦D1/D0≦0.52であり、この形状の導体ピン12を用いることにより、誘電体軸9に沿って導波管5の外側に漏洩するマイクロ波エネルギーを抑制できる。尚、これらの解析結果は導体ピン12がない時の誘電体軸9先端から5mm離した電界強度観測点での電界強度をベースにした減衰効果をデシベル(dB)で示している。また、これらの解析は導体ピン12が誘電体軸9の軸断面中央に配置された理想的な例である。   From this result, the shape of the conductor pin 12 effective in suppressing leakage of microwave energy is the ratio L / D0 between the axial length L of the conductor pin 12 and the outer dimension D0 of the cross section perpendicular to the axial direction of the dielectric shaft 9. However, 0.58 ≦ L / D0 ≦ 1.12, and the ratio D1 / D0 of the outer dimension D1 of the conductor pin 12 and the outer dimension D0 of the dielectric shaft 9 is 0.08 ≦ D1 / D0 ≦ 0.52. Yes, by using the conductor pin 12 having this shape, the microwave energy leaking to the outside of the waveguide 5 along the dielectric axis 9 can be suppressed. These analysis results show the attenuation effect in decibels (dB) based on the electric field intensity at the electric field intensity observation point 5 mm away from the tip of the dielectric shaft 9 when there is no conductor pin 12. These analyzes are ideal examples in which the conductor pin 12 is arranged at the center of the axial cross section of the dielectric shaft 9.

尚、本実施例に示す導体ピン12は、誘電体軸9の軸断面中央にインサート成型した構成を示したが、図8のように誘電体軸9のみに、導体ピン12より大きい断面外形の貫通孔を設け、導体ピン12を挿入させる構成であっても差し支えない。また、本実施例は導体ピン12が誘電軸9を貫通して両端に軸が突出しても性能影響が少なく、同様な効果があることは言うまでもない。ただし、前述した特にL/D0≦1.12となるように付き出し部12aの長さL’は短くする事がより好ましい。尚、突き出す場合は片側のみ、あるいは両側に突き出しても構わない。製作上、一片のみ軸内に挿入し、片側が軸内、もう一方が突き出る方が作り易いし、抜けにくい。   In addition, although the conductor pin 12 shown in the present embodiment has a configuration in which insert molding is performed at the center of the axial section of the dielectric shaft 9, only the dielectric shaft 9 has a cross-sectional outer shape larger than that of the conductor pin 12 as shown in FIG. Even if it is the structure which provides a through-hole and inserts the conductor pin 12, it does not interfere. In addition, in this embodiment, even if the conductor pin 12 penetrates the dielectric shaft 9 and the shaft protrudes at both ends, the performance influence is small, and it goes without saying that the same effect can be obtained. However, it is more preferable to shorten the length L ′ of the extension portion 12a so that L / D0 ≦ 1.12. When protruding, it may protrude only on one side or on both sides. In production, it is easier to make one piece inserted into the shaft, one side is inside the shaft, and the other protrudes, and it is difficult to remove.

従って、誘電体軸9の両端に突出した導体ピン12を例えば曲げ等で変形させたり、接着剤で固定したり、別途固定用支持具を用いて位置固定しても何ら差し支えない。また、誘電体軸9に設けた穴に差し込んで圧入してもよいし、両者にネジ加工を施しネジ止めしてもよい。あるいは、導体ピン12の外表面に例えば溝などの凹凸を設け、差し込んだ際に抜け難い構造にしてもよいし、或いは導体ピン12を例えば銅などの軟らかい金属で構成し埋め込んでもよい。または、二つ折りにし、金属のバネ力を利用して固定させてもよい。   Accordingly, the conductor pins 12 protruding from both ends of the dielectric shaft 9 may be deformed by bending, for example, fixed with an adhesive, or fixed in position using a separate fixing support. Moreover, it may be inserted into a hole provided in the dielectric shaft 9 and press-fitted, or both may be threaded and screwed. Alternatively, unevenness such as a groove may be provided on the outer surface of the conductor pin 12 so that the conductor pin 12 does not easily come out when inserted, or the conductor pin 12 may be made of a soft metal such as copper and embedded. Alternatively, it may be folded in two and fixed using a metal spring force.

また、図8に示した構造の場合、誘電体軸9の外周面から導体ピン12の内蔵された長さL−L’は誘電体軸9の軸断面中央を通過する長さとすることが望ましい
一方、本実施例で示す誘電体軸9の外寸D0、導体ピン12の外寸D1とはその軸方向と垂直な断面の最大外寸を指す。よって、例えば導体ピン12の軸方向に垂直な断面が図9に示すような直方体の場合、直方体の対角線の長さが外寸D0となる。また、図10(a)〜(d)は上記導体ピン12の形状の例を示した斜視図であり、三角柱や四角柱、円柱などの柱状であれば容易に適用できる。
In the case of the structure shown in FIG. 8, the length LL ′ in which the conductor pin 12 is built from the outer peripheral surface of the dielectric shaft 9 is preferably a length that passes through the center of the axial section of the dielectric shaft 9. On the other hand, the outer dimension D0 of the dielectric shaft 9 and the outer dimension D1 of the conductor pin 12 shown in this embodiment indicate the maximum outer dimensions of the cross section perpendicular to the axial direction. Therefore, for example, when the cross section perpendicular to the axial direction of the conductor pin 12 is a rectangular parallelepiped as shown in FIG. 9, the length of the diagonal line of the rectangular parallelepiped is the outer dimension D0. FIGS. 10A to 10D are perspective views showing examples of the shape of the conductor pin 12, and can be easily applied to any columnar shape such as a triangular prism, a quadrangular prism, or a cylinder.

ここで、図11(a)〜(h)は上記の導体ピン12や誘電体軸9の軸断面の外寸D0、D1のとり方の例であり、外寸は導体ピン12の軸方向に垂直な断面形状によらず、おおよそ断面外形2点の最大長さとなる。よって、導体ピン12の形状は例えば円柱のような柱状でなく円筒のような筒状でもよい。また、軸回転しない誘電体軸を伝送路や共振器の開口に挿入する場合であっても、円柱でない上記形状でも差し支えない。   Here, FIGS. 11A to 11H are examples of how to take the outer dimensions D0 and D1 of the axial cross sections of the conductor pin 12 and the dielectric shaft 9, and the outer dimension is perpendicular to the axial direction of the conductor pin 12. FIG. Regardless of the cross-sectional shape, it is approximately the maximum length of two cross-sectional outlines. Therefore, the shape of the conductor pin 12 may be a cylindrical shape such as a cylinder instead of a columnar shape such as a column. Further, even when a dielectric shaft that does not rotate is inserted into the transmission line or the opening of the resonator, the above-described shape other than a cylinder may be used.

また、本実施例は、駆動部10が回転アンテナ8を回動させる回転軸に本実施例を適用したものであるが、例えば加熱室1の定在波制御などの為に、加熱室1や導波管5などの共振器や伝送路内に、摺動或いは固定させて誘電体軸を挿入する構造に容易に適用できることは言うまでもない。この構成であれば、導体ピン12の断面形状と同様、誘電体軸の断面形状も任意の形状にすることができる。   In addition, in this embodiment, the present embodiment is applied to a rotating shaft on which the driving unit 10 rotates the rotating antenna 8. For example, for the standing wave control of the heating chamber 1, It goes without saying that the present invention can be easily applied to a structure in which a dielectric shaft is inserted by sliding or fixing in a resonator such as the waveguide 5 or a transmission line. With this configuration, the cross-sectional shape of the dielectric shaft can be made arbitrary as with the cross-sectional shape of the conductor pin 12.

以上、本実施例の高周波加熱装置では、導波管5外側に突出した誘電体軸9内部に誘電体軸9の軸方向に略垂直に導体ピン12を設けることにより、誘電体軸9に沿って導波管5外側に漏洩するマイクロ波エネルギーが抑制されるので、誘電体軸9に連結された駆動部10および誘電体軸近傍の電気部品や装置の誤動作を防止でき、信頼性の高い高周波加熱装置を提供できるという効果がある。   As described above, in the high-frequency heating device of the present embodiment, the conductor pin 12 is provided substantially perpendicular to the axial direction of the dielectric shaft 9 inside the dielectric shaft 9 protruding to the outside of the waveguide 5. Therefore, the microwave energy leaking to the outside of the waveguide 5 is suppressed, so that it is possible to prevent malfunction of the drive unit 10 connected to the dielectric shaft 9 and the electrical components and devices in the vicinity of the dielectric shaft, and a highly reliable high frequency There is an effect that a heating device can be provided.

図12は導体ピン12の他の実施例であり、円筒状の導体ピン12に軸方向あるいは軸方にひねったスリットを設けた構造の斜視図である。ここで、本実施例の導体ピン12は実施例1と同様に、伝送路である導波管5や共振器である加熱室1の開口である結合孔6に挿入される誘電体軸9に設けられる。   FIG. 12 shows another embodiment of the conductor pin 12 and is a perspective view of a structure in which a cylindrical conductor pin 12 is provided with a slit twisted in the axial direction or the axial direction. Here, the conductor pin 12 of this embodiment is connected to the dielectric shaft 9 inserted in the coupling hole 6 which is the opening of the waveguide 5 which is a transmission path and the heating chamber 1 which is a resonator, as in the first embodiment. Provided.

図12(a)に示す導体ピン12は内部に空洞がある円筒状の構造であり、筒状の導体ピン12の軸方向に平行にスリット13がある。スリット13の間隙は極端に狭いと放電(スパーク)が生じ易くなるため、その隙間を例えば1〜2mm程度設ける必要がある。その場合、このスリット付き導体ピン12は電波的にほぼ円筒と見なされる。   The conductor pin 12 shown in FIG. 12A has a cylindrical structure with a cavity inside, and has a slit 13 parallel to the axial direction of the cylindrical conductor pin 12. If the gap between the slits 13 is extremely narrow, discharge (spark) is likely to occur. Therefore, it is necessary to provide the gap, for example, about 1 to 2 mm. In that case, the conductor pin 12 with the slit is regarded as a substantially cylinder in terms of radio waves.

また、図12(b)に示す導体ピン12は筒状の導体ピン12の軸方向に斜めにスリット13を設けている。ここで、前述のようにスリット13の間隙が狭い場合、電波的に円筒であるので、スリット13は十分な強度が得られる任意の角度で設けてもよいし、軸に対してスパイラル状でもよい。この場合もスリット13の隙間が例えば1〜2mm程度であれば、このスリット13付きの導体ピン12は電波的にほぼ円筒と見なされ、実施例1の形状範囲である、該導体ピン12の軸長さLと誘電体軸9の外寸D0の比L/D0が、0.58≦L/D0≦1.12、且つ該導体ピン12の軸方向に垂直な断面における外寸D1と該誘電体軸9の外寸D0の比D1/D0が、0.08≦D1/D0≦0.52で遮蔽効果が得られる。   Further, the conductor pin 12 shown in FIG. 12B is provided with a slit 13 obliquely in the axial direction of the cylindrical conductor pin 12. Here, when the gap between the slits 13 is narrow as described above, the slits 13 may be provided at an arbitrary angle at which sufficient strength can be obtained, or may be spiral with respect to the axis, since they are cylindrical in terms of radio waves. . Also in this case, if the gap of the slit 13 is about 1 to 2 mm, for example, the conductor pin 12 with the slit 13 is considered to be almost cylindrical in terms of radio wave, and the axis of the conductor pin 12 that is the shape range of the first embodiment. The ratio L / D0 of the length L to the outer dimension D0 of the dielectric shaft 9 is 0.58 ≦ L / D0 ≦ 1.12, and the outer dimension D1 in the cross section perpendicular to the axial direction of the conductor pin 12 and the dielectric The shielding effect is obtained when the ratio D1 / D0 of the outer dimension D0 of the body axis 9 is 0.08 ≦ D1 / D0 ≦ 0.52.

本実施例は、オーブン加熱が可能なオーブンレンジのような、加熱室1や導波管5の温度が100℃以上となり、誘電体軸9と導体ピン12に熱膨張差が生じる構造において、アルミナ等の硬質材料からなる誘電体軸9の割れや破壊を防ぐ導体ピン12の形状である。つまり、導体ピン12のスリット13は導体ピン12の熱膨張による径方向の変形をスリット間隙の変化により吸収できる。尚、導体ピン12のスリット13を波形に形成してもよいし、導体ピン12を導電性の弾性体で構成にしてもよい。   In the present embodiment, the temperature of the heating chamber 1 and the waveguide 5 becomes 100 ° C. or higher, and a difference in thermal expansion occurs between the dielectric shaft 9 and the conductor pin 12 as in the microwave oven capable of oven heating. The shape of the conductor pin 12 prevents the dielectric shaft 9 made of a hard material such as cracking or breaking. That is, the slit 13 of the conductor pin 12 can absorb the radial deformation due to the thermal expansion of the conductor pin 12 by the change of the slit gap. In addition, the slit 13 of the conductor pin 12 may be formed in a waveform, and the conductor pin 12 may be formed of a conductive elastic body.

尚、本実施例の導体ピン12は、少なくとも導体ピン12の一端を誘電体軸9から突出して成型した構造、或いは誘電体軸9に設けた穴に導体ピン12を差し込んで固定する構造、つまり、導体ピン12がその軸方向に自由に変形できる構造に適用できる。   The conductor pin 12 of this embodiment has a structure in which at least one end of the conductor pin 12 protrudes from the dielectric shaft 9, or a structure in which the conductor pin 12 is inserted and fixed in a hole provided in the dielectric shaft 9, that is, The conductor pin 12 can be applied to a structure that can be freely deformed in the axial direction.

図13、図14は実施例3の加熱室底面に設けられた重量センサー14を備えた高周波加熱装置の縦断面図と斜視図である。本実施例は、共振器である加熱室1の被加熱物載置板2に載置した被加熱物11の重量を検出できるように、重量センサー14の誘電体軸9−1を下方から加熱室1に貫通した開口に挿入して被加熱物載置板2を複数ヶ所で支持する構造である。尚、本実施例の高周波給電口100は実施例1と同様であり、説明を省略する。   FIGS. 13 and 14 are a longitudinal sectional view and a perspective view of a high-frequency heating apparatus including a weight sensor 14 provided on the bottom surface of the heating chamber according to the third embodiment. In this embodiment, the dielectric shaft 9-1 of the weight sensor 14 is heated from below so that the weight of the heated object 11 placed on the heated object placing plate 2 of the heating chamber 1 serving as a resonator can be detected. This is a structure in which the object to be heated placing plate 2 is supported at a plurality of positions by being inserted into an opening penetrating the chamber 1. Note that the high-frequency power supply port 100 of this embodiment is the same as that of the first embodiment, and a description thereof will be omitted.

図において、本体内には被加熱物11を収納し、加熱調理を行う加熱室1が設けられ、加熱室1の正面に被加熱物11を出し入れするドアが設けられる。加熱室1の底面下方には回転アンテナ8と回転アンテナ8を回転させる駆動部10が被加熱物載置板2の略中心位置に、重量センサー14が被加熱物載置板2の正面側ニ隅と奥側中央の計3ヶ所設けられている。   In the figure, a heating chamber 1 for storing an object to be heated 11 and heating cooking is provided in the main body, and a door for taking in and out the object to be heated 11 is provided in front of the heating chamber 1. Below the bottom surface of the heating chamber 1, the rotating antenna 8 and the driving unit 10 that rotates the rotating antenna 8 are located at the substantially center position of the heated object mounting plate 2, and the weight sensor 14 is connected to the front side of the heated object mounting plate 2. There are a total of three locations, one at the corner and the other at the back.

重量センサー14として例えば測定原理が静電容量式の検出手段の概略を説明する。静電容量式では二枚の薄板金属材を略平行に対向して配置させコンデンサを形成し、被加熱物載置板2に載置された被加熱物11の重さに応じて薄板金属材(図示せず)の間隙(静電容量)を変化させることで、静電容量変化の検出から被加熱物11の重さを算出するものである。   For example, the weight sensor 14 will be described with reference to an outline of detection means whose measurement principle is a capacitance type. In the capacitance type, two thin metal materials are arranged to face each other substantially in parallel to form a capacitor, and the thin metal material is formed according to the weight of the object to be heated 11 placed on the object to be heated placing plate 2. By changing the gap (capacitance) (not shown), the weight of the object to be heated 11 is calculated from the detection of the change in capacitance.

つまり、重量センサー14は、被加熱物載置板2に載置された被加熱物11の重さの変化を直に検知させるため、加熱室1に貫通して配置した誘電体軸9−1により、被加熱物載置板2と重量センサー14(薄板金属板)を連結させている。尚、誘電体軸9−1により、被加熱物載置板2の重量変化を伝える構造であれば、重量の検出手段は、静電容量式でなくとも例えば歪式等であっても差し支えない。   That is, the weight sensor 14 directly detects a change in the weight of the object to be heated 11 placed on the object to be heated placing plate 2, and thus the dielectric shaft 9-1 disposed through the heating chamber 1. Thus, the heated object placing plate 2 and the weight sensor 14 (thin metal plate) are connected. In addition, if the structure which transmits the weight change of the to-be-heated material mounting board 2 with the dielectric material shaft 9-1, the weight detection means may not be an electrostatic capacitance type, for example, may be a distortion type. .

尚、図示した被加熱物載置板2を3点で保持する重量センサー14は、被加熱物載置板2と被加熱物載置板2上に載置される被加熱物11の重さを被加熱物載置板2への載置位置によらず正確に検知することができる。   The weight sensor 14 that holds the heated object placing plate 2 shown in FIG. 3 is weighted by the heated object placing plate 2 and the heated object 11 placed on the heated object placing plate 2. Can be accurately detected regardless of the placement position on the heated object placement plate 2.

また、本実施例では被加熱物載置板2に全ての重量センサー14の誘電体軸9−1が接触して安定して保持できるように重量センサー14の個数を3つとしたが、被加熱物載置板2を安定して保持できれば個数を3つに限る必要はない。   In this embodiment, the number of weight sensors 14 is three so that the dielectric shafts 9-1 of all the weight sensors 14 come into contact with the object-to-be-heated object mounting plate 2 and can be stably held. It is not necessary to limit the number to three as long as the object placing plate 2 can be stably held.

加熱室1の下側には、被加熱物11を加熱するマイクロ波を供給するために、マグネトロン4、導波管5、回転アンテナ8等の高周波給電口部100が設けられている。   Below the heating chamber 1, a high-frequency power feeding port portion 100 such as a magnetron 4, a waveguide 5, and a rotating antenna 8 is provided in order to supply microwaves for heating the object to be heated 11.

回転アンテナ8は、加熱室1下方の高周波供給室3に収納され、被加熱物載置板2の取り外しの際に手で触れないようマイカ板2−1で覆う構成が採られている。ここで、マイカ板2−1はマイクロ波に対して低誘電体損失特性をもつので、回転アンテナ8の形状や回転速度によって変化する電磁波エネルギーを微小な減衰で加熱室1に伝えることができる。   The rotating antenna 8 is housed in the high-frequency supply chamber 3 below the heating chamber 1 and is configured to be covered with a mica plate 2-1 so as not to be touched by hand when the heated object placing plate 2 is removed. Here, since the mica plate 2-1 has a low dielectric loss characteristic with respect to the microwave, the electromagnetic wave energy that changes depending on the shape and the rotation speed of the rotating antenna 8 can be transmitted to the heating chamber 1 with minute attenuation.

このように本実施例では、被加熱物11を収容する加熱室1と、加熱室1の底面に設けた誘電体からなる被加熱物載置板2と、この被加熱物載置板2の下方で加熱室1の底面を貫通して被加熱物載置板2に一端が接し、他端が加熱室1底面外側に設けられ重量センサー14に連結された誘電体軸9−1と、加熱室1の底面略中央部に設けた高周波供給室3と、マイクロ波エネルギーを発生するマグネトロン4と、マグネトロン4を取り付ける導波管5と、高周波供給室3底面中央部に設けた結合孔6と、該結合孔6を貫通して高周波供給室3内へ略垂直に臨んで設けた内導体7と、高周波供給室3に収納し内導体7の一端に連結した金属製の回転アンテナ8と、内導体7の導波管5内で連結し導波管5を貫通して設けられた誘電体軸9と、誘電体軸9の前記導波管5外部の一端に連結された駆動部10を備え、加熱室1底面外側に突出した誘電体軸9−1の内部に誘電体軸9−1の軸方向と略垂直に導体ピン12−1を設けた構成となっている。   As described above, in this embodiment, the heating chamber 1 that houses the object to be heated 11, the object to be heated mounting plate 2 that is provided on the bottom surface of the heating chamber 1, and the object to be heated mounting plate 2 A dielectric shaft 9-1 that penetrates the bottom surface of the heating chamber 1 at the lower side and has one end in contact with the heated object mounting plate 2 and the other end provided outside the bottom surface of the heating chamber 1 and connected to the weight sensor 14, and heating A high-frequency supply chamber 3 provided at a substantially central portion of the bottom surface of the chamber 1, a magnetron 4 for generating microwave energy, a waveguide 5 to which the magnetron 4 is attached, and a coupling hole 6 provided at the central portion of the bottom surface of the high-frequency supply chamber 3. An inner conductor 7 that penetrates the coupling hole 6 and faces the high-frequency supply chamber 3 substantially vertically; a metal rotary antenna 8 that is housed in the high-frequency supply chamber 3 and connected to one end of the inner conductor 7; A dielectric shaft 9 connected through the waveguide 5 connected in the waveguide 5 of the inner conductor 7 and an induction A drive unit 10 connected to one end of the body axis 9 outside the waveguide 5 is provided, and the inside of the dielectric axis 9-1 protruding outside the bottom surface of the heating chamber 1 is substantially the same as the axial direction of the dielectric axis 9-1. It is the structure which provided the conductor pin 12-1 perpendicularly | vertically.

つまり、本実施例の高周波加熱装置では、加熱室1底面外側に突出した誘電体軸9−1内部に誘電体軸9−1の軸方向に略垂直に導体ピン12−1を設けることにより、誘電体軸9−1に沿って加熱室1外側に漏洩するマイクロ波エネルギーが抑制される。よって、実施例1と同様に、誘電体軸9−1に連結された重量センサー14および誘電体軸9−1近傍の電気部品、装置の誤動作を防止でき、信頼性の高い高周波加熱装置提供できる。
さらに、マイクロ波エネルギーの漏洩を抑制できるので、マイクロ波加熱における入力電力を向上し、高効率且つ短時間で加熱室の被加熱物を加熱することができる。例えば電子レンジであれば、マイクロ波加熱時の入力電力における最大電力の向上、最大電力の長時間維持が可能となる。
That is, in the high frequency heating apparatus of the present embodiment, by providing the conductor pin 12-1 substantially perpendicular to the axial direction of the dielectric shaft 9-1 inside the dielectric shaft 9-1 protruding outside the bottom surface of the heating chamber 1, Microwave energy leaking outside the heating chamber 1 along the dielectric axis 9-1 is suppressed. Therefore, similarly to the first embodiment, it is possible to prevent malfunction of the weight sensor 14 connected to the dielectric shaft 9-1 and the electrical components and devices in the vicinity of the dielectric shaft 9-1 and to provide a highly reliable high-frequency heating device. .
Furthermore, since leakage of microwave energy can be suppressed, input power in microwave heating can be improved, and the object to be heated in the heating chamber can be heated with high efficiency and in a short time. For example, in the case of a microwave oven, the maximum power in the input power during microwave heating can be improved and the maximum power can be maintained for a long time.

1 加熱室
2 被加熱物載置板
2−1 マイカ板
3 高周波供給室
4 マグネトロン
5 導波管
6 結合孔
7 内導体
8 回転アンテナ
9 、9−1誘電体軸
10 駆動部
11 被加熱物
12 、12−1 導体ピン
13 スリット
14 重量センサー
100 高周波給電口部
DESCRIPTION OF SYMBOLS 1 Heating chamber 2 To-be-heated object mounting board 2-1 Mica board 3 High frequency supply chamber 4 Magnetron 5 Waveguide 6 Coupling hole 7 Inner conductor 8 Rotating antenna 9, 9-1 dielectric shaft 10 Drive part 11 To-be-heated object 12 12-1 Conductor pin 13 Slit 14 Weight sensor 100 High-frequency power supply port

Claims (4)

被加熱物を収容する加熱室と、
マイクロ波エネルギーを発生するマグネトロンと、
該マグネトロンを取り付け、前記加熱室に前記マイクロ波エネルギーを伝送する導波管
と、
前記加熱室又は前記導波管を貫通する開口と、
該開口に挿入した誘電体軸と、を備え、
前記加熱室と前記導波管の両者の外方に位置する前記誘電体軸の内部に、該誘電体軸の
軸方向と略垂直に、該誘電体軸の中心軸断面を挟んで導体ピンを設け
前記導体ピンは、軸方向に平行に、あるいは軸方向に斜めにスリットを設けた
ことを特徴とする高周波加熱装置。
A heating chamber for storing an object to be heated;
A magnetron that generates microwave energy;
A waveguide that attaches the magnetron and transmits the microwave energy to the heating chamber;
An opening penetrating the heating chamber or the waveguide;
A dielectric shaft inserted into the opening,
Inside the dielectric shaft located outside both the heating chamber and the waveguide, a conductor pin is sandwiched across the section of the central axis of the dielectric shaft substantially perpendicular to the axial direction of the dielectric shaft. Provided ,
The high frequency heating apparatus according to claim 1, wherein the conductor pin is provided with a slit parallel to the axial direction or obliquely in the axial direction .
被加熱物を収容する加熱室と、
該加熱室の底面に設けた誘電体からなる被加熱物載置板と、
この被加熱物載置板の下方で前記加熱室の底面略中央部に設けた高周波供給室と、
マイクロ波エネルギーを発生するマグネトロンと、
該マグネトロンを取り付ける導波管と、
前記高周波供給室底面中央部に設けた結合孔と、
該結合孔を貫通して前記高周波供給室内へ略垂直に臨んで設けた内導体と、
前記高周波供給室に収納し前記内導体の一端に連結した金属製の回転アンテナと、
前記内導体の前記導波管内で連結し該導波管を貫通して設けられた誘電体軸と、
該誘電体軸の前記導波管外部の一端に連結された駆動部とを備え、
前記導波管外部の前記誘電体軸の内部に該誘電体軸の軸方向と略垂直に該誘電体軸の中
心軸断面を挟んで導体ピンを設け
前記導体ピンは、軸方向に平行に、あるいは軸方向に斜めにスリットを設けた
ことを特徴とする高周波加熱装置。
A heating chamber for storing an object to be heated;
A heated object mounting plate made of a dielectric provided on the bottom surface of the heating chamber;
A high-frequency supply chamber provided in a substantially central portion of the bottom surface of the heating chamber below the object placing plate,
A magnetron that generates microwave energy;
A waveguide for mounting the magnetron;
A coupling hole provided in the center of the bottom surface of the high-frequency supply chamber;
An inner conductor that passes through the coupling hole and faces the high-frequency supply chamber substantially vertically;
A metal rotating antenna housed in the high-frequency supply chamber and connected to one end of the inner conductor;
A dielectric shaft connected through the waveguide connected within the waveguide of the inner conductor;
A drive unit coupled to one end of the dielectric shaft outside the waveguide;
A conductor pin is provided inside the dielectric shaft outside the waveguide, with the central axis section of the dielectric shaft sandwiched substantially perpendicular to the axial direction of the dielectric shaft ,
The high frequency heating apparatus according to claim 1, wherein the conductor pin is provided with a slit parallel to the axial direction or obliquely in the axial direction .
前記導体ピンの軸長さL、該導体ピンの軸方向と直交する断面における外寸D1、前記
誘電体軸の外寸D0とした場合、
前記導体ピンは、
該導体ピンの軸長さLと誘電体軸の外寸D0の比L/D0が、0.58≦L/D0≦1
.12であり、
該導体ピンの軸方向に垂直な断面における外寸D1と該誘電体軸の外寸D0の比D1/
D0が、0.08≦D1/D0≦0.52であることを特徴とする請求項1ないし2記載
の高周波加熱装置。
When the axial length L of the conductor pin, the outer dimension D1 in the cross section orthogonal to the axial direction of the conductor pin, the outer dimension D0 of the dielectric shaft,
The conductor pin is
The ratio L / D0 between the axial length L of the conductor pin and the outer dimension D0 of the dielectric shaft is 0.58 ≦ L / D0 ≦ 1.
. 12,
Ratio D1 / of the outer dimension D1 in the cross section perpendicular to the axial direction of the conductor pin and the outer dimension D0 of the dielectric shaft
3. The high frequency heating apparatus according to claim 1, wherein D0 satisfies 0.08 ≦ D1 / D0 ≦ 0.52.
請求項1から請求項3何れか一項において、
前記導体ピンを前記導波管の外に設けたことを特徴とする高周波加熱装置。
In any one of Claims 1-3,
A high-frequency heating apparatus, wherein the conductor pin is provided outside the waveguide.
JP2013165727A 2013-08-09 2013-08-09 High frequency heating device Active JP6055735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013165727A JP6055735B2 (en) 2013-08-09 2013-08-09 High frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013165727A JP6055735B2 (en) 2013-08-09 2013-08-09 High frequency heating device

Publications (2)

Publication Number Publication Date
JP2015035332A JP2015035332A (en) 2015-02-19
JP6055735B2 true JP6055735B2 (en) 2016-12-27

Family

ID=52543726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013165727A Active JP6055735B2 (en) 2013-08-09 2013-08-09 High frequency heating device

Country Status (1)

Country Link
JP (1) JP6055735B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3481150B1 (en) * 2016-06-30 2022-02-23 Panasonic Intellectual Property Management Co., Ltd. High-frequency heating device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425086Y2 (en) * 1974-12-03 1979-08-23
JPS5915030Y2 (en) * 1977-03-03 1984-05-02 株式会社日立ホームテック High frequency heating device
JPS5469852A (en) * 1977-11-15 1979-06-05 Matsushita Electric Ind Co Ltd High frequency heating apparatus
JPS55146895A (en) * 1979-05-04 1980-11-15 Matsushita Electric Ind Co Ltd Heating cooking oven
US4316069A (en) * 1979-12-03 1982-02-16 General Electric Company Microwave oven excitation system
JP4894170B2 (en) * 2005-06-13 2012-03-14 パナソニック株式会社 High frequency heating device
JP4813837B2 (en) * 2005-07-20 2011-11-09 日立協和エンジニアリング株式会社 Microwave heating device

Also Published As

Publication number Publication date
JP2015035332A (en) 2015-02-19

Similar Documents

Publication Publication Date Title
JP6471906B2 (en) Microwave heating device
WO2013018358A1 (en) Microwave heating device
WO2014087666A1 (en) Microwave processing device
JP6055735B2 (en) High frequency heating device
JP6273598B2 (en) Microwave heating device
JP6906143B2 (en) Microwave heating device
JP2018078034A (en) Heating cooker
JP2009230881A (en) High-frequency heater
JP6414683B2 (en) Microwave heating device
WO2019203171A1 (en) Microwave heating device
JP2005100673A (en) High-frequency heating apparatus
WO2020054754A1 (en) Microwave heating device
JP2007317411A (en) High-frequency heating apparatus
JP6569991B2 (en) Microwave heating device
JP4832315B2 (en) High frequency heating device
JP2018006049A (en) Heating cooker
JP5102486B2 (en) Microwave heating device
JPH02155194A (en) Microwave oven
JP2013026099A (en) High frequency heating device
JP2011113687A (en) High-frequency heating device
JP6414684B2 (en) Microwave heating device
JP6507019B2 (en) Cooker
JP5286900B2 (en) Microwave processing equipment
JP2014089942A (en) Microwave heating device
JP2018198224A (en) Microwave heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R150 Certificate of patent or registration of utility model

Ref document number: 6055735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350