JP2005100673A - High-frequency heating apparatus - Google Patents

High-frequency heating apparatus Download PDF

Info

Publication number
JP2005100673A
JP2005100673A JP2003329630A JP2003329630A JP2005100673A JP 2005100673 A JP2005100673 A JP 2005100673A JP 2003329630 A JP2003329630 A JP 2003329630A JP 2003329630 A JP2003329630 A JP 2003329630A JP 2005100673 A JP2005100673 A JP 2005100673A
Authority
JP
Japan
Prior art keywords
heating
electrode
heating chamber
microwave
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003329630A
Other languages
Japanese (ja)
Inventor
Tomotaka Nobue
等隆 信江
Kenji Yasui
健治 安井
Keiichi Sato
圭一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003329630A priority Critical patent/JP2005100673A/en
Publication of JP2005100673A publication Critical patent/JP2005100673A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/76Prevention of microwave leakage, e.g. door sealings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/54Electrodes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-frequency heating apparatus which has both functions of microwave heating and dielectric heating while assuring prevention of electric discharge and suppression of microwave leakage in a power supply line for supplying high-frequency power to an electrode. <P>SOLUTION: The power supply line 36 for supplying the high-frequency power to the fixed electrode 19 is approximately formed of a coaxial line in a region where the coaxial line penetrates a bottom wall face 13, and while a projection 101 and an insulating member 106 equivalent to an external conductor are arranged inside a heating chamber, a coaxial choke 102 is arranged outside the heating chamber. Hereby, it is possible to prevent the occurrence of discharge caused by high voltage induced in the power supply line 36 in the vicinity of the fixed electrode 19 at the time of dielectric heating, and suppress the leakage of the microwave to the outside of the heating chamber by surely operating the coaxial choke while regulating the transmission direction of the microwave superimposed in the power supply line at the time of microwave heating. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、マイクロ波加熱および被加熱物を電極間に挟んで加熱する誘電加熱が併用できる高周波加熱装置に関するものである。   The present invention relates to a high-frequency heating apparatus that can be used in combination with microwave heating and dielectric heating in which an object to be heated is sandwiched between electrodes.

高周波加熱装置の代表である電子レンジは、被加熱物を直接的に加熱できるので鍋・釜を準備する必要がない簡便さでもって生活上の不可欠な機器になっている。また、この電子レンジのマイクロ波加熱の特徴は加熱エネルギを食品内部にまで供給できることであり、この特徴を冷凍食品の解凍に利用するということで冷凍食品が大量に流通してきた。   A microwave oven, which is a representative of a high-frequency heating device, can directly heat an object to be heated, and has become an indispensable device in daily life with the simplicity that does not require preparation of a pot or a pot. In addition, a feature of microwave heating of this microwave oven is that heating energy can be supplied to the inside of the food, and frozen food has been distributed in large quantities by utilizing this feature for thawing frozen food.

電子レンジは、被加熱物を収納する加熱室の大きさが大概、幅寸法および奥行き寸法がそれぞれ30〜40cm、高さ寸法が20cm前後である。一方使用しているマイクロ波の波長は約12cmであり、加熱室内には強弱の電界分布が必ず生じ、さらには被加熱物の形状やその物理特性の影響が相乗されて局所加熱が発生することがある。冷凍食品の解凍においては、氷が解けて水になった領域に加熱エネルギが集中するので局所加熱現象が顕著に現れ、部分煮えと未解凍とが共存してしまう問題を有している。   In the microwave oven, the size of the heating chamber for storing the object to be heated is approximately 30 to 40 cm in width and depth, and the height is approximately 20 cm. On the other hand, the wavelength of the microwave used is about 12 cm, and a strong and weak electric field distribution is inevitably generated in the heating chamber. Furthermore, the effect of the shape of the object to be heated and its physical characteristics is synergistic, and local heating occurs. There is. In the thawing of frozen foods, the heating energy is concentrated in the area where the ice melts and becomes water, so that the local heating phenomenon appears prominently, and there is a problem that partial boiling and unthawed coexist.

波長の長い高周波を利用し、被加熱物を電極に挟んで誘電加熱する方法は、歴史が古くいまでも工業用としてバッチ方式やベルトコンベア方式が用いられている。これらは大型の冷凍品の処理や冷凍品の多量処理のために大型の装置構成であり、かつ装置の操作も熟練者が行っている。   The method of performing dielectric heating by using a high-frequency wave having a long wavelength and sandwiching an object to be heated between electrodes has a long history, and the batch method and the belt conveyor method are still used for industrial purposes. These are large-scale apparatus configurations for processing large-scale frozen products and large quantities of frozen products, and the operation of the apparatus is also performed by skilled workers.

一方、この電極を用いた装置の家庭用装置への展開も古くから検討されてきたが、生活上の利便性あるいは使用上の利便性の価値をユーザに提供できるまでには至っていない。   On the other hand, development of a device using this electrode to a home device has been studied for a long time, but it has not yet been possible to provide users with the value of convenience in life or convenience in use.

家庭用装置としての実用価値を提供することを目的とした従来のこの種の高周波加熱装置は、誘電加熱時に使用する電極の一方がマイクロ波加熱時に被加熱物を載置するターンテーブルと兼用させ、他方の電極は上下方向に昇降する構成としている(例えば、特許文献1参照)。   This type of conventional high-frequency heating device intended to provide practical value as a household device is used as a turntable on which one of the electrodes used during dielectric heating is used to place an object to be heated during microwave heating. The other electrode is configured to move up and down in the vertical direction (see, for example, Patent Document 1).

この特許文献1によれば、電極への高周波の給電は、電極に相対して配置した結合用電極を備え、結合用電極に給電された高周波を静電容量結合により電極側に伝える構成としている。
特開平9−92455号公報(特許請求の範囲、図1)
According to this Patent Document 1, high-frequency power feeding to an electrode includes a coupling electrode arranged opposite to the electrode, and transmits the high frequency fed to the coupling electrode to the electrode side by capacitive coupling. .
JP-A-9-92455 (Claims, FIG. 1)

しかしながら、前記従来の構成では、マイクロ波加熱時に電極と相対する結合用電極にマイクロ波が重畳し、この結果、結合用電極に結線された給電線を通ってマイクロ波が加熱室外に漏洩する課題を有している。   However, in the conventional configuration, the microwave is superimposed on the coupling electrode facing the electrode during microwave heating, and as a result, the microwave leaks out of the heating chamber through the feed line connected to the coupling electrode. have.

また、下側に位置する電極に関しては、マイクロ波加熱時に被加熱物を載置するターンテーブルとして使用し、そのターンテーブルの表面に非金属製の保護材を装着したものであるが、底面積の大きな被加熱物をマイクロ波の電波で加熱する場合に、このようなターンテーブル構成では被加熱物の中心部の加熱が不足する課題を有していた。   The lower electrode is used as a turntable for placing an object to be heated during microwave heating, and a non-metallic protective material is attached to the surface of the turntable. When heating a large object to be heated with microwave radio waves, such a turntable configuration has a problem that heating of the center of the object to be heated is insufficient.

本発明は、前記従来の課題を解決するもので、誘電加熱用の電極およびその電極への高周波給電の構成および配置を工夫し、マイクロ波加熱時および誘電加熱時のそれぞれで使い勝手の良い高周波加熱装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, devise the configuration and arrangement of dielectric heating electrodes and high-frequency power feeding to the electrodes, and easy-to-use high-frequency heating during microwave heating and dielectric heating. An object is to provide an apparatus.

前記従来の課題を解決するために、本発明の高周波加熱装置は、加熱室において被加熱物を挟む電極と、高周波を発生する高周波電源と、前記高周波を前記電極に給電する給電線とを備え、前記給電線は前記加熱室壁面を貫通する領域で略同軸線構成とし、前記加熱室の外側に同軸チョーク構成を配し、加熱室の内側に同軸線の外部導体を突出させ、その外部導体の先端に絶縁部材を延在させる構成としたものである。   In order to solve the conventional problem, a high-frequency heating device of the present invention includes an electrode that sandwiches an object to be heated in a heating chamber, a high-frequency power source that generates a high frequency, and a power supply line that supplies the high frequency to the electrode. The feeder line has a substantially coaxial line configuration in a region penetrating the wall surface of the heating chamber, a coaxial choke configuration is arranged outside the heating chamber, and an outer conductor of the coaxial line protrudes inside the heating chamber, and the outer conductor An insulating member is extended at the tip of each.

これによって、給電線は加熱室壁面と同電位である略同軸線の外部導体に対して絶縁し、誘電加熱時に給電線まわりに生じようとする放電発生を解消させている。また、マイクロ波加熱時に給電線に重畳して加熱室外に漏洩しようとするマイクロ波は、加熱室内に突出させた外部導体によって伝送方向を給電線方向に規定し、給電線を伝送するマイクロ波に対して同軸チョークを確実に作用させてマイクロ波の加熱室外への漏洩を抑制させている。   As a result, the power supply line is insulated from the outer conductor of the substantially coaxial line that has the same potential as the wall surface of the heating chamber, and the occurrence of discharge that tends to occur around the power supply line during dielectric heating is eliminated. In addition, microwaves that are superimposed on the power supply line during microwave heating and leak out of the heating chamber are defined as the direction of the power supply line by the outer conductor protruding into the heating chamber, and the microwave that transmits the power supply line On the other hand, the coaxial choke is reliably operated to suppress the leakage of the microwave to the outside of the heating chamber.

本発明の高周波加熱装置は、電極に高周波を給電する給電線まわりでの放電防止とマイクロ波漏洩抑制を確実に保証できるので、マイクロ波加熱および誘電加熱のそれぞれの機能を付帯した高周波加熱装置を提供することができる。   Since the high-frequency heating device of the present invention can reliably guarantee the prevention of discharge and the suppression of microwave leakage around the power supply line that feeds high-frequency waves to the electrodes, the high-frequency heating device with the respective functions of microwave heating and dielectric heating is provided. Can be provided.

第1の発明は、被加熱物を収納する加熱室と、前記加熱室に供給するマイクロ波を発生するマイクロ波発生手段と、前記加熱室において被加熱物を挟む電極と、高周波を発生する高周波電源と、前記高周波を前記電極に給電する給電線とを備えた高周波加熱装置において、前記給電線は前記加熱室壁面を貫通する貫通部で略同軸線構成とし、前記加熱室の外側に同軸チョーク構成を配し、加熱室の内側に同軸線の外部導体を突出させ、その外部導体の先端に絶縁部材を延在させる構成とすることにより、給電線は加熱室壁面と同電位である略同軸線の外部導体に対して絶縁し、誘電加熱時に給電線まわりに生じようとする放電発生を解消させている。また、マイクロ波加熱時に給電線に重畳して加熱室外に漏洩しようとするマイクロ波は、加熱室内に突出させた外部導体によって伝送方向を給電線方向に規定し、給電線を伝送するマイクロ波に対して同軸チョークを確実に作用させてマイクロ波の加熱室外への漏洩を抑制させている。そして、電極に高周波を給電する給電線まわりでの放電防止とマイクロ波漏洩抑制を確実に保証できるので、マイクロ波加熱および誘電加熱のそれぞれの機能を付帯した高周波加熱装置を提供することができる。   A first invention is a heating chamber for storing an object to be heated, a microwave generating means for generating a microwave to be supplied to the heating chamber, an electrode for sandwiching the object to be heated in the heating chamber, and a high frequency for generating a high frequency. In the high frequency heating apparatus including a power source and a power supply line for supplying the high frequency to the electrode, the power supply line has a substantially coaxial line configuration in a through portion that penetrates the wall surface of the heating chamber, and a coaxial choke outside the heating chamber. By arranging the configuration so that the outer conductor of the coaxial line protrudes inside the heating chamber and the insulating member extends to the tip of the outer conductor, the feeder line is substantially coaxial with the same potential as the wall surface of the heating chamber. It insulates from the outer conductor of the wire and eliminates the generation of discharge around the feeder line during dielectric heating. In addition, microwaves that are superimposed on the power supply line during microwave heating and leak out of the heating chamber are defined as the direction of the power supply line by the outer conductor protruding into the heating chamber, and the microwave that transmits the power supply line On the other hand, the coaxial choke is reliably operated to suppress the leakage of the microwave to the outside of the heating chamber. In addition, since it is possible to reliably ensure prevention of discharge and suppression of microwave leakage around the power supply line that supplies high frequency to the electrode, it is possible to provide a high-frequency heating device having functions of microwave heating and dielectric heating.

第2の発明は、特に、第1の発明の給電線の加熱室壁面の貫通部を、電極面に対向する加熱室壁面より外側に配置したことにより、被加熱物を挟んだ電極間のインピーダンスによって電極に供給される高周波電界強度は変化するが、それに伴う電極と加熱室壁面との間に生じる高周波電界の変化の影響を回避した位置に貫通部を配置して、貫通部での給電線の絶縁性を保証することができる。   In the second invention, in particular, the impedance between the electrodes sandwiching the object to be heated is provided by disposing the through portion of the heating chamber wall surface of the power supply line of the first invention outside the heating chamber wall surface facing the electrode surface. The strength of the high-frequency electric field supplied to the electrode varies depending on the position of the feed-line at the through-portion by placing the penetrating part at a position that avoids the influence of the change in the high-frequency electric field generated between the electrode and the heating chamber wall surface Insulating properties can be guaranteed.

第3の発明は、特に、第1の発明の給電線の略同軸線構成には、少なくとも弾性体の絶縁部材を配設したことにより、高周波損失による給電線の発熱に伴う給電線の線膨張に対して絶縁性能を維持することができる。   In the third invention, in particular, the substantially coaxial line configuration of the power supply line of the first invention is provided with at least an elastic insulating member, so that the power supply line expands due to heat generation of the power supply line due to high-frequency loss. Insulation performance can be maintained.

第4の発明は、特に、第1の発明の電極は固定電極と可動電極とで構成し、被加熱物を載置する誘電材料からなる載置板を備え、載置板の下方に固定電極を設けたことにより、マイクロ波加熱と誘電加熱とのそれぞれに対して被加熱物を同様の載置方法ですればよく使い勝手のよい装置を提供できる。また、この固定電極を高圧側電極とすれば、固定電極に触ることがない構成となり安全性の確保ができる。   In the fourth invention, in particular, the electrode of the first invention is composed of a fixed electrode and a movable electrode, and includes a mounting plate made of a dielectric material on which an object to be heated is mounted, and the fixed electrode is provided below the mounting plate. By providing the above, it is possible to provide a device that is easy to use as long as the object to be heated is placed in the same manner for microwave heating and dielectric heating. If this fixed electrode is a high-voltage side electrode, the fixed electrode is not touched, and safety can be ensured.

第5の発明は、特に、第4の発明の固定電極が対向する加熱室壁面に複数の開孔を設けたことにより、固定電極と加熱室壁面との間に生じる容量成分を減少させて、無効電力を低減し、被加熱物を効率よく誘電加熱することができる。   In the fifth invention, in particular, by providing a plurality of openings in the heating chamber wall faced by the fixed electrode of the fourth invention, the capacitance component generated between the fixed electrode and the heating chamber wall surface is reduced, Reactive power can be reduced and the object to be heated can be efficiently dielectrically heated.

第6の発明は、特に、第4の発明の固定電極は、その略中央部に開孔を配し、開孔の周辺を可動電極側に凸状に形成したことにより、開孔の存在による電極間の高周波電界の弱まりに対し凸部による電極間距離の短縮によって高周波電界を強くし、開孔に対向する被加熱物の誘電加熱を促進させることができる。   According to the sixth aspect of the invention, in particular, the fixed electrode of the fourth aspect of the invention has an opening at a substantially central portion thereof, and the periphery of the opening is formed in a convex shape on the movable electrode side. The high frequency electric field can be strengthened by shortening the distance between the electrodes by the convex portion against the weakening of the high frequency electric field between the electrodes, and the dielectric heating of the heated object facing the opening can be promoted.

第7の発明は、特に、第6の発明の固定電極の開孔は、マイクロ波の波長の略1/4以上の直径を有する大きさとしたことにより、マイクロ波加熱時に大きな被加熱物に対して開孔に対向する被加熱物の部位にもマイクロ波を十分に供給でき被加熱物の加熱の均一化を図ることができる。   According to the seventh aspect of the invention, in particular, the aperture of the fixed electrode of the sixth aspect of the invention has a diameter that is about 1/4 or more of the wavelength of the microwave. Thus, the microwave can be sufficiently supplied to the portion of the object to be heated that faces the opening, and the heating of the object to be heated can be made uniform.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における誘電加熱時の状態を示す高周波加熱装置の正面断面図、図2は図1の右側より見た断面構成図、図3は図1の給電線の略同軸線構成の構成図、図4は図1の固定電極の構成図である。
(Embodiment 1)
FIG. 1 is a front sectional view of a high-frequency heating device showing a state during dielectric heating in the first embodiment of the present invention, FIG. 2 is a sectional configuration view seen from the right side of FIG. 1, and FIG. FIG. 4 is a configuration diagram of the fixed electrode of FIG. 1.

図1〜図4において、被加熱物を収納する加熱室10は、マイクロ波を閉じ込めることができる金属材料の境界面である左壁面11、右壁面12、底壁面13、上壁面14、奥壁面15および加熱室内を透視できるパンチング板を有する開閉扉16とで構成し、加熱室10内には被加熱物17を載置する誘電材料からなる載置板18を配置している。載置板18の下方には誘電加熱用の一方の電極である固定電極19を配し、載置板18の上方には他方の電極である可動電極20を配し、この可動電極20はスライドしながら上下方向に可動する構成としている。また、固定電極18の下方にはマイクロ波を放射する電波放射手段21を配置している。導波管22はマイクロ波発生手段であるマグネトロン23を一端側に配し、マグネトロン23が発生するマイクロ波を伝送して他端側に配した電波放射手段21に導く。電波放射手段21の回転軸は導波管22内に挿入している。モータ24は電波放射手段21の回転軸と嵌合する出力軸を有し、このモータ24を動作させることで電波放射手段21が回転する。電波放射手段21は、開口部を有する円板の構成からなり、回転に伴って電波の放射方向あるいは放射分布が変化するように構成している。なお、電波放射手段21は、長板、導波管型アンテナなどの構成も採れる。   1 to 4, a heating chamber 10 that accommodates an object to be heated includes a left wall surface 11, a right wall surface 12, a bottom wall surface 13, an upper wall surface 14, and a back wall surface, which are boundary surfaces of a metal material that can confine microwaves. 15 and an opening / closing door 16 having a punching plate through which the heating chamber can be seen through, and a mounting plate 18 made of a dielectric material on which the object to be heated 17 is mounted is disposed in the heating chamber 10. A fixed electrode 19 that is one electrode for dielectric heating is disposed below the mounting plate 18, and a movable electrode 20 that is the other electrode is disposed above the mounting plate 18, and the movable electrode 20 slides. However, it is configured to move vertically. A radio wave radiation means 21 that radiates microwaves is disposed below the fixed electrode 18. The waveguide 22 has a magnetron 23 which is a microwave generating means arranged on one end side, transmits the microwave generated by the magnetron 23 and guides it to the radio wave radiating means 21 arranged on the other end side. The rotation axis of the radio wave radiation means 21 is inserted into the waveguide 22. The motor 24 has an output shaft that fits with the rotating shaft of the radio wave radiating means 21, and the radio wave radiating means 21 is rotated by operating the motor 24. The radio wave radiation means 21 has a disk configuration having an opening, and is configured such that the radio wave radiation direction or radiation distribution changes with rotation. The radio wave radiating means 21 may be configured as a long plate, a waveguide antenna, or the like.

固定電極19は、その略中央部(加熱室の左右および前後方向の略中央部に対応)にマイクロ波の波長の1/4以上の直径からなる開孔19aを配し、開孔19aの周辺部は、可動電極20側に凸状加工19bを施した構成としている。   The fixed electrode 19 is provided with an opening 19a having a diameter of 1/4 or more of the wavelength of the microwave at a substantially central portion (corresponding to a substantially central portion in the left and right and front and rear directions of the heating chamber), and the periphery of the opening 19a. The part has a configuration in which a convex processing 19b is applied to the movable electrode 20 side.

開孔19aの直径は、2450MHz帯のマイクロ波を使用する場合、31mm以上が好ましく、一方最大でも50mm以下に選択する。また、開孔周辺の凸状部の高さは、固定電極19平面に対して略3mm程度としている。   The diameter of the opening 19a is preferably 31 mm or more when using a microwave of 2450 MHz band, and is selected to be 50 mm or less at the maximum. Further, the height of the convex portion around the opening is about 3 mm with respect to the plane of the fixed electrode 19.

また固定電極19と加熱室の壁面との距離G1、G2は、少なくとも使用するマイクロ波の波長の1/4以上としている。   The distances G1 and G2 between the fixed electrode 19 and the wall surface of the heating chamber are at least 1/4 or more of the wavelength of the microwave used.

一方、可動電極20の周縁部は、固定電極19の周縁部よりも加熱室の壁面側に近い構成(図1のW1、図2のW2が相当する)としている。そして可動電極20には、支持部25を介して二つの回転軸26、27を組立ている。これら二つの回転軸26、27はそれぞれ支持部25に設けた貫通穴の中を自由に回転できるような関係に構成し、回転軸26、27の回転に伴う可動電極20の昇降動作において、可動電極20が固定電極19に対して略平行に昇降する構成としている。そして一方の回転軸27には弾性体の金属ワイヤ28を設けている。この金属ワイヤ28は一端を可動電極20に接続し、他端は回転軸27に溶接固定している。そして可動電極20はこの金属ワイヤ28、回転軸27を介して加熱室10の金属壁面と導通させている。モータ29は、回転軸26、27を回転駆動させるものである。なお、この回転駆動には複数の歯車などを用いて構成した駆動系を用いることでモータ29の負荷を軽減し、小型モータを利用することができる。また、回転軸26、27は加熱室10の壁面を貫通させて回転支持しており、この支持部にはそれぞれ電波シール機構30を配している。   On the other hand, the peripheral part of the movable electrode 20 is configured closer to the wall surface side of the heating chamber than the peripheral part of the fixed electrode 19 (corresponding to W1 in FIG. 1 and W2 in FIG. 2). Two movable shafts 26 and 27 are assembled to the movable electrode 20 via a support portion 25. These two rotary shafts 26 and 27 are configured so as to be freely rotatable in the through holes provided in the support portion 25, respectively, and are movable in the lifting and lowering operation of the movable electrode 20 accompanying the rotation of the rotary shafts 26 and 27. The electrode 20 moves up and down substantially parallel to the fixed electrode 19. One rotating shaft 27 is provided with an elastic metal wire 28. One end of the metal wire 28 is connected to the movable electrode 20, and the other end is fixed to the rotating shaft 27 by welding. The movable electrode 20 is electrically connected to the metal wall surface of the heating chamber 10 through the metal wire 28 and the rotating shaft 27. The motor 29 rotates the rotary shafts 26 and 27. In addition, by using a drive system configured with a plurality of gears or the like for this rotational drive, the load on the motor 29 can be reduced and a small motor can be used. The rotary shafts 26 and 27 are rotatably supported by penetrating the wall surface of the heating chamber 10, and a radio wave seal mechanism 30 is disposed on each of the support portions.

また、固定電極19は載置板18の下面に近接して配置するように絶縁材料からなる支持柱32にて加熱室の底壁面13から所定の間隙でもって支持させている。   Further, the fixed electrode 19 is supported by a support column 32 made of an insulating material with a predetermined gap from the bottom wall surface 13 of the heating chamber so as to be disposed close to the lower surface of the mounting plate 18.

高周波電源33は各電極に供給する高周波(たとえば13.56MHz、27.12MHz)を発生するものである。電力検知部34は高周波電源33から電極の方向に伝送する入射電力および電極側から高周波電源側に戻ってくる反射電力を検知する(CM型SWR回路など)ものである。整合回路35は電極に直列接続したコイルと並列接続したコンデンサとの回路構成からなり、少なくともコイルはそのインピーダンスを連続的に可変できる構成として被加熱物を含む電極インピーダンスを高周波電源33の出力インピーダンスに整合させるものである。整合回路35の高圧側は固定電極19に結線し、アース側は加熱室10の壁面に結線している。高圧側の給電線36は加熱室10の壁面部を貫通する領域を略同軸線構成37(詳細は図3を用いて後述する)としている。   The high frequency power source 33 generates a high frequency (for example, 13.56 MHz, 27.12 MHz) to be supplied to each electrode. The power detector 34 detects incident power transmitted from the high-frequency power source 33 in the direction of the electrode and reflected power returning from the electrode side to the high-frequency power source side (such as a CM type SWR circuit). The matching circuit 35 has a circuit configuration of a coil connected in series to an electrode and a capacitor connected in parallel, and at least the coil has a configuration in which the impedance of the coil can be continuously changed. To match. The high-voltage side of the matching circuit 35 is connected to the fixed electrode 19, and the ground side is connected to the wall surface of the heating chamber 10. The high-voltage power supply line 36 has a substantially coaxial line configuration 37 (details will be described later with reference to FIG. 3) in a region penetrating the wall surface of the heating chamber 10.

制御部38は、電力検知部34の検知信号に基づいて、高周波電源33の出力、整合回路35のコイルやコンデンサの値の可変制御あるいはモータ29の動作制御をする。なお、図2の破線は装置本体ボディ39を示す。   Based on the detection signal of the power detection unit 34, the control unit 38 performs variable control of the output of the high frequency power supply 33, the values of the coils and capacitors of the matching circuit 35, or operation control of the motor 29. 2 indicates the apparatus main body 39.

次に、固定電極19へ高周波を給電する給電線36まわりの構成について説明する。この給電線36は加熱室底壁面13を貫通配線とし、この貫通領域を略同軸線構成としている。すなわち、図3において、加熱室底壁面13は、加熱室の内側に絞り加工によって外部導体に相当する突出部101を形成している。また、加熱室底壁面13の外側には同軸チョーク102を配する。この同軸チョーク102は、第一の構造体103と第二の構造体104から構成している。これらの第一および第二の構造体103、104はそれぞれ所定の内径と長さで構成し、使用するマイクロ波の周波数帯において同軸線の外部導体の切れ目105におけるインピーダンスが略無限大になるように構成している。また、この同軸チョーク102は、加熱室底壁面13に溶接組立(あるいはねじ組立)としている。   Next, a configuration around the feeder line 36 that feeds a high frequency to the fixed electrode 19 will be described. The feed line 36 has a heating chamber bottom wall surface 13 as a through wiring, and the through region has a substantially coaxial line configuration. That is, in FIG. 3, the heating chamber bottom wall surface 13 forms a protruding portion 101 corresponding to an external conductor by drawing processing inside the heating chamber. A coaxial choke 102 is disposed outside the heating chamber bottom wall surface 13. The coaxial choke 102 includes a first structure 103 and a second structure 104. These first and second structures 103 and 104 are each configured with a predetermined inner diameter and length so that the impedance at the cut 105 of the outer conductor of the coaxial line becomes substantially infinite in the microwave frequency band to be used. It is configured. The coaxial choke 102 is welded (or screwed) to the heating chamber bottom wall surface 13.

給電線36は、同軸チョーク102および突出部101を貫通して配線するが、同軸チョーク102および突出部101に対して絶縁部材を介して略同心状に配線している。この絶縁部材は、弾性体の絶縁部材106と成形加工した非弾性体の絶縁部材107を使用し、弾性体絶縁部材106(たとえば、シリコンゴムチューブ)を内側に配置させている。また、非弾性体の絶縁部材107は、突出部101の先端からさらに延在して配置させている。また、給電線36の加熱室壁面の貫通部は固定電極19が対向する加熱室底壁面13の対向領域よりも外側に配置させている。これにより、給電線36は他端を略90度に丸曲げして固定電極19にねじ108により組立て接続させている。   The power supply line 36 passes through the coaxial choke 102 and the protruding portion 101 and is wired substantially concentrically with respect to the coaxial choke 102 and the protruding portion 101 via an insulating member. As this insulating member, an elastic insulating member 106 and a molded non-elastic insulating member 107 are used, and the elastic insulating member 106 (for example, a silicon rubber tube) is disposed inside. The inelastic insulating member 107 is further extended from the tip of the protruding portion 101. Further, the through portion of the heating chamber wall surface of the power supply line 36 is disposed outside the facing region of the heating chamber bottom wall surface 13 where the fixed electrode 19 faces. Thereby, the other end of the power supply line 36 is bent to approximately 90 degrees and is assembled and connected to the fixed electrode 19 by the screw 108.

なお、同軸チョークの構成例としては、第一の構造体103は内径15.5mm、長さ10.0mm、板厚さ0.5mm、第二の構造体104は、内側が、内径8.5mm、長さ13.5mm、板厚さ0.5mm、外側が、内径27.5mm、長さ16.5mm、板厚さ0.5mmである。また、突出部101は、内径8.5mm、長さ6mm、突出部101の先端からの絶縁部材107の長さは6mm、給電線36は直径3mmである。   As a configuration example of the coaxial choke, the first structure 103 has an inner diameter of 15.5 mm, a length of 10.0 mm, a plate thickness of 0.5 mm, and the second structure 104 has an inner diameter of 8.5 mm on the inner side. The length is 13.5 mm, the plate thickness is 0.5 mm, and the outside has an inner diameter of 27.5 mm, a length of 16.5 mm, and a plate thickness of 0.5 mm. The protruding portion 101 has an inner diameter of 8.5 mm, a length of 6 mm, the length of the insulating member 107 from the tip of the protruding portion 101 is 6 mm, and the feeder line 36 has a diameter of 3 mm.

また、固定電極19が対向する加熱室底壁面13には複数の開孔13aを設けている。この開孔13aは、マイクロ波に対しては漏洩防止構造として作用するものであり、一例として直径3mmの孔を開口率約50%で配置させている。なお、導波管22の管壁面に対応する領域は開孔13aの直径2mmの孔を開口率約40%で配置している。   In addition, a plurality of apertures 13 a are provided in the heating chamber bottom wall surface 13 facing the fixed electrode 19. The opening 13a functions as a leakage prevention structure for microwaves, and as an example, a hole having a diameter of 3 mm is arranged with an opening ratio of about 50%. In the region corresponding to the tube wall surface of the waveguide 22, holes having a diameter of 2 mm of the opening 13a are arranged with an opening ratio of about 40%.

以上のような構成において、給電線36を外部導体に対して二重絶縁構成とし、さらに突出部101との間に絶縁部材107を介在させた構成により、誘電加熱時に固定電極19近傍での給電線36に生じる高電圧に伴う放電発生を解消させている。また、マイクロ波加熱時に給電線に重畳して加熱室外に漏洩しようとするマイクロ波に対しては、加熱室内に突出させた外部導体によって伝送方向を給電線方向に規定し、給電線を伝送するマイクロ波に対して同軸チョークを確実に作用させてマイクロ波の加熱室外への漏洩を抑制させている。そして、電極に高周波を給電する給電線まわりでの放電防止とマイクロ波漏洩抑制を確実に保証できるので、マイクロ波加熱および誘電加熱のそれぞれの機能を付帯した高周波加熱装置を提供することができる。   In the configuration as described above, the power supply line 36 has a double insulation configuration with respect to the outer conductor, and the insulation member 107 is interposed between the protruding portion 101 and the power supply near the fixed electrode 19 during dielectric heating. The occurrence of discharge due to the high voltage generated in the electric wire 36 is eliminated. For microwaves that are superimposed on the power supply line during microwave heating and are going to leak out of the heating chamber, the transmission direction is defined as the direction of the power supply line by the external conductor protruding into the heating chamber, and the power supply line is transmitted. A coaxial choke is reliably applied to the microwave to suppress leakage of the microwave to the outside of the heating chamber. In addition, since it is possible to reliably ensure prevention of discharge and suppression of microwave leakage around the power supply line that supplies high frequency to the electrode, it is possible to provide a high-frequency heating device having functions of microwave heating and dielectric heating.

また、給電線36の加熱室壁面の貫通部を、電極面に対向する加熱室壁面より外側に配置したことにより、被加熱物を挟んだ電極間のインピーダンスによって電極に供給される高周波電界強度は変化するが、それに伴う電極と加熱室壁面との間に生じる高周波電界の変化の影響を回避した位置に貫通部を配置して、貫通部での給電線の絶縁性を保証することができる。   In addition, by arranging the through portion of the heating chamber wall surface of the power supply line 36 outside the heating chamber wall surface facing the electrode surface, the high-frequency electric field strength supplied to the electrode by the impedance between the electrodes sandwiching the object to be heated is Although it changes, a penetration part can be arrange | positioned in the position which avoided the influence of the change of the high frequency electric field produced between the electrode and heating chamber wall surface in connection with it, and the insulation of the feeder in a penetration part can be ensured.

また、給電線36の略同軸線構成部には、少なくとも弾性体の絶縁部材106を配設したことにより、高周波損失による給電線36の発熱に伴う給電線36の線膨張に対して絶縁性能を維持することができる。   In addition, since at least an elastic insulating member 106 is provided in the substantially coaxial line constituent portion of the power supply line 36, insulation performance against linear expansion of the power supply line 36 due to heat generation of the power supply line 36 due to high frequency loss is provided. Can be maintained.

さらに、固定電極19の下方に電波放射手段21を設けた構成とすることで誘電加熱における電極間に生じる電界方向と同様の方向である被加熱物の下方からマイクロ波を放射させることにより、被加熱物の載置方法はターンテーブル無しの共用構成(載置板18構成)にでき、マイクロ波加熱と誘電加熱使用とのそれぞれに対して被加熱物を同様の載置方法ですればよく使い勝手のよい装置を提供できる。また、この固定電極19を高圧側電極とすれば、固定電極に触ることがない構成となり安全性の確保ができる。   Further, by providing the radio wave radiation means 21 below the fixed electrode 19, microwaves are radiated from below the object to be heated in the same direction as the electric field generated between the electrodes in dielectric heating. The heated object can be placed in a shared configuration without a turntable (mounting plate 18 structure), and the heated object can be placed in the same manner for microwave heating and dielectric heating. A good device can be provided. Further, if the fixed electrode 19 is a high-voltage side electrode, the structure does not touch the fixed electrode, and safety can be ensured.

また、固定電極19が対向する加熱室壁面13に複数の開孔13aを設けたことにより、固定電極19と加熱室壁面13との間に生じる容量成分を減少させて、無効電力を低減し、被加熱物を効率よく誘電加熱することができる。   Further, by providing a plurality of apertures 13a in the heating chamber wall surface 13 to which the fixed electrode 19 opposes, the capacitance component generated between the fixed electrode 19 and the heating chamber wall surface 13 is reduced, and the reactive power is reduced. The object to be heated can be efficiently dielectrically heated.

また、固定電極19の中央部に設けた開孔19aは、略円形形状とし、その直径は使用するマイクロ波の波長の1/4以上としたことより開孔19aはマイクロ波を確実に通過させることができ、開孔19aに対向する被加熱物の部位にもマイクロ波を十分に供給でき被加熱物のマイクロ波加熱時の加熱の均一化をより確実に保証できる。なお、この開孔19aは最大50mm以下にすることで誘電加熱時の電極中央での高周波電界の不存在領域を抑制することができる。   In addition, the opening 19a provided in the central portion of the fixed electrode 19 has a substantially circular shape, and the diameter of the opening 19a is not less than 1/4 of the wavelength of the microwave to be used. Therefore, it is possible to sufficiently supply the microwave to the portion of the object to be heated that faces the opening 19a, and it is possible to more reliably guarantee the uniform heating of the object to be heated during the microwave heating. It should be noted that by setting the opening 19a to a maximum of 50 mm or less, it is possible to suppress a region where no high frequency electric field exists at the center of the electrode during dielectric heating.

また、少なくとも固定電極19の開孔19aの周辺を可動電極側に凸状19bに形成したことにより、開孔19aの存在による電極間の高周波電界の弱まりに対し凸状部による電極間距離の短縮によって高周波電界を強くし、開孔19aに対向する被加熱物の誘電加熱を促進させることができる。また、この凸状加工19bをしたことにより、固定電極19の機械的強度を高くし熱歪の発生を抑制することができる。   Further, by forming at least the periphery of the opening 19a of the fixed electrode 19 in the convex shape 19b on the movable electrode side, the distance between the electrodes is shortened by the convex portion against the weakening of the high-frequency electric field between the electrodes due to the presence of the opening 19a. Thus, the high frequency electric field can be strengthened, and the dielectric heating of the object to be heated facing the opening 19a can be promoted. Further, by performing this convex processing 19b, the mechanical strength of the fixed electrode 19 can be increased and the occurrence of thermal strain can be suppressed.

また、固定電極19と加熱室の壁面との距離は、少なくとも使用するマイクロ波の波長の1/4以上としたものであり、これにより固定電極19の周辺からも満遍なくマイクロ波を被加熱物側に供給し被加熱物の加熱の均一化を図ることができる。   In addition, the distance between the fixed electrode 19 and the wall surface of the heating chamber is at least 1/4 or more of the wavelength of the microwave to be used, so that the microwave can be evenly distributed from the periphery of the fixed electrode 19 to the heated object side. It is possible to make the heating of the object to be heated uniform.

また、可動電極20の周縁部は、固定電極19の周縁部よりも加熱室の壁面側に近い構成としたことにより被加熱物の収納位置が広いという印象の安心感を使用者に与えるとともに、電極周辺部における端部での電界分布の集中を緩和して使い勝手の良い装置を提供できる。   Further, the peripheral part of the movable electrode 20 gives the user a sense of security that the storage position of the object to be heated is wide by adopting a configuration closer to the wall surface side of the heating chamber than the peripheral part of the fixed electrode 19, A user-friendly device can be provided by reducing the concentration of the electric field distribution at the end portion around the electrode.

さらに可動電極20は、単なる上下昇降ではなく、スライドしながら昇降するものである。そして、上壁面14の直下に収納する構成としている。この昇降動作の中で、可動電極20は固定電極19に対して略平行に対向しながら対向間隔を可変するように動作させており、これにより被加熱物の厚みに応じた対向間隔の調整を可能にし被加熱物に供給する誘電加熱エネルギを最大化し短時間加熱を図ることができる。   Furthermore, the movable electrode 20 moves up and down while sliding, not simply moving up and down. And it is set as the structure accommodated directly under the upper wall surface 14. FIG. During this up and down operation, the movable electrode 20 is operated so as to vary the facing interval while facing the fixed electrode 19 substantially in parallel, thereby adjusting the facing interval according to the thickness of the object to be heated. It is possible to maximize the dielectric heating energy supplied to the object to be heated and to perform heating for a short time.

次に、制御部38の誘電加熱時の動作を説明する。   Next, the operation of the control unit 38 during dielectric heating will be described.

被加熱物が収納された後、誘電加熱の開始キーが押されると、モータ29を動作させて可動電極20を下降し被加熱物と所定の間隙を有する位置にセットする。その後、高周波電源33を50W程度の小電力出力にて動作させ、電力検知部34から得られる反射電力を最小にするように整合回路を動作させる。反射電力が最小になった後、高周波電源33の出力を最大化し、被加熱物を誘電加熱していく。この加熱中にも電力検知部34からの検知信号を随時取りこみ、反射電力が最小になるように整合回路35(あるいはモータ29)を動作制御する。その後、所定の加熱時間の経過、あるいは電力検知部の信号変化などに基づく加熱終了時期判定により誘電加熱の終了時期が来ると高周波電源33の動作を停止し、モータ29を動作して可動電極20を加熱室の上壁面14直下に上昇移動して収納する。   After the object to be heated is stored, when the dielectric heating start key is pressed, the motor 29 is operated to lower the movable electrode 20 and set it at a position having a predetermined gap from the object to be heated. Thereafter, the high frequency power supply 33 is operated with a low power output of about 50 W, and the matching circuit is operated so as to minimize the reflected power obtained from the power detection unit 34. After the reflected power is minimized, the output of the high frequency power supply 33 is maximized, and the object to be heated is dielectrically heated. Even during this heating, the detection signal from the power detection unit 34 is taken in at any time, and the operation of the matching circuit 35 (or the motor 29) is controlled so that the reflected power is minimized. Thereafter, when the end time of the dielectric heating comes due to the elapse of a predetermined heating time or the heating end time determination based on the signal change of the power detection unit, the operation of the high frequency power supply 33 is stopped, the motor 29 is operated, and the movable electrode 20 is operated. Is moved up and stored immediately below the upper wall surface 14 of the heating chamber.

なお、誘電加熱時には加熱室10内の空気を対流あるいは給排気させることが望ましい。   Note that it is desirable to convection or supply / exhaust air in the heating chamber 10 during dielectric heating.

次にマイクロ波加熱の場合の主要動作について説明する。マイクロ波加熱の場合、可動電極20は、加熱室上壁面14の直下に収納した状態のままで加熱を実行する。   Next, main operations in the case of microwave heating will be described. In the case of microwave heating, the movable electrode 20 performs heating while being housed immediately below the upper wall surface 14 of the heating chamber.

被加熱物を載置板18の上に載置した後、開閉扉16を閉じ、操作パネル(図示していない)内の操作キーを用いて加熱条件を入力し加熱開始キーを押すことでマイクロ波加熱が開始する。装置に組込んだ制御部(図示していない)は、この加熱開始キーが押されたことを認識すると、マグネトロン23を駆動する電源(図示していない)を動作させる。これによりマグネトロン23がマイクロ波を発生する。発生したマイクロ波は、導波管22を伝送し、導波管22の終端側に設けた電波放射手段21に供給され、加熱室10に放射される。ここで放射されたマイクロ波は、固定電極19の周縁と加熱室壁面との間隙部および固定電極19の中央に設けた開孔19aを通り、載置板18を透過して被加熱物にマイクロ波エネルギを供給し、被加熱物を均一にマイクロ波加熱する。   After the object to be heated is placed on the placing plate 18, the door 16 is closed, the heating condition is input using the operation keys in the operation panel (not shown), and the heating start key is pressed. Wave heating starts. When recognizing that the heating start key has been pressed, a control unit (not shown) incorporated in the apparatus operates a power source (not shown) that drives the magnetron 23. As a result, the magnetron 23 generates microwaves. The generated microwave is transmitted through the waveguide 22, supplied to the radio wave radiation means 21 provided on the terminal end side of the waveguide 22, and radiated into the heating chamber 10. The microwave radiated here passes through the gap 19 between the peripheral edge of the fixed electrode 19 and the wall surface of the heating chamber and the opening 19 a provided in the center of the fixed electrode 19, passes through the mounting plate 18, and is applied to the object to be heated. Wave energy is supplied to uniformly heat the object to be heated.

次に誘電加熱とマイクロ波加熱とを併用する場合の主要動作について説明する。   Next, main operations in the case of using both dielectric heating and microwave heating will be described.

このような加熱として、冷凍食品の「解凍温め」がある。「解凍温め」に対して、まず誘電加熱を行い、引続いてマイクロ波加熱を実行する。各加熱方法の引渡し時の動作について説明する。誘電加熱の終了に伴って高周波電源33の動作を停止するとともに可動電極20を上壁面14の直下に上昇移動させる。その後直ちにマグネトロン23を動作させてマイクロ波加熱への移行を完成させる。   Such heating includes “thawing warming” of frozen food. For “thaw and warm”, first, dielectric heating is performed, and then microwave heating is performed. The operation at the time of delivery of each heating method will be described. As the dielectric heating ends, the operation of the high-frequency power source 33 is stopped and the movable electrode 20 is moved up and directly below the upper wall surface 14. Immediately thereafter, the magnetron 23 is operated to complete the transition to microwave heating.

対向する電極間に生じる高周波電界は冷凍食品を貫通するので、冷凍食品は食品内部まで確実に昇温されるので均一解凍の状態になる。この状態からマイクロ波加熱をすることで、解凍された食品は融解のための熱エネルギ消費を抑制でき、食品全体は所望の適温まで短時間に昇温する。   Since the high-frequency electric field generated between the opposing electrodes penetrates the frozen food, the temperature of the frozen food is surely increased to the inside of the food, so that the food is uniformly thawed. By performing microwave heating from this state, the thawed food can suppress consumption of heat energy for melting, and the whole food is heated to a desired appropriate temperature in a short time.

なお、本発明の実施の形態1に用いた加熱室および電極の構成寸法の一例は、加熱室の形状は、幅415mm、奥行315mm、高さ230mm、固定電極19の形状は、幅280mm、奥行200mm、可動電極20の形状は、幅300mm、奥行220mm、固定電極19と加熱室壁面13との間隙は30mmである。   An example of the dimensions of the heating chamber and the electrodes used in Embodiment 1 of the present invention is that the heating chamber has a width of 415 mm, a depth of 315 mm, a height of 230 mm, and the fixed electrode 19 has a width of 280 mm, a depth. The shape of the movable electrode 20 is 200 mm wide, the depth is 220 mm, and the gap between the fixed electrode 19 and the heating chamber wall surface 13 is 30 mm.

以上のように、本発明にかかる高周波加熱装置は、マイクロ波加熱と誘電加熱との併用が可能になるので、食品加熱、解凍装置、陶芸加熱装置、乾燥装置あるいは生体化学反応装置等の用途に適用できる。   As described above, since the high-frequency heating device according to the present invention can be used in combination with microwave heating and dielectric heating, it can be used for food heating, thawing device, ceramic heating device, drying device, biochemical reaction device, and the like. Applicable.

本発明の実施の形態1の高周波加熱装置の誘電加熱時の正面断面図Front sectional view at the time of dielectric heating of the high-frequency heating device of Embodiment 1 of the present invention 同高周波加熱装置の右側から見た断面図Sectional view seen from the right side of the high-frequency heating device 同高周波加熱装置の給電線の略同軸線構成の構成図Configuration diagram of a substantially coaxial line configuration of the feed line of the high-frequency heating device 同高周波加熱装置の下電極の構成図Configuration diagram of lower electrode of the same high-frequency heating device

符号の説明Explanation of symbols

10 加熱室
13a 複数の開孔(加熱室壁面の開孔)
17 被加熱物
18 載置板
19 固定電極
19a 開孔
19b 凸状
20 可動電極
23 マグネトロン(マイクロ波発生手段)
33 高周波電源
36 給電線
101 突出部(外部導体の突出部)
102 同軸チョーク
106 弾性体の絶縁部材
107 絶縁部材
10 Heating chamber 13a Multiple openings (openings on the wall of the heating chamber)
17 object to be heated 18 mounting plate 19 fixed electrode 19a opening 19b convex 20 movable electrode 23 magnetron (microwave generating means)
33 High-frequency power supply 36 Feed line 101 Projection (projection of external conductor)
102 Coaxial choke 106 Elastic insulating member 107 Insulating member

Claims (7)

被加熱物を収納する加熱室と、前記加熱室に供給するマイクロ波を発生するマイクロ波発生手段と、前記加熱室において被加熱物を挟む電極と、高周波を発生する高周波電源と、前記高周波を前記電極に給電する給電線とを備えた高周波加熱装置であって、前記給電線は前記加熱室壁面を貫通する貫通部で略同軸線の構成を有し、前記貫通部の前記加熱室外側に同軸チョークを配し、前記貫通部の加熱室内側は同軸線の外部導体を突出させ、前記外部導体の先端に絶縁部材を延在させる構成とした高周波加熱装置。 A heating chamber for storing an object to be heated; microwave generation means for generating a microwave to be supplied to the heating chamber; an electrode for sandwiching the object to be heated in the heating chamber; a high-frequency power source for generating a high frequency; A high-frequency heating device including a power supply line for supplying power to the electrode, wherein the power supply line has a substantially coaxial configuration at a penetration portion that penetrates the wall surface of the heating chamber, and is disposed outside the heating chamber of the penetration portion. A high-frequency heating apparatus having a configuration in which a coaxial choke is arranged, an outer conductor of a coaxial line is projected on the heating chamber side of the penetrating portion, and an insulating member is extended to a tip of the outer conductor. 貫通部は、電極面に対向する加熱室壁面より外側に配置した請求項1に記載の高周波加熱装置。 The high-frequency heating device according to claim 1, wherein the penetrating portion is disposed outside a heating chamber wall surface facing the electrode surface. 給電線の略同軸線構成には、少なくとも弾性体の絶縁部材を配設した請求項1に記載の高周波加熱装置。 The high-frequency heating device according to claim 1, wherein at least an insulating member of an elastic body is disposed in the substantially coaxial line configuration of the power supply line. 電極は固定電極と可動電極とで構成し、被加熱物を載置する誘電材料からなる載置板を備え、載置板の下方に固定電極を設けた請求項1に記載の高周波加熱装置。 The high-frequency heating device according to claim 1, wherein the electrode includes a fixed electrode and a movable electrode, and includes a mounting plate made of a dielectric material on which an object to be heated is mounted, and the fixed electrode is provided below the mounting plate. 固定電極が対向する加熱室壁面に複数の開孔を設けた請求項4に記載の高周波加熱装置。 The high frequency heating device according to claim 4, wherein a plurality of apertures are provided in a wall surface of the heating chamber facing the fixed electrode. 固定電極は、その略中央部に開孔を配し、開孔の周辺を可動電極側に凸状に形成した請求項4に記載の高周波加熱装置。 The high-frequency heating device according to claim 4, wherein the fixed electrode is provided with an opening at a substantially central portion thereof, and a periphery of the opening is formed in a convex shape toward the movable electrode. 固定電極の開孔は、マイクロ波の波長の略1/4以上の直径を有する大きさとした請求項6に記載の高周波加熱装置。 The high-frequency heating device according to claim 6, wherein the opening of the fixed electrode has a size having a diameter of approximately ¼ or more of the wavelength of the microwave.
JP2003329630A 2003-09-22 2003-09-22 High-frequency heating apparatus Pending JP2005100673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329630A JP2005100673A (en) 2003-09-22 2003-09-22 High-frequency heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329630A JP2005100673A (en) 2003-09-22 2003-09-22 High-frequency heating apparatus

Publications (1)

Publication Number Publication Date
JP2005100673A true JP2005100673A (en) 2005-04-14

Family

ID=34458823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329630A Pending JP2005100673A (en) 2003-09-22 2003-09-22 High-frequency heating apparatus

Country Status (1)

Country Link
JP (1) JP2005100673A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102331006A (en) * 2011-06-21 2012-01-25 太仓南极风能源设备有限公司 Anti-discharging microwave oven
WO2012117677A1 (en) * 2011-03-02 2012-09-07 三菱電機株式会社 Cooking device
KR101742987B1 (en) * 2010-08-25 2017-06-02 엘지전자 주식회사 A cooking apparatus using microwave
JP2019147348A (en) * 2018-02-28 2019-09-05 精電舎電子工業株式会社 High-frequency welding apparatus
WO2019239995A1 (en) * 2018-06-13 2019-12-19 シャープ株式会社 Dielectric heating device
CN112969253A (en) * 2021-04-21 2021-06-15 肖琴瑛 Device for preventing radio frequency microwave leakage and use method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101742987B1 (en) * 2010-08-25 2017-06-02 엘지전자 주식회사 A cooking apparatus using microwave
WO2012117677A1 (en) * 2011-03-02 2012-09-07 三菱電機株式会社 Cooking device
CN102331006A (en) * 2011-06-21 2012-01-25 太仓南极风能源设备有限公司 Anti-discharging microwave oven
JP2019147348A (en) * 2018-02-28 2019-09-05 精電舎電子工業株式会社 High-frequency welding apparatus
JP7044219B2 (en) 2018-02-28 2022-03-30 精電舎電子工業株式会社 High frequency welding device
WO2019239995A1 (en) * 2018-06-13 2019-12-19 シャープ株式会社 Dielectric heating device
CN112969253A (en) * 2021-04-21 2021-06-15 肖琴瑛 Device for preventing radio frequency microwave leakage and use method thereof
CN112969253B (en) * 2021-04-21 2022-12-30 肖琴瑛 Device for preventing radio frequency microwave leakage and use method thereof

Similar Documents

Publication Publication Date Title
EP2988574B1 (en) Microwave heating device
JP2005100673A (en) High-frequency heating apparatus
KR101765837B1 (en) Solid state defrosting system
US7049566B2 (en) Cooking device
KR20030072340A (en) Device for heating a material by microwave application
JP2005129335A (en) High-frequency heating device
JP2005129335A5 (en)
CN204887520U (en) Microwave heating device
WO2000003564A1 (en) Variable-impedance unit, microwave device using the unit, and microwave heater
JPS5950305B2 (en) High frequency thawing device
JP2016213099A (en) Heating cooker
KR101932046B1 (en) Cooking apparatus using microwaves
KR100727314B1 (en) Thawing apparatus using microwave
JP2004278889A (en) High-frequency heating device
JP2004063309A (en) High-frequency heating apparatus
JP2020202052A (en) Plasma electric field monitor, plasma processing apparatus, and plasma processing method
JP2004206938A (en) High-frequency heating device
US20220225477A1 (en) Domestic microwave device with rotary antenna
EP4326002A1 (en) High-frequency heating apparatus
JP2001307868A (en) High-frequency heating device
JP6055735B2 (en) High frequency heating device
JP2002170660A (en) Microwave oven
JPH11144861A (en) Microwave cavity
JP4832315B2 (en) High frequency heating device
JP4966650B2 (en) Microwave heating device