JP6053907B1 - Chiller device - Google Patents
Chiller device Download PDFInfo
- Publication number
- JP6053907B1 JP6053907B1 JP2015248618A JP2015248618A JP6053907B1 JP 6053907 B1 JP6053907 B1 JP 6053907B1 JP 2015248618 A JP2015248618 A JP 2015248618A JP 2015248618 A JP2015248618 A JP 2015248618A JP 6053907 B1 JP6053907 B1 JP 6053907B1
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- cycle
- temperature
- flow path
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 360
- 238000005057 refrigeration Methods 0.000 claims abstract description 70
- 238000001816 cooling Methods 0.000 claims abstract description 34
- 239000007788 liquid Substances 0.000 claims description 60
- 238000010438 heat treatment Methods 0.000 claims description 42
- 238000002347 injection Methods 0.000 claims description 29
- 239000007924 injection Substances 0.000 claims description 29
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 7
- 230000004069 differentiation Effects 0.000 claims description 5
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 230000010354 integration Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000002826 coolant Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000012267 brine Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000004401 flow injection analysis Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Air Conditioning Control Device (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Other Air-Conditioning Systems (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
【課題】廉価な構成で冷却性能を損わずに圧縮機に過負荷を掛けず、異なる保温範囲条件のワークを同時に高精度に保温制御できる機能を持つチラー装置を提供する。【解決手段】この装置では、ワークW1が接続される冷媒サイクル200−1の蒸発器101−1を共用する冷凍サイクル100に接続された第1の流路〜第4の流路によるバイパス流路を通してワークW2が接続される冷媒サイクル200−2の蒸発器101−2へ冷却低下された冷媒を流す際、CPUがサイクル100のセンサPでの冷媒圧力、センサT3での冷媒温度をPID演算した結果に基づいて生成したパルス信号により第2の流路の弁EV2の開度を一定にしてそこから第1の流路の一部を経由して電動式圧縮機102へ循環する冷媒流量が目標値に収束されるように、第3の流路の弁EV3での開度を可変設定し、駆動制御信号を出力して圧縮機102での運転周波数を所定の範囲内で可変制御する。【選択図】図1The present invention provides a chiller device having a low-cost configuration and a function capable of simultaneously and accurately controlling a workpiece having different heat retention range conditions without overloading a compressor without impairing cooling performance. In this apparatus, a bypass flow path including a first flow path to a fourth flow path connected to a refrigeration cycle 100 sharing an evaporator 101-1 of a refrigerant cycle 200-1 to which a work W1 is connected. When flowing the cooled refrigerant to the evaporator 101-2 of the refrigerant cycle 200-2 to which the workpiece W2 is connected through the CPU, the CPU PID-calculated the refrigerant pressure at the sensor P of the cycle 100 and the refrigerant temperature at the sensor T3. Based on the pulse signal generated based on the result, the opening degree of the valve EV2 of the second flow path is made constant, and the refrigerant flow rate circulating from there to the electric compressor 102 via a part of the first flow path is the target. The opening of the third flow path valve EV3 is variably set so as to converge to the value, and a drive control signal is output to variably control the operating frequency in the compressor 102 within a predetermined range. [Selection] Figure 1
Description
本発明は、保温対象となる各種顧客装置をワークとして、使用者が所定の温度範囲(例えば−10℃〜100℃)で選択的に温度設定して保温するためのチラー装置に係り、詳しくは設定温度とワーク温度との温度差に応じて冷却用の冷凍サイクルに備えられる電動式圧縮機の回転数と加熱用の冷媒サイクルに備えられる加熱装置の加熱温度とを制御装置で制御する機能を持つチラー装置に関する。 The present invention relates to a chiller device for keeping temperature by selectively setting a temperature within a predetermined temperature range (for example, −10 ° C. to 100 ° C.) with various customer devices to be kept warm as workpieces. A function of controlling the number of rotations of the electric compressor provided in the refrigeration cycle for cooling and the heating temperature of the heating device provided in the refrigerant cycle for heating by the control device according to the temperature difference between the set temperature and the workpiece temperature. It relates to a chiller device.
従来、この種のチラー装置には、本出願人により提案されたシングルタイプとして、設定温度がワーク温度に近い温度差(例えば5℃〜10℃)の少ない保温設定時において、特に冷凍サイクルでの蒸発器の冷媒吸入側と冷媒吐出側との冷媒温度差が殆ど無い状態にあって、冷媒を蒸発器に流す必要がないにも拘らず電動式圧縮機が動作し続ける構造及び機能を改善した「チラー装置」(特許文献1参照)が挙げられる。 Conventionally, in this type of chiller device, as a single type proposed by the present applicant, a set temperature is set at a heat retention setting with a small temperature difference close to the workpiece temperature (for example, 5 ° C. to 10 ° C.), particularly in a refrigeration cycle Improved the structure and function of the electric compressor that keeps operating even though there is almost no refrigerant temperature difference between the refrigerant suction side and the refrigerant discharge side of the evaporator and the refrigerant does not need to flow to the evaporator. A “chiller device” (see Patent Document 1) can be mentioned.
上述した特許文献1に係るチラー装置は、冷凍サイクルに電動式圧縮機を適用しており、冷媒に高効率なフロンガス(R410A等)を用いるとそれ以前の製品よりも格段に冷凍機能が向上し、冷媒サイクルの液冷媒(実用上ではブラインと呼ばれる熱媒体を循環させるため、冷媒サイクルはブライン供給回路と呼ばれても良い)を蒸発器で冷却して有効に熱交換することができ、基本機能として熱負荷に応じた電動式圧縮機の回転制御を行うと共に、冷却・加熱を2段構えにした顧客装置(ワーク)に対する高精度な保温制御を実現している。 The chiller device according to Patent Document 1 described above uses an electric compressor in the refrigeration cycle, and when a highly efficient Freon gas (such as R410A) is used as the refrigerant, the refrigeration function is significantly improved over previous products. The liquid refrigerant of the refrigerant cycle (the refrigerant cycle may be called a brine supply circuit in order to circulate a heat medium called brine in practical use) can be effectively exchanged by cooling with an evaporator, As a function, it performs rotation control of the electric compressor according to the heat load, and realizes high-precision heat retention control for the customer device (work) having two stages of cooling and heating.
しかしながら、特許文献1に係るチラー装置の場合、基本構造上ではシングルタイプと呼ばれる1系統の冷凍サイクルと1系統の冷媒サイクルとで1台の蒸発器を共有し、冷媒サイクル側で顧客装置となる1つのワークを保温できる仕様となっているため、顧客装置が例えば半導体エッチング装置である場合のように異なる保温範囲条件を同時に要求されるような使用目的には対応し難いという問題がある。 However, in the case of the chiller device according to Patent Document 1, on the basic structure, one refrigeration cycle called a single type and one refrigerant cycle share one evaporator, and become a customer device on the refrigerant cycle side. Since the specification is such that one workpiece can be kept warm, there is a problem that it is difficult to meet the purpose of use in which different temperature keeping range conditions are required at the same time as when the customer's device is a semiconductor etching device, for example.
そこで、冷媒サイクル側を多段にして複数系統とし、各系統でそれぞれワークを別個に接続できるような構造の適用が想定されるものの、実際には蒸発器を含めた冷媒サイクルを単純に多段構成にしようとしても配管によるバイパス流路を使用しての冷媒の引き回しや流量制御が複雑になってしまう上、増設された蒸発器で液冷媒を冷却する分に相当する冷凍サイクルにおける冷却性能が損われると共に、電動圧縮機の回転制御にも熱負荷増加分の負担が増大するため、簡易に改造することは困難となっている。それ故、廉価な構成で冷却性能を損わずに圧縮機に過負荷を掛けず、異なる保温範囲条件の顧客装置を同時に高精度に保温制御できる機能を持つチラー装置の製品化が望まれているものの、現状では具現化されていない。 Therefore, although it is assumed that the refrigerant cycle side is multi-staged to form multiple systems and the work can be connected separately in each system, the refrigerant cycle including the evaporator is actually simply configured in multiple stages. Even if it tries to do so, the refrigerant routing and the flow rate control using the bypass flow path by the piping become complicated, and the cooling performance in the refrigeration cycle corresponding to the cooling of the liquid refrigerant by the added evaporator is impaired. At the same time, since the burden of the heat load increase also increases in the rotation control of the electric compressor, it is difficult to easily modify it. Therefore, it is desired to commercialize a chiller device that has a low-cost configuration and does not impair the cooling performance without overloading the compressor, and capable of simultaneously maintaining high-precision heat control of customer devices having different heat retention range conditions. However, it is not realized at present.
本発明は、このような問題点を解決すべくなされたもので、その技術的課題は、廉価な構成で冷却性能が損われずに圧縮機に過負荷を掛けず、異なる保温範囲条件のワークを同時に高精度に保温制御できる機能を持つチラー装置を提供することにある。 The present invention has been made to solve such problems, and its technical problem is that it has a low-cost configuration and does not impair the cooling performance without overloading the compressor. It is intended to provide a chiller device having a function capable of simultaneously controlling the temperature with high accuracy.
上記技術的課題を達成するため、本発明の一形態は、冷却用の冷媒が循環する冷凍サイクルと、冷凍サイクルに備えられる第1の蒸発器を共用して加熱用の液冷媒が循環する第1の冷媒サイクルと、冷凍サイクルの所定箇所で配管によりバイパス接続されたバイパス流路を通して第1の蒸発器とは別体の第2の蒸発器内を冷媒が循環すると共に、別系統で加熱用の液冷媒が循環する第2の冷媒サイクルと、第1の冷媒サイクルと第2の冷媒サイクルとにそれぞれ介在接続されて保温対象となる各種顧客装置をワークとして、使用者向けに所定の温度範囲での選択的な温度設定に供されると共に、冷凍サイクルに備えられる電動式圧縮機の回転数、並びに当該第1の冷媒サイクルと当該第2の冷媒サイクルとを循環する液冷媒に対する加熱用の加熱装置における加熱温度を、使用者により設定された設定温度と当該第1の冷媒サイクル及び当該第2の冷媒サイクルの当該ワーク側寄り箇所に設けられた第1の温度センサによりそれぞれ検出されたワーク温度との温度差に応じて制御する制御装置と、を備えたチラー装置において、第1の冷媒サイクルと第2の冷媒サイクルとは、第1の蒸発器と第2の蒸発器との冷媒吐出側で加熱装置に対する液冷媒流入の手前側にそれぞれ設けられて液冷媒温度を検出する第2の温度センサと、第1の蒸発器と第2の蒸発器との冷媒吸入側でワークに対する液冷媒流出側にそれぞれ設けられて液冷媒温度を検出する第4の温度センサと、を有し、冷凍サイクルは、電動式圧縮機の冷媒吸入側であって、第1の蒸発器の冷媒吐出側に設けられて冷媒温度を検出するための第3の温度センサと、電動式圧縮機の冷媒吸入側の第3の温度センサ近傍に設けられて冷媒圧力を検出する圧力センサと、第1の蒸発器の冷媒吸入側に介在接続された流量調整用の第1の冷媒供給用電子膨張弁と、を有し、バイパス流路は、第2の冷媒サイクルにおける第2の蒸発器の冷媒吐出側から冷凍サイクルにおける第1の蒸発器の冷媒吐出側と電動式圧縮機の冷媒吸入側との間の箇所に繋がる第1の流路と、第1の流路の途中箇所から流量調整用の高圧冷媒用電子膨張弁を介在させて冷凍サイクルに備えられる凝縮器の冷媒吸入側と電動式圧縮機の冷媒吐出側との間の箇所に繋がる第2の流路と、第1の流路から延在して流量調整用のインジェクション用電子膨張弁を介在させて冷凍サイクルにおける凝縮器の冷媒吐出側と第1の蒸発器の冷媒吸入側との間における第1の冷媒供給用電子膨張弁の冷媒流入手前側の箇所に繋がる第3の流路と、冷凍サイクルにおける第1の冷媒供給用電子膨張弁の冷媒流入手前側の第3の流路よりも第1の蒸発器の冷媒吸入側寄り箇所と第2の冷媒サイクルにおける第2の蒸発器の冷媒吸入側とに流量調整用の第2の冷媒供給用電子膨張弁を介在接続させて繋がる第4の流路と、を有して形成され、制御装置は、第1の温度センサでそれぞれ検出されたワーク温度について比例、積分、微分を含むPID演算した結果に基づいて生成した制御信号により第1の冷媒サイクルと第2の冷媒サイクルとにおける加熱装置でのそれぞれの加熱量を制御し、第2の温度センサでそれぞれ検出された液冷媒温度について比例、積分、微分を含むPID演算した結果に基づいて生成したパルス信号により第1の冷媒供給用電子膨張弁と第2の冷媒供給用電子膨張弁とでの開閉をそれぞれ制御して冷凍サイクルとバイパス流路とにおける冷媒流量を制御し、圧力センサで検出された冷媒圧力について比例、積分、微分を含むPID演算した結果と第3の温度センサで検出された冷媒温度について比例、積分、微分を含むPID演算した結果とに基づいて生成したパルス信号により高圧冷媒用電子膨張弁の開度を一定に維持して当該バイパス流路における第2の流路から第1の流路の一部を経由して当該冷凍サイクルの電動式圧縮機の冷媒吸入側へ循環する高圧冷媒バイパス操作流量が目標とする所定値に収束されるように、インジェクション用電子膨張弁での開度を可変設定して当該バイパス流路及び当該冷凍サイクルの全体での冷媒流量を制御すると共に、当該電動式圧縮機を駆動するために生成した駆動制御信号をインバータへ出力して当該電動式圧縮機での運転周波数を所定の範囲内で当該冷媒温度に応じて可変制御することを特徴とする。 In order to achieve the above technical problem, according to one aspect of the present invention, there is provided a refrigeration cycle in which a refrigerant for cooling circulates and a first evaporator provided in the refrigeration cycle in which a liquid refrigerant for heating circulates. The refrigerant circulates in the second evaporator separate from the first evaporator through one refrigerant cycle and a bypass passage bypassed by piping at a predetermined location of the refrigeration cycle, and for heating in a separate system A predetermined temperature range for a user using as a workpiece various customer devices that are intervened and connected to the second refrigerant cycle in which the liquid refrigerant circulates, the first refrigerant cycle, and the second refrigerant cycle, respectively. And the temperature of the electric compressor provided in the refrigeration cycle, as well as for heating the liquid refrigerant circulating through the first refrigerant cycle and the second refrigerant cycle. The workpiece temperature detected by the first temperature sensor provided near the workpiece side of the set temperature set by the user and the first refrigerant cycle and the second refrigerant cycle as the heating temperature in the heating device in chiller apparatus having a control device for controlling in response to the temperature difference between the temperature, and the first refrigerant cycle and second refrigerant cycle, the refrigerant discharged from the first evaporator and a second evaporator A second temperature sensor provided on the front side of the liquid refrigerant inflow to the heating device to detect the temperature of the liquid refrigerant , and a liquid refrigerant for the workpiece on the refrigerant suction side of the first evaporator and the second evaporator. A fourth temperature sensor provided on the outflow side for detecting the temperature of the liquid refrigerant, and the refrigeration cycle is on the refrigerant suction side of the electric compressor and on the refrigerant discharge side of the first evaporator Provided refrigerant temperature A third temperature sensor for detecting a pressure sensor for detecting a refrigerant pressure is provided to the third near the temperature sensor in the refrigerant suction side of the electric compressor, the refrigerant suction side of the first evaporator A first refrigerant supply electronic expansion valve for adjusting the flow rate, which is connected via an intervening connection, and the bypass flow path from the refrigerant discharge side of the second evaporator in the second refrigerant cycle to the first in the refrigeration cycle A first flow path connected to a position between the refrigerant discharge side of the evaporator and the refrigerant suction side of the electric compressor, and an electronic expansion valve for high-pressure refrigerant for adjusting the flow rate from the middle position of the first flow path A second flow path connected to a location between the refrigerant suction side of the condenser provided in the refrigeration cycle and the refrigerant discharge side of the electric compressor, and the flow path adjustment for extending the first flow path Refrigerant of condenser in refrigeration cycle through electronic expansion valve for injection A third flow path connected to a location on the refrigerant flow pre-acquisition side of the first refrigerant supply electronic expansion valve between the discharge side and the refrigerant suction side of the first evaporator, and a first refrigerant supply in the refrigeration cycle The flow rate adjustment second portion is located closer to the refrigerant suction side of the first evaporator than the third flow path of the electronic expansion valve before the refrigerant flow is obtained and to the refrigerant suction side of the second evaporator in the second refrigerant cycle . And a fourth flow path connected by interposing and connecting two refrigerant supply electronic expansion valves, and the control device is proportional, integral, and differential with respect to the workpiece temperature detected by the first temperature sensor. It controls each of the heating amount of the heating device by the generated control signals in a first refrigerant cycle and second refrigerant cycle based on a result of the PID operation including liquid respectively detected by the second temperature sensor Proportional, integral, and refrigerant temperature The pulse signal generated based on the result of the PID operation including the partial opening and closing at the first refrigerant supply electronic expansion valve and the second refrigerant supply electronic expansion valve respectively controlled to the refrigeration cycle and the bypass channel The refrigerant flow rate was controlled, and the PID calculation including the proportional, integral and derivative results for the refrigerant pressure detected by the pressure sensor and the PID calculation including the proportional, integral and derivative results for the refrigerant temperature detected by the third temperature sensor the pulse signal generated based on the results and to maintain the opening degree of the high-pressure refrigerant electronic expansion valve constant over a portion of the first flow path from the second flow path in the bypass flow path the frozen The opening of the electronic expansion valve for injection is variably set so that the high-pressure refrigerant bypass operation flow rate that circulates to the refrigerant suction side of the electric compressor of the cycle converges to the target predetermined value. In addition to controlling the refrigerant flow rate in the bypass flow path and the entire refrigeration cycle, the drive control signal generated to drive the electric compressor is output to the inverter, so that the operating frequency of the electric compressor is reduced. A variable control is performed in accordance with the refrigerant temperature within a predetermined range.
本発明のチラー装置によれば、上記構成により、廉価な構成で冷却性能を損わずに圧縮機に過負荷を掛けず、異なる保温範囲条件のワークを同時に高精度に保温制御できる機能が得られるようになる。上記した以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。 According to the chiller apparatus of the present invention, the above-described configuration provides a function capable of simultaneously maintaining heat with high accuracy for a workpiece having different heat retention range conditions without overloading the compressor without impairing the cooling performance with an inexpensive configuration. Be able to. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
以下に、本発明のチラー装置について、実施例を挙げ、図面を参照して詳細に説明する。 Hereinafter, examples of the chiller device of the present invention will be described in detail with reference to the drawings.
図1は、本発明の実施例に係るチラー装置の基本構成を冷媒サイクル200−1、200−2でのワークW1、W2への接続及び冷凍サイクル100での凝縮器103へ冷却を行うための冷却回路300を含めて示した全体的な概略図である。 FIG. 1 shows the basic configuration of a chiller device according to an embodiment of the present invention for connection to the workpieces W1 and W2 in the refrigerant cycles 200-1 and 200-2 and for cooling the condenser 103 in the refrigeration cycle 100. 1 is an overall schematic diagram including a cooling circuit 300. FIG.
図1を参照すれば、このチラー装置は、基本構成上において、冷却用の冷媒(R410等)が循環する冷凍サイクル100と、冷凍サイクル100に備えられる第1の蒸発器(熱交換器)101−1を共用して加熱用の液冷媒が循環する第1の冷媒サイクル200−1と、冷凍サイクル100の所定箇所で配管によりバイパス接続されたバイパス流路を通して第1の蒸発器101−1とは別体の第2の蒸発器(熱交換器)101−2内を冷媒が循環すると共に、別系統で加熱用の液冷媒が循環する第2の冷媒サイクル200−2と、第1の冷媒サイクル200−1と第2の冷媒サイクル200−2とにそれぞれ介在接続されて保温対象となる各種顧客装置をワークW1、W2として、使用者向けに所定の温度範囲での選択的な温度設定(ワークW1は−10℃〜+100℃、ワークW2は+30℃〜+100℃である場合を例示できる)に供されると共に、冷凍サイクル100に備えられる電動式圧縮機102の回転数、並びに第1の冷媒サイクル200−1と第2の冷媒サイクル200−2とを循環する液冷媒に対する加熱用の加熱装置(ヒータ)202−1、202−2における加熱温度を、使用者により設定された設定温度と第1の冷媒サイクル200−1及び第2の冷媒サイクル200−2のワークW1、W2側寄り箇所にそれぞれ設けられた第1の温度センサT1−1、T1−2により検出されたワーク温度との温度差に応じて制御するCPU(Central Processing Unit)機能を持つ機器制御ユニットとして構成される制御装置と、を備えて構成される。 Referring to FIG. 1, this chiller device has a basic configuration in which a refrigeration cycle 100 in which a cooling refrigerant (R410 and the like) circulates and a first evaporator (heat exchanger) 101 provided in the refrigeration cycle 100 are provided . -1 is shared with the first refrigerant cycle 200-1 in which the liquid refrigerant for heating circulates, and the first evaporator 101-1 through a bypass passage bypassed by piping at a predetermined location of the refrigeration cycle 100. Is a second refrigerant cycle 200-2 in which a refrigerant circulates in a separate second evaporator (heat exchanger) 101-2 and a liquid refrigerant for heating circulates in a separate system, and a first refrigerant Various customer devices that are intervened and connected to the cycle 200-1 and the second refrigerant cycle 200-2 and are to be kept warm are workpieces W1 and W2, and selective temperature setting within a predetermined temperature range for the user ( War W1 is −10 ° C. to + 100 ° C., and the workpiece W2 is + 30 ° C. to + 100 ° C.), the rotation speed of the electric compressor 102 provided in the refrigeration cycle 100, and the first refrigerant The heating temperature in the heating devices (heaters) 202-1 and 202-2 for heating the liquid refrigerant circulating in the cycle 200-1 and the second refrigerant cycle 200-2 is set to the set temperature set by the user and The temperature of the first refrigerant cycle 200-1 and the second refrigerant cycle 200-2 with the workpiece temperature detected by the first temperature sensors T1-1, T1-2 provided at the positions closer to the workpieces W1, W2 respectively. And a control device configured as a device control unit having a CPU (Central Processing Unit) function to control according to the difference. It is.
ここでのワークW1、W2は、顧客装置を半導体エッチング装置とした場合のように異なる保温範囲条件を同時に要求される使用目的に対応させることを想定しており、ワークW1の保温用の設定温度範囲−10℃〜+100℃は下部電極に適用させ、ワークW2の保温用の設定温度範囲+30℃〜+100℃は上部電極に適用させることができる。これらのワークW1、W2のワーク温度を検出するための第1の温度センサT1−1、T1−2は、冷媒サイクル200−1、200−2に備えられる冷媒タンク201−1、201−2から液冷媒を吸引するポンプ203−1、203−2の冷媒吐出側であって、ワークW1、W2寄りの冷媒流入側に設けられて液冷媒温度を検出して機器制御ユニット(CPU)に送出するようになっているが、その他に蒸発器101−1、101−2の冷媒吸入側であって、ワークW1、W2寄りの液冷媒流出側に設けられた第4の温度センサT4−1、T4−2からの液冷媒温度を機器制御ユニット(CPU)に入力し、双方の検出結果を併用してワーク温度を検出するようにしても良い。因みに、第1の温度センサT1−1、T1−2については、高い検出精度が要求されるため、抵抗値を100オームから0オームに可変できる白金抵抗帯体を用いたPtセンサを用いることが好ましい。これに対し、第4の温度センサT4−1、T4−2は、第1の温度センサT1−1、T1−2程度には検出精度が要求されないため、製造コストを考慮して一般的な熱電対を用いた熱電対センサを用いることが好ましい。 The workpieces W1 and W2 here are assumed to correspond to the purpose of use in which different heat retention range conditions are required at the same time as in the case where the customer apparatus is a semiconductor etching apparatus, and the set temperature for heat retention of the work W1. The range of −10 ° C. to + 100 ° C. can be applied to the lower electrode, and the set temperature range + 30 ° C. to + 100 ° C. for keeping the work W2 can be applied to the upper electrode. The first temperature sensors T1-1 and T1-2 for detecting the workpiece temperatures of the workpieces W1 and W2 are from the refrigerant tanks 201-1 and 201-2 provided in the refrigerant cycles 200-1 and 200-2. It is provided on the refrigerant discharge side of the pumps 203-1 and 203-2 for sucking the liquid refrigerant, on the refrigerant inflow side near the workpieces W1 and W2, and detects the liquid refrigerant temperature and sends it to the device control unit (CPU). In addition, the fourth temperature sensors T4-1 and T4 are provided on the refrigerant suction side of the evaporators 101-1 and 101-2 and on the liquid refrigerant outflow side near the workpieces W1 and W2. -2 may be input to the equipment control unit (CPU), and the workpiece temperature may be detected using both detection results. Incidentally, since the first temperature sensors T1-1 and T1-2 require high detection accuracy, it is necessary to use a Pt sensor using a platinum resistance band that can change the resistance value from 100 ohms to 0 ohms. preferable. On the other hand, the fourth temperature sensors T4-1 and T4-2 do not require detection accuracy as much as the first temperature sensors T1-1 and T1-2. It is preferable to use a thermocouple sensor using a pair.
このうち、冷凍サイクル100は、冷媒のガスを電動式圧縮機102により圧縮して高圧ガスとして吐出側の凝縮器103へ送り、凝縮器103では高圧ガスを凝縮して減圧機構の略図する膨張弁を経由して減圧させてから蒸発器101−1へ送り、蒸発器101−1では減圧された低圧ガスを蒸発させて電動式圧縮機102の吸入側に吸い込ませることで再び圧縮を繰り返す回路構成の一次温度調整回路となっている。また、ここでは凝縮器103に対して配管を折り返すように接続し、入口側の管に設けられた略図するバルブを経由して冷却水を取り込んで凝縮器103内を冷却してから出口側の管に設けられた制水弁(WPR)を経由して外方へ戻す構造の冷却回路300が配備されている。尚、ここで説明した冷却回路300による凝縮器103に対する冷却機能は、冷却ファンを用いて冷風で冷却する構成としても良い。 Among them, the refrigeration cycle 100 compresses the refrigerant gas by the electric compressor 102 and sends it as a high-pressure gas to the discharge-side condenser 103, and the condenser 103 condenses the high-pressure gas and schematically shows a decompression mechanism. The circuit configuration is such that the pressure is reduced via the air and then sent to the evaporator 101-1, and the evaporator 101-1 evaporates the decompressed low-pressure gas and sucks it into the suction side of the electric compressor 102 to repeat the compression again. Primary temperature adjustment circuit. Further, here, the pipe is connected to the condenser 103 so as to be folded back, and the cooling water is taken in via a schematic valve provided on the pipe on the inlet side to cool the inside of the condenser 103 and then the outlet side. A cooling circuit 300 having a structure of returning to the outside via a water control valve (WPR) provided in the pipe is provided. In addition, the cooling function for the condenser 103 by the cooling circuit 300 described here may be configured to cool with cold air using a cooling fan.
冷媒サイクル200−1は、冷凍サイクル100の蒸発器101−1を共有して液冷媒を冷媒タンク201−1で回収して蓄えると共に、冷媒タンク201−1に装着された加熱装置(ヒータ)201−1で液冷媒を適宜加熱するか、或いは加熱させずに冷媒タンク201−1からポンプ203−1により吸引した液冷媒をワークW1を介在させて蒸発器101−1に戻す回路構成の1系統の二次温度調整回路となっている。また、ポンプ203−1における液冷媒の流出側の配管には流量検出センサFが設けられ、この流量検出センサFで検出された液冷媒の流量は機器制御ユニット(CPU)に入力され、機器制御ユニット(CPU)が付設されるインバータINVを駆動してポンプ203−1における液冷媒の吸引量を制御するようになっている。これにより、冷媒タンク201−1内では、液冷媒がロジック(LG)によりほほ一定量に保たれることになる。 The refrigerant cycle 200-1 shares the evaporator 101-1 of the refrigeration cycle 100, collects and stores the liquid refrigerant in the refrigerant tank 201-1, and also has a heating device (heater) 201 attached to the refrigerant tank 201-1. -1 of a circuit configuration in which the liquid refrigerant is appropriately heated at -1, or the liquid refrigerant sucked by the pump 203-1 from the refrigerant tank 201-1 without being heated is returned to the evaporator 101-1 through the work W1. Secondary temperature adjustment circuit. Further, a flow rate detection sensor F is provided in the piping on the outflow side of the liquid refrigerant in the pump 203-1, and the flow rate of the liquid refrigerant detected by the flow rate detection sensor F is input to an equipment control unit (CPU) for equipment control. The inverter INV to which the unit (CPU) is attached is driven to control the liquid refrigerant suction amount in the pump 203-1. Thereby, in the refrigerant | coolant tank 201-1, a liquid refrigerant | coolant is kept by the logic (LG) and a substantially constant quantity.
冷媒サイクル200−2についても同様な構成であり、冷凍サイクル100の所定箇所で配管によりバイパス接続された後文で詳述するバイパス流路を通して蒸発器101−2内を冷媒が循環する他、液冷媒を冷媒タンク201−2で回収して蓄えると共に、冷媒タンク201−2に装着された加熱装置(ヒータ)201−2で液冷媒を適宜加熱するか、或いは加熱させずに冷媒タンク201−2からポンプ203−2により吸引した液冷媒をワークW2を介在させて蒸発器101−2に戻す回路構成の別系統の二次温度調整回路となっている。ここでもポンプ203−2における液冷媒の流出側の配管には流量検出センサFが設けられ、この流量検出センサFで検出された液冷媒の流量は機器制御ユニット(CPU)に入力され、機器制御ユニット(CPU)が付設されるインバータINVを駆動してポンプ203−2における液冷媒の吸引量を制御し、冷媒タンク201−2内では液冷媒がロジック(LG)によりほほ一定量に保たれる。その他、細部構造を略図するが、実用上では蒸発器101−1、101−2の液冷媒吐出側の管と冷媒タンク201−1、201−2に接続された管とに略図するバルブを設けて共通の配管に接続した上、排液処理用のドレンに繋げて排液する構造を採用したり、或いはワークW1、W2における液冷媒の流入側の配管と流出側の配管とに略図するバルブを設けてワークW1、W2を冷媒サイクル200−1、200−2の局部に配管接続するときの液冷媒漏れを防止する構造を採用することが好ましい。 The refrigerant cycle 200-2 has the same configuration, and the refrigerant circulates in the evaporator 101-2 through a bypass passage, which will be described in detail later, after being bypassed by piping at a predetermined location of the refrigeration cycle 100. The refrigerant is collected and stored in the refrigerant tank 201-2, and the liquid refrigerant is appropriately heated by the heating device (heater) 201-2 attached to the refrigerant tank 201-2, or the refrigerant tank 201-2 is heated without being heated. Is a secondary temperature adjustment circuit of another system having a circuit configuration in which the liquid refrigerant sucked by the pump 203-2 is returned to the evaporator 101-2 through the work W2. Also here, the flow rate detection sensor F is provided in the pipe on the outflow side of the liquid refrigerant in the pump 203-2, and the flow rate of the liquid refrigerant detected by the flow rate detection sensor F is input to an equipment control unit (CPU) for equipment control. The inverter INV to which the unit (CPU) is attached is driven to control the suction amount of the liquid refrigerant in the pump 203-2, and the liquid refrigerant is kept at a substantially constant amount by the logic (LG) in the refrigerant tank 201-2. . In addition, although a detailed structure is schematically shown, a valve is schematically provided in a pipe connected to the liquid refrigerant discharge side of the evaporators 101-1 and 101-2 and pipes connected to the refrigerant tanks 201-1 and 201-2. The valve is connected to a common pipe and connected to a drain for drainage treatment to drain the liquid, or a valve schematically shown on the pipes on the inflow side and the outflow side of the liquid refrigerant in the workpieces W1 and W2. It is preferable to employ a structure that prevents leakage of liquid refrigerant when the workpieces W1 and W2 are piped to the local portions of the refrigerant cycles 200-1 and 200-2.
更に、冷媒サイクル200−1、200−2は、蒸発器101−1、101−2の液冷媒吐出側で加熱装置202−1、202−2に対する液冷媒流入の手前側にそれぞれ設けられて液冷媒温度を検出する第2の温度センサT2−1、T2−2を有する。加えて、冷凍サイクル100は、電動式圧縮機102の冷媒吸入側であって、蒸発器101−1の冷媒吐出側に設けられて冷媒温度を検出するための第3の温度センサT3と、電動式圧縮機102の冷媒吸入側の第3の温度センサT3近傍に設けられて冷媒圧力を検出する圧力センサPと、蒸発器101−1の冷媒吸入側に介在接続された流量調整用の第1の冷媒供給用電子膨張弁EV1−1と、を有する。因みに、ここでの第2の温度センサT2−1、T2−2についても、高い検出精度が要求されるために白金抵抗帯体を用いたPtセンサとすることが好ましい。また、第3の温度センサT3については、第4の温度センサT4−1、T4−2と同様に熱電対を用いた熱電対センサとすることが好ましい。 Further, the refrigerant cycles 200-1 and 200-2 are provided on the liquid refrigerant discharge side of the evaporators 101-1 and 101-2 on the front side of the liquid refrigerant inflow to the heating devices 202-1 and 202-2, respectively. Second temperature sensors T2-1 and T2-2 for detecting the refrigerant temperature are included. In addition, the refrigeration cycle 100 is provided on the refrigerant suction side of the electric compressor 102 and on the refrigerant discharge side of the evaporator 101-1, and is electrically driven with a third temperature sensor T3 for detecting the refrigerant temperature. A pressure sensor P provided in the vicinity of the third temperature sensor T3 on the refrigerant suction side of the compressor 102 to detect the refrigerant pressure, and a first for flow rate adjustment connected to the refrigerant suction side of the evaporator 101-1 . And an electronic expansion valve EV1-1 for refrigerant supply. Incidentally, the second temperature sensors T2-1 and T2-2 here are also preferably Pt sensors using a platinum resistance band because high detection accuracy is required. Further, the third temperature sensor T3 is preferably a thermocouple sensor using a thermocouple similarly to the fourth temperature sensors T4-1 and T4-2.
以上の機能構成は、周知技術を適用して具現できるものであるが、以下は実施例に係る特徴を説明する。その構造上の特徴は、上述したバイパス流路であり、具体的に云えば、第2の冷媒サイクル200−2における蒸発器101−2の冷媒吐出側から冷凍サイクル100における蒸発器101−1の冷媒吐出側と電動式圧縮機102の冷媒吸入側との間の箇所に繋がる第1の流路と、第1の流路の途中箇所から流量調整用の高圧冷媒用電子膨張弁EV2を介在させて冷凍サイクル100に備えられる凝縮器103の冷媒吸入側と電動式圧縮機102の冷媒吐出側との間の箇所に繋がる第2の流路と、第1の流路から延在して流量調整用のインジェクション用電子膨張弁EV3を介在させて冷凍サイクル100における凝縮器103の冷媒吐出側と蒸発器101−1の冷媒吸入側との間における冷媒供給用電子膨張弁EV1−1の冷媒流入手前側の箇所に繋がる第3の流路と、冷凍サイクル100における冷媒供給用電子膨張弁EV1−1の冷媒流入手前側の第3の流路よりも蒸発器101−1の冷媒吸入側寄り箇所と第2の冷媒サイクル200−2における蒸発器101−2の冷媒吸入側とに流量調整用の第2の冷媒供給用電子膨張弁EV1−2を介在接続させて繋がる第4の流路と、を有して形成される。因みに、これらの冷媒供給用電子膨張弁EV1−1、EV1−2、高圧冷媒用電子膨張弁EV2、及びインジェクション用電子膨張弁EV3については、何れも特許文献1で開示されているステッピングモータを備えた同じ構造の電子膨張弁を適用させることが好ましい。 The functional configuration described above can be implemented by applying a well-known technique. The features according to the embodiment will be described below. The structural feature is the above-described bypass flow path, specifically speaking, from the refrigerant discharge side of the evaporator 101-2 in the second refrigerant cycle 200-2 to the evaporator 101-1 in the refrigeration cycle 100. A first flow path connected to a location between the refrigerant discharge side and the refrigerant suction side of the electric compressor 102, and a high-pressure refrigerant electronic expansion valve EV2 for adjusting the flow rate are interposed from a midpoint of the first flow path. The second flow path connected to the location between the refrigerant suction side of the condenser 103 and the refrigerant discharge side of the electric compressor 102 provided in the refrigeration cycle 100, and the flow rate adjustment extending from the first flow path Before obtaining the refrigerant flow of the refrigerant supply electronic expansion valve EV1-1 between the refrigerant discharge side of the condenser 103 and the refrigerant suction side of the evaporator 101-1 in the refrigeration cycle 100 via the injection electronic expansion valve EV3. ~ side A third flow path connected to the location, a location closer to the refrigerant suction side of the evaporator 101-1 than the third flow path on the refrigerant supply electronic expansion valve EV <b> 1-1 in the refrigeration cycle 100 before obtaining the refrigerant flow, and the second flow path. And a fourth flow path that is connected to the refrigerant suction side of the evaporator 101-2 in the refrigerant cycle 200-2 by interposing and connecting the second refrigerant supply electronic expansion valve EV1-2 for flow rate adjustment. Formed. Incidentally, each of the refrigerant supply electronic expansion valves EV1-1 and EV1-2, the high-pressure refrigerant electronic expansion valve EV2, and the injection electronic expansion valve EV3 includes a stepping motor disclosed in Patent Document 1. It is preferable to apply an electronic expansion valve having the same structure.
また、こうしたバイパス流路構造を前提とする制御上の特徴は、上述した機器制御ユニット(CPU)の処理機能が担うものである。具体的に云えば、第1の温度センサT1−1、T1−2でそれぞれ検出されたワーク温度について比例、積分、微分を含むPID演算した結果に基づいて生成した制御信号により冷媒サイクル200−1、200−2における加熱装置202−1、202−2でのそれぞれの加熱量を制御し、第2の温度センサT2−1、T2−2でそれぞれ検出された液冷媒温度について比例、積分、微分を含むPID演算した結果に基づいて生成したパルス信号により冷媒供給用電子膨張弁EV1−1、EV1−2での開閉をそれぞれ制御して冷凍サイクル100とバイパス流路とにおける冷媒流量を制御し、圧力センサPで検出された冷媒圧力について比例、積分、微分を含むPID演算した結果と第3の温度センサT3で検出された冷媒温度について比例、積分、微分を含むPID演算した結果とに基づいて生成したパルス信号により高圧冷媒用電子膨張弁EV2の開度を一定(例えば全開100%に対して20%にする場合を例示できる)に維持してバイパス流路における第2の流路から第1の流路の一部を経由して冷凍サイクル100の電動式圧縮機102の冷媒吸入側へ循環する高圧冷媒バイパス操作流量が目標とする所定値に収束されるように、インジェクション用電子膨張弁EV3での開度を可変設定してバイパス流路及び冷凍サイクル100の全体での冷媒流量を制御すると共に、電動式圧縮機102を駆動するために生成した駆動制御信号をインバータINVへ出力して電動式圧縮機102での運転周波数を所定の範囲内で第3の温度センサT3で検出された冷媒温度に応じて可変制御する。 Moreover, the control characteristic predicated on such a bypass flow path structure is borne by the processing function of the above-described device control unit (CPU). More specifically, the refrigerant cycle 200-1 is generated by a control signal generated based on a result of PID calculation including proportionality, integral, and differentiation with respect to the workpiece temperatures detected by the first temperature sensors T1-1 and T1-2. , 200-2, the respective heating amounts of the heating devices 202-1 and 202-2 are controlled, and the liquid refrigerant temperatures detected by the second temperature sensors T2-1 and T2-2 are proportional, integral, and differential, respectively. Control the opening and closing of the refrigerant supply electronic expansion valves EV1-1 and EV1-2 by pulse signals generated based on the PID calculation result including the refrigerant flow in the refrigeration cycle 100 and the bypass flow path, About the refrigerant | coolant pressure detected by the 3rd temperature sensor T3 and the result of PID calculation including proportionality, integral, and a differentiation about the refrigerant | coolant pressure detected by the pressure sensor P For example, the opening degree of the electronic expansion valve EV2 for high-pressure refrigerant is constant (for example, 20% with respect to 100% full open) by a pulse signal generated based on the result of PID calculation including integration and differentiation. The target is the high-pressure refrigerant bypass operation flow rate that is maintained and circulated from the second flow path in the bypass flow path to the refrigerant suction side of the electric compressor 102 of the refrigeration cycle 100 via a part of the first flow path. The opening of the electronic expansion valve EV3 for injection is variably set so as to be converged to a predetermined value to control the refrigerant flow rate in the entire bypass flow path and the refrigeration cycle 100, and the electric compressor 102 is driven. The drive control signal generated for this purpose is output to the inverter INV, and the operating frequency of the electric compressor 102 is set within a predetermined range according to the refrigerant temperature detected by the third temperature sensor T3. Variably controls.
その他、機器制御ユニット(CPU)は、冷媒サイクル200−1、200−2における第1の温度センサT1−1、T1−2と第4の温度センサT4−1、T4−2とによりそれぞれ検出された液冷媒温度の差値に基づいてワークW1、W2側の熱負荷量を個別に算出した結果を圧力センサPで検出された冷媒圧力に基づいてPID演算した結果及び第3の温度センサT3で検出された冷媒温度に基づいてPID演算した結果へそれぞれ反映させて冷却制御を補正するフィードフォワード制御を行う。具体的に云えば、機器制御ユニット(CPU)は、インジェクション用電子膨張弁EV3での開度について、熱負荷量を算出した結果に応じて熱負荷がある場合には熱負荷が無い場合よりも開度を大きくする他、冷媒サイクル200−1、200−2における加熱装置202−1、202−2での加熱によるワークW1、W2への昇温動作中よりも冷凍サイクル100の電動式圧縮機102を駆動させての蒸発器101−1、101−2での熱交換によるワークW1、W2への降温動作中におけるインジェクション用電子膨張弁EV3での開度を大きくする。 In addition, the device control unit (CPU) is detected by the first temperature sensors T1-1 and T1-2 and the fourth temperature sensors T4-1 and T4-2 in the refrigerant cycles 200-1 and 200-2, respectively. The result of individually calculating the thermal load amount on the work W1, W2 side based on the difference value of the liquid refrigerant temperature obtained by the PID calculation based on the refrigerant pressure detected by the pressure sensor P and the third temperature sensor T3 Feed-forward control is performed to correct the cooling control by reflecting the result of the PID calculation based on the detected refrigerant temperature. More specifically, the device control unit (CPU), when there is a thermal load according to the result of calculating the amount of heat load for the opening at the injection electronic expansion valve EV3, than when there is no heat load. In addition to increasing the opening, the electric compressor of the refrigeration cycle 100 than during the temperature raising operation to the workpieces W1 and W2 by heating in the heating devices 202-1 and 202-2 in the refrigerant cycles 200-1 and 200-2. The opening degree at the electronic expansion valve EV3 for injection during the temperature lowering operation to the workpieces W1 and W2 by heat exchange in the evaporators 101-1 and 101-2 by driving the 102 is increased.
図2は、実施例に係るチラー装置に備えられるバイパス流路を中心にした冷媒の流れを説明するために示した要部の概略図である。 FIG. 2 is a schematic view of a main part shown to explain the flow of the refrigerant centering on the bypass flow path provided in the chiller device according to the embodiment.
図2を参照すれば、本実施例に係るチラー装置において、上述したバイパス流路の構造を対象とした機器制御ユニット(CPU)による各種制御を実行すれば、冷凍サイクル100の電動式圧縮機102により高圧に圧縮された冷媒ガス(ホットガスと呼ばれる)がバイパス流路の第2の流路における開度を一定(20%)に維持した高圧冷媒用電子膨張弁EV2を通って第1の流路の一部を経由して冷凍サイクル100の電動式圧縮機102の冷媒吸入側へ循環する様子を示している。また、このときに図2中の点線枠内に示されるようにインジェクション用電子膨張弁EV3での開度が可変設定されて凝縮器103からの冷媒ガスが第3の流路を経由して電動式圧縮機102の冷媒吸入側へ流れることになるが、その開度の設定は電動式圧縮機102の性能に依存して行われる。例えば電動式圧縮機102の基本性能として、120℃以下で吐出圧力を行い、吸入圧力が−24℃で0.23MPa以上である使用範囲を想定し、冷媒サイクル200−1のワークW1への液冷媒供給の目標値が0℃以下で高圧冷媒用電子膨張弁EV2における電動式圧縮機102に対する吸込圧力の目標値が−20℃で0.3MPa、インジェクション用電子膨張弁EV3における電動式圧縮機102に対する吸込温度の目標値が−15℃、冷媒サイクル200−1のワークW1への液冷媒供給の目標値が0℃超過で高圧冷媒用電子膨張弁EV2における電動式圧縮機102に対する吸込圧力の目標値が−10℃で0.47MPa、インジェクション用電子膨張弁EV3における電動式圧縮機102に対する吸込温度の目標値が−5℃である制御条件を仮定する。 Referring to FIG. 2, the electric compressor 102 of the refrigeration cycle 100 can be performed in the chiller apparatus according to the present embodiment by performing various controls by the device control unit (CPU) targeting the above-described bypass flow path structure. The refrigerant gas (referred to as hot gas) compressed to a high pressure by the first flow passes through the high-pressure refrigerant electronic expansion valve EV2 in which the opening degree in the second flow path of the bypass flow path is maintained constant (20%). A state is shown in which the refrigerant circulates to the refrigerant suction side of the electric compressor 102 of the refrigeration cycle 100 via a part of the path. Further, at this time, as shown in a dotted frame in FIG. 2, the opening degree of the electronic expansion valve EV3 for injection is set variably, and the refrigerant gas from the condenser 103 is electrically driven via the third flow path. Although it flows to the refrigerant suction side of the compressor 102, the opening degree is set depending on the performance of the electric compressor 102. For example, as a basic performance of the electric compressor 102, assuming a use range in which the discharge pressure is 120 ° C. or less and the suction pressure is 0.23 MPa or more at −24 ° C., the liquid to the work W1 of the refrigerant cycle 200-1 is assumed. When the target value of the refrigerant supply is 0 ° C. or less and the target value of the suction pressure for the electric compressor 102 in the electronic expansion valve EV2 for high pressure refrigerant is −20 ° C., the electric compressor 102 in the electronic expansion valve EV3 for injection is −0.3 MPa. The target value of the suction temperature for the electric compressor 102 in the high-pressure refrigerant electronic expansion valve EV2 when the target value of the suction temperature is -15 ° C. and the target value of the liquid refrigerant supply to the work W1 of the refrigerant cycle 200-1 exceeds 0 ° C. The value is 0.47 MPa at −10 ° C., and the target value of the suction temperature for the electric compressor 102 in the electronic expansion valve EV3 for injection is −5 ° C. Assume that control conditions.
こうした制御条件下でチラー装置が運転中で冷媒サイクル200−1のワークW1への液冷媒供給の目標値が−10℃に設定され、熱負荷が無ければ高圧冷媒用電子膨張弁EV2における電動式圧縮機102に対する吸込圧力が0.30MPa、高圧冷媒用電子膨張弁EV2の開度20%、インジェクション用電子膨張弁EV3における電動式圧縮機102に対する吸込温度が−15℃、インジェクション用電子膨張弁EV3の開度が20%となる場合を例示できる。また、チラー装置が運転中で冷媒サイクル200−1のワークW1への液冷媒供給の目標値が−10℃に設定され、熱負荷が有れば高圧冷媒用電子膨張弁EV2における電動式圧縮機102に対する吸込圧力が0.30MPa、高圧冷媒用電子膨張弁EV2の開度20%、インジェクション用電子膨張弁EV3における電動式圧縮機102に対する吸込温度が−15℃、インジェクション用電子膨張弁EV3の開度が50%となる場合を例示できる。更に、チラー装置が運転中で冷媒サイクル200−1のワークW1への液冷媒供給の目標値が0℃以上に設定され、熱負荷が無ければ高圧冷媒用電子膨張弁EV2における電動式圧縮機102に対する吸込圧力が0.47MPa、高圧冷媒用電子膨張弁EV2の開度20%、インジェクション用電子膨張弁EV3における電動式圧縮機102に対する吸込温度が−5℃、インジェクション用電子膨張弁EV3の開度が20%となる場合を例示できる。加えて、チラー装置が運転中で冷媒サイクル200−1のワークW1への液冷媒供給の目標値が0℃以上に設定され、熱負荷が無ければ高圧冷媒用電子膨張弁EV2における電動式圧縮機102に対する吸込圧力が0.47MPa、高圧冷媒用電子膨張弁EV2の開度20%、インジェクション用電子膨張弁EV3における電動式圧縮機102に対する吸込温度が−5℃、インジェクション用電子膨張弁EV3の開度が50%となる場合を例示できる。その他、チラー装置が冷媒サイクル200−1における加熱装置202−1での加熱によるワークW1への昇温動作中で液冷媒供給の目標値が−10℃から+100℃に設定されると、高圧冷媒用電子膨張弁EV2における電動式圧縮機102に対する吸込圧力が0.47MPa、高圧冷媒用電子膨張弁EV2の開度20%、インジェクション用電子膨張弁EV3における電動式圧縮機102に対する吸込温度が−5℃、インジェクション用電子膨張弁EV3の開度が20%となる場合を例示できる。これに対し、逆にチラー装置が冷凍サイクル100の電動式圧縮機102を駆動させての蒸発器101−1での熱交換によるワークW1への降温動作中で液冷媒供給の目標値が+100℃から−10℃に設定されると、高圧冷媒用電子膨張弁EV2における電動式圧縮機102に対する吸込圧力が0.47MPa、高圧冷媒用電子膨張弁EV2の開度20%、インジェクション用電子膨張弁EV3における電動式圧縮機102に対する吸込温度が−15℃、インジェクション用電子膨張弁EV3の開度が50%となる場合を例示できる。 If the chiller device is operating under such control conditions and the target value of liquid refrigerant supply to the workpiece W1 of the refrigerant cycle 200-1 is set to -10 ° C and there is no thermal load, the electric type in the electronic expansion valve EV2 for high pressure refrigerant The suction pressure for the compressor 102 is 0.30 MPa, the opening degree of the electronic expansion valve EV2 for high-pressure refrigerant is 20%, the suction temperature for the electric compressor 102 in the injection electronic expansion valve EV3 is −15 ° C., and the electronic expansion valve EV3 for injection A case where the opening degree is 20% can be illustrated. In addition, when the chiller device is in operation and the target value of liquid refrigerant supply to the work W1 of the refrigerant cycle 200-1 is set to -10 ° C. and there is a thermal load, the electric compressor in the high-pressure refrigerant electronic expansion valve EV2 The suction pressure with respect to 102 is 0.30 MPa, the opening degree of the high-pressure refrigerant electronic expansion valve EV2 is 20%, the suction temperature with respect to the electric compressor 102 in the injection electronic expansion valve EV3 is −15 ° C., and the injection electronic expansion valve EV3 is opened. A case where the degree is 50% can be exemplified. Furthermore, when the chiller device is in operation and the target value of liquid refrigerant supply to the workpiece W1 of the refrigerant cycle 200-1 is set to 0 ° C. or higher and there is no thermal load, the electric compressor 102 in the high-pressure refrigerant electronic expansion valve EV2 is used. The suction pressure is 0.47 MPa, the opening degree of the high-pressure refrigerant electronic expansion valve EV2 is 20%, the suction temperature to the electric compressor 102 in the injection electronic expansion valve EV3 is −5 ° C., and the opening degree of the injection electronic expansion valve EV3 Can be exemplified as 20%. In addition, if the chiller device is in operation and the target value of liquid refrigerant supply to the workpiece W1 of the refrigerant cycle 200-1 is set to 0 ° C. or higher and there is no thermal load, the electric compressor in the high-pressure refrigerant electronic expansion valve EV2 The suction pressure with respect to 102 is 0.47 MPa, the opening degree of the high-pressure refrigerant electronic expansion valve EV2 is 20%, the suction temperature with respect to the electric compressor 102 in the injection electronic expansion valve EV3 is −5 ° C., and the injection electronic expansion valve EV3 is opened. A case where the degree is 50% can be exemplified. In addition, when the target value of liquid refrigerant supply is set from −10 ° C. to + 100 ° C. during the temperature rising operation to the workpiece W1 by heating with the heating device 202-1 in the refrigerant cycle 200-1, the high pressure refrigerant is set. The suction pressure for the electric compressor 102 in the electronic expansion valve EV2 is 0.47 MPa, the opening degree of the electronic expansion valve EV2 for high-pressure refrigerant is 20%, and the suction temperature for the electric compressor 102 in the injection electronic expansion valve EV3 is -5. A case where the opening degree of the electronic expansion valve EV3 for injection is 20% can be illustrated. On the other hand, the target value of the liquid refrigerant supply is + 100 ° C. during the temperature lowering operation to the workpiece W1 by the heat exchange in the evaporator 101-1 when the chiller device drives the electric compressor 102 of the refrigeration cycle 100. To −10 ° C., the suction pressure for the electric compressor 102 in the high-pressure refrigerant electronic expansion valve EV2 is 0.47 MPa, the opening degree of the high-pressure refrigerant electronic expansion valve EV2 is 20%, and the injection electronic expansion valve EV3. The case where the suction temperature with respect to the electric compressor 102 is -15 ° C. and the opening degree of the electronic expansion valve EV3 for injection is 50% can be exemplified.
要するに、高圧冷媒用電子膨張弁EV2の役割は、電動式圧縮機102に対する吸込圧力が0.3MPaとなるように、電動式圧縮機102により高圧に圧縮された冷媒ガスを電動式圧縮機102の冷媒吸入側へ合流させて圧力を上昇させることにある。高圧冷媒バイパス操作流量が多ければ電動式圧縮機102がその分、無駄に働くことになるため、必要最小限の冷却能力となるように高圧冷媒用電子膨張弁EV2の開度が20%となるように電動式圧縮機102での運転周波数を可変制御し、どのような運転条件下でも最適な省エネルギー運転を実施できるようにする。インジェクション用電子膨張弁EV3の役割は、電動式圧縮機102に対する吸込温度が常に一定となるように、電動式圧縮機102により高圧に圧縮された冷媒ガスを電動式圧縮機102の冷媒吸入側へ合流させて温度を上昇させることにある。但し、電動式圧縮機102に対する吸込圧力や吸込温度は使用環境条件によって変わるため、それに応じて目標値が変更されることになる。例えば電動式圧縮機102に対する吸込温度の目標値は+5℃位まで変更される場合を例示できる。 In short, the role of the electronic expansion valve EV2 for high-pressure refrigerant is that the refrigerant gas compressed to a high pressure by the electric compressor 102 is supplied to the electric compressor 102 so that the suction pressure to the electric compressor 102 becomes 0.3 MPa. The purpose is to increase the pressure by merging to the refrigerant suction side. If the high-pressure refrigerant bypass operation flow rate is large, the electric compressor 102 will be used correspondingly, so the opening degree of the high-pressure refrigerant electronic expansion valve EV2 is 20% so that the required minimum cooling capacity is obtained. As described above, the operation frequency in the electric compressor 102 is variably controlled so that the optimum energy saving operation can be performed under any operation condition. The role of the electronic expansion valve EV3 for injection is to supply the refrigerant gas compressed to a high pressure by the electric compressor 102 to the refrigerant suction side of the electric compressor 102 so that the suction temperature to the electric compressor 102 is always constant. It is to raise the temperature by joining. However, since the suction pressure and the suction temperature for the electric compressor 102 vary depending on the use environment conditions, the target value is changed accordingly. For example, the case where the target value of the suction temperature for the electric compressor 102 is changed to about + 5 ° C. can be exemplified.
また、図2中に示される冷凍サイクル100における蒸発器101−1の冷媒吸入側の冷媒供給用電子膨張弁EV1−1の役割は、凝縮器103から蒸発器101−1へ流す冷媒の流量を調節し、蒸発器101−1での熱交換により冷媒サイクル200−1を循環する液冷媒を適度に冷却させることにある。更に、冷凍サイクル100におけるバイパス流路の第4の流路中に介在接続された冷媒供給用電子膨張弁EV1−2の役割も同様であり、凝縮器103から蒸発器101−2へ流す冷媒の流量を調節し、蒸発器101−2での熱交換により冷媒サイクル200−2を循環する液冷媒を適度に冷却させることにある。何れの冷媒供給用電子膨張弁EV1−1、EV−2についても、流量調整によって蒸発器101−1、101−2における熱交換で冷媒サイクル200−1、200−2の液冷媒を2℃程度冷却することができる。特に、第4の流路中の冷媒供給用電子膨張弁EV1−2については、冷凍サイクル100における蒸発器101−1での熱交換機能には関与せず、上述したバイパス流路の構成を前提とした機器制御ユニット(CPU)で第2の流路中の高圧冷媒用電子膨張弁EV2の開度を一定にしての第3の流路中のインジェクション用電子膨張弁EV3の開度を可変設定にする冷凍サイクル100及びバイパス流路における冷媒の流量制御が実施されることにより、蒸発器101−2における冷却機能を意図的に低下させてデュアル構成の冷媒サイクル200−1、200−2で異なる保温範囲条件のワークW1、W2を同時に高精度に保温制御できる機能を達成するための補助的な枠割を担っている。 In addition, the role of the refrigerant supply electronic expansion valve EV1-1 on the refrigerant suction side of the evaporator 101-1 in the refrigeration cycle 100 shown in FIG. 2 is to control the flow rate of the refrigerant flowing from the condenser 103 to the evaporator 101-1. The purpose is to moderately cool the liquid refrigerant circulating through the refrigerant cycle 200-1 by heat exchange in the evaporator 101-1. Further, the role of the refrigerant supply electronic expansion valve EV1-2 intervened in the fourth flow path of the bypass flow path in the refrigeration cycle 100 is the same, and the refrigerant flowing from the condenser 103 to the evaporator 101-2 is also similar. The flow rate is adjusted, and the liquid refrigerant circulating in the refrigerant cycle 200-2 is appropriately cooled by heat exchange in the evaporator 101-2. For any of the refrigerant supply electronic expansion valves EV1-1 and EV-2, the liquid refrigerant in the refrigerant cycles 200-1 and 200-2 is about 2 ° C. by heat exchange in the evaporators 101-1 and 101-2 by adjusting the flow rate. Can be cooled. In particular, the refrigerant supply electronic expansion valve EV1-2 in the fourth flow path is not related to the heat exchange function in the evaporator 101-1 in the refrigeration cycle 100, and is based on the configuration of the bypass flow path described above. In the device control unit (CPU), the opening degree of the injection electronic expansion valve EV3 in the third flow path is variably set with the opening degree of the high pressure refrigerant electronic expansion valve EV2 in the second flow path being constant. By performing the refrigerant flow control in the refrigeration cycle 100 and the bypass flow path, the cooling function in the evaporator 101-2 is intentionally lowered to differ between the dual configuration refrigerant cycles 200-1 and 200-2. It has an auxiliary framework for achieving the function of maintaining the temperature of the workpieces W1 and W2 under the heat retention range condition at the same time with high accuracy.
図3は、実施例に係るチラー装置に備えられる制御装置としての機器制御ユニット(CPU)によるバイパス流路における第2の流路及び第1の流路の一部を流れて冷凍サイクル100の電動式圧縮機102の冷媒吸入側へ循環する高圧冷媒バイパス操作流量に応じた電動式圧縮機102での運転周波数の可変制御を説明するために示した経過時間に対する高圧冷媒バイパス操作流量−圧縮機運転周波数特性を対比して示した模式図である。 FIG. 3 shows the electric motor of the refrigeration cycle 100 through the second flow path and a part of the first flow path in the bypass flow path by the device control unit (CPU) as a control device provided in the chiller device according to the embodiment. High pressure refrigerant bypass operation flow rate vs. elapsed time shown for explaining variable control of the operation frequency in the electric compressor 102 according to the high pressure refrigerant bypass operation flow rate circulating to the refrigerant suction side of the compressor 102-compressor operation It is the schematic diagram which contrasted and showed the frequency characteristic.
図3を参照すれば、ここでは機器制御ユニット(CPU)によりバイパス流路における第2の流路及び第1の流路の一部を流れて冷凍サイクル100の電動式圧縮機102の冷媒吸入側へ循環する高圧冷媒バイパス操作流量について、特性上の一例として実線で示される測定値を目標値の20%と比較して目標値20%に収束されるように、第3の温度センサT3からの冷媒温度、並びに圧力センサPからの冷媒圧力をPID演算した結果に基づいて生成した駆動制御信号をインバータINVへ出力し、電動式圧縮機102での運転周波数を流量0%〜100%に対応する7Hz〜140Hzの周波数範囲内で冷媒温度に応じて可変制御することを示しており、このときに第2の流路中の高圧冷媒用電子膨張弁EV2の開度を20%に維持して第3の流路中のインジェクション用電子膨張弁EV3の開度を可変設定する。ここでは高圧冷媒バイパス操作流量の測定値と目標値との差値について、移動平均を行って変化量を緩やかにする処理を行うことになるが、例示した目標値20%や駆動制御信号の周波数範囲7Hz〜140Hzは使用条件に応じて可変させることが可能である。 Referring to FIG. 3, the refrigerant suction side of the electric compressor 102 of the refrigeration cycle 100 flows here through the second flow path and a part of the first flow path in the bypass flow path by the device control unit (CPU). For the high-pressure refrigerant bypass operation flow that circulates to the target temperature, the measured value indicated by the solid line as an example of the characteristic is compared with 20% of the target value and converged to the target value of 20%. A drive control signal generated based on the result of PID calculation of the refrigerant temperature and the refrigerant pressure from the pressure sensor P is output to the inverter INV, and the operation frequency in the electric compressor 102 corresponds to a flow rate of 0% to 100%. The variable control is performed according to the refrigerant temperature within the frequency range of 7 Hz to 140 Hz. At this time, the opening of the high-pressure refrigerant electronic expansion valve EV2 in the second flow path is maintained at 20%. The opening degree of the third flow injection electronic expansion valve in passage EV3 variably set. Here, the difference between the measured value of the high-pressure refrigerant bypass operation flow rate and the target value is processed by performing a moving average to moderate the amount of change, but the target value of 20% and the frequency of the drive control signal are exemplified. The range of 7 Hz to 140 Hz can be varied according to the use conditions.
実施例に係るチラー装置によれば、ワークW1が接続される冷媒サイクル200−1の蒸発器101−1を共用する冷凍サイクル100に接続された第1の流路〜第4の流路によるバイパス流路を通してワークW2が接続される冷媒サイクル200−2の蒸発器101−2へ第4の流路中に介在接続された冷媒供給用電子膨張弁EV1−2の開度を制御して冷却低下された冷媒を流す際、機器制御ユニット(CPU)が冷媒サイクル200−1、200−2における第1の温度センサT1−1、T1−2で検出された液冷媒温度をPID演算した結果に基づいて生成した制御信号により加熱装置202−1、202−2での加熱量を制御すると共に、第2の温度センサT1−1、T1−2で検出された液冷媒温度をPID演算した結果に基づいて生成したパルス信号により冷凍サイクル100の蒸発器101−1の冷媒吸入側の冷媒供給用電子膨張弁EV1−1の開度、並びに第4の流路中に介在接続された冷媒供給用電子膨張弁EV1−2の開度を制御し、更に冷凍サイクル100における圧力センサPでの冷媒圧力、第3の温度センサT3での冷媒温度をPID演算した結果に基づいて生成したパルス信号により第2の流路の高圧冷媒用電子膨張弁EV2の開度を一定にしてそこから第1の流路の一部を経由して電動式圧縮機102へ循環する高圧冷媒バイパス操作流量が目標値に収束されるように、第3の流路のインジェクション用電子膨張弁EV3での開度を可変設定し、駆動制御信号を出力して圧縮機102での運転周波数を所定の範囲内で冷媒温度に応じて可変制御するため、廉価な構成で冷却性能が損われずに電動式圧縮機102に過負荷を掛けず、異なる保温範囲条件のワークW1、W2を同時に高精度に保温制御することができる。この結果、例えば第1の冷媒サイクル200−1に接続されるワークW1を半導体エッチング装置における下部電極に対する保温用とすると共に、第2の冷媒サイクル200−2に接続されるワークW2を半導体エッチング装置における上部電極に対する保温用として適用すれば、ターゲットへの半導体エッチングを温度ムラなく高精度に行うことができるようになる。 According to the chiller device according to the embodiment, the bypass by the first flow path to the fourth flow path connected to the refrigeration cycle 100 sharing the evaporator 101-1 of the refrigerant cycle 200-1 to which the workpiece W1 is connected. Cooling is reduced by controlling the opening degree of the refrigerant supply electronic expansion valve EV1-2 connected in the fourth flow path to the evaporator 101-2 of the refrigerant cycle 200-2 to which the work W2 is connected through the flow path. When the generated refrigerant is flown, the device control unit (CPU) is based on the result of PID calculation of the liquid refrigerant temperature detected by the first temperature sensors T1-1 and T1-2 in the refrigerant cycles 200-1 and 200-2. Based on the result of PID calculation of the liquid refrigerant temperature detected by the second temperature sensors T1-1 and T1-2, while controlling the heating amount in the heating devices 202-1 and 202-2 by the control signal generated in this way. Z The refrigerant supply electronic expansion valve EV1-1 on the refrigerant suction side of the evaporator 101-1 of the evaporator 101-1 of the refrigeration cycle 100 and the refrigerant expansion electronic expansion intervened in the fourth flow path by the pulse signal generated in this way The opening degree of the valve EV1-2 is controlled, and the second pressure signal is generated by a pulse signal generated based on the result of PID calculation of the refrigerant pressure at the pressure sensor P and the refrigerant temperature at the third temperature sensor T3 in the refrigeration cycle 100. The flow rate of the high-pressure refrigerant bypass operation flow that circulates to the electric compressor 102 through a part of the first flow path with the opening degree of the electronic expansion valve EV2 for the high-pressure refrigerant in the flow path made constant is converged to the target value. As described above, the opening degree of the third flow passage electronic expansion valve EV3 is variably set, a drive control signal is output, and the operation frequency of the compressor 102 is set within a predetermined range according to the refrigerant temperature. Variable control Therefore, it is possible to cool performance inexpensive configuration can not overload the electric compressor 102 without impaired, incubated controlled to different insulation range condition simultaneously high precision workpieces W1, W2 of. As a result, for example, the work W1 connected to the first refrigerant cycle 200-1 is used for heat insulation with respect to the lower electrode in the semiconductor etching apparatus, and the work W2 connected to the second refrigerant cycle 200-2 is used as the semiconductor etching apparatus. If it is applied as a heat retaining material for the upper electrode, the semiconductor etching on the target can be performed with high accuracy without temperature unevenness.
図4は、実施例に係るチラー装置における冷却性能を説明するために示すモリエル線図である。但し、実施例に係るチラー装置における冷凍サイクル100及びバイパス流路を循環させる冷媒には、高効率なフロンガス(R410A)を用いた場合を想定している。 FIG. 4 is a Mollier diagram shown for explaining the cooling performance in the chiller device according to the embodiment. However, it is assumed that a highly efficient Freon gas (R410A) is used as the refrigerant circulating in the refrigeration cycle 100 and the bypass flow path in the chiller apparatus according to the embodiment.
図4を参照すれば、実施例に係るチラー装置は、圧力p[MPa]と比エンタルピーh[kJ/kg]との関係で示されるモリエル線図上の冷凍サイクルにおいて、点Aから点Bの間は電動式圧縮機102での冷媒の状態変化を示し、点Bから点Cの間は凝縮器103での冷媒の状態変化を示し、点Cから点Dの間は膨張弁での冷媒の状態変化を示し、点Dから点Aは蒸発器101−1での冷媒の状態変化を示しており、点Bに係る圧縮直後の比エンタルピーhはh3=470kJ/kgとなり、点Aに係る熱交換直後の比エンタルピーhはh2=420kJ/kgとなり、点C乃至点Dに係る凝縮後の膨張での比エンタルピーhはh1=255kJ/kgとなることが判った。 Referring to FIG. 4, the chiller device according to the example includes points A to B in the refrigeration cycle on the Mollier diagram indicated by the relationship between the pressure p [MPa] and the specific enthalpy h [kJ / kg]. The interval shows the change in the state of the refrigerant in the electric compressor 102, the change in the state of the refrigerant in the condenser 103 from point B to point C, and the change in the refrigerant in the expansion valve between the point C and point D. The change of state is shown, the point D to the point A show the change of the state of the refrigerant in the evaporator 101-1, the specific enthalpy h immediately after the compression related to the point B is h3 = 470 kJ / kg, and the heat related to the point A It was found that the specific enthalpy h immediately after the exchange was h2 = 420 kJ / kg, and the specific enthalpy h in the expansion after condensation at points C to D was h1 = 255 kJ / kg.
上記結果に基づいて冷却性能を解析すると、冷凍効果を示すh2−h1が420−255=165kJ/kgであり、冷却側循環流量が174kg/時間であれば、これらの値を乗算して秒当りに除算する計算結果で与えられ、冷却性能は165×174/3600=8kWとなることが判った。また、加熱性能を解析すると、高圧な圧縮冷媒ガスを示すh3−h2が470−420=50kJ/kgであり、バイパス循環流量が50kg/時間であれば、これらの値を乗算して秒当りに除算する計算結果で与えられ、加熱性能は50×50/3600=0.7kWとなることが判った。因みに、特許文献1に係るチラー装置では電動式圧縮機により高圧に圧縮された冷媒ガスが蒸発器の冷媒吸入側へ戻されるバイパス流路を持つため、上述した加熱性能分の加熱量が差し引かれる格好となり、冷却性能が8−0.7=7.3kWとなる。これに対し、実施例に係るチラー装置では、蒸発器101−1の冷媒吐出側へ戻されるバイパス流路を持つため、8kWの冷却能力での使用が可能となる。即ち、実施例に係るチラー装置では、冷凍サイクル100における電動式圧縮機102により高圧に圧縮された冷媒ガスが蒸発器101−1に流れ込むことがないため、冷凍効果を100%使用することができ、余分に冷媒を流す必要がなくなることにより、実施例に係るチラー装置は特許文献1に係るチラー装置と比べれば、結果として約10%〜15%の省エネルギー効果が具現される。 When the cooling performance is analyzed based on the above results, if h2-h1 indicating the refrigeration effect is 420-255 = 165 kJ / kg and the cooling-side circulation flow rate is 174 kg / hour, these values are multiplied by per second. It was found that the cooling performance was 165 × 174/3600 = 8 kW. Further, when the heating performance is analyzed, h3-h2 indicating a high-pressure compressed refrigerant gas is 470-420 = 50 kJ / kg, and if the bypass circulation flow rate is 50 kg / hour, these values are multiplied per second. Given the calculation result of the division, it was found that the heating performance was 50 × 50/3600 = 0.7 kW. Incidentally, since the chiller device according to Patent Document 1 has a bypass flow path in which the refrigerant gas compressed to a high pressure by the electric compressor is returned to the refrigerant suction side of the evaporator, the heating amount corresponding to the heating performance described above is subtracted. It becomes cool and the cooling performance is 8−0.7 = 7.3 kW. On the other hand, since the chiller device according to the embodiment has a bypass flow path returned to the refrigerant discharge side of the evaporator 101-1, it can be used with a cooling capacity of 8 kW. That is, in the chiller device according to the embodiment, the refrigerant gas compressed to a high pressure by the electric compressor 102 in the refrigeration cycle 100 does not flow into the evaporator 101-1, so that the refrigeration effect can be used 100%. By eliminating the need to flow an extra refrigerant, the chiller device according to the embodiment realizes an energy saving effect of about 10% to 15% as a result as compared with the chiller device according to Patent Document 1.
尚、実施例に係るチラー装置では、機器制御ユニット(CPU)が冷凍サイクル100内に設けられた第3の温度センサT3の冷媒温度、並びに圧力センサPで検出された冷媒圧力をPID演算した結果に基づいて生成した駆動制御信号をインバータINVへ出力して電動式圧縮機102の運転周波数を所定の範囲内で第3の温度センサT3で検出された冷媒温度に応じて可変制御する機能を説明したが、駆動制御信号を生成するためのPID演算については特許文献1で説明されているように使用者による設定温度と第1の温度センサT1−1、T1−2で検出されたワーク温度との温度差の少ない保温設定時に冷媒サイクル200−1、200−2内に設けられた第2の温度センサT2−1、T2−2で検出された液冷媒温度を対象にして駆動制御信号を生成し、電動式圧縮機102の運転周波数を所定の範囲内で第1の温度センサT1−1、T1−2で検出されたワーク温度に応じて可変制御する機能を持たせることも可能であるので、本発明のチラー装置は実施例で説明した形態に限定されない。但し、本発明のチラー装置は、上述したように2系統の冷媒サイクル200−1、200−2を持たせ、冷凍サイクル100の冷却性能を損わずにバイパス流路を活用して冷媒流量を制御することで冷却性能を向上させると共に、省エネルギー化を図ることを技術的要旨としているため、実施例で説明したように自サイクル内となる冷凍サイクル100内の第3の温度センサT3の冷媒温度、並びに圧力センサPで検出された冷媒圧力をPID演算して駆動制御信号を生成する方が追従性や適確さの点で有利であると云える。 In the chiller device according to the example, the device control unit (CPU) performs a PID calculation on the refrigerant temperature of the third temperature sensor T3 provided in the refrigeration cycle 100 and the refrigerant pressure detected by the pressure sensor P. A function for variably controlling the operation frequency of the electric compressor 102 within a predetermined range according to the refrigerant temperature detected by the third temperature sensor T3 by outputting the drive control signal generated based on the above to the inverter INV is explained. However, with respect to the PID calculation for generating the drive control signal, the temperature set by the user and the workpiece temperature detected by the first temperature sensors T1-1 and T1-2 as described in Patent Document 1, The liquid refrigerant temperature detected by the second temperature sensors T2-1 and T2-2 provided in the refrigerant cycles 200-1 and 200-2 at the time of the heat retention setting with a small temperature difference is targeted. A function of generating a drive control signal and variably controlling the operation frequency of the electric compressor 102 within a predetermined range according to the workpiece temperature detected by the first temperature sensors T1-1 and T1-2. Therefore, the chiller device of the present invention is not limited to the form described in the embodiments. However, the chiller device of the present invention has the two refrigerant cycles 200-1 and 200-2 as described above, and uses the bypass flow path to reduce the refrigerant flow rate without impairing the cooling performance of the refrigeration cycle 100. Since the technical gist is to improve the cooling performance by controlling and to save energy, the refrigerant temperature of the third temperature sensor T3 in the refrigeration cycle 100 in the own cycle as described in the embodiment. In addition, it can be said that it is advantageous in terms of followability and accuracy to generate a drive control signal by PID calculation of the refrigerant pressure detected by the pressure sensor P.
100 冷凍サイクル
101−1、101−2 蒸発器(熱交換器)
102 電動式圧縮機
103 凝縮器
200−1、200−2 冷媒サイクル
201−1、201−2 冷媒タンク
202−1、202−2 加熱装置(ヒータ)
203−1、203−2 ポンプ
300 冷却回路
EV1−1、EV1−2 冷媒供給用電子膨張弁
EV2 高圧冷媒用電子膨張弁
EV3 インジェクション用電子膨張弁
F 流量検出センサ
P 圧力センサ
T1−1、T1−2 第1の温度センサ
T2−1、T2−2 第2の温度センサ
T3 第3の温度センサ
T4‐1、T4−2 第4の温度センサ
W1、W2 ワーク
100 Refrigeration cycle 101-1, 101-2 Evaporator (heat exchanger)
DESCRIPTION OF SYMBOLS 102 Electric compressor 103 Condenser 200-1, 200-2 Refrigerant cycle 201-1 and 201-2 Refrigerant tank 202-1 and 202-2 Heating device (heater)
203-1, 203-2 Pump 300 Cooling circuit EV1-1, EV1-2 Electronic expansion valve for refrigerant supply EV2 Electronic expansion valve for high-pressure refrigerant EV3 Electronic expansion valve for injection F Flow rate detection sensor P Pressure sensor T1-1, T1- 2 1st temperature sensor T2-1, T2-2 2nd temperature sensor T3 3rd temperature sensor T4-1, T4-2 4th temperature sensor W1, W2 Workpiece
Claims (6)
前記第1の冷媒サイクルと前記第2の冷媒サイクルとは、前記第1の蒸発器と前記第2の蒸発器との冷媒吐出側で前記加熱装置に対する液冷媒流入の手前側にそれぞれ設けられて液冷媒温度を検出する第2の温度センサと、前記第1の蒸発器と前記第2の蒸発器との冷媒吸入側で前記ワークに対する液冷媒流出側にそれぞれ設けられて液冷媒温度を検出する第4の温度センサと、を有し、
前記冷凍サイクルは、前記電動式圧縮機の冷媒吸入側であって、前記第1の蒸発器の冷媒吐出側に設けられて冷媒温度を検出するための第3の温度センサと、前記電動式圧縮機の冷媒吸入側の前記第3の温度センサ近傍に設けられて冷媒圧力を検出する圧力センサと、前記第1の蒸発器の冷媒吸入側に介在接続された流量調整用の第1の冷媒供給用電子膨張弁と、を有し、
前記バイパス流路は、前記第2の冷媒サイクルにおける前記第2の蒸発器の冷媒吐出側から前記冷凍サイクルにおける前記第1の蒸発器の冷媒吐出側と前記電動式圧縮機の冷媒吸入側との間の箇所に繋がる第1の流路と、前記第1の流路の途中箇所から流量調整用の高圧冷媒用電子膨張弁を介在させて前記冷凍サイクルに備えられる凝縮器の冷媒吸入側と前記電動式圧縮機の冷媒吐出側との間の箇所に繋がる第2の流路と、前記第1の流路から延在して流量調整用のインジェクション用電子膨張弁を介在させて前記冷凍サイクルにおける前記凝縮器の冷媒吐出側と前記第1の蒸発器の冷媒吸入側との間における前記第1の冷媒供給用電子膨張弁の冷媒流入手前側の箇所に繋がる第3の流路と、前記冷凍サイクルにおける前記第1の冷媒供給用電子膨張弁の冷媒流入手前側の前記第3の流路よりも前記第1の蒸発器の冷媒吸入側寄り箇所と前記第2の冷媒サイクルにおける前記第2の蒸発器の冷媒吸入側とに流量調整用の第2の冷媒供給用電子膨張弁を介在接続させて繋がる第4の流路と、を有して形成され、
前記制御装置は、前記第1の温度センサでそれぞれ検出された前記ワーク温度について比例、積分、微分を含むPID演算した結果に基づいて生成した制御信号により前記第1の冷媒サイクルと前記第2の冷媒サイクルとにおける前記加熱装置でのそれぞれの加熱量を制御し、前記第2の温度センサでそれぞれ検出された前記液冷媒温度について比例、積分、微分を含むPID演算した結果に基づいて生成したパルス信号により前記第1の冷媒供給用電子膨張弁と前記第2の冷媒供給用電子膨張弁とでの開閉をそれぞれ制御して前記冷凍サイクルと前記バイパス流路とにおける冷媒流量を制御し、前記圧力センサで検出された前記冷媒圧力について比例、積分、微分を含むPID演算した結果と前記第3の温度センサで検出された前記冷媒温度について比例、積分、微分を含むPID演算した結果とに基づいて生成したパルス信号により前記高圧冷媒用電子膨張弁の開度を一定に維持して当該バイパス流路における前記第2の流路から前記第1の流路の一部を経由して当該冷凍サイクルの前記電動式圧縮機の冷媒吸入側へ循環する高圧冷媒バイパス操作流量が目標とする所定値に収束されるように、前記インジェクション用電子膨張弁での開度を可変設定して当該バイパス流路及び当該冷凍サイクルの全体での冷媒流量を制御すると共に、当該電動式圧縮機を駆動するために生成した駆動制御信号をインバータへ出力して当該電動式圧縮機での運転周波数を所定の範囲内で当該冷媒温度に応じて可変制御することを特徴とするチラー装置。 A refrigeration cycle in which a refrigerant for cooling circulates, a first refrigerant cycle in which a liquid refrigerant for heating circulates in common with a first evaporator provided in the refrigeration cycle, and piping at predetermined locations of the refrigeration cycle together with the refrigerant of the second evaporator bypass connected through said bypass passage first separate from the evaporator circulates, the second refrigerant cycle in which liquid refrigerant for heating circulates a separate line The various customer devices that are interposed and connected to the first refrigerant cycle and the second refrigerant cycle and are to be kept warm are used for selective temperature setting in a predetermined temperature range for the user. And the number of rotations of the electric compressor provided in the refrigeration cycle, and a heating apparatus for heating the liquid refrigerant circulating through the first refrigerant cycle and the second refrigerant cycle. The thermal temperature is a set temperature set by the user and a workpiece temperature detected by a first temperature sensor provided near the workpiece side of the first refrigerant cycle and the second refrigerant cycle. In a chiller device comprising a control device that controls according to a temperature difference,
Wherein the first refrigerant cycle and second refrigerant cycle, respectively provided on the front side of the liquid refrigerant flowing to said heating device in a refrigerant discharge side of said second evaporator and said first evaporator A second temperature sensor for detecting the temperature of the liquid refrigerant, and a liquid refrigerant temperature on the refrigerant suction side of the first evaporator and the second evaporator on the liquid refrigerant outflow side with respect to the workpiece; A fourth temperature sensor;
The refrigeration cycle is provided on the refrigerant suction side of the electric compressor and on the refrigerant discharge side of the first evaporator, and a third temperature sensor for detecting the refrigerant temperature, and the electric compression A pressure sensor provided in the vicinity of the third temperature sensor on the refrigerant suction side of the machine for detecting the refrigerant pressure, and a first refrigerant supply for flow rate adjustment connected to the refrigerant suction side of the first evaporator An electronic expansion valve for
The bypass flow path extends from a refrigerant discharge side of the second evaporator in the second refrigerant cycle to a refrigerant discharge side of the first evaporator and a refrigerant suction side of the electric compressor in the refrigeration cycle. A first flow path connected to a location in between, a refrigerant suction side of a condenser provided in the refrigeration cycle with an electronic expansion valve for high-pressure refrigerant for adjusting a flow rate from a midpoint of the first flow path, and the In the refrigeration cycle, a second flow path connected to a location between the refrigerant discharge side of the electric compressor and an injection electronic expansion valve for flow rate adjustment extending from the first flow path is interposed. A third flow path connected to a position on the refrigerant flow pre-acquisition side of the first refrigerant supply electronic expansion valve between the refrigerant discharge side of the condenser and the refrigerant suction side of the first evaporator; wherein in cycle first refrigerant supply Flow rate and a refrigerant suction side of the second evaporator in the child expansion valve of the refrigerant inflow front side of the third flow passage wherein the first of said refrigerant suction side closer location of the evaporator the second refrigerant cycle than A fourth flow path connected by interposing and connecting the second refrigerant supply electronic expansion valve for adjustment,
The control device is configured to control the first refrigerant cycle and the second by a control signal generated based on a result of PID calculation including proportionality, integration, and differentiation for the workpiece temperature detected by the first temperature sensor. controls each of the heating amount in the heating device in the refrigerant cycle, the second proportional for the liquid refrigerant temperature detected respectively by the temperature sensor of the integral, generated based on the result of the PID operation including differential pulse Controlling the opening and closing of the first refrigerant supply electronic expansion valve and the second refrigerant supply electronic expansion valve by a signal to control the refrigerant flow rate in the refrigeration cycle and the bypass flow path, and the pressure The result of PID calculation including proportionality, integral, and differentiation with respect to the refrigerant pressure detected by the sensor and the refrigerant temperature detected by the third temperature sensor For proportional, integral, said from said second flow path in the bypass flow path to maintain a constant degree of opening of the high-pressure refrigerant electronic expansion valve by pulse signal generated based on the result of the PID operation includes a differential as high-pressure refrigerant bypass operation flow through a portion of the first flow path to circulate the refrigerant suction side of the electric compressor of the refrigeration cycle is converged to a predetermined value to a target, said injection electronic The opening of the expansion valve is variably set to control the refrigerant flow rate in the bypass flow path and the entire refrigeration cycle, and the drive control signal generated to drive the electric compressor is output to the inverter. The chiller device is characterized in that the operating frequency of the electric compressor is variably controlled in accordance with the refrigerant temperature within a predetermined range.
前記制御装置は、前記第1の冷媒サイクルと前記第2の冷媒サイクルとにおける前記第1の温度センサと前記第4の温度センサとによりそれぞれ検出された前記液冷媒温度の差値に基づいて前記ワーク側の熱負荷量を個別に算出した結果を前記圧力センサで検出された前記冷媒圧力に基づいて前記PID演算した結果及び前記第3の温度センサで検出された前記冷媒温度に基づいて前記PID演算した結果へそれぞれ反映させて冷却制御を補正するフィードフォワード制御を行うことを特徴とするチラー装置。 The chiller device according to claim 1,
Wherein the control device, on the basis of the difference value of the first said refrigerant cycle and the first temperature sensor in said second refrigerant cycle fourth temperature sensor and the liquid refrigerant temperature detected respectively by The PID is calculated based on the result of the PID calculation based on the refrigerant pressure detected by the pressure sensor and the refrigerant temperature detected by the third temperature sensor. A chiller device that performs feedforward control that corrects cooling control by reflecting each of the calculated results.
前記制御装置は、前記インジェクション用電子膨張弁での開度について、前記熱負荷量を算出した結果に応じて熱負荷がある場合には熱負荷が無い場合よりも開度を大きくすることを特徴とするチラー装置。 The chiller device according to claim 2, wherein
The control device is configured to increase the opening degree in the electronic expansion valve for injection when there is a thermal load according to the calculation result of the thermal load amount, compared to when there is no thermal load. A chiller device.
前記制御装置は、前記第1の冷媒サイクルと前記第2の冷媒サイクルとにおける前記加熱装置での加熱による前記ワークへの昇温動作中よりも前記冷凍サイクルの前記電動式圧縮機を駆動させての前記第1の蒸発器での熱交換による当該ワークへの降温動作中における前記インジェクション用電子膨張弁での開度を大きくすることを特徴とするチラー装置。 The chiller device according to claim 2 or 3,
The control device, by driving the electric compressor of the refrigeration cycle than during the temperature raising operation to the work by heating by the heating device in the first refrigerant cycle and the second refrigerant cycle A chiller device that increases the opening degree of the electronic expansion valve for injection during the temperature lowering operation to the workpiece by heat exchange in the first evaporator.
前記第1の温度センサ及び前記第2の温度センサは、白金抵抗帯体を用いたPtセンサであり、前記第3の温度センサ及び前記第4の温度センサは、熱電対を用いた熱電対センサであることを特徴とするチラー装置。 The chiller device according to claim 1,
The first temperature sensor and the second temperature sensor are Pt sensors using a platinum resistance band, and the third temperature sensor and the fourth temperature sensor are thermocouple sensors using a thermocouple. Chiller device characterized by being.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015248618A JP6053907B1 (en) | 2015-12-21 | 2015-12-21 | Chiller device |
CN201680070998.XA CN108474594B (en) | 2015-12-21 | 2016-12-14 | Refrigerating device |
KR1020187017702A KR102006013B1 (en) | 2015-12-21 | 2016-12-14 | Chiller device |
PCT/JP2016/087164 WO2017110608A1 (en) | 2015-12-21 | 2016-12-14 | Chiller device |
TW105142277A TWI646292B (en) | 2015-12-21 | 2016-12-20 | Cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015248618A JP6053907B1 (en) | 2015-12-21 | 2015-12-21 | Chiller device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6053907B1 true JP6053907B1 (en) | 2016-12-27 |
JP2017116118A JP2017116118A (en) | 2017-06-29 |
Family
ID=57582210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015248618A Active JP6053907B1 (en) | 2015-12-21 | 2015-12-21 | Chiller device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6053907B1 (en) |
KR (1) | KR102006013B1 (en) |
CN (1) | CN108474594B (en) |
TW (1) | TWI646292B (en) |
WO (1) | WO2017110608A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112437858A (en) * | 2019-06-26 | 2021-03-02 | 伸和控制工业股份有限公司 | Temperature control device and temperature control device |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6884387B2 (en) * | 2017-10-30 | 2021-06-09 | 伸和コントロールズ株式会社 | Liquid temperature control device and temperature control method using it |
CN107975908B (en) * | 2017-11-03 | 2020-10-20 | 广东美的制冷设备有限公司 | Air conditioner opening and closing structure control method, air conditioner and readable storage medium |
EP3584515B1 (en) * | 2018-06-19 | 2023-08-23 | Weiss Technik GmbH | Test chamber and method |
WO2020100206A1 (en) * | 2018-11-13 | 2020-05-22 | Smc株式会社 | Multi-chiller |
JP7357915B2 (en) * | 2019-10-07 | 2023-10-10 | 伸和コントロールズ株式会社 | Hydrogen cooling equipment, hydrogen supply system and refrigerator |
CN110822750A (en) * | 2019-12-11 | 2020-02-21 | 郑州长城科工贸有限公司 | Fluid temperature control system and control method based on cascade closed-loop PID regulation |
JP7559394B2 (en) | 2020-07-17 | 2024-10-02 | Smc株式会社 | Chiller |
JP7559396B2 (en) * | 2020-07-21 | 2024-10-02 | Smc株式会社 | Chiller |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008075919A (en) * | 2006-09-20 | 2008-04-03 | Apisute:Kk | Chiller device |
JP2011247567A (en) * | 2010-05-31 | 2011-12-08 | Nishiyama Corp | Low-temperature heat storage cooling apparatus |
JP5377653B2 (en) * | 2009-09-10 | 2013-12-25 | 三菱電機株式会社 | Air conditioner |
JP5721875B1 (en) * | 2014-02-24 | 2015-05-20 | 伸和コントロールズ株式会社 | Chiller device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5721875A (en) | 1980-07-14 | 1982-02-04 | Canon Inc | Photosensor |
DE3323223A1 (en) * | 1983-06-28 | 1985-01-10 | Eckhard Dr.-Ing. 4630 Bochum Beese | Method and refrigeration control station for direct air cooling via a multiplicity of air coolers |
MY114473A (en) * | 1997-04-08 | 2002-10-31 | Daikin Ind Ltd | Refrigerating system |
US6775996B2 (en) * | 2002-02-22 | 2004-08-17 | Advanced Thermal Sciences Corp. | Systems and methods for temperature control |
CN201382624Y (en) * | 2009-01-23 | 2010-01-13 | 马兴国 | Unit combined type parallel refrigerating unit |
CN101929753A (en) * | 2010-02-09 | 2010-12-29 | 重庆远雄制冷成套设备有限公司 | Dual working condition refrigeration system for making ice and cold water |
JP5689079B2 (en) * | 2010-02-12 | 2015-03-25 | 三菱電機株式会社 | Refrigeration cycle equipment |
CN102305505A (en) * | 2011-07-22 | 2012-01-04 | 武汉市汉立电器有限公司 | Constant-temperature cold water unit and control method thereof |
CN102734994B (en) * | 2012-05-21 | 2014-04-02 | 佛山市顺德区和而泰电子科技有限公司 | Method and system for controlling frequency conversion refrigerant temperature of refrigeration system |
JP5774225B2 (en) * | 2012-07-24 | 2015-09-09 | 三菱電機株式会社 | Air conditioner |
-
2015
- 2015-12-21 JP JP2015248618A patent/JP6053907B1/en active Active
-
2016
- 2016-12-14 CN CN201680070998.XA patent/CN108474594B/en active Active
- 2016-12-14 WO PCT/JP2016/087164 patent/WO2017110608A1/en active Application Filing
- 2016-12-14 KR KR1020187017702A patent/KR102006013B1/en active IP Right Grant
- 2016-12-20 TW TW105142277A patent/TWI646292B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008075919A (en) * | 2006-09-20 | 2008-04-03 | Apisute:Kk | Chiller device |
JP5377653B2 (en) * | 2009-09-10 | 2013-12-25 | 三菱電機株式会社 | Air conditioner |
JP2011247567A (en) * | 2010-05-31 | 2011-12-08 | Nishiyama Corp | Low-temperature heat storage cooling apparatus |
JP5721875B1 (en) * | 2014-02-24 | 2015-05-20 | 伸和コントロールズ株式会社 | Chiller device |
WO2015125669A1 (en) * | 2014-02-24 | 2015-08-27 | 伸和コントロールズ株式会社 | Chiller device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112437858A (en) * | 2019-06-26 | 2021-03-02 | 伸和控制工业股份有限公司 | Temperature control device and temperature control device |
CN112437858B (en) * | 2019-06-26 | 2023-09-12 | 伸和控制工业股份有限公司 | Temperature control device and temperature regulating device |
Also Published As
Publication number | Publication date |
---|---|
KR102006013B1 (en) | 2019-07-31 |
CN108474594A (en) | 2018-08-31 |
TWI646292B (en) | 2019-01-01 |
WO2017110608A1 (en) | 2017-06-29 |
JP2017116118A (en) | 2017-06-29 |
KR20180084984A (en) | 2018-07-25 |
CN108474594B (en) | 2020-06-30 |
TW201734389A (en) | 2017-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6053907B1 (en) | Chiller device | |
TWI595199B (en) | Refrigeration device | |
KR101866442B1 (en) | Chiller apparatus for plasma treatment device | |
TWI573969B (en) | Cascade floating intermediate temperature heat pump system | |
JP5343618B2 (en) | Refrigeration cycle equipment | |
KR101805334B1 (en) | Heat source device | |
JP6987234B2 (en) | Refrigeration cycle device | |
EP3228951B1 (en) | Refrigeration cycle apparatus | |
EP2857761B1 (en) | Water heater | |
JPWO2009101818A1 (en) | Refrigeration cycle equipment | |
JP2018128158A (en) | Air conditioner | |
JP2011174639A (en) | Air conditioner | |
JP2015068611A (en) | Air conditioner | |
JP2015152266A (en) | air-cooled heat pump unit | |
JP6523015B2 (en) | Hot water storage type water heater | |
JP2011252622A (en) | Heat pump type hot water supplying/air conditioning apparatus | |
EP3130867B1 (en) | Heat pump type water heater system | |
JP6492580B2 (en) | Hot water supply air conditioning system | |
JP7012818B2 (en) | Water heater | |
JP2003343914A (en) | Heat pump type water heater | |
US10941966B2 (en) | Hot gas bypass energy recovery | |
JP2015148426A (en) | Heat pump type heating device | |
JP2021134714A (en) | Industrial unit | |
JP2019132464A (en) | Heating system | |
JP2002071225A (en) | Refrigerating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161011 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161129 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6053907 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |