JP2015148426A - Heat pump type heating device - Google Patents

Heat pump type heating device Download PDF

Info

Publication number
JP2015148426A
JP2015148426A JP2014023001A JP2014023001A JP2015148426A JP 2015148426 A JP2015148426 A JP 2015148426A JP 2014023001 A JP2014023001 A JP 2014023001A JP 2014023001 A JP2014023001 A JP 2014023001A JP 2015148426 A JP2015148426 A JP 2015148426A
Authority
JP
Japan
Prior art keywords
refrigerant
heat medium
heat
medium
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014023001A
Other languages
Japanese (ja)
Inventor
靖則 高山
Yasunori Takayama
靖則 高山
康司 長川
Yasushi Osagawa
康司 長川
広 石田
Hiroshi Ishida
広 石田
小林 友和
Tomokazu Kobayashi
友和 小林
祐人 酒井
Yuto Sakai
祐人 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Holdings Corp filed Critical Sanden Holdings Corp
Priority to JP2014023001A priority Critical patent/JP2015148426A/en
Publication of JP2015148426A publication Critical patent/JP2015148426A/en
Pending legal-status Critical Current

Links

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump type heating device capable of adjusting a circulation flow rate of a heating medium while maintaining a feeding pressure of the heating medium to a heating terminal at a value equal to or greater than a predetermine value.SOLUTION: A heat pump type heating device includes: a low order-side refrigerant circuit 10 in which a refrigerant circulates in a compressor 12, a heating medium/refrigerant heat exchanger 13, a cascade heat exchanger 14, an expansion valve 15 and an evaporator 16 in this order; a high order-side refrigerant circuit 20 in which the refrigerant circulates in a compressor 22, a heating medium/refrigerant heat exchanger 23, an expansion valve 24, the cascade heat exchanger 14 in this order; a heating medium circuit 30 which has a flow rate control valve 34 on a heating medium outlet side and a heating medium pump 33 on a heating medium inlet side of a heating terminal 31, and which is configured so as to allow a return heating medium which has passed the flow rate control valve 34 to pass through the low order-side heating medium/refrigerant heat exchanger 13 and/or the high order-side heating medium/refrigerant heat exchanger 23, and then, to send it out to the heating terminal 31 by the heating medium pump 33; and a control unit 40 which controls the heating medium pump 33 and the flow rate control valve 34.

Description

本発明は、ヒートポンプ式暖房装置に関し、特に、二元ヒートポンプサイクルを利用したヒートポンプ式暖房装置に関する。   The present invention relates to a heat pump type heating device, and more particularly to a heat pump type heating device using a dual heat pump cycle.

この種の装置として、例えば、特許文献1に記載されたヒートポンプ給湯装置が知られている。このヒートポンプ給湯装置は、高元側冷媒回路、低元側冷媒回路、及び負荷回路を動作させ、前記負荷回路を循環する水(温水)によって放熱器(すなわち、暖房端末)の設置場所周囲の空間を暖める暖房運転を行う。前記ヒートポンプ給湯装置において、前記負荷回路は、高元側冷媒及び低元側冷媒と熱交換して加熱された水(温水)を循環ポンプによって前記放熱器へと送り出すように構成されており、前記循環ポンプの回転数は、出湯温度(すなわち、前記放熱器へと送り出される水(温水)の温度)が目標出湯温度となるように調整されるようになっている。この場合、基本的には、前記目標出湯温度と前記出湯温度の差が大きいほど、前記循環ポンプの回転数を低下させて前記負荷回路における水(温水)の循環流量を減少させることになる。   As this type of device, for example, a heat pump hot water supply device described in Patent Document 1 is known. This heat pump water heater operates a high-side refrigerant circuit, a low-side refrigerant circuit, and a load circuit, and a space around a place where a radiator (that is, a heating terminal) is installed by water (hot water) circulating through the load circuit. Heating operation to warm up. In the heat pump hot water supply apparatus, the load circuit is configured to send water (hot water) heated by exchanging heat with the high-side refrigerant and the low-side refrigerant to the radiator by a circulation pump, The number of revolutions of the circulation pump is adjusted so that the hot water temperature (that is, the temperature of water (hot water) sent to the radiator) becomes the target hot water temperature. In this case, basically, the greater the difference between the target hot water temperature and the hot water temperature, the lower the number of revolutions of the circulation pump and the lower the circulating flow rate of water (hot water) in the load circuit.

特開2012−52767号公報JP 2012-52767 A

しかし、前記循環ポンプの回転数を低下させると、その吐出圧、すなわち、前記放熱器に対する水(温水)の送出圧も低下する。このため、前記循環ポンプを低回転数で作動させた場合に、前記放熱器における配管抵抗の高い部分に水(温水)が流れ難くなってしまい、いわゆる「温度ムラ」が発生するおそれがある。一方、前記放熱器に対する水(温水)の送出圧が不足しないように前記循環ポンプの回転数の下限を設定すると、前記負荷回路における水(温水)の循環流量を十分に減少させることができず、前記出湯温度が前記目標出湯温度となるまでに時間がかかってしまう場合がある。   However, when the rotational speed of the circulation pump is reduced, the discharge pressure, that is, the delivery pressure of water (hot water) to the radiator is also reduced. For this reason, when the circulation pump is operated at a low rotational speed, water (warm water) hardly flows through a portion of the radiator having high piping resistance, and so-called “temperature unevenness” may occur. On the other hand, if the lower limit of the number of rotations of the circulation pump is set so that the supply pressure of water (warm water) to the radiator is not insufficient, the circulation flow rate of water (warm water) in the load circuit cannot be sufficiently reduced. In some cases, it takes time for the tapping temperature to reach the target tapping temperature.

そこで、本発明は、放熱器等の暖房端末への水等の熱媒の送出圧を所定値以上に維持しながら熱媒の循環流量を調整することのできるヒートポンプ式暖房装置を提供することを目的とする。   Therefore, the present invention provides a heat pump heating device capable of adjusting the circulating flow rate of the heating medium while maintaining the delivery pressure of the heating medium such as water to the heating terminal such as a radiator to a predetermined value or more. Objective.

本発明の一側面によるヒートポンプ式暖房装置は、低元側冷媒回路、高元側冷媒回路、熱媒回路、及び制御部を含む。
前記低元側冷媒回路は、低元側圧縮機、低元側熱媒/冷媒熱交換器、カスケード熱交換器、低元側膨張弁、及び蒸発器の順に冷媒が循環するように構成されている。前記高元側冷媒回路は、高元側圧縮機、高元側熱媒/冷媒熱交換器、高元側膨張弁、及び前記カスケード熱交換器の順に冷媒が循環するように構成されている。前記熱媒回路は、暖房端末を経由して熱媒が循環する回路であって、前記暖房端末の熱媒出口側に配置された流量調整弁と、前記暖房端末の熱媒入口側に配置された熱媒ポンプとを有し、前記暖房端末から流出して前記流量調整弁を通過した熱媒を前記低元側熱媒/冷媒熱交換器及び前記高元側熱媒/冷媒熱交換器の少なくとも一方に通過させると共に、前記低元側熱媒/冷媒熱交換器及び前記高元側熱媒/冷媒熱交換器の少なくとも一方を通過した熱媒を前記熱媒ポンプによって前記暖房端末へと送り出すように構成されている。そして、前記制御部は、前記熱媒ポンプ及び前記流量調整弁を制御する。
A heat pump heating device according to one aspect of the present invention includes a low-source side refrigerant circuit, a high-source side refrigerant circuit, a heat medium circuit, and a control unit.
The low-side refrigerant circuit is configured such that the refrigerant circulates in the order of a low-side compressor, a low-side heat medium / refrigerant heat exchanger, a cascade heat exchanger, a low-side expansion valve, and an evaporator. Yes. The high-side refrigerant circuit is configured so that the refrigerant circulates in the order of a high-side compressor, a high-side heat medium / refrigerant heat exchanger, a high-side expansion valve, and the cascade heat exchanger. The heating medium circuit is a circuit in which a heating medium circulates via a heating terminal, and is disposed on a heating medium inlet side of the heating terminal and a flow rate adjusting valve arranged on the heating medium outlet side of the heating terminal. A heat medium pump that has flowed out of the heating terminal and passed through the flow rate adjustment valve. The heat medium / refrigerant heat exchanger and the high-source side heat medium / refrigerant heat exchanger The heat medium that has passed through at least one of the low-source side heat medium / refrigerant heat exchanger and the high-source side heat medium / refrigerant heat exchanger is sent out to the heating terminal by the heat medium pump. It is configured as follows. The control unit controls the heat medium pump and the flow rate adjustment valve.

前記ヒートポンプ式暖房装置において、暖房端末を経由して熱媒が循環する熱媒回路は、前記暖房端末の熱媒出口側に配置された流量調整弁と、前記暖房端末の熱媒入口側に配置された熱媒ポンプとを有しており、これら流量調整弁及び熱媒ポンプは制御部によって制御される。これにより、熱媒ポンプの回転数を低下させることで熱媒循環量を減少させて暖房端末に送り出される熱媒の温度を速やかに高めることができる。また、例えば、熱媒ポンプの回転数を低下させると、熱媒ポンプの吐出圧、すなわち、暖房端末への熱媒の送出圧が不足する又はそのおそれのある場合には、熱媒ポンプの回転数を維持しつつ、流量調整弁を閉じる方向に作動させることにより、暖房端末への熱媒の送出圧を保持又は高めながら熱媒循環量を減少させることができ、これにより、熱媒温度の速やかな上昇と、暖房端末における温度ムラの発生の抑制とを両立させることができる。   In the heat pump heating device, the heat medium circuit in which the heat medium circulates via the heating terminal is disposed on the heat medium inlet side of the heating terminal and the flow rate adjustment valve disposed on the heat medium outlet side of the heating terminal. The flow rate adjusting valve and the heat medium pump are controlled by the control unit. Thereby, the temperature of the heat medium sent out to a heating terminal can be rapidly raised by decreasing the rotation speed of a heat medium pump and reducing a heat medium circulation amount. In addition, for example, if the rotational speed of the heat medium pump is decreased, the heat medium pump rotation is reduced when the discharge pressure of the heat medium pump, that is, the supply pressure of the heat medium to the heating terminal is insufficient or may be. By operating the flow regulating valve in the closing direction while maintaining the number, it is possible to reduce the circulating amount of the heating medium while maintaining or increasing the delivery pressure of the heating medium to the heating terminal. It is possible to achieve both rapid rise and suppression of occurrence of temperature unevenness in the heating terminal.

実施形態によるヒートポンプ式暖房装置を示す回路図である。It is a circuit diagram which shows the heat pump type heating apparatus by embodiment. 流量調整弁の作動によるポンプ(熱媒ポンプ)の運転点の変化の一例を示す図である。It is a figure which shows an example of the change of the operating point of the pump (heat medium pump) by the action | operation of a flow regulating valve. 制御部が実施する流量調整弁の制御を示すフローチャートである。It is a flowchart which shows control of the flow regulating valve which a control part implements.

以下、添付図面を参照して本発明の実施形態について説明する。
図1は、本発明の一実施形態によるヒートポンプ式暖房装置の回路図である。
本実施形態によるヒートポンプ式暖房装置は、二元ヒートポンプサイクルを利用しており、図1に示すように、低温側の冷媒が循環する低元側冷媒回路10と、高温側の冷媒が循環する高元側冷媒回路20と、熱媒が循環する熱媒回路30と、前記ヒートポンプ式暖房装置の各構成要素を制御する制御部40と、を含む。
本実施形態において、低元側の冷媒及び高元側の冷媒にはCO冷媒が使用され、熱媒には不凍液が使用されている。但し、これに限るものではなく、低元側の冷媒及び/又は高元側の冷媒としてCO冷媒以外の冷媒が使用されてもよいし、熱媒として水が使用されてもよい。また、暖房端末としては、パネルヒータや床暖房パネルなどが該当する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a circuit diagram of a heat pump heating device according to an embodiment of the present invention.
The heat pump heating device according to the present embodiment uses a dual heat pump cycle. As shown in FIG. 1, a low-side refrigerant circuit 10 through which a low-temperature side refrigerant circulates and a high-side refrigerant through which a high-temperature side refrigerant circulates. The former side refrigerant circuit 20, the heat medium circuit 30 in which a heat medium circulates, and the control part 40 which controls each component of the said heat pump type heating apparatus are included.
In the present embodiment, a CO 2 refrigerant is used as the low-side refrigerant and the high-side refrigerant, and an antifreeze liquid is used as the heat medium. However, the present invention is not limited to this, and a refrigerant other than the CO 2 refrigerant may be used as the low-side refrigerant and / or the high-side refrigerant, or water may be used as the heat medium. Moreover, a panel heater, a floor heating panel, etc. correspond as a heating terminal.

低元側冷媒回路10は、(低元側の)冷媒が循環する冷媒循環路11を有している。この冷媒循環路11には、低元側圧縮機12、第1熱媒/冷媒熱交換器(低元側熱媒/冷媒熱交換器)13、冷媒/冷媒熱交換器(カスケード熱交換器)14、低元側膨張弁15、及び蒸発器16がこの順で配置されている。そして、低元側冷媒回路10では、冷媒が、低元側圧縮機12、第1熱媒/冷媒熱交換器13、冷媒/冷媒熱交換器14、低元側膨張弁15、及び蒸発器16の順に循環することによって、ヒートポンプサイクルが実行される。すなわち、(低元側の)冷媒は、低元側圧縮機12で圧縮されて高温高圧の状態となり、第1熱媒/冷媒熱交換器13にて熱媒回路30を循環する熱媒と熱交換し、その後、冷媒/冷媒熱交換器14にて高元側冷媒回路20を循環する冷媒(高元側の冷媒)と熱交換する。次いで、冷媒は、低元側膨張弁15によって膨張されて低温低圧の状態となり、蒸発器16にて外気から熱を吸収して蒸発し、その後、低元側圧縮機12に(再)供給される。   The low-source-side refrigerant circuit 10 has a refrigerant circulation path 11 through which the (low-source-side) refrigerant circulates. The refrigerant circulation path 11 includes a low-side compressor 12, a first heat medium / refrigerant heat exchanger (low-side heat medium / refrigerant heat exchanger) 13, and a refrigerant / refrigerant heat exchanger (cascade heat exchanger). 14, the low-side expansion valve 15 and the evaporator 16 are arranged in this order. In the low-side refrigerant circuit 10, the refrigerant is a low-side compressor 12, a first heat medium / refrigerant heat exchanger 13, a refrigerant / refrigerant heat exchanger 14, a low-side expansion valve 15, and an evaporator 16. The heat pump cycle is executed by circulating in this order. That is, the refrigerant (on the low side) is compressed by the low side compressor 12 to be in a high-temperature and high-pressure state, and the heat medium and heat circulating in the heat medium circuit 30 in the first heat medium / refrigerant heat exchanger 13. After that, the refrigerant / refrigerant heat exchanger 14 exchanges heat with the refrigerant circulating in the high-side refrigerant circuit 20 (high-side refrigerant). Next, the refrigerant is expanded by the low-side expansion valve 15 to become a low-temperature and low-pressure state, evaporates by absorbing heat from the outside air in the evaporator 16, and then (re) supplied to the low-side compressor 12. The

ここで、本実施形態において、低元側冷媒回路10には、冷媒/冷媒熱交換器14と低元側膨張弁15の間を流れる冷媒と、蒸発器16と低元側圧縮機12との間を流れる冷媒とを熱交換させる内部熱交換器17が設けられている。これにより、低元側圧縮機12に供給される冷媒の温度を上昇させることができ、低元側圧縮機12の圧縮比の増加及びこれに伴うによるCOP(成績係数)の低下が抑制される。
なお、低元側圧縮機12の冷媒入口側には、アキュムレータ(気液分離器)18が設けられており、蒸発器16には、送風用のファン19が設けられている。
Here, in the present embodiment, the low-side refrigerant circuit 10 includes a refrigerant that flows between the refrigerant / refrigerant heat exchanger 14 and the low-side expansion valve 15, an evaporator 16, and the low-side compressor 12. An internal heat exchanger 17 for exchanging heat with the refrigerant flowing between them is provided. Thereby, the temperature of the refrigerant | coolant supplied to the low original side compressor 12 can be raised, and the increase in the compression ratio of the low original side compressor 12 and the fall of the COP (coefficient of performance) accompanying this are suppressed. .
Note that an accumulator (gas-liquid separator) 18 is provided on the refrigerant inlet side of the low-source compressor 12, and a fan 19 for blowing is provided in the evaporator 16.

高元側冷媒回路20は、(高温側の)冷媒が循環する冷媒循環路21を有している。この冷媒循環路21には、高元側圧縮機22、第2熱媒/冷媒熱交換器(高元側熱媒/冷媒熱交換器)23、高元側膨張弁24、及び冷媒/冷媒熱交換器(カスケード熱交換器)14がこの順に配置されている。そして、高元側冷媒回路20では、冷媒が、高元側圧縮機22、第2熱媒/冷媒熱交換器23、高元側膨張弁24、冷媒/冷媒熱交換器14の順に循環することにより、ヒートポンプサイクルが実行される。すなわち、(高元側の)冷媒は、高元側圧縮機22で圧縮されて高温高圧の状態となり、第2熱媒/冷媒熱交換器23にて熱媒回路30を循環する熱媒と熱交換する。次いで、冷媒は、高元側膨張弁24によって膨張されて低温低圧の状態となり、冷媒/冷媒熱交換器14で低元側冷媒回路10を循環する冷媒(低元側の冷媒)から熱を吸収して蒸発し、高元側圧縮機22に(再)供給される。
なお、低元側冷媒回路10と同様、高元側圧縮機22の冷媒入口側には、アキュムレータ(気液分離器)25が設けられている。
The high-source side refrigerant circuit 20 has a refrigerant circulation path 21 through which the refrigerant (on the high temperature side) circulates. The refrigerant circuit 21 includes a high-side compressor 22, a second heat medium / refrigerant heat exchanger (high-side heat medium / refrigerant heat exchanger) 23, a high-side expansion valve 24, and refrigerant / refrigerant heat. The exchanger (cascade heat exchanger) 14 is arranged in this order. In the high-side refrigerant circuit 20, the refrigerant circulates in the order of the high-side compressor 22, the second heat medium / refrigerant heat exchanger 23, the high-side expansion valve 24, and the refrigerant / refrigerant heat exchanger 14. Thus, the heat pump cycle is executed. That is, the refrigerant (on the high side) is compressed by the high side compressor 22 to be in a high temperature and high pressure state, and the heat medium and heat circulating in the heat medium circuit 30 in the second heat medium / refrigerant heat exchanger 23. Exchange. Next, the refrigerant is expanded by the high-side expansion valve 24 to become a low-temperature and low-pressure state, and absorbs heat from the refrigerant (low-side refrigerant) circulating in the low-side refrigerant circuit 10 in the refrigerant / refrigerant heat exchanger 14. Then, it evaporates and is (re) supplied to the high-end compressor 22.
As with the low-side refrigerant circuit 10, an accumulator (gas-liquid separator) 25 is provided on the refrigerant inlet side of the high-side compressor 22.

熱媒回路30は、暖房端末31を経由して熱媒を循環させる熱媒循環路32を有している。熱媒循環路32において、暖房端末31の熱媒入口側には、熱媒を暖房端末31へと送り出すためのポンプ(熱媒ポンプ)33が設けられており、暖房端末31の熱媒出口側には、暖房端末31から流出する熱媒の通過流量を調整可能な流量調整弁34が設けられている。そして、熱媒回路30では、ポンプ33が熱媒を暖房端末31へと送り出すことによって熱媒が暖房端末31を経由して循環すると共に、ポンプ33の回転数及び/又は流量調整弁34の開度に応じて熱媒の循環流量が調整されるように構成されている。ここで、ポンプ33によって暖房端末31へと送り出される熱媒を「往き熱媒」といい、暖房端末31を通過して暖房端末31から流出する熱媒を「戻り熱媒」という。
本実施形態において、平常時には流量調整弁34が全開となっているものとする。
The heat medium circuit 30 has a heat medium circulation path 32 that circulates the heat medium via the heating terminal 31. In the heating medium circulation path 32, a pump (heating medium pump) 33 for sending the heating medium to the heating terminal 31 is provided on the heating medium inlet side of the heating terminal 31, and the heating medium outlet side of the heating terminal 31. Is provided with a flow rate adjusting valve 34 that can adjust the flow rate of the heat medium flowing out from the heating terminal 31. In the heat medium circuit 30, the pump 33 sends out the heat medium to the heating terminal 31 so that the heat medium circulates through the heating terminal 31 and opens the rotation speed and / or flow rate adjustment valve 34 of the pump 33. The circulating flow rate of the heating medium is adjusted according to the degree. Here, the heat medium sent to the heating terminal 31 by the pump 33 is referred to as “outward heat medium”, and the heat medium that passes through the heating terminal 31 and flows out of the heating terminal 31 is referred to as “return heat medium”.
In the present embodiment, it is assumed that the flow rate adjustment valve 34 is fully open during normal times.

また、熱媒循環路32は、戻り熱媒の流れ方向における流量調整弁34の下流側で、二つの流路(低元側流路32a、高元側流路32b)に分岐しており、流量調整弁34を通過した戻り熱媒を、低元側冷媒回路10の第1熱媒/冷媒熱交換器13と、高元側冷媒回路2の第2熱媒/冷媒熱交換器23とに分流させることができるように構成されている。そして、本実施形態においては、熱媒循環路32が低元側流路32aと高元側流路32bとに分岐する分岐点、換言すれば、流量調整弁34を通過した戻り熱媒の分流部には、その開度に応じて、低元側流路32a(すなわち、第1熱媒/冷媒熱交換器13)への分流流量と、高元側流路32b(すなわち、第2熱媒/冷媒熱交換器23)への分流流量とを調節可能な三方弁35が設けられている。   Further, the heat medium circulation path 32 is branched into two flow paths (a low flow path 32a and a high flow path 32b) on the downstream side of the flow rate adjustment valve 34 in the flow direction of the return heat transfer medium. The return heat medium that has passed through the flow rate adjustment valve 34 is transferred to the first heat medium / refrigerant heat exchanger 13 of the low-source side refrigerant circuit 10 and the second heat medium / refrigerant heat exchanger 23 of the high-source side refrigerant circuit 2. It is comprised so that it can be made to shunt. In this embodiment, the branch point of the return heat medium that has passed through the flow rate adjustment valve 34, in other words, a branch point where the heat medium circulation path 32 branches into the low-source side flow path 32a and the high-source side flow path 32b. According to the opening degree, the part includes a flow rate of the diverted flow to the low-source side flow path 32a (that is, the first heat medium / refrigerant heat exchanger 13) and the high-source side flow path 32b (that is, the second heat medium). / A three-way valve 35 is provided that can adjust the flow rate of the diverted flow to the refrigerant heat exchanger 23).

低元側流路32a及び高元側流路32bは、それぞれポンプ33の熱媒吸入側に配置されたバッファタンク36に接続しており、バッファタンク36とポンプ33とは一本の流路32cによって接続されている。したがって、低元側流路32aへと分流して第1熱媒/冷媒熱交換器13で低元側の冷媒と熱交換した後の分流熱媒と、高元側流路32bへと分流して第2熱媒/冷媒熱交換器22で高元側の冷媒と熱交換した後の分流熱媒とは、バッファタンク36において合流し、合流後にポンプ33によって暖房端末31へと送り出されることになる。なお、ここでは、前記二つの分流熱媒をバッファタンク36において合流させているが、バッファタンク36の手前(バッファタンク36に到達する前)で合流させ、合流後にバッファタンク36に流入するように構成してもよい。   The low-source side channel 32a and the high-side channel 32b are respectively connected to a buffer tank 36 disposed on the heat medium suction side of the pump 33, and the buffer tank 36 and the pump 33 are a single channel 32c. Connected by. Therefore, the flow is divided into the low flow channel 32a and divided into the high flow channel 32b and the divided heat medium after the first heat medium / refrigerant heat exchanger 13 exchanges heat with the low flow medium. The diverted heat medium after heat exchange with the high-side refrigerant in the second heat medium / refrigerant heat exchanger 22 joins in the buffer tank 36 and is sent out to the heating terminal 31 by the pump 33 after joining. Become. In this case, the two divided heat transfer media are joined in the buffer tank 36, but are joined before the buffer tank 36 (before reaching the buffer tank 36) and flow into the buffer tank 36 after joining. It may be configured.

制御部40には、各種センサの出力信号が入力されており、制御部40は、前記各種センサの出力信号に基づいて前記ヒートポンプ式暖房装置の各構成要素、具体的には、低元側冷媒回路10における低元側圧縮機12及び低元側膨張弁15、高元側冷媒回路20における高元側圧縮機22及び高元側膨張弁24、熱媒回路30におけるポンプ33、流量調整弁34、及び三方弁35を制御する。 Output signals of various sensors are input to the control unit 40, and the control unit 40, based on the output signals of the various sensors, each component of the heat pump heating device, specifically, the low-source side refrigerant The low-end compressor 12 and the low-end expansion valve 15 in the circuit 10, the high-end compressor 22 and the high-end expansion valve 24 in the high-end refrigerant circuit 20, the pump 33 in the heat medium circuit 30, and the flow rate adjustment valve 34. And the three-way valve 35 is controlled.

なお、本実施形態においては、前記各種センサとして、外気温度を検出する外気温センサ51、低元側圧縮機12の吐出温度を検出する低元側吐出温度センサ52、高元側圧縮機22の吐出温度を検出する高元側吐出温度センサ53、第1熱媒/冷媒熱交換器13を通過した熱媒の温度を検出する第1熱媒温度センサ54、第2熱媒/冷媒熱交換器23を通過した熱媒の温度を検出する第2熱媒温度センサ55、往き熱媒の温度を検出する往き熱媒温度センサ56、戻り熱媒の温度を検出する戻り熱媒温度センサ57、ポンプ33の回転数を検出する回転センサ58などが設けられている。   In the present embodiment, the various sensors include the outside air temperature sensor 51 that detects the outside air temperature, the low-side discharge temperature sensor 52 that detects the discharge temperature of the low-side compressor 12, and the high-side compressor 22. A high-end side discharge temperature sensor 53 that detects the discharge temperature, a first heat medium temperature sensor 54 that detects the temperature of the heat medium that has passed through the first heat medium / refrigerant heat exchanger 13, and a second heat medium / refrigerant heat exchanger. 23, a second heat medium temperature sensor 55 that detects the temperature of the heat medium that has passed through 23, a forward heat medium temperature sensor 56 that detects the temperature of the forward heat medium, a return heat medium temperature sensor 57 that detects the temperature of the return heat medium, and a pump A rotation sensor 58 for detecting the number of rotations 33 is provided.

制御部40は、例えば、高元側冷媒回路20における冷媒の蒸発温度が低元側冷媒回路10における冷媒の蒸発温度よりも高く、かつ、ヒートポンプ式暖房装置が良好なCOPを達成するように、低元側圧縮機12及び/又は高元側圧縮機22の回転数を制御する。なお、制御部40は、低元側圧縮機12及び/又は高元側圧縮機22の回転数制御に合わせて低元側膨張弁14及び/又は高元側膨張弁24の開度を制御するようにしてもよい。   For example, the control unit 40 is configured so that the evaporation temperature of the refrigerant in the high-side refrigerant circuit 20 is higher than the evaporation temperature of the refrigerant in the low-side refrigerant circuit 10 and the heat pump heating device achieves a good COP. The number of revolutions of the low-side compressor 12 and / or the high-side compressor 22 is controlled. The control unit 40 controls the opening degree of the low-side expansion valve 14 and / or the high-side expansion valve 24 in accordance with the rotational speed control of the low-side compressor 12 and / or the high-side compressor 22. You may do it.

また、制御部40は、暖房負荷及びその変動に応じて三方弁35の開度を制御して、熱媒回路30における低元側流路32aへの熱媒分流量と高元側流路32bへの熱媒分流量とを調節する。かかる調節には、流量調整弁34を通過した戻り熱媒の全てを低元側流路32a及び高元側流路32bのいずれか一方のみに流す場合が含まれる。これにより、暖房負荷及びその変動に応じて、第1熱媒/冷媒熱交換器13への熱媒分流量と、高元側冷媒回路2の第2熱媒/冷媒熱交換器23への熱媒分流量とがより適切に調整され、前記ヒートポンプ式暖房装置を効率的に運転することができる。
なお、前記暖房負荷及びその変動は、使用者等による前記ヒートポンプ式暖房装置の運転指令に基づいて設定される目標往き熱媒温度(目標出湯温度)、外気温センサ51の出力値、第1熱媒温度センサ54の出力値、第2熱媒温度センサ55の出力値、往き熱媒温度センサ56の出力値、戻り熱媒温度センサ57の出力値などに基づいて算出することができる。
Moreover, the control part 40 controls the opening degree of the three-way valve 35 according to a heating load and its fluctuation | variation, and the heat-medium partial flow rate to the low-source side flow path 32a in the heat-medium circuit 30 and the high-source side flow path 32b. Adjust the heat medium flow rate to the. Such adjustment includes a case where all of the return heat medium that has passed through the flow rate adjustment valve 34 is caused to flow only in one of the low-side channel 32a and the high-side channel 32b. Thereby, according to a heating load and its fluctuation | variation, the heat-medium flow volume to the 1st heat medium / refrigerant heat exchanger 13 and the heat to the 2nd heat medium / refrigerant heat exchanger 23 of the high-side refrigerant circuit 2 are carried out. The medium flow rate is adjusted more appropriately, and the heat pump heating device can be operated efficiently.
Note that the heating load and its fluctuation are the target outgoing heat medium temperature (target hot water temperature) set based on the operation command of the heat pump heating device by the user, the output value of the outside air temperature sensor 51, the first heat. It can be calculated based on the output value of the medium temperature sensor 54, the output value of the second heat medium temperature sensor 55, the output value of the forward heat medium temperature sensor 56, the output value of the return heat medium temperature sensor 57, and the like.

さらに、制御部40は、前記目標往き熱媒温度と、往き熱媒温度センサ56の出力値(すなわち、実際の往き熱媒温度)とに基づいて熱媒回路30におけるポンプ33の回転数を制御する。例えば、制御部40は、目標往き熱媒温度と実際の往き熱媒温度(<目標往き熱媒温度)との差が所定温度差よりも大きい場合には、ポンプ33の回転数を低下させて熱媒回路30における熱媒循環流量を減少させ、これにより、往き熱媒温度を目標往き熱媒温度へと速やかに上昇させる。   Further, the control unit 40 controls the rotational speed of the pump 33 in the heat medium circuit 30 based on the target forward heat medium temperature and the output value of the forward heat medium temperature sensor 56 (that is, the actual forward heat medium temperature). To do. For example, when the difference between the target forward heat medium temperature and the actual forward heat medium temperature (<target forward heat medium temperature) is greater than a predetermined temperature difference, the control unit 40 decreases the rotational speed of the pump 33. The flow rate of the heat medium circulating in the heat medium circuit 30 is decreased, thereby rapidly increasing the forward heat medium temperature to the target forward heat medium temperature.

ところで、既述したように、ポンプ33の回転数が低下するとポンプ33の吐出圧も低下するため、例えばポンプ33の回転数が大幅に低下してしまうと、暖房端末31への熱媒の送出圧が不足して暖房端末31における配管抵抗が高い部分などに熱媒が充分に流れなくなるおそれがある。一方、これを防止するために、ポンプ33の回転数の下限を設定すると、熱媒循環流量を十分に減少させることができず、往き熱媒温度を目標往き熱媒温度まで上昇させるのに時間がかかってしまう場合がある。   By the way, as described above, when the rotational speed of the pump 33 is decreased, the discharge pressure of the pump 33 is also decreased. For example, when the rotational speed of the pump 33 is significantly decreased, the heating medium is sent to the heating terminal 31. There is a possibility that the heat medium does not sufficiently flow in a portion where the pressure is insufficient and the piping resistance of the heating terminal 31 is high. On the other hand, in order to prevent this, if the lower limit of the rotation speed of the pump 33 is set, the heat medium circulation flow rate cannot be reduced sufficiently, and it takes time to raise the outgoing heat medium temperature to the target outgoing heat medium temperature. May occur.

そこで、制御部40は、ポンプ33の回転数が所定値まで低下したときは、流量調整弁34を閉じる方向(すなわち、開度を小さくする方向)に制御し、これにより、熱媒回路30における熱媒循環量を低減すると共に熱媒回路30の配管抵抗を増加させる。
例えば、図2に示すように、ポンプ33の回転数が低下して(ポンプ33の運転点がA点からB点に変化して)、その吐出圧が暖房端末31に応じて要求される最低吐出圧を下回るような場合には、制御部40は、流量調整弁34を閉じる方向に制御し、熱媒回路30における配管抵抗を増加させてポンプ33の運転点をB点からC点に変化させる。これにより、ポンプ33の回転数を変更することなく、ポンプ33の吐出圧(暖房端末31への熱媒の送出圧)を前記最低吐出圧以上に維持しつつ、熱媒循環量を減少させて往き熱媒温度を目標往き熱媒温度へと速やかに上昇させる。
Therefore, when the number of rotations of the pump 33 is reduced to a predetermined value, the control unit 40 controls the flow rate adjustment valve 34 in the closing direction (that is, the direction in which the opening degree is reduced). While reducing the amount of circulating heat medium, the piping resistance of the heat medium circuit 30 is increased.
For example, as shown in FIG. 2, the rotational speed of the pump 33 decreases (the operating point of the pump 33 changes from point A to point B), and the discharge pressure is the minimum required according to the heating terminal 31. When the pressure is lower than the discharge pressure, the control unit 40 controls the flow rate adjustment valve 34 in the closing direction to increase the piping resistance in the heat medium circuit 30 and change the operating point of the pump 33 from the B point to the C point. Let Thereby, without changing the number of rotations of the pump 33, while maintaining the discharge pressure of the pump 33 (the discharge pressure of the heat medium to the heating terminal 31) above the minimum discharge pressure, the amount of circulating heat medium is reduced. The outgoing heat medium temperature is quickly raised to the target outgoing heat medium temperature.

図3は、制御部40が実施する流量調整弁34の制御を示すフローチャートである。このフローは、所定周期毎に繰り返して実施される。
ステップS1では、ポンプ33の回転数(ポンプ回転数)Npを検出する。かかる検出は、回転センサ58の出力信号に基づいて行う。なお、制御部40は、自身がポンプ33に対して出力した制御信号に基づいてポンプ回転数Npを検出するようにしてもよく、この場合、回転センサ58を省略することができる。
FIG. 3 is a flowchart showing the control of the flow rate adjustment valve 34 performed by the control unit 40. This flow is repeatedly performed every predetermined period.
In step S1, the rotational speed (pump rotational speed) Np of the pump 33 is detected. Such detection is performed based on the output signal of the rotation sensor 58. The control unit 40 may detect the pump rotation speed Np based on a control signal output to the pump 33 by itself, and in this case, the rotation sensor 58 can be omitted.

ステップS2では、流量調整弁34の作動フラグfが設定されているか否か、すなわち、作動フラグf=1である否かを判断する。作動フラグfが設定されていなければ(作動フラグf=0であれば)ステップS3に進み、作動フラグfが設定されていれば(作動フラグf=1であれば)ステップS6に進む。なお、作動フラグfは、全開状態にある流量調整弁34を作動させたとき(すなわち、流量調整弁34の開度を小さくしたとき)に設定され(ステップS4,S5)、設定された作動フラグfは、流量調整弁34が全開になると解除される(S12)。   In step S2, it is determined whether or not the operation flag f of the flow rate adjusting valve 34 is set, that is, whether or not the operation flag f = 1. If the operation flag f is not set (if the operation flag f = 0), the process proceeds to step S3. If the operation flag f is set (if the operation flag f = 1), the process proceeds to step S6. The operation flag f is set when the flow rate adjustment valve 34 in the fully opened state is operated (that is, when the opening degree of the flow rate adjustment valve 34 is reduced) (steps S4 and S5), and the set operation flag is set. f is canceled when the flow regulating valve 34 is fully opened (S12).

ステップS3では、ステップS1で検出したポンプ回転数Npが第1閾値Nth1以下であるか否かを判定する。そして、ポンプ回転数Npが第1閾値Nth1以下(Np≦Nth1)であればステップS4に進み、ポンプ回転数Npが第1閾値Nth1を超えていれば(Np>Nth1であれば)本フローを終了する。前記第1閾値Nth1は、ポンプ33の吐出圧が前記最低吐出圧以下となるポンプ33の回転数であり、ポンプ33の性能及び暖房端末31の配管負荷などに基づいて設定される。   In step S3, it is determined whether or not the pump rotation speed Np detected in step S1 is equal to or less than a first threshold value Nth1. If the pump rotation speed Np is equal to or less than the first threshold value Nth1 (Np ≦ Nth1), the process proceeds to step S4. If the pump rotation speed Np exceeds the first threshold value Nth1 (if Np> Nth1), this flow is performed. finish. The first threshold value Nth1 is the number of rotations of the pump 33 at which the discharge pressure of the pump 33 is equal to or lower than the minimum discharge pressure, and is set based on the performance of the pump 33, the piping load of the heating terminal 31, and the like.

ステップS4では、流量調整弁34を所定開度だけ閉じる。これにより、熱媒循環路32の流路面積が小さくなり、熱媒回路30の配管抵抗が増加すると共に熱媒回路30のおける熱媒循環量が減少する。
ステップS5では、作動フラグfを設定する(作動フラグf=1とする)。
In step S4, the flow rate adjustment valve 34 is closed by a predetermined opening. As a result, the flow path area of the heat medium circuit 32 is reduced, the piping resistance of the heat medium circuit 30 is increased, and the amount of heat medium circulation in the heat medium circuit 30 is decreased.
In step S5, the operation flag f is set (operation flag f = 1).

ステップS6では、ステップS3と同様、ステップS1で検出したポンプ回転数Npが第1閾値Nth1以下であるか否かを判定する。そして、ポンプ回転数Npが第1閾値Nth1以下(Np≦Nth1)であればステップS7に進み、ポンプ回転数Npが第1閾値Nth1を超えていれば(Np>Nth1であれば)ステップS9に進む。   In step S6, as in step S3, it is determined whether or not the pump speed Np detected in step S1 is equal to or less than the first threshold value Nth1. If the pump speed Np is equal to or lower than the first threshold value Nth1 (Np ≦ Nth1), the process proceeds to step S7. If the pump speed Np exceeds the first threshold value Nth1 (if Np> Nth1), the process proceeds to step S9. move on.

ステップS7では、流量制御弁34の開度が予め設定された最小開度であるか否かを判断する。流量制御弁34の開度が最小開度であれば本フローを終了し、流量制御弁34の開度が最小開度でなければステップS8に進む。
ステップS8では、ステップS4と同様、流量調整弁34を所定開度だけ閉じる。
In step S7, it is determined whether or not the opening degree of the flow control valve 34 is a preset minimum opening degree. If the opening degree of the flow control valve 34 is the minimum opening degree, this flow is terminated. If the opening degree of the flow control valve 34 is not the minimum opening degree, the process proceeds to step S8.
In step S8, as in step S4, the flow rate adjustment valve 34 is closed by a predetermined opening.

一方、ステップS9では、ステップS1で検出したポンプ回転数Npが第2閾値Nth2(>第1閾値Nth1)以上であるか否かを判定する。そして、ポンプ回転数Npが第2閾値Nth2以上(Np≧Nth2)であればステップ10に進み、ポンプ回転数Npが第2閾値Nth2未満(Np<Nth2)であれば本フローを終了する。
ステップS10では、流量調整弁34を所定開度だけ開く。この所定量は、ステップS4やステップS8における所定量と同じとしてもよいし、異ならせてもよい。
On the other hand, in step S9, it is determined whether or not the pump rotation speed Np detected in step S1 is equal to or greater than a second threshold value Nth2 (> first threshold value Nth1). If the pump speed Np is equal to or greater than the second threshold value Nth2 (Np ≧ Nth2), the process proceeds to step 10, and if the pump speed Np is less than the second threshold value Nth2 (Np <Nth2), this flow is terminated.
In step S10, the flow rate adjustment valve 34 is opened by a predetermined opening. This predetermined amount may be the same as or different from the predetermined amount in step S4 or step S8.

ステップS11では、流量調整弁34が全開であるか否かを判定する。流量調整弁34が全開でなければ本フローを終了し、流量調整弁34が全開であればステップS12で作動フラグfを解除してから、すなわち、前記作動フラグf=0として本フローを終了する。   In step S11, it is determined whether or not the flow rate adjustment valve 34 is fully open. If the flow rate adjustment valve 34 is not fully open, this flow ends. If the flow rate adjustment valve 34 is fully open, the operation flag f is canceled in step S12, that is, the operation flag f = 0, and this flow ends. .

以上説明したように、本実施形態によるヒートポンプ式暖房装置において、制御部40は、ポンプ33によって暖房端末31へと送り出される往き熱媒の温度に基づいて、さらに言えば、前記目標往き熱媒温度と実際の往き熱媒との温度差に基づいてポンプ33の回転数Npを制御する一方、ポンプ33の回転数Npが前記第1閾値Nth1まで低下した場合には、流量制御弁34を閉じる方向に制御する(ステップS3,S4参照)。これにより、暖房端末31の全体に亘って熱媒を流すことのできる熱媒の送出圧を維持しつつ、熱媒回路30の熱媒循環量を低減して前記往き熱媒の温度を速やかに前記目標往き熱媒温度まで上昇させることができる。   As described above, in the heat pump heating device according to the present embodiment, the control unit 40 further describes the target outgoing heat medium temperature based on the temperature of the outgoing heat medium sent to the heating terminal 31 by the pump 33. The rotational speed Np of the pump 33 is controlled based on the temperature difference between the actual heat transfer medium and the actual heat transfer medium. On the other hand, when the rotational speed Np of the pump 33 decreases to the first threshold value Nth1, the flow control valve 34 is closed. (See steps S3 and S4). Thereby, while maintaining the delivery pressure of the heating medium that can flow the heating medium over the entire heating terminal 31, the amount of circulation of the heating medium in the heating medium circuit 30 is reduced and the temperature of the outgoing heating medium is quickly increased. The temperature can be raised to the target heat transfer medium temperature.

また、制御部40は、ポンプ33の回転数Npが前記第1閾値Nth1まで低下して流量制御弁34を閉じる方向に制御した後に、ポンプ33の回転数Npが前記第2閾値Nth2(>前記第1閾値Nth1)となった場合には、流量制御弁34を開く方向に制御する。これにより、流量制御弁34の開閉制御におけるハンチングの発生を抑制しつつ、熱媒回路30の過剰な配管負荷を低減できる。   Further, after the control unit 40 controls the rotational speed Np of the pump 33 to the first threshold value Nth1 and closes the flow rate control valve 34, the rotational speed Np of the pump 33 is set to the second threshold value Nth2 (> the above-mentioned value). When the first threshold value Nth1) is reached, the flow control valve 34 is controlled to open. Thereby, the excessive piping load of the heat medium circuit 30 can be reduced while suppressing the occurrence of hunting in the opening / closing control of the flow control valve 34.

ここで、制御部40は、流量制御弁34を閉じる方向に制御する場合及び開く方向に制御する場合の双方において、流量制御弁34を所定開度ずつ、すなわち、流量制御弁34の開度をステップ的に制御する(ステップS8,S10参照)。これにより、熱媒回路30の配管抵抗及び熱媒循環量の急激な変化を抑制して、前記ヒートポンプ式暖房装置の安定した運転を実現できる。   Here, the control unit 40 controls the flow rate control valve 34 by a predetermined opening degree, that is, the opening degree of the flow rate control valve 34 both when controlling the flow rate control valve 34 in the closing direction and when controlling the flow rate control valve 34 in the opening direction. Control in a stepwise manner (see steps S8 and S10). Thereby, the rapid change of the piping resistance of the heat medium circuit 30 and the heat medium circulation amount can be suppressed, and the stable operation of the heat pump heating device can be realized.

以上、本発明の好ましい実施形態を説明したが、本発明は上述の実施形態に制限されるものではなく、本発明の技術的思想に基づいて更なる変形等が可能であることはもちろんである。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and it goes without saying that further modifications and the like can be made based on the technical idea of the present invention. .

例えば、上述の実施形態において、熱媒回路30は、流量制御弁34を通過した戻り熱媒を、低元側冷媒回路10の第1熱媒/冷媒熱交換器13と、高元側冷媒回路2の第2熱媒/冷媒熱交換器23とに分流させるように形成されている。しかし、これに限るものではなく、熱媒回路30を、流量制御弁34を通過した戻り熱媒が高元側冷媒回路2の第2熱媒/冷媒熱交換器23を通過した後に低元側冷媒回路10の第1熱媒/冷媒熱交換器13を通過するように形成してもよい。この場合、低元側回路32a及び高元側回路32bに代えて、流量制御弁34から第1熱媒/冷媒熱交換器14及び第2熱媒/冷媒熱交換器23を経てポンプ33に接続される配管を設ければよく、三方弁35及びバッファタンク36は不要となる。   For example, in the above-described embodiment, the heat medium circuit 30 uses the return heat medium that has passed through the flow control valve 34 as the first heat medium / refrigerant heat exchanger 13 of the low-side refrigerant circuit 10 and the high-side refrigerant circuit. The second heat medium / refrigerant heat exchanger 23 is divided into two. However, the present invention is not limited to this, and after the return heat medium that has passed through the flow control valve 34 has passed through the second heat medium / refrigerant heat exchanger 23 of the high-source side refrigerant circuit 2, You may form so that the 1st heat medium / refrigerant heat exchanger 13 of the refrigerant circuit 10 may be passed. In this case, instead of the low-side circuit 32a and the high-side circuit 32b, the flow control valve 34 is connected to the pump 33 via the first heat medium / refrigerant heat exchanger 14 and the second heat medium / refrigerant heat exchanger 23. The three-way valve 35 and the buffer tank 36 are not necessary.

また、上述の実施形態においては、流量調整弁34を通過した戻り熱媒の分流部に設けられた三方弁35により低元側流路32a(第1熱媒/冷媒熱交換器13)への分流流量と、高元側流路32b(第2熱媒/冷媒熱交換器23)への分流流量とを調節している。しかし、これに限るものではなく、熱媒回路30が、低元側流路32a(第1熱媒/冷媒熱交換器13)への分流流量と、高元側流路32b(第2熱媒/冷媒熱交換器23)への分流流量とを調節可能な分流調節器を有すればよい。例えば、低元側流路32a及び/又は高元側流路32bに流量制御弁を設けるようにしてもよい。
さらに、上述の実施形態において、低元側冷媒回路10は内部熱交換器17を有しているが、これを省略してもよい。
In the above-described embodiment, the three-way valve 35 provided in the return heat medium diverting portion that has passed through the flow rate adjusting valve 34 supplies the low-source side flow path 32a (first heat medium / refrigerant heat exchanger 13). The diversion flow rate and the diversion flow rate to the high-end side flow path 32b (second heat medium / refrigerant heat exchanger 23) are adjusted. However, the present invention is not limited to this, and the heat medium circuit 30 is configured such that the flow rate of the diverted flow to the low-source side flow channel 32a (first heat medium / refrigerant heat exchanger 13) and the high-source side flow channel 32b (second heat medium). It is only necessary to have a diversion controller capable of adjusting the diversion flow rate to the refrigerant heat exchanger 23). For example, a flow control valve may be provided in the low-source side channel 32a and / or the high-side channel 32b.
Furthermore, in the above-described embodiment, the low-side refrigerant circuit 10 includes the internal heat exchanger 17, but this may be omitted.

10…低元側冷媒回路、11…冷媒循環路、12…低元側圧縮機、13…第1熱媒/冷媒熱交換器(低元側熱媒/冷媒熱交換器)、14…冷媒/冷媒熱交換器(カスケード熱交換器)、15…低元側膨張弁、16…蒸発器、17…内部熱交換器、20…高元側冷媒回路、21…冷媒循環路、22…高元側圧縮機、23…第2熱媒/冷媒熱交換器(高元側熱媒/冷媒熱交換器)、24…高元側膨張弁、30…熱媒回路、31…暖房端末、32…熱媒循環路、32a…低元側流路、32b…高元側流路、33…ポンプ(熱媒ポンプ)、34…流量制御弁、35…三方弁、36…バッファタンク、40…制御部、56…往き熱媒温度センサ、58…回転センサ   DESCRIPTION OF SYMBOLS 10 ... Low side refrigerant circuit, 11 ... Refrigerant circuit, 12 ... Low side compressor, 13 ... 1st heat medium / refrigerant heat exchanger (low side heat medium / refrigerant heat exchanger), 14 ... Refrigerant / Refrigerant heat exchanger (cascade heat exchanger), 15 ... low-side expansion valve, 16 ... evaporator, 17 ... internal heat exchanger, 20 ... high-side refrigerant circuit, 21 ... refrigerant circuit, 22 ... high-side Compressor, 23 ... second heat medium / refrigerant heat exchanger (high-side heat medium / refrigerant heat exchanger), 24 ... high-side expansion valve, 30 ... heat medium circuit, 31 ... heating terminal, 32 ... heat medium Circulation path, 32a ... Low source side channel, 32b ... High source side channel, 33 ... Pump (heat medium pump), 34 ... Flow control valve, 35 ... Three-way valve, 36 ... Buffer tank, 40 ... Control unit, 56 ... Walking medium temperature sensor, 58 ... Rotation sensor

Claims (6)

低元側圧縮機、低元側熱媒/冷媒熱交換器、カスケード熱交換器、低元側膨張弁、及び蒸発器の順に冷媒が循環する低元側冷媒回路と、
高元側圧縮機、高元側熱媒/冷媒熱交換器、高元側膨張弁、及び前記カスケード熱交換器の順に冷媒が循環する高元側冷媒回路と、
暖房端末を経由して熱媒が循環する熱媒回路であって、前記暖房端末の熱媒出口側に配置された流量調整弁と、前記暖房端末の熱媒入口側に配置された熱媒ポンプとを有し、前記暖房端末から流出して前記流量調整弁を通過した熱媒を前記低元側熱媒/冷媒熱交換器及び前記高元側熱媒/冷媒熱交換器の少なくとも一方に通過させると共に、前記低元側熱媒/冷媒熱交換器及び前記高元側熱媒/冷媒熱交換器の少なくとも一方を通過した熱媒を前記熱媒ポンプによって前記暖房端末へと送り出すように構成された熱媒回路と、
前記熱媒ポンプ及び前記流量調整弁を制御する制御部と、
を含む、ヒートポンプ式暖房装置。
A low-side compressor circuit, a low-side heat medium / refrigerant heat exchanger, a cascade heat exchanger, a low-side expansion valve, and a low-side refrigerant circuit in which the refrigerant circulates in that order,
A high-end side refrigerant circuit in which refrigerant circulates in the order of a high-end side compressor, a high-end side heat medium / refrigerant heat exchanger, a high-end side expansion valve, and the cascade heat exchanger;
A heating medium circuit in which a heating medium circulates via a heating terminal, the flow rate adjusting valve arranged on the heating medium outlet side of the heating terminal, and the heating medium pump arranged on the heating medium inlet side of the heating terminal And the heat medium flowing out of the heating terminal and passing through the flow rate adjusting valve passes through at least one of the low-source side heat medium / refrigerant heat exchanger and the high-source side heat medium / refrigerant heat exchanger. And the heat medium that has passed through at least one of the low-side heat medium / refrigerant heat exchanger and the high-side heat medium / refrigerant heat exchanger is sent out to the heating terminal by the heat medium pump. Heating medium circuit,
A control unit for controlling the heat medium pump and the flow rate adjusting valve;
Including a heat pump type heating device.
前記熱媒回路は、前記流量調整弁を通過した熱媒を前記低元側熱媒/冷媒熱交換器と前記高元側熱媒/冷媒熱交換器とに分流させると共に、前記低元側熱媒/冷媒熱交換器を通過した分流熱媒と前記高元側熱媒/冷媒熱交換器を通過した分流熱媒とを合流させた後に前記熱媒ポンプによって前記暖房端末へと送り出すように構成されている、請求項1に記載のヒートポンプ式暖房装置。   The heat medium circuit divides the heat medium that has passed through the flow rate adjusting valve into the low-source-side heat medium / refrigerant heat exchanger and the high-source-side heat medium / refrigerant heat exchanger, and the low-source-side heat A structure in which the divided heat medium that has passed through the medium / refrigerant heat exchanger and the divided heat medium that has passed through the high-source side heat medium / refrigerant heat exchanger are merged and then sent to the heating terminal by the heat medium pump. The heat pump type heating device according to claim 1, wherein 前記熱媒回路は、前記低元側熱媒/冷媒熱交換器への分流流量と前記高元側熱媒/冷媒熱交換器への分流流量とを調節可能な分流調節弁を有する、請求項2に記載のヒートポンプ式暖房装置。   The said heat-medium circuit has a shunt control valve which can adjust the shunt flow rate to the said low original side heat medium / refrigerant heat exchanger, and the shunt flow rate to the said high original side heat medium / refrigerant heat exchanger. 2. A heat pump heating device according to 2. 前記制御部は、前記暖房端末へと送り出される往き熱媒の温度に基づいて前記熱媒ポンプの回転数を制御する一方、前記熱媒ポンプの回転数が第1所定値まで低下した場合に前記流量調整弁を閉じる方向に制御する、請求項1〜3のいずれか一つに記載のヒートポンプ式暖房装置。   The control unit controls the number of revolutions of the heat medium pump based on the temperature of the forward heat medium sent to the heating terminal, while the number of revolutions of the heat medium pump decreases to a first predetermined value. The heat pump type heating apparatus according to any one of claims 1 to 3, wherein the flow control valve is controlled in a closing direction. 前記制御部は、前記熱媒ポンプの回転数が前記第1所定値まで低下した後に、当該第1所定値よりも大きい第2所定値となった場合に前記流量調整弁を開く方向に制御する、請求項4に記載のヒートポンプ式暖房装置。   The controller controls the direction of opening the flow rate adjusting valve when the rotation speed of the heat medium pump decreases to the first predetermined value and then becomes a second predetermined value larger than the first predetermined value. The heat pump type heating device according to claim 4. 前記制御部は、前記流量調整弁の開度を所定量ずつステップ的に制御する、請求項4又は5に記載のヒートポンプ式暖房装置。   The heat pump heating device according to claim 4 or 5, wherein the control unit controls the opening degree of the flow rate adjustment valve step by step by a predetermined amount.
JP2014023001A 2014-02-10 2014-02-10 Heat pump type heating device Pending JP2015148426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014023001A JP2015148426A (en) 2014-02-10 2014-02-10 Heat pump type heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014023001A JP2015148426A (en) 2014-02-10 2014-02-10 Heat pump type heating device

Publications (1)

Publication Number Publication Date
JP2015148426A true JP2015148426A (en) 2015-08-20

Family

ID=53891915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014023001A Pending JP2015148426A (en) 2014-02-10 2014-02-10 Heat pump type heating device

Country Status (1)

Country Link
JP (1) JP2015148426A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138611A (en) * 2018-02-15 2019-08-22 株式会社コロナ Heat pump air-conditioning system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122125A (en) * 1988-10-31 1990-05-09 Sanyo Electric Co Ltd Hot water heating device
JPH04263758A (en) * 1991-02-18 1992-09-18 Kansai Electric Power Co Inc:The Heat pump hot-water supplier
US20120312045A1 (en) * 2011-06-10 2012-12-13 Samsung Electronics Co., Ltd. Water supply apparatus
JP2013036683A (en) * 2011-08-08 2013-02-21 Toshiba Carrier Corp Warming device
WO2013140954A1 (en) * 2012-03-19 2013-09-26 サンデン株式会社 Heat-pump-type heating apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122125A (en) * 1988-10-31 1990-05-09 Sanyo Electric Co Ltd Hot water heating device
JPH04263758A (en) * 1991-02-18 1992-09-18 Kansai Electric Power Co Inc:The Heat pump hot-water supplier
US20120312045A1 (en) * 2011-06-10 2012-12-13 Samsung Electronics Co., Ltd. Water supply apparatus
JP2013036683A (en) * 2011-08-08 2013-02-21 Toshiba Carrier Corp Warming device
WO2013140954A1 (en) * 2012-03-19 2013-09-26 サンデン株式会社 Heat-pump-type heating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138611A (en) * 2018-02-15 2019-08-22 株式会社コロナ Heat pump air-conditioning system

Similar Documents

Publication Publication Date Title
US20110283726A1 (en) Hot water supply device associated with heat pump and method for controlling the same
JP5533491B2 (en) Refrigeration cycle apparatus and hot water heater
KR101805334B1 (en) Heat source device
JP6545375B2 (en) Heat pump type air conditioner water heater
JP5278451B2 (en) Refrigeration cycle apparatus and hot water heater using the same
US20150034730A1 (en) Heating and hot water supply system
EP2990737B1 (en) Hot-water supply device
JP6545252B2 (en) Refrigeration cycle device
KR20140139425A (en) Heating system
WO2016059837A1 (en) Heat pump heating apparatus
JP7105933B2 (en) Outdoor unit of refrigerating device and refrigerating device provided with the same
JP2010281492A (en) Air conditioner
JPWO2019053876A1 (en) Air conditioner
JP7303413B2 (en) heat pump equipment
KR20190005445A (en) Method for controlling multi-type air conditioner
US11624538B2 (en) Refrigeration device provided with a secondary by-pass branch and method of use thereof
JP2015004482A (en) Hot water supply and air conditioning system
JP2015152266A (en) air-cooled heat pump unit
JP6607147B2 (en) Heat pump equipment
JP5601885B2 (en) Heat pump type hot water supply / air conditioner
US11353234B2 (en) Air conditioning system
JP2015148426A (en) Heat pump type heating device
CN115289647A (en) Method and device for controlling air conditioner, air conditioner and storage medium
JP2018063092A (en) Heat pump water heater with heating function
JP6250428B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180807