JP6051548B2 - Automatic placement and routing apparatus and automatic placement and routing method - Google Patents

Automatic placement and routing apparatus and automatic placement and routing method Download PDF

Info

Publication number
JP6051548B2
JP6051548B2 JP2012058351A JP2012058351A JP6051548B2 JP 6051548 B2 JP6051548 B2 JP 6051548B2 JP 2012058351 A JP2012058351 A JP 2012058351A JP 2012058351 A JP2012058351 A JP 2012058351A JP 6051548 B2 JP6051548 B2 JP 6051548B2
Authority
JP
Japan
Prior art keywords
circuit
information
wiring
undetected
routing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012058351A
Other languages
Japanese (ja)
Other versions
JP2013191139A (en
Inventor
信夫 中根
信夫 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2012058351A priority Critical patent/JP6051548B2/en
Publication of JP2013191139A publication Critical patent/JP2013191139A/en
Application granted granted Critical
Publication of JP6051548B2 publication Critical patent/JP6051548B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Description

本発明は、半導体集積回路における回路素子の配置および配線を行う自動配置配線装置および自動配置配線方法に関する。   The present invention relates to an automatic placement and routing apparatus and an automatic placement and routing method for arranging and wiring circuit elements in a semiconductor integrated circuit.

近年、半導体集積回路では大規模化が進むとともに高故障検出率の確保が求められている。そこで半導体集積回路設計では広くテスト容易化設計を行い、故障検出率を高めるようにしている。   In recent years, semiconductor integrated circuits have been increased in scale and required to ensure a high failure detection rate. Therefore, in semiconductor integrated circuit design, extensive testability design is performed to increase the failure detection rate.

テスト容易化設計としては、故障検出回路を挿入することで故障検出率を向上させる方法がある。例えば、特許文献1には、故障検出回路としてBIST(Built-In Self Test)を用いた例が記載されている。また、特許文献2には、故障検出回路としてスキャン回路(スキャンパス)を用いた例が記載されている。   As a design for testability, there is a method of improving a failure detection rate by inserting a failure detection circuit. For example, Patent Document 1 describes an example in which BIST (Built-In Self Test) is used as a failure detection circuit. Patent Document 2 describes an example in which a scan circuit (scan path) is used as a failure detection circuit.

しかしながら、テスト容易化設計で故障検出回路を挿入しても制御や観測できない部分が発生してしまい、故障検出できない回路素子(以下、未検出故障素子という)が発生してしまうことがある。   However, even if a failure detection circuit is inserted in the design for testability, a portion that cannot be controlled or observed occurs, and a circuit element that cannot detect a failure (hereinafter referred to as an undetected failure element) may occur.

従来の自動配置配線装置では、タイミングや配線の接続性などは考慮されるが未検出故障素子は考慮されない。そのため、同一配線上の未検出故障素子が遠くに配置配線されることがある。その際、要求タイミングや各製造テクノロジで決められているデザインルールなどの設計上の制約を満足できずに、自動配置配線装置が未検出故障部分に回路素子を挿入し要求を満足させることがある。その場合、挿入された回路素子も未検出故障素子となってしまい、未検出故障素子が増加してしまうため半導体集積回路の故障検出率が低下するという問題があった。   In the conventional automatic placement and routing apparatus, timing and wiring connectivity are taken into consideration, but undetected faulty elements are not taken into consideration. Therefore, undetected faulty elements on the same wiring may be arranged and wired far away. At that time, the automatic placement and routing device may satisfy the requirements by inserting circuit elements in the undetected failure part without satisfying the design constraints such as the required timing and design rules determined by each manufacturing technology. . In that case, the inserted circuit element also becomes an undetected failure element, and the number of undetected failure elements increases, which causes a problem that the failure detection rate of the semiconductor integrated circuit decreases.

本発明はかかる問題を解決することを目的としている。   The present invention aims to solve such problems.

すなわち、本発明は、当該未検出故障素子を考慮して故障検出率を低下させないようにする自動配置配線装置および自動配置配線方法を提供することを目的としている。   In other words, an object of the present invention is to provide an automatic placement and routing apparatus and an automatic placement and routing method in which the failure detection rate is not lowered in consideration of the undetected failure element.

上記に記載された課題を解決するために請求項1に記載された発明は、第1の記憶装置に記憶されている半導体集積回路における回路素子情報および配線情報を取得する回路情報取得手段と、前記回路素子の配置および配線を行う配置配線手段と、を備えた自動配置配線装置において、第2の記憶装置に記憶されている、前記回路素子のうち故障検出できない回路素子の情報である未検出故障素子情報を取得する未検出故障素子情報取得手段を備え、前記配置配線手段が、回路情報取得手段が取得した前記回路素子情報および配線情報と、前記未検出故障素子情報と、に基づいて、同一の配線で接続された複数の前記故障検出できない回路素子間の配線を予め定められている設計制約であるデザインルールを満たす配線長となるように近づけて配置をすることを特徴とする自動配置配線装置である。 In order to solve the above-described problem, the invention described in claim 1 includes circuit information acquisition means for acquiring circuit element information and wiring information in a semiconductor integrated circuit stored in the first storage device, In an automatic placement and routing apparatus comprising placement and routing means for placing and routing the circuit elements, undetected information stored in a second storage device, which is information on circuit elements that cannot be detected as faults comprising a undetected fault element information obtaining means for obtaining the failure element information, the placement and routing means, and the circuit element information and wiring information circuit information acquisition unit acquires, before Symbol undetected fault element information, on the basis , close to the wire length to satisfy the design rule is a design constraint that is predetermined wiring between circuit elements can not be more than the fault detection which is connected in the same interconnection An automatic placement and routing device, characterized by the arrangement.

請求項1に記載の発明によれば、配置配線手段が、回路情報取得手段が取得した回路素子情報および配線情報と、未検出故障素子情報取得手段が取得した未検出故障素子情報と、に基づいて、同一の配線で接続された複数の故障検出できない回路素子をデザインルールを満たす配線長となるように近づけて配置しているので、未検出故障素子間の配線を短くするように配置でき、当該箇所に回路素子の挿入が起こりにくくなり、未検出故障素子の増加を防止して、故障検出率を低下させないようにすることができる。   According to the first aspect of the present invention, the placement and routing unit is based on the circuit element information and the wiring information acquired by the circuit information acquisition unit, and the undetected failed element information acquired by the undetected failed element information acquisition unit. Since the circuit elements connected to the same wiring that cannot detect a fault are arranged close to each other so that the wiring length satisfies the design rule, the wiring between undetected faulty elements can be shortened. Insertion of circuit elements is unlikely to occur at the location, and an increase in undetected failure elements can be prevented so that the failure detection rate is not lowered.

本発明の一実施形態にかかる自動配置配線装置の構成図である。1 is a configuration diagram of an automatic placement and routing apparatus according to an embodiment of the present invention. 図1に示された自動配置配線装置の機能的な構成を示した構成図である。FIG. 2 is a configuration diagram showing a functional configuration of the automatic placement and routing apparatus shown in FIG. 1. 未検出故障素子を含む論理回路の例を示した回路図である。It is the circuit diagram which showed the example of the logic circuit containing an undetected failure element. 図3に示された論理回路図の配置配線パターンの例を示した説明図である。It is explanatory drawing which showed the example of the arrangement | positioning wiring pattern of the logic circuit diagram shown by FIG. 図3に示された論理回路にデザインルールを満たすために回路素子が挿入された例を示した回路図である。FIG. 4 is a circuit diagram showing an example in which circuit elements are inserted to satisfy the design rule in the logic circuit shown in FIG. 3. 図5に示された論理回路図の配置配線パターンの例を示した説明図である。FIG. 6 is an explanatory diagram showing an example of a placement and wiring pattern of the logic circuit diagram shown in FIG. 5. 図3に示された論理回路において、各回路素子を近づけて配置した配置配線パターンの例を示した説明図である。FIG. 4 is an explanatory diagram showing an example of an arrangement wiring pattern in which circuit elements are arranged close to each other in the logic circuit shown in FIG. 3. 本発明の他の実施形態にかかる自動配置配線装置の機能的な構成を示した構成図である。It is the block diagram which showed the functional structure of the automatic placement-and-wiring apparatus concerning other embodiment of this invention.

以下、本発明の一実施形態を、図1乃至図7を参照して説明する。図1は、本発明の一実施形態にかかる自動配置配線装置の構成図である。図2は、図1に示された自動配置配線装置の機能的な構成を示した構成図である。図3は、未検出故障素子を含む論理回路の例を示した回路図である。図4は、図3に示された論理回路図の配置配線パターンの例を示した説明図である。図5は、図3に示された論理回路に設計制約を満たすために回路素子が挿入された例を示した回路図である。図6は、図5に示された論理回路図の配置配線パターンの例を示した説明図である。図7は、図3に示された論理回路において、各回路素子を近づけて配置した配置配線パターンの例を示した説明図である。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of an automatic placement and routing apparatus according to an embodiment of the present invention. FIG. 2 is a configuration diagram showing a functional configuration of the automatic placement and routing apparatus shown in FIG. FIG. 3 is a circuit diagram illustrating an example of a logic circuit including an undetected fault element. FIG. 4 is an explanatory diagram showing an example of the placement and wiring pattern of the logic circuit diagram shown in FIG. FIG. 5 is a circuit diagram showing an example in which circuit elements are inserted to satisfy the design constraints in the logic circuit shown in FIG. FIG. 6 is an explanatory diagram showing an example of the arrangement and wiring pattern of the logic circuit diagram shown in FIG. FIG. 7 is an explanatory diagram showing an example of an arrangement / wiring pattern in which circuit elements are arranged close to each other in the logic circuit shown in FIG.

図1に示した自動配置配線装置10は、半導体集積回路に含まれる回路素子の配置配線を行う処理装置1と、処理装置1に対して種々の情報や種々の命令を入力するキーボード2及びマウス3等の入力手段と、データやプログラムを記憶する記憶装置4と、及び、入力画面(例えばGUI:グラフィカルユーザインタフェース)の表示や処理結果の表示等を行う表示装置5と、を備える。図1から明らかなように、自動配置配線装置10は、通常のコンピュータ及びその周辺装置で構成される。なお、マウス3の代りに、タブレットやトラックボール等のポインティングデバイスが用いられてもよい。また、記憶装置4には、半導体メモリや、ハードディスク等が任意に用いられ、表示装置5には、例えばCRTや液晶ディスプレイ等が任意に用いられる。   An automatic placement and routing apparatus 10 shown in FIG. 1 includes a processing device 1 that performs placement and routing of circuit elements included in a semiconductor integrated circuit, a keyboard 2 and a mouse that input various information and various commands to the processing device 1. 3 and the like, a storage device 4 for storing data and programs, and a display device 5 for displaying an input screen (for example, GUI: graphical user interface) and displaying a processing result. As is clear from FIG. 1, the automatic placement and routing apparatus 10 includes a normal computer and its peripheral devices. Note that a pointing device such as a tablet or a trackball may be used instead of the mouse 3. In addition, a semiconductor memory, a hard disk, or the like is arbitrarily used for the storage device 4, and a CRT, a liquid crystal display, or the like is arbitrarily used for the display device 5, for example.

図2に自動配置配線装置10の機能的な構成を示す。自動配置配線装置10は、配置部20と、配置後の最適化部21と、クロックツリー合成部22と、クロックツリー後の最適化部23と、配線部24と、配線後の最適化部25と、を備えている。これら配置部20、配置後の最適化部21、クロックツリー合成部22、クロックツリー後の最適化部23、配線部24、配線後の最適化部25は、図1の処理装置1が機能する。   FIG. 2 shows a functional configuration of the automatic placement and routing apparatus 10. The automatic placement and routing apparatus 10 includes a placement unit 20, a post-placement optimization unit 21, a clock tree synthesis unit 22, a post-clock tree optimization unit 23, a wiring unit 24, and a post-route optimization unit 25. And. The processing device 1 in FIG. 1 functions as the placement unit 20, the post-placement optimization unit 21, the clock tree synthesis unit 22, the post-clock tree optimization unit 23, the wiring unit 24, and the post-wiring optimization unit 25. .

配置部20は、セルライブラリ、ネットリスト、デザインルール、タイミング制約等の配置配線に必要な情報30、即ち回路素子情報および配線情報と、故障検出できない回路素子の情報である未検出故障情報31と、を読み込み、フロアプランを実施し、チップサイズ、I/O配置位置、ハードマクロの配置位置などを決定し、セルの配置を行う。なお、配置配線に必要な情報30と、未検出故障情報31は、例えば記憶装置4に予め格納されている。即ち、記憶装置4が第1の記憶装置、第2の記憶装置として機能し、配置部20が、回路情報取得手段、未検出故障素子情報取得手段、配置配線手段として機能している。なお、配置配線に必要な情報30と、未検出故障情報31は、それぞれ別の記憶装置に記憶させてもよい。   The placement unit 20 includes information 30 necessary for placement and routing such as a cell library, a net list, a design rule, and timing constraints, that is, circuit element information and wiring information, and undetected failure information 31 that is information on circuit elements that cannot be detected. , And the floor plan is executed, the chip size, the I / O arrangement position, the hard macro arrangement position, etc. are determined and the cells are arranged. Note that information 30 necessary for placement and routing and undetected failure information 31 are stored in advance in the storage device 4, for example. That is, the storage device 4 functions as a first storage device and a second storage device, and the placement unit 20 functions as a circuit information acquisition unit, an undetected fault element information acquisition unit, and a placement and routing unit. The information 30 necessary for the placement and routing and the undetected failure information 31 may be stored in different storage devices.

デザインルールとは、素子の最小寸法や素子間の距離、配線幅や配線間の距離、など回路素子を配置配線設計する上での制約事項であり、タイミング制約とは、当該回路のフリップフロップ間のデータ転送の遅延時間(動作周波数)など許容される遅延時間の制約事項である。また、デザインルール、タイミング制約は特許請求の範囲における設計制約に相当する。   The design rule is a restriction on the layout and wiring design of circuit elements such as the minimum dimensions of elements, the distance between elements, the wiring width and the distance between wirings, and the timing constraint is between the flip-flops of the circuit. This is a restriction of allowable delay time such as a data transfer delay time (operation frequency). The design rules and timing constraints correspond to the design constraints in the claims.

未検出故障情報31は、未検出故障素子となっている回路素子の種類やユニーク名および結線情報等(未検出故障素子情報)が含まれており、この情報は、例えば図示しない他の装置で故障シミュレーションを行った結果等を用いればよい。勿論本自動配置配線装置10に故障シミュレーション機能を持たせてネットリスト等を読み込ませて故障シミュレーションを行いその結果から未検出故障情報31を生成するようにしてもよい。 Undetected failure information 31, type and unique name and connection information of the circuit elements has become undetected fault elements like included (undetected fault element information), with this information, for example (not shown) other devices The result of failure simulation may be used. Of course, the automatic placement and routing apparatus 10 may have a failure simulation function, read a netlist or the like, perform a failure simulation, and generate undetected failure information 31 from the result.

配置後の最適化部21は、配置部20で行われたセルの配置の最適化を行う。   The post-placement optimization unit 21 optimizes the cell placement performed by the placement unit 20.

クロックツリー合成部22は、クロック信号と、ネットリスト内のフリップフロップを認識し、クロック信号と各フリップフロップとを接続するためのクロックツリーを合成する。   The clock tree synthesizing unit 22 recognizes the clock signal and the flip-flop in the netlist, and synthesizes a clock tree for connecting the clock signal and each flip-flop.

クロックツリー後の最適化部23は、クロックツリー合成部22で合成されたクロックツリーに基づいて、クロックドライバなどの配置の最適化を行う。   The post-clock tree optimizing unit 23 optimizes the arrangement of clock drivers and the like based on the clock tree synthesized by the clock tree synthesizing unit 22.

配線部24は、配置後の最適化部21やクロックツリー後の最適化部23で最適化された各回路素子を配線で接続する。即ち、配線部24が、配置配線手段として機能している。   The wiring unit 24 connects each circuit element optimized by the optimization unit 21 after placement and the optimization unit 23 after clock tree by wiring. That is, the wiring unit 24 functions as a placement and routing unit.

配線後の最適化部は、配線部24で行われた配線について、デザインルールやタイミング制約の設計制約に基づいて、それらを満たすように最適化する。   The optimization unit after the wiring optimizes the wiring performed by the wiring unit 24 based on the design rule and the design constraint of the timing constraint so as to satisfy them.

つまり、配置部20から配線後の最適化部25まで順次処理を行っていくことで、最終的にレイアウトデータ32が出力される。レイアウトデータ32は、例えば記憶装置4に出力される。したがって、図2は機能的な構成を示すと同時に処理の流れ(フロー)も示している。   That is, the layout data 32 is finally output by sequentially performing processing from the placement unit 20 to the post-wiring optimization unit 25. The layout data 32 is output to the storage device 4, for example. Accordingly, FIG. 2 shows a functional configuration and a processing flow.

次に、上述した構成の自動配置配線装置10における未検出故障素子の配置配線について、図3乃至図7を参照して説明する。   Next, the placement and routing of undetected faulty elements in the automatic placement and routing apparatus 10 having the above-described configuration will be described with reference to FIGS.

図3は、未検出故障素子となる論理回路の例を示した回路図である。図3の回路図は、2入力AND素子c11の一方の入力I1には他の回路素子の出力が接続されているものとする。2入力AND素子c11の他方の入力I2はLowレベル(2進数で“0”)n12に接続されている。   FIG. 3 is a circuit diagram showing an example of a logic circuit that becomes an undetected failure element. In the circuit diagram of FIG. 3, it is assumed that the output of another circuit element is connected to one input I1 of the 2-input AND element c11. The other input I2 of the 2-input AND element c11 is connected to the low level (binary number “0”) n12.

2入力AND素子c11の出力Oは、ドライバ素子c12、c13の入力Iに接続されている。ドライバ素子c12、c13の出力Oは、それぞれ異なる回路素子に接続されているものとする。   The output O of the 2-input AND element c11 is connected to the inputs I of the driver elements c12 and c13. Assume that the outputs O of the driver elements c12 and c13 are connected to different circuit elements.

図3の論理回路において、2入力AND素子c11の他方の入力I2にはLowレベルn12が接続されているため、2入力AND素子c11の出力Oが接続されている配線n11は常にLowレベルになる。そのため、配線n11に接続されているドライバ素子c12、c13はHiレベルへの遷移がないため、Hiレベルへ遷移できるか否かの故障検出ができずこれら3つの回路素子は未検出故障素子となる。   In the logic circuit of FIG. 3, since the low level n12 is connected to the other input I2 of the 2-input AND element c11, the wiring n11 to which the output O of the 2-input AND element c11 is connected is always at the Low level. . Therefore, since the driver elements c12 and c13 connected to the wiring n11 do not transition to the Hi level, it is not possible to detect a failure as to whether or not they can transition to the Hi level, and these three circuit elements become undetected failure elements. .

図3の論理回路を配置配線した例を図4に示す。配線n11は、各素子が離れて配置されて設計制約を満足できない長さに配線されてしまう場合がある。   An example in which the logic circuit of FIG. 3 is arranged and wired is shown in FIG. The wiring n11 may be wired to a length that does not satisfy the design constraints because the elements are arranged apart from each other.

そこで、設計制約を満たすために回路素子が挿入される場合がある。回路素子が挿入された論理回路図を図5に、配置配線図を図6にそれぞれ示す。図5、図6のドライバ素子c22、c23が挿入された回路素子である。ドライバ素子c22は、入力Iが配線n11に接続され出力Oが配線n22に接続される。そして、ドライバc12の入力Iが配線n22に接続される。つまり、ドライバ素子c22は、2入力AND素子c11とドライバ素子c12の間に挿入される。   Therefore, a circuit element may be inserted to satisfy the design constraint. FIG. 5 shows a logic circuit diagram in which circuit elements are inserted, and FIG. 6 shows a layout wiring diagram. This is a circuit element in which the driver elements c22 and c23 of FIGS. 5 and 6 are inserted. The driver element c22 has an input I connected to the wiring n11 and an output O connected to the wiring n22. The input I of the driver c12 is connected to the wiring n22. That is, the driver element c22 is inserted between the 2-input AND element c11 and the driver element c12.

ドライバ素子c23は、入力Iが配線n11に接続され出力Oが配線n23に接続される。そして、ドライバ素子c12の入力Iが配線n23に接続される。つまり、ドライバ素子c23は、2入力AND素子c11とドライバ素子c13の間に挿入される。   The driver element c23 has an input I connected to the wiring n11 and an output O connected to the wiring n23. The input I of the driver element c12 is connected to the wiring n23. That is, the driver element c23 is inserted between the 2-input AND element c11 and the driver element c13.

図5および図6に示したドライバ素子c22、c23の入出力は、未検出故障部分に挿入、接続されるため故障検出できず未検出故障素子となってしまう。結果、未検出故障素子数が増加し故障検出率が悪化してしまう。   The inputs and outputs of the driver elements c22 and c23 shown in FIG. 5 and FIG. 6 are inserted and connected to the undetected failure portion, so that the failure cannot be detected and the undetected failure element. As a result, the number of undetected failure elements increases and the failure detection rate deteriorates.

そこで、本実施形態では、未検出故障素子を近づけて配置配線する。具体的には、配置部20などにおいて、未検出故障情報31に基づいて、未検出故障素子や未検出故障素子が接続されている配線を認識して、当該配線が設計制約を満たす配線長となるように、関連性のある未検出故障素子同士を近づけて配置、配線を行う。図7に図4の配置配線例に対して、関連性のある未検出故障素子同士を近づけて配置、配線した例を示す。即ち、回路素子情報および配線情報と、未検出故障素子情報取得手段が取得した未検出故障素子情報と、に基づいて、同一の配線で接続された複数の故障検出できない回路素子を設計制約を満たす配線長となるように近づけるように配置をしている。   Therefore, in the present embodiment, the undetected faulty elements are placed and wired close to each other. Specifically, in the placement unit 20 or the like, based on the undetected failure information 31, the undetected failure element and the wiring to which the undetected failure element is connected are recognized, and the wiring length that satisfies the design constraint As such, related undetected faulty elements are placed close to each other and wired. FIG. 7 shows an example in which related undetected failure elements are arranged and wired close to each other in the arrangement and wiring example of FIG. That is, based on the circuit element information and the wiring information and the undetected failed element information acquired by the undetected failed element information acquisition unit, a plurality of circuit elements connected by the same wiring that cannot detect the failure satisfy the design constraints. It arranges so that it may become near so that it may become wiring length.

本実施形態によれば、配置部20が、取得した配置配線に必要な情報30と、未検出故障情報31と、に基づいて、複数の故障検出できない回路素子間の配線が設計制約を満たす配線長となるように近づけて配置しているので、未検出故障素子間の配線を短くするように配置でき、当該箇所に回路素子の挿入が起こりにくくなり、未検出故障素子の増加を防止して、故障検出率を低下させないようにすることができる。   According to the present embodiment, the placement unit 20 uses the acquired information 30 necessary for placement and routing and the undetected failure information 31 to allow the wiring between circuit elements that cannot detect a failure to satisfy the design constraints. Since they are arranged close to each other, the wiring between undetected faulty elements can be shortened, circuit elements are less likely to be inserted at the relevant locations, and an increase in undetected faulty elements is prevented. The failure detection rate can be prevented from being lowered.

つまり、設計制約などの従来から配置配線時に考慮していた情報に加えて未検出故障情報も考慮することで、配置配線時に故障検出率を考慮した処理を行うことができる。   That is, in consideration of undetected failure information in addition to information conventionally considered at the time of placement and routing, such as design constraints, it is possible to perform processing in consideration of the failure detection rate at the time of placement and routing.

なお、例えば、他の回路素子の配置の都合上、上述したように未検出故障素子を近づけて配置することができない場合がある。この場合は、図5や図6に示したように未検出故障素子の挿入が起こり故障検出率が低下してしまう可能性がある。その場合、未検出故障素子を故障検出できるよう適切な素子の追加や変更(回路の変更)を行い配置配線を実施してもよい。即ち、自動配置配線装置10が回路変更手段を備えている。この回路変更手段は、単独の機能ブロックとして設けてもよいし、配置部20などが兼ねてもよい。回路変更した場合は、変更後のネットリストが生成される。   For example, there may be a case where an undetected failure element cannot be placed close to each other as described above for convenience of placement of other circuit elements. In this case, as shown in FIG. 5 and FIG. 6, there is a possibility that an undetected failure element is inserted and the failure detection rate is lowered. In that case, an appropriate element may be added or changed (circuit change) so that an undetected failure element can be detected as a failure, and placement and routing may be performed. That is, the automatic placement and routing apparatus 10 includes circuit changing means. The circuit changing unit may be provided as a single functional block, or the placement unit 20 may also serve as the circuit changing unit. When the circuit is changed, a changed netlist is generated.

上述した回路変更の例としては、図3では、例えば2入力AND素子c11の入力I2を外部端子から直接値(Lowレベル)を設定できるようにする。このようにすると、外部端子から値が直接入力できるので、テスト時にのみHiレベルを入力I2に与えることが可能となり故障検出が可能となる。また、2入力AND素子c11を削除してドライバ素子c12、c13に直接Lowレベルが入力されるようにしてもよい。この場合、ドライバ素子c12、c13は未検出故障素子のままであるが、2入力AND回路c11が削除されるので、回路素子の挿入が発生しなくなり、故障検出率が低下しない。   As an example of the circuit change described above, in FIG. 3, for example, the value (Low level) of the input I2 of the 2-input AND element c11 can be set directly from the external terminal. In this way, since the value can be directly input from the external terminal, the Hi level can be given to the input I2 only during the test, and the failure can be detected. Alternatively, the two-input AND element c11 may be deleted and the Low level may be directly input to the driver elements c12 and c13. In this case, the driver elements c12 and c13 remain undetected fault elements, but the 2-input AND circuit c11 is deleted, so that no circuit elements are inserted and the fault detection rate does not decrease.

また、自動配置配線を行う際は、図2に示した配置部20から配線後の最適化部25までの処理を繰り返し行うことが多い。その際に、設計制約を考慮して自動配置配線すると配置配線の要求を満足できるよう論理素子の挿入が起こることがある。この素子の挿入により未検出故障情報31が当初取得したものと異なってくることがある。そこで、例えば、図8に示すように、配線後の最適化部25の後に、未検出故障素子再検出部26で未検出故障素子の再検出を行い、更新が必要な場合は未検出故障素子情報更新部27で未検出故障情報31の更新を行ってもよい。   Further, when performing automatic placement and routing, the processing from the placement unit 20 to the optimization unit 25 after wiring shown in FIG. 2 is often repeated. At that time, if automatic placement and routing is performed in consideration of design constraints, logic elements may be inserted so as to satisfy the requirements of placement and routing. By inserting this element, the undetected failure information 31 may be different from that originally obtained. Therefore, for example, as shown in FIG. 8, after the optimization unit 25 after wiring, the undetected failure element redetection unit 26 performs redetection of the undetected failure element, and when the update is necessary, the undetected failure element is detected. The information update unit 27 may update the undetected failure information 31.

また、図8の例に限らず、例えば配置部21で発生した情報を未検出故障素子再検出部26に出力し、更新が必要な場合は未検出故障素子情報更新部27で未検出故障素子に関する情報の更新を行って配置後の最適化部21に出力するようにしてもよい。つまり、配置部21〜配線後の最適化部25での処理結果をそれぞれ未検出故障素子再検出部26に出力し、更新が必要な場合は未検出故障素子情報更新部27で未検出故障素子に関する情報の更新を行って次の処理部(工程)に出力するようにしてもよい。   Further, not limited to the example of FIG. 8, for example, the information generated in the placement unit 21 is output to the undetected failed element redetection unit 26, and when the update is necessary, the undetected failed element information update unit 27 detects the undetected failed element. It is also possible to update the information related to the information and output it to the optimization unit 21 after placement. That is, the processing results in the placement unit 21 to the optimization unit 25 after wiring are output to the undetected failed element re-detection unit 26, respectively, and when the update is necessary, the undetected failed element information update unit 27 performs the undetected failed element. It is also possible to update the information on the information and output it to the next processing unit (process).

このようにすることにより、未検出故障素子情報を考慮して配置配線中の回路変更等に対応した処理を行うことができる。即ち、未検出故障素子再検出部26が未検出故障素子検出手段、未検出故障素子情報更新部27が未検出故障素子情報更新手段として機能する。   By doing so, it is possible to perform processing corresponding to a circuit change or the like in the placement and routing in consideration of undetected faulty element information. That is, the undetected failed element redetection unit 26 functions as an undetected failed element detection unit, and the undetected failed element information update unit 27 functions as an undetected failed element information update unit.

また、自動配置配線装置10をコンピュータで読み込み動作可能なプログラムとして構成してもよい。この場合図2に示した、配置部20、配置後の最適化部21、クロックツリー合成部22、クロックツリー後の最適化部23、配線部24、配線後の最適化部25といった処理装置1が機能する部分がプログラムとして構成される。即ち、配置部20が、回路情報取得ステップ、未検出故障素子情報取得ステップ、配置配線ステップとして機能し、配線部24が、配置配線ステップとして機能する。   The automatic placement and routing apparatus 10 may be configured as a program that can be read and operated by a computer. In this case, the processing apparatus 1 such as the placement unit 20, the post-placement optimization unit 21, the clock tree synthesis unit 22, the post-clock tree optimization unit 23, the wiring unit 24, and the post-wiring optimization unit 25 shown in FIG. The functioning part is configured as a program. That is, the placement unit 20 functions as a circuit information acquisition step, an undetected faulty element information acquisition step, and a placement and routing step, and the wiring unit 24 functions as a placement and routing step.

なお、本発明は上記実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   The present invention is not limited to the above embodiment. That is, various modifications can be made without departing from the scope of the present invention.

1 処理装置
4 記憶装置(第1の記憶装置、第2の記憶装置)
10 自動配置配線装置
20 配置部(回路情報取得手段、配置配線手段、未検出故障素子情報取得手段、回路変更手段)
21 配置後の最適化部
24 配線部(配置配線手段)
25 配線後の最適化部(未検出故障素子検出手段)
27 未検出故障素子情報更新部(未検出故障素子情報更新手段)
30 配置配線に必要な情報(回路素子情報および配線情報)
31 未検出故障情報(故障検出できない回路素子の情報)
32 レイアウトデータ
1 processing device 4 storage device (first storage device, second storage device)
10 automatic placement and routing device 20 placement unit (circuit information acquisition means, placement and routing means, undetected fault element information acquisition means, circuit change means)
21 Optimization Unit after Placement 24 Wiring Unit (Placement and Routing Means)
25 Optimization section after wiring (undetected faulty element detection means)
27 Undetected faulty element information update unit (undetected faulty element information update means)
30 Information required for placement and routing (circuit element information and wiring information)
31 Undetected failure information (information about circuit elements that cannot be detected)
32 Layout data

特開2007−328852号公報JP 2007-328852 A 特開2001−83213号公報JP 2001-83213 A

Claims (4)

第1の記憶装置に記憶されている半導体集積回路における回路素子情報および配線情報を取得する回路情報取得手段と、前記回路素子の配置および配線を行う配置配線手段と、を備えた自動配置配線装置において、
第2の記憶装置に記憶されている、前記回路素子のうち故障検出できない回路素子の情報である未検出故障素子情報を取得する未検出故障素子情報取得手段を備え、
前記配置配線手段が、回路情報取得手段が取得した前記回路素子情報および配線情報と、前記未検出故障素子情報と、に基づいて、同一の配線で接続された複数の前記故障検出できない回路素子間の配線を予め定められている設計制約であるデザインルールを満たす配線長となるように近づけて配置をする
ことを特徴とする自動配置配線装置。
An automatic placement and routing apparatus comprising: circuit information obtaining means for obtaining circuit element information and wiring information in a semiconductor integrated circuit stored in the first storage device; and placement and routing means for placing and wiring the circuit elements. In
An undetected fault element information acquisition means for acquiring undetected fault element information that is information of a circuit element that cannot be detected as a fault among the circuit elements stored in the second storage device;
The placement and routing means, and the circuit element information and wiring information circuit information acquisition unit acquires, before SL and undetected fault element information, based on, can not be a plurality of the fault detection which is connected in the same interconnection circuit elements automatic placement and routing device, characterized in that the arranged close so that the wiring length to satisfy the design rule is a design constraint that is predetermined wiring between.
前記配置配線手段が前記故障検出できない回路素子を前記デザインルールを満たす配線長となるように近づけるように配置できない場合は、当該故障検出できない回路素子を含む回路の変更を行って前記回路素子情報および配線情報を変更する回路変更手段を備えたことを特徴とする請求項1に記載の自動配置配線装置。 If the placement and routing means cannot place the circuit element that cannot detect the failure so as to be close to the wiring length that satisfies the design rule , the circuit element information and the circuit element information including the circuit element that cannot detect the failure are changed. 2. The automatic placement and routing apparatus according to claim 1, further comprising circuit changing means for changing the wiring information. 前記回路変更手段が変更した前記回路素子情報および配線情報に基づいて再度前記故障検出できない回路素子を検出する未検出故障素子検出手段と、
前記未検出故障素子検出手段が検出した故障検出できない回路素子に基づいて、前記未検出故障素子情報を更新する未検出故障素子情報更新手段と、
を備えていることを特徴とする請求項2に記載の自動配置配線装置。
Undetected fault element detection means for detecting the circuit element that cannot be detected again based on the circuit element information and wiring information changed by the circuit change means;
Based on a circuit element that is detected by the undetected faulty element detection unit and cannot detect a fault, the undetected faulty element information update unit that updates the undetected faulty element information;
The automatic placement and routing apparatus according to claim 2, further comprising:
自動配置配線装置によって半導体集積回路における回路素子の配置および配線を行う自動配置配線方法において、
第1の記憶装置に記憶されている前記回路素子情報および配線情報を取得する回路情報取得ステップと、
第2の記憶装置に記憶されている、前記回路素子のうち故障検出できない回路素子の情報である未検出故障素子情報を取得する未検出故障素子情報取得ステップと、
回路情報取得ステップで取得した前記回路素子情報および配線情報と、前記未検出故障素子情報取得ステップで取得した前記未検出故障素子情報と、に基づいて、複数の前記故障検出できない回路素子間の配線を予め定められている設計制約であるデザインルールを満たす配線長となるように近づけて配置をする配置配線ステップと、
を前記自動配置配線装置が順次実行することを特徴とする自動配置配線方法。
In an automatic placement and routing method for placing and wiring circuit elements in a semiconductor integrated circuit by an automatic placement and routing apparatus,
A circuit information acquisition step for acquiring the circuit element information and wiring information stored in the first storage device;
An undetected fault element information acquisition step for acquiring undetected fault element information , which is information of a circuit element that cannot be detected as a fault among the circuit elements, stored in a second storage device;
Based on the circuit element information and wiring information acquired in the circuit information acquisition step and the undetected fault element information acquired in the undetected fault element information acquisition step, wiring between the plurality of circuit elements that cannot detect the fault A placement and routing step that places the wires close to each other so that the wiring length satisfies a design rule that is a predetermined design constraint;
The automatic placement and routing apparatus sequentially executes the automatic placement and routing apparatus.
JP2012058351A 2012-03-15 2012-03-15 Automatic placement and routing apparatus and automatic placement and routing method Expired - Fee Related JP6051548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012058351A JP6051548B2 (en) 2012-03-15 2012-03-15 Automatic placement and routing apparatus and automatic placement and routing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012058351A JP6051548B2 (en) 2012-03-15 2012-03-15 Automatic placement and routing apparatus and automatic placement and routing method

Publications (2)

Publication Number Publication Date
JP2013191139A JP2013191139A (en) 2013-09-26
JP6051548B2 true JP6051548B2 (en) 2016-12-27

Family

ID=49391272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058351A Expired - Fee Related JP6051548B2 (en) 2012-03-15 2012-03-15 Automatic placement and routing apparatus and automatic placement and routing method

Country Status (1)

Country Link
JP (1) JP6051548B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7334580B2 (en) * 2019-11-07 2023-08-29 株式会社リコー Automatic placement and routing device, automatic placement and routing method, automatic placement and routing program, storage medium storing automatic placement and routing program, and semiconductor integrated circuit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324101A (en) * 2001-04-26 2002-11-08 Matsushita Electric Ind Co Ltd Detection method for failure of logic circuit
JP5052432B2 (en) * 2008-07-04 2012-10-17 三菱電機株式会社 Circuit insertion device for improving fault coverage
JP2011060117A (en) * 2009-09-11 2011-03-24 Renesas Electronics Corp Support device for semiconductor integrated circuit design and design method of semiconductor integrated circuit
JP2011164921A (en) * 2010-02-09 2011-08-25 Renesas Electronics Corp Device for designing semiconductor integrated circuit, and method for designing the semiconductor integrated circuit

Also Published As

Publication number Publication date
JP2013191139A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
US9990458B2 (en) Generic design rule checking (DRC) test case extraction
US20140282329A1 (en) Automated design rule checking (drc) test case generation
US10628550B2 (en) Method for designing an integrated circuit, and method of manufacturing the integrated circuit
KR20180127141A (en) Computer-implemented method and computing system for designing integrated circuit and method of manufacturing integrated circuit
US7949982B2 (en) Semiconductor integrated circuit design system, semiconductor integrated circuit design method, and computer readable medium
JP4264436B2 (en) Flip-flop functional element, semiconductor integrated circuit, semiconductor integrated circuit design method, and semiconductor integrated circuit design apparatus
US7073148B1 (en) Antenna violation correction in high-density integrated circuits
US11176303B2 (en) Constrained cell placement
JP6051548B2 (en) Automatic placement and routing apparatus and automatic placement and routing method
JP5297468B2 (en) Semiconductor integrated circuit design method and software
JP2010087244A (en) Semiconductor integrated circuit, layout method for semiconductor integrated circuit, and layout program for semiconductor integrated circuit
US7984394B2 (en) Design structure for a redundant micro-loop structure for use in an integrated circuit physical design process and method of forming the same
JP4983068B2 (en) Semiconductor device design support apparatus, semiconductor device design support method, and semiconductor device design support program
KR101932805B1 (en) Pattern-based power-and-ground (pg) routing and via creation
JP2007011957A (en) Circuit design device and program
JP4886559B2 (en) Semiconductor design support apparatus, semiconductor design support method, and semiconductor design support program
JP7334580B2 (en) Automatic placement and routing device, automatic placement and routing method, automatic placement and routing program, storage medium storing automatic placement and routing program, and semiconductor integrated circuit
US8468407B2 (en) Method for creating test clock domain during integrated circuit design, and associated computer readable medium
JP2011060117A (en) Support device for semiconductor integrated circuit design and design method of semiconductor integrated circuit
JP2009302179A (en) Layout system and layout method for semiconductor integrated circuit
JP2017004321A (en) Design layout data defect detection method, design layout data defect detection program, and design layout data defect detection device
Lee et al. Fast Turn Around Time Development Flow for high Quality LVS rule files
JP2009004700A (en) Inserting/arranging method of spare cell
KR20210028798A (en) Manufacturing method of semiconductor device
JP2011145940A (en) Wiring method and wiring program of semiconductor integrated circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R151 Written notification of patent or utility model registration

Ref document number: 6051548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees