JP6050711B2 - Baking regenerative brick for regenerator heater - Google Patents

Baking regenerative brick for regenerator heater Download PDF

Info

Publication number
JP6050711B2
JP6050711B2 JP2013062393A JP2013062393A JP6050711B2 JP 6050711 B2 JP6050711 B2 JP 6050711B2 JP 2013062393 A JP2013062393 A JP 2013062393A JP 2013062393 A JP2013062393 A JP 2013062393A JP 6050711 B2 JP6050711 B2 JP 6050711B2
Authority
JP
Japan
Prior art keywords
heat storage
mass
brick
mgo
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013062393A
Other languages
Japanese (ja)
Other versions
JP2014185067A (en
Inventor
裕 大西
裕 大西
佐藤 信博
信博 佐藤
四穂 大和
四穂 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2013062393A priority Critical patent/JP6050711B2/en
Publication of JP2014185067A publication Critical patent/JP2014185067A/en
Application granted granted Critical
Publication of JP6050711B2 publication Critical patent/JP6050711B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Central Heating Systems (AREA)
  • Magnetic Ceramics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は蓄熱暖房機の蓄熱材として使用される焼成蓄熱れんがに関する。なお、本明細書では、蓄熱暖房機用の焼成蓄熱れんがのことを単に「蓄熱れんが」という。   The present invention relates to a baked heat storage brick used as a heat storage material for a heat storage heater. In the present specification, fired heat storage bricks for heat storage heaters are simply referred to as “heat storage bricks”.

蓄熱暖房機は、深夜電力等を利用し蓄熱材に熱を蓄えておき、後でこの顕熱及び潜熱を利用するものである。この種の蓄熱暖房機は蓄熱材、すなわち蓄熱れんが及び蓄熱用ヒーターを内蔵しており、同蓄熱れんがは蓄熱用ヒーターで加熱されることにより熱を蓄え、この蓄えられた熱を暖房用として利用し、生活空間を暖めることが可能なものである。   A heat storage heater uses midnight power or the like to store heat in a heat storage material, and uses this sensible heat and latent heat later. This type of heat storage heater incorporates a heat storage material, that is, a heat storage brick and a heat storage heater, and the heat storage brick is heated by the heat storage heater to store heat, and this stored heat is used for heating. And it is possible to warm the living space.

従来、蓄熱れんがとしてはマグネシア質れんがと酸化鉄質れんがが主に使用されている。マグネシア質れんがは酸化鉄質れんがよりも比熱、熱伝導率が高いことから熱しやすく冷めやすいという性質を有する。そのため、蓄熱量が足りず使用途中段階で蓄熱れんがが冷えてしまい暖房機としての機能を全うできなかったり、また、近年の高気密、高断熱構造を有する住宅においては、必要とされる熱量以上に熱が放出されてしまう問題があった。   Conventionally, magnesia bricks and iron oxide bricks are mainly used as heat storage bricks. Magnesia brick has the property of being easy to heat and cool because it has higher specific heat and higher thermal conductivity than iron oxide brick. Therefore, the amount of heat storage is insufficient, and the heat storage brick cools down during use, so that the function as a heater cannot be completed. There was a problem that heat was released.

一方、酸化鉄質れんがは、熱の放散はマグネシア質れんがよりも抑えられるものの、酸化鉄質れんがが使用された蓄熱暖房機は、酸化鉄れんがの微粉が蓄熱暖房機の缶体に飛散付着し、季節上使用されない夏場において、湿気等が原因となる錆を誘発し、その缶体に錆を生じさせてしまうという問題があった。   Iron oxide bricks, on the other hand, have less heat dissipation than magnesia bricks, but heat storage heaters that use iron oxide bricks have fine particles of iron oxide bricks scattered and adhered to the cans of the heat storage heater. In summer, when the season is not used, there is a problem that rust caused by moisture or the like is induced and the can body is rusted.

そこで、特許文献1には、砂鉄と砂鉄以外の窯業材料との焼結体からなる蓄熱材が提案されている。この蓄熱材は、マグネシア質れんがよりも蓄熱性に優れ、安価に提供することが可能であるとされている。   Therefore, Patent Document 1 proposes a heat storage material made of a sintered body of sand iron and ceramic materials other than sand iron. This heat storage material is said to be more excellent in heat storage than magnesia brick and can be provided at low cost.

しかし、砂鉄は産出される態様が砂状であり、しかも粒度形態が微粒状及び等粒状であることから、れんがを製造する配合とする場合においてその適用粒度域が限定されてしまうことから使用量が限定される上、蓄熱機能を確保するためにはかさ比重が高いことが望ましいにも関わらず、れんが素地の成形段階で十分なかさ比重を確保できないという問題があった。更に、砂鉄は鉄チタン酸化物を多く含有するため、マグネシア原料との併用を行ったれんがを得ようとした場合に素地を焼成する段階においてチタンとマグネシアが低融点物を生成し、それが原因で焼成収縮が大きくなったり、変形が大きくなったりしてしまう。このことにより、蓄熱れんがそのものが蓄熱用ヒーターを設置するための溝や空気の通り道となる溝を多く必要とする形状であることから、目的とした寸法精度を得ることができなかったり、れんがを正確に組み上げることができないという問題があった。   However, since iron sand is produced in the form of sand, and the particle size form is fine and equigranular, the applicable particle size range is limited in the case of blending to produce bricks. However, there is a problem that a sufficient bulk specific gravity cannot be secured at the stage of forming the brick base, although it is desirable that the bulk specific gravity is high in order to ensure the heat storage function. Furthermore, since iron sand contains a large amount of iron titanium oxide, titanium and magnesia produce a low melting point in the stage of firing the base when trying to obtain a brick that is used in combination with magnesia raw materials. As a result, firing shrinkage increases and deformation increases. Because of this, the heat storage brick itself has a shape that requires a lot of grooves for installing the heat storage heater and air passages, so that the target dimensional accuracy cannot be obtained or bricks are used. There was a problem that it could not be assembled accurately.

特開昭52−65504号公報JP-A-52-65504

本発明が解決しようとする課題は、蓄熱暖房機に使用される蓄熱れんがであって、蓄熱機能を損なうことがない十分な蓄熱容量を有し、かつ製造段階における変形が少なく安定した製品供給が可能な蓄熱れんがを提供することにある。   The problem to be solved by the present invention is a heat storage brick used for a heat storage heater, has a sufficient heat storage capacity that does not impair the heat storage function, and has a stable product supply with little deformation in the manufacturing stage. The goal is to provide possible heat storage bricks.

本発明者らは、蓄熱暖房機に使用される蓄熱れんがについて種々検討を行った結果、含有する化学成分を特定するとともに、それを達成し得る使用原料を特定することによって、蓄熱機能に優れた蓄熱容量を有し、かつ製造段階の焼成工程における変形を抑制することができ、安定した製品供給が可能な蓄熱れんがを提供できるとの知見を得、本発明を完成するに至った。   As a result of conducting various studies on heat storage bricks used in heat storage heaters, the present inventors specified the chemical components to be contained, and by specifying the raw materials that can achieve them, the heat storage function was excellent. The present invention has been completed by obtaining knowledge that it has a heat storage capacity, can suppress deformation in the baking process at the manufacturing stage, and can provide a heat storage brick capable of supplying a stable product.

すなわち本発明は以下の蓄熱れんがを提供する。
(1)化学成分として、MgOを20質量%以上80質量%以下、Feを10質量%以上70質量%以下含有し、MgOとFeの合算が90質量%以上である蓄熱れんが。
(2)化学成分として、MgOを50質量%以上70質量%以下、Feを20質量%以上40質量%以下含有し、MgOとFeの合算が90質量%以上である蓄熱れんが。
(3)Fe源として、かさ比重が3.50以上の酸化鉄原料を使用した(1)又は(2)に記載の蓄熱れんが。
(4)Fe源として、かさ比重が3.65以上の酸化鉄原料を使用した(1)又は(2)に記載の蓄熱れんが。
(5)前記酸化鉄原料として、鉄鉱石又は鉄鉱石を焼結して得られた焼結鉱を使用した(3)又は(4)に記載の蓄熱れんが。
That is, the present invention provides the following heat storage bricks.
(1) As a chemical component, MgO is contained in an amount of 20% by mass or more and 80% by mass or less, Fe 2 O 3 is contained in an amount of 10% by mass or more and 70% by mass or less, and the total of MgO and Fe 2 O 3 is 90% by mass or more. Brick.
(2) As a chemical component, MgO is contained in an amount of 50% to 70% by mass, Fe 2 O 3 is contained in an amount of 20% to 40% by mass, and the total of MgO and Fe 2 O 3 is 90% by mass or more. Brick.
(3) The heat storage brick according to (1) or (2), wherein an iron oxide raw material having a bulk specific gravity of 3.50 or more is used as the Fe 2 O 3 source.
(4) The heat storage brick according to (1) or (2), wherein an iron oxide raw material having a bulk specific gravity of 3.65 or more is used as the Fe 2 O 3 source.
(5) The heat storage brick according to (3) or (4), wherein iron ore or sintered ore obtained by sintering iron ore is used as the iron oxide raw material.

本発明によれば、特定量のMgO及びFeを含有させたことで、従来のマグネシア質れんがよりも蓄熱容量を向上させることができるとともに、製造段階の焼成工程における変形を抑制することができる。したがって、蓄熱容量が同一の場合、蓄熱れんがの容積を小さくすることができ、このことは蓄熱暖房機の缶体の小型化を可能とし、製品のコストダウンに寄与する。また、従来のマグネシアれんがではなしえなかった蓄熱された熱の放散性を抑制することも可能であることから省エネルギー化に貢献する。更に、従来の酸化鉄質れんがに認められる缶体への錆発生誘発を抑制でき、蓄熱暖房機の寿命を向上させることも可能である。 According to the present invention, by containing a specific amount of MgO and Fe 2 O 3 , the heat storage capacity can be improved more than conventional magnesia bricks, and deformation in the firing process in the manufacturing stage can be suppressed. Can do. Therefore, when the heat storage capacity is the same, the volume of the heat storage brick can be reduced, which enables the miniaturization of the can body of the heat storage heater and contributes to the cost reduction of the product. In addition, it contributes to energy saving because it is possible to suppress the heat dissipation of the stored heat, which was not possible with conventional magnesia bricks. Furthermore, it is possible to suppress the induction of rust generation in the can body observed in conventional iron oxide bricks, and it is possible to improve the life of the heat storage heater.

本発明の要旨は、次のとおりである。本発明の蓄熱れんがはその主たる化学成分組成として、特定量のMgOとFeを含有する。これにより本発明の蓄熱れんがでは、その製造時の焼成段階で、MgOとFeの共存下においてスピネル鉱物であるマグネシオフェライト(MgO・Fe)の生成が十分になされ、その結果、熱の放散性(放熱性)が抑えられるとともに、蓄熱容量を確保できる。特に、Fe源としての酸化鉄原料のかさ比重を特定することで、れんが成形体が十分なかさ比重を有することとなり、蓄熱容量を十分に確保できる。更に、酸化鉄原料由来の不純物成分による低融点生成物を極力抑制することで、焼成段階における焼成収縮や変形を抑制することができる。 The gist of the present invention is as follows. The heat storage brick of the present invention contains specific amounts of MgO and Fe 2 O 3 as the main chemical component composition. Thus in the heat storage brick of the present invention, in the firing step during the production, generation of magnesiowustite ferrite spinel mineral in the presence of MgO and Fe 2 O 3 (MgO · Fe 2 O 3) is made sufficiently, the As a result, heat dissipation (heat dissipation) is suppressed, and heat storage capacity can be secured. In particular, by specifying the bulk specific gravity of the iron oxide raw material as the Fe 2 O 3 source, the brick molded body has a sufficient bulk specific gravity, and a sufficient heat storage capacity can be secured. Furthermore, by suppressing as much as possible the low melting point product due to the impurity component derived from the iron oxide raw material, firing shrinkage and deformation in the firing stage can be suppressed.

以下具体的に本発明を説明する。   The present invention will be specifically described below.

本発明の蓄熱れんがにおいてFeの含有量は10質量%以上70質量%以下とし、好ましくは20質量%以上40質量%以下とする。Feの含有量が10%未満では、十分なかさ比重を確保することができないことから十分な蓄熱容量を得ることができない。また、Feの含有量が70質量%を超えると、酸化鉄原料を多量に使用することを余儀なくされることから酸化鉄原料由来の不純物成分が過多となり、製造時の焼成段階での過剰な収縮や変形が顕著になる。 In the heat storage brick of the present invention, the content of Fe 2 O 3 is 10% by mass to 70% by mass, preferably 20% by mass to 40% by mass. When the content of Fe 2 O 3 is less than 10%, a sufficient bulk specific gravity cannot be ensured, so that a sufficient heat storage capacity cannot be obtained. Further, if the content of Fe 2 O 3 exceeds 70% by mass, it is necessary to use a large amount of the iron oxide raw material, so that the impurity component derived from the iron oxide raw material becomes excessive, and in the firing stage at the time of manufacture. Excessive shrinkage and deformation become significant.

一方、MgOの含有量は20質量%以上80質量%以下とし、好ましくは50質量%以上70質量%以下とする。MgOの含有量が20質量%未満では、必然的に酸化鉄原料を多量に使用することとなり、前述同様の酸化鉄原料由来の不純物成分が過多となり、焼成段階での過剰な収縮や変形が顕著になる。また、MgOの含有量が80質量%を超えると、MgO成分が過多であることによって放熱量が大きくなってしまう。   On the other hand, the content of MgO is 20% by mass or more and 80% by mass or less, and preferably 50% by mass or more and 70% by mass or less. When the content of MgO is less than 20% by mass, an iron oxide raw material is inevitably used in a large amount, and there are excessive impurity components derived from the same iron oxide raw material as described above, and excessive shrinkage and deformation at the firing stage are remarkable. become. On the other hand, if the content of MgO exceeds 80% by mass, the amount of heat release increases due to the excessive amount of MgO component.

Fe源となる酸化鉄原料としては、天然の鉄鉱石や、鉄鉱石(粉鉱石)と石灰を焼き固めたいわゆる焼結鉱を使用できる。その酸化鉄原料は、かさ比重が3.50以上のものを使用することによって高密度で蓄熱容量が高い蓄熱れんがを得ることができるため好ましい。更にはかさ比重が3.65以上のものを使用することによって、更に蓄熱容量を向上させることが可能となることからより好ましい。 As an iron oxide raw material used as an Fe 2 O 3 source, natural iron ore or so-called sintered ore obtained by baking and solidifying iron ore (powder ore) and lime can be used. The iron oxide raw material is preferable because a heat storage brick having a high density and a high heat storage capacity can be obtained by using a material having a bulk specific gravity of 3.50 or more. Furthermore, it is more preferable to use a material having a bulk specific gravity of 3.65 or more because the heat storage capacity can be further improved.

MgO源として使用するマグネシア原料は、MgOを主成分とする電融マグネシアクリンカー、焼結マグネシアクリンカーなど、一般的に蓄熱れんがに使用されているマグネシアクリンカーを使用することができる。また、天然マグネサイトや天然マグネサイトを原料としたマグネシアクリンカーを使用することもでき、製造コストの観点からも好ましい。このときマグネシアクリンカーのMgO含有量は85質量%以上のものを用いることが不純物による低融点物生成抑制の観点から好ましい。   As the magnesia raw material used as the MgO source, a magnesia clinker generally used for a heat storage brick such as an electrofused magnesia clinker or a sintered magnesia clinker mainly composed of MgO can be used. Natural magnesite and magnesia clinker made from natural magnesite can also be used, which is preferable from the viewpoint of production cost. At this time, it is preferable from the viewpoint of suppressing the formation of a low melting point product due to impurities that the MgO content of the magnesia clinker is 85% by mass or more.

本発明では焼結助剤として、SiO、ZrO、粘土などを添加することができる、その添加量は、低融点物生成抑制の観点から1〜5質量%とすることが好ましい。 In the present invention, SiO 2 , ZrO 2 , clay and the like can be added as a sintering aid, and the addition amount is preferably 1 to 5% by mass from the viewpoint of suppressing the formation of a low melting point product.

これらの耐火原料骨材等を混合、混練する際に使用するバインダーとしては、リグニン類、糖類、でんぷん類、メチルセルロース類等の多糖類や多価アルコール類、リン酸類等の水溶液、あるいはフェノール樹脂、酢酸ビニルエマルジョン等を使用することができる。その添加量は、耐火原料骨材に対して外掛け1〜3質量%とすることが好ましい。混合、混練にあたっては、使用する耐火原料骨材同士及び添加するバインダーの分散を良くするため、剪断力の大きなミキサーを使用する。   As a binder used when mixing and kneading these refractory raw material aggregates, polysaccharides such as lignins, saccharides, starches, methylcelluloses, polyhydric alcohols, aqueous solutions of phosphoric acids, phenol resins, A vinyl acetate emulsion or the like can be used. The addition amount is preferably 1 to 3% by mass with respect to the refractory raw material aggregate. In mixing and kneading, in order to improve dispersion of the refractory raw material aggregates used and the binder to be added, a mixer having a large shearing force is used.

混合、混練後に得られたれんが坏土の加圧成形には、フリクションプレス、オイルプレス等の従来から使用されているプレス機を使用できるが、十分なれんが充填密度を確保するために最高加圧時点でのれんが受圧面積当たりの成形圧力が100MPa以上であることが必要であり、そのため、任意形状において、当該圧力以上に成形可能なプレス機を選択する必要がある。   Conventionally used press machines such as friction press and oil press can be used for pressure forming of the brick clay obtained after mixing and kneading, but the highest pressure is required to ensure sufficient brick filling density. It is necessary that the molding pressure of the goodwill per pressure-receiving area at the time is 100 MPa or more, and therefore, it is necessary to select a press machine capable of molding at or above the pressure in an arbitrary shape.

れんがの焼成は、トンネルキルン、シャトルキルン、電気炉等、従来から使用されている焼成機器を使用することができ、最高保持温度が1000〜1500℃の温度領域で焼成を行う。1000℃以下の場合は十分な焼結効果を得ることができず、また、1500℃以上を超える場合は焼成変形や収縮が大きくなり好ましくない。   Baking of the bricks can be performed by using conventionally used baking equipment such as a tunnel kiln, shuttle kiln, electric furnace, etc., and the baking is performed in a temperature range where the maximum holding temperature is 1000 to 1500 ° C. When the temperature is 1000 ° C. or lower, a sufficient sintering effect cannot be obtained, and when the temperature exceeds 1500 ° C. or higher, firing deformation and shrinkage are undesirably increased.

以下、実施例について説明する。なお、本実施例は本発明の一様態を示すものであって、本発明は下記実施例に限定されるものではない。   Examples will be described below. In addition, a present Example shows the one aspect | mode of this invention, Comprising: This invention is not limited to the following Example.

表1は本発明の実施例及び比較例で使用した原料の化学成分と特性値を示す。表2及び表3は、本発明の実施例及び比較例の原料配合割合、並びに試作した蓄熱れんがの物性値及び試験結果を示す。   Table 1 shows the chemical components and characteristic values of the raw materials used in the examples and comparative examples of the present invention. Tables 2 and 3 show the raw material blending ratios of the examples and comparative examples of the present invention, the physical property values of the heat storage bricks made as a trial, and the test results.

表2及び表3に示す原料配合割合にて秤量後、バインダーとしてリグニンスルホン酸水溶液を外掛けで2質量%添加し、パンミキサーを用い混合・混練したものをフリクションプレスにて並形形状にて加圧成形後、1200℃にて焼成を行い供試れんがとした。なお、表2及び表3において原料配合割合中()内数字の原料は外掛け添加にて秤量が行われたことを示す。   After weighing at the raw material mixing ratios shown in Tables 2 and 3, 2% by mass of a lignin sulfonic acid aqueous solution was added as an outer binder as a binder, and mixed and kneaded using a pan mixer in a parallel shape with a friction press. After pressure molding, firing was performed at 1200 ° C. to obtain a test brick. In Tables 2 and 3, the raw materials indicated by the numbers in parentheses in the raw material blending ratio indicate that the weighing was performed by external addition.

各供試れんがの物性測定と評価は下記の方法にて行った。   The physical properties of each brick were measured and evaluated by the following methods.

れんがの化学成分の測定は、JIS R 2212に準じて行い、強熱減量を除く成分を100%換算にて表示した。
焼成後のれんがの変形は直尺、スケールを用い目視にて行い、変形が無いものを○、変形が見られるがその量は小さく製品として何ら問題がないものを△、変形が大きいものを×とした3段階評価とした。
れんがのかさ比重の測定は、JIS R 2205に準じて行った。
れんがの比熱の測定は、JIS R 1611に記載のDSC法に準じて行った。
れんがの蓄熱容量は、前記測定のかさ比重と比熱の積によって算出される。表2においては比較例1のれんがの蓄熱容量を100、表3においては比較例4のれんがの蓄熱容量を100とした指数にて評価した。この指数が大きいものほど蓄熱容量が高いことを示す。
蓄熱した熱の放熱性は供試れんがの熱伝導率の測定値にて評価を行った。熱伝導率値が大きいもの程、熱の放熱が大きいことが一般的に知られている。熱伝導率は迅速熱伝導率計(京都電子工業(株)製 QTM−03)を用いて、試験体5個を測定し、その平均値を値とした。
The measurement of the chemical composition of the brick was performed according to JIS R 2212, and the components excluding ignition loss were displayed in 100% conversion.
After baking, the brick is visually deformed with a straight scale and a scale. If there is no deformation, ○, if there is a deformation but the amount is small, there is no problem as a product. It was set as three-step evaluation.
The bulk specific gravity was measured according to JIS R 2205.
The specific heat of the brick was measured according to the DSC method described in JIS R 1611.
The heat storage capacity of the brick is calculated by the product of the bulk specific gravity and specific heat of the measurement. In Table 2, the heat storage capacity of the brick of Comparative Example 1 was evaluated as 100, and in Table 3, the heat storage capacity of the brick of Comparative Example 4 was evaluated as 100. A larger index indicates a higher heat storage capacity.
The heat dissipation of the stored heat was evaluated by the measured value of the thermal conductivity of the test brick. It is generally known that the greater the thermal conductivity value, the greater the heat dissipation. The thermal conductivity was measured using five rapid thermal conductivity meters (QTM-03, manufactured by Kyoto Electronics Industry Co., Ltd.), and the average value was taken as the value.

Figure 0006050711
Figure 0006050711

Figure 0006050711
Figure 0006050711

Figure 0006050711
Figure 0006050711

以下、表2及び表3に示す本発明の蓄熱れんがの実施例と比較例について説明する。   Hereinafter, the Example and comparative example of the thermal storage brick of this invention shown in Table 2 and Table 3 are demonstrated.

表2に示す実施例1〜7はかさ比重が3.50以上の焼結鉱を用い、MgO含有量を20質量%以上80質量%以下、Fe含有量を10質量%以上70質量%以下に調整したものである。いずれも熱伝導率が低く熱放散性を抑えることができた。焼成後において実施例7には小さい変形は見られたものの、製品化において問題となるレベルではなく、実施例1〜6においてはいずれも焼成後の変形もなく良好な製品を得ることができた。更に、実施例2〜6はMgO含有量を50質量%以上70質量%以下、Fe含有量を20質量%以上40質量%以下に調整した結果、優れた蓄熱容量が得られた結果となった。 Examples 1 to 7 shown in Table 2 use sintered ore having a bulk specific gravity of 3.50 or more, MgO content of 20% by mass to 80% by mass, and Fe 2 O 3 content of 10% by mass to 70% by mass. % Adjusted to below. In either case, the thermal conductivity was low and the heat dissipation was suppressed. Although small deformation was seen in Example 7 after firing, it was not at a level that would be a problem in commercialization, and in each of Examples 1 to 6, a good product could be obtained without any deformation after firing. . Furthermore, in Examples 2 to 6, the MgO content was adjusted to 50 mass% to 70 mass%, and the Fe 2 O 3 content was adjusted to 20 mass% to 40 mass%, resulting in an excellent heat storage capacity. It became.

これに対して比較例1は、鉄鉱石、焼結鉱いずれも配合しなかった例である。Feを含有する場合に比べ高い熱伝導率を示し熱放散性が高い結果であった。また、比較例2のようにFeの含有量が低すぎる場合においても熱伝導率が高く熱放散性が大きい結果となり、比較例3の結果からはFeを過剰に含有してもそれ以上の蓄熱容量の上昇は確認できない上、焼成後の変形が確認され製品とすることが困難であると判断した。 On the other hand, Comparative Example 1 is an example in which neither iron ore nor sintered ore was blended. Compared to the case of containing Fe 2 O 3 , the result was high heat conductivity and high heat dissipation. Further, even when the content of Fe 2 O 3 is too low as in Comparative Example 2, the result is that the thermal conductivity is high and the heat dissipation is large, and the result of Comparative Example 3 contains excessive Fe 2 O 3. However, no further increase in the heat storage capacity could be confirmed, and deformation after firing was confirmed and it was judged difficult to produce a product.

実施例8はかさ比重が3.50の鉄鉱石をFe源として適用した例であるが、蓄熱容量も高くまた焼成後の変形もなく良好な結果であった。実施例9はかさ比重が3.65以上の焼結鉱を配合し評価した結果であり、優れた充填性(かさ比重)とそれに伴う高い蓄熱容量を達成することができた。実施例10はかさ比重が3.50未満の鉄鉱石を配合し評価した結果である。焼成後の収縮変形が見られたものの軽微であり、また、熱伝導率は低く熱放散性を抑えることができた。 Example 8 is an example in which iron ore having a bulk specific gravity of 3.50 was applied as the Fe 2 O 3 source. However, the heat storage capacity was high and there was no deformation after firing. Example 9 is a result of blending and evaluating sintered ore having a bulk specific gravity of 3.65 or more, and was able to achieve an excellent filling property (bulk specific gravity) and a high heat storage capacity associated therewith. Example 10 is the result of evaluating by blending iron ore having a bulk specific gravity of less than 3.50. Although shrinkage deformation after firing was observed, it was slight, and the heat conductivity was low, and heat dissipation was suppressed.

表3に示す比較例4は、酸化鉄原料(Fe源)として砂鉄を適用した例である。特許文献1に記載があるように砂鉄を40質量%適用しての評価を行った。れんがのかさ比重が低く、それに伴い蓄熱容量に劣る結果となった。これは原料かさ比重が低いことによって、れんが成形時の充填性が低いことが原因と考えられる。また、れんがの焼成後の変形が認められ製品を確保することが困難であると判断した。 Comparative Example 4 shown in Table 3 is an example in which sand iron is applied as an iron oxide raw material (Fe 2 O 3 source). As described in Patent Document 1, evaluation was performed by applying 40% by mass of iron sand. The bulk density of the brick was low, resulting in inferior heat storage capacity. This is thought to be due to the low filling density at the time of brick molding due to the low bulk specific gravity. Moreover, the deformation | transformation after baking of a brick was recognized and it was judged that it was difficult to ensure a product.

Claims (5)

化学成分として、MgOを20質量%以上80質量%以下、Feを10質量%以上70質量%以下含有し、MgOとFeの合算が90質量%以上である蓄熱暖房機用の焼成蓄熱れんが。 As a chemical component, MgO is contained in an amount of 20% by mass to 80% by mass, Fe 2 O 3 is contained in an amount of 10% by mass to 70% by mass, and the total of MgO and Fe 2 O 3 is 90% by mass or more. Baked heat storage bricks. 化学成分として、MgOを50質量%以上70質量%以下、Feを20質量%以上40質量%以下含有し、MgOとFeの合算が90質量%以上である蓄熱暖房機用の焼成蓄熱れんが。 As a chemical component, MgO is contained in an amount of 50% to 70% by mass, Fe 2 O 3 is contained in an amount of 20% to 40% by mass, and the total of MgO and Fe 2 O 3 is 90% by mass or more. Baked heat storage bricks. Fe源として、かさ比重が3.50以上の酸化鉄原料を使用した請求項1又は2に記載の蓄熱暖房機用の焼成蓄熱れんが。 The fired regenerative brick for a regenerative heater according to claim 1 or 2, wherein an iron oxide raw material having a bulk specific gravity of 3.50 or more is used as the Fe 2 O 3 source. Fe源として、かさ比重が3.65以上の酸化鉄原料を使用した請求項1又は2に記載の蓄熱暖房機用の焼成蓄熱れんが。 The calcined heat storage brick for a heat storage heater according to claim 1 or 2, wherein an iron oxide raw material having a bulk specific gravity of 3.65 or more is used as the Fe 2 O 3 source. 前記酸化鉄原料として、鉄鉱石又は鉄鉱石を焼結して得られた焼結鉱を使用した請求項3又は4に記載の蓄熱暖房機用の焼成蓄熱れんが。   The fired heat storage brick for a heat storage heater according to claim 3 or 4, wherein iron ore or sintered ore obtained by sintering iron ore is used as the iron oxide raw material.
JP2013062393A 2013-03-25 2013-03-25 Baking regenerative brick for regenerator heater Expired - Fee Related JP6050711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013062393A JP6050711B2 (en) 2013-03-25 2013-03-25 Baking regenerative brick for regenerator heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013062393A JP6050711B2 (en) 2013-03-25 2013-03-25 Baking regenerative brick for regenerator heater

Publications (2)

Publication Number Publication Date
JP2014185067A JP2014185067A (en) 2014-10-02
JP6050711B2 true JP6050711B2 (en) 2016-12-21

Family

ID=51832989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013062393A Expired - Fee Related JP6050711B2 (en) 2013-03-25 2013-03-25 Baking regenerative brick for regenerator heater

Country Status (1)

Country Link
JP (1) JP6050711B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109020501A (en) * 2018-08-09 2018-12-18 河南思特瑞节能科技有限公司 A kind of preparation method of high-performance solid heat storage brick
CN115321947A (en) * 2022-08-11 2022-11-11 北京华厚能源科技有限公司 Iron-based heat storage brick and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU83100A1 (en) * 1981-01-27 1982-09-10 Arbed STORAGE ELEMENTS SUITABLE FOR STORING THERMAL ENERGY AND METHOD FOR THE PRODUCTION THEREOF
JPH04144953A (en) * 1990-10-01 1992-05-19 Seibu Yogyo Kk Heat accumulating material of ceramics
JPH10114569A (en) * 1996-10-08 1998-05-06 Mutsuko Kikuchi Brick
DE10117029B4 (en) * 2001-04-05 2006-04-13 Refratechnik Holding Gmbh Refractory body or mass material, refractory product thereof, and method of making a refractory product
JP4956044B2 (en) * 2006-04-27 2012-06-20 黒崎播磨株式会社 Magnesia brick without lime as a mineral phase and its production method

Also Published As

Publication number Publication date
JP2014185067A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP5241868B2 (en) sheath
CN102030545A (en) MgAl2O4-CaAl12O19 composite-phase high-temperature resistant material and preparation method thereof
CN103708841A (en) High strength and high thermal shock alumina bubble brick and preparation method thereof
CN102701759B (en) Pleonaste brick
JP6499464B2 (en) Insulated refractory
JP2012224487A (en) Kiln tool for manufacturing positive electrode active material of lithium secondary battery, and method for manufacturing the same
CN104876597A (en) Nano-matrix-combined high-performance fused magnesium calcium brick and manufacturing method thereof
JP5943032B2 (en) Manufacturing method of lightweight heat-insulating alumina / magnesia refractory
CN104072175A (en) Lint clay brick for cement kiln calciner and preparation method thereof
JP6050711B2 (en) Baking regenerative brick for regenerator heater
CN101306951A (en) Non-sintered anti-hydrating konite carbon brick and preparation process
CN101306945A (en) Blue alumina ceramic and method for preparing same
CN103508740A (en) Ramming mass for repairing gap bridge magnesia-alumina spinel bricks of sleeve lime kiln
US8815759B2 (en) Cement-free high strength unshaped refractory
CN106588055A (en) Heat-conduction anti-abrasion fireproof material
CN104030707A (en) High-abrasion high-alumina brick with heat shock resistance and manufacturing method thereof
CN103771878B (en) A kind of method for making of andalusite brick
JP6624133B2 (en) Manufacturing method of magnesia-spinel fired brick
CN105859297A (en) Silicon carbide composite refractory material and preparation method thereof
CN101891408A (en) Method for preparing magnesia-alumina spinel-containing aluminate cement
CN103342567B (en) Forsterite carbon brick and production method thereof
CN105917186B (en) The manufacture method of the lining structure body of molten metal container and the lining structure body of molten metal container
JP2003238250A (en) Yttria refractory
CN106518114B (en) The manufacture craft of ultralow-porosity, low thermal expansion fireclay refractory
CN108821756A (en) A kind of insulating refractories

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161125

R150 Certificate of patent or registration of utility model

Ref document number: 6050711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees