JP6050141B2 - Hardfacing welding apparatus and method - Google Patents

Hardfacing welding apparatus and method Download PDF

Info

Publication number
JP6050141B2
JP6050141B2 JP2013033443A JP2013033443A JP6050141B2 JP 6050141 B2 JP6050141 B2 JP 6050141B2 JP 2013033443 A JP2013033443 A JP 2013033443A JP 2013033443 A JP2013033443 A JP 2013033443A JP 6050141 B2 JP6050141 B2 JP 6050141B2
Authority
JP
Japan
Prior art keywords
base material
heating
melting
hardfacing
build
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013033443A
Other languages
Japanese (ja)
Other versions
JP2014161858A (en
Inventor
大輔 小濱
大輔 小濱
小野 昇造
昇造 小野
陵介 木村
陵介 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2013033443A priority Critical patent/JP6050141B2/en
Publication of JP2014161858A publication Critical patent/JP2014161858A/en
Application granted granted Critical
Publication of JP6050141B2 publication Critical patent/JP6050141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、硬化肉盛溶接装置及び硬化肉盛溶接方法に関するものである。   The present invention relates to a cured overlay welding apparatus and a cured overlay welding method.

硬化肉盛溶接においては、使われる硬化肉盛原料は一般に延性が低いので、その溶接工程において前記硬化肉盛原料が母材の表面に溶接される際に、この溶接部分の温度変化が急速では熱応力によって割れが発生し易くなる。そのため、硬化肉盛原料を母材表面で溶融する前に該母材を予め加熱する、即ち予熱することが行われており、更に硬化肉盛原料を溶融した後の固化段階においても母材の急激な温度低下を防止するために当該母材を加熱する、即ち後熱することが行われている。   In the hardfacing welding, the hardfacing raw material used generally has low ductility. Therefore, when the hardfacing raw material is welded to the surface of the base material in the welding process, the temperature change of the welded portion is not rapid. Cracks are likely to occur due to thermal stress. For this reason, the base material is preheated, that is, preheated before the hardfacing raw material is melted on the surface of the base material, and further in the solidification stage after the hardened raw material is melted. In order to prevent a rapid temperature drop, the base material is heated, that is, post-heated.

従来の予熱方法は、酸素アセチレンバーナーによる加熱が一般的である。この予熱方法は所定温度に達するまで時間が多くかかる問題がある。
硬化肉盛原料を母材表面で溶融する肉盛溶接法として、被覆アーク溶接法、TIG法、PTA法等がある。これらの溶接法はいずれも入熱量が多いため、母材も多量に熱を吸収し、硬化肉盛原料を溶融した後の前記固化段階において、母材が急激に温度低下することは少ない。そのため後熱工程も通常は不要であると言われている。
しかし、硬化肉盛原料が超硬質の場合、硬化肉盛原料を溶融した後の固化段階において、母材の急激な温度低下に伴い発生する熱応力割れを防止するために後熱処理が必要になる。この後熱は酸素アセチレンバーナー、パネルヒーター、炉等による加熱の後、除冷するのが一般的である。
A conventional preheating method is generally heating with an oxyacetylene burner. This preheating method has a problem that it takes a long time to reach a predetermined temperature.
As the overlay welding method for melting the cured overlay material on the surface of the base material, there are a covering arc welding method, a TIG method, a PTA method and the like. Since all of these welding methods have a large amount of heat input, the base material also absorbs a large amount of heat, and the base material is unlikely to drop in temperature rapidly in the solidification stage after melting the hardfacing raw material. Therefore, it is said that a post-heating process is usually unnecessary.
However, if the hardfacing material is ultra-hard, post-heat treatment is required to prevent thermal stress cracking that occurs due to a rapid temperature drop of the base material in the solidification stage after melting the hardfacing material. . After this, the heat is generally removed after heating with an oxygen acetylene burner, a panel heater, a furnace or the like.

肉盛溶接法として、他にレーザー溶接がある。レーザー溶接は低入熱で且つ加熱領域を絞ることが可能であるので、硬化肉盛原料部分に入熱を集中することができ、以て母材の溶融を抑制して当該硬化肉盛原料の希釈化を低くできる利点がある。
しかし、レーザー溶接は、上記の通り母材への入熱が少ないので、母材の温度が周囲の環境の影響を大きく受けて急激に変化しやすい傾向がある。そのため、肉盛溶接法としてレーザー溶接を用いる場合は、前記予熱処理は当然として、後熱処理も行う必要があると一般的に認識されている。
Another method of overlay welding is laser welding. Since laser welding has a low heat input and the heating region can be narrowed, the heat input can be concentrated on the hardfacing raw material portion, thereby suppressing the melting of the base material and There is an advantage that dilution can be reduced.
However, in laser welding, since the heat input to the base material is small as described above, the temperature of the base material tends to change rapidly due to the influence of the surrounding environment. For this reason, when laser welding is used as the overlay welding method, it is generally recognized that the pre-heat treatment naturally requires post-heat treatment.

レーザー光を用いるレーザー溶接の従来文献として、以下の特許文献1が挙げられる。
特許文献1にはワークを溶融することなく、ろう材のみ溶融させるレーザろう付装置及び方法が開示されている。ろう付けに先立って予熱処理を行う記載はあるが、後熱処理については記載がない。これは、ろう付はもともと後熱する必要がないからである。この点で、このレーザーろう付は、硬化肉盛溶接とは全く異なる技術である。
The following patent document 1 is given as a conventional document of laser welding using laser light.
Patent Document 1 discloses a laser brazing apparatus and method for melting only a brazing material without melting a workpiece. There is a description that pre-heat treatment is performed prior to brazing, but there is no description about post-heat treatment. This is because brazing does not need to be heated afterwards. In this respect, this laser brazing is a completely different technique from hard welding.

特開2005−279686号公報JP 2005-279686 A

硬化肉盛溶接において、後熱処理を行う場合、従来は予熱処理と同様に酸素アセチレンバーナー、パネルヒーター、炉等による加熱が行われていた。このような加熱は、上記の通り所定温度に達するまでに時間が多くかかる問題の他に、バーナーによる加熱作業自体が大掛かりであると共に、必要な熱量を得るための燃料使用量の調整を細かく行うことは容易ではない。そのため、過剰加熱になりやすく、また無駄に消費する燃料が多いという問題があった。
肉盛溶接法としてレーザー溶接を用いる場合は、低入熱で且つ加熱領域を絞ることが可能であるので、硬化肉盛原料部分に入熱を集中することができるというメリットがある半面、後熱処理の必要性が高まる。この後熱処理を酸素アセチレンバーナーによる加熱で行うと、やはり過剰加熱になりやすく、また無駄に消費する燃料が多いという問題があった。
In the case of hardening overlay welding, when post-heat treatment is performed, conventionally, heating by an oxygen acetylene burner, a panel heater, a furnace, or the like has been performed in the same manner as the pre-heat treatment. In addition to the problem that it takes a long time to reach the predetermined temperature as described above, the heating work by the burner is large and the amount of fuel used for obtaining the necessary amount of heat is finely adjusted. It is not easy. For this reason, there is a problem that overheating tends to occur and a large amount of fuel is wasted.
When laser welding is used as the overlay welding method, it is possible to narrow the heating area with low heat input. The need for If the heat treatment is performed by heating with an oxyacetylene burner after this, there is a problem that excessive heating tends to occur and a lot of fuel is wasted.

本発明の目的は、硬化肉盛溶接において行われる予熱処理と後熱処理を、簡単に行うことができ、消費エネルギーを削減できる硬化肉盛溶接装置及び方法を提供することにある。   An object of the present invention is to provide a hardfacing welding apparatus and method that can easily perform pre-heat treatment and post-heat treatment performed in hardfacing welding and reduce energy consumption.

上記目的を達成するため、本発明の第1の態様に係る硬化肉盛溶接装置は、母材の表面に硬化肉盛原料を供給する肉盛原料供給部と、前記母材表面の前記硬化肉盛原料を溶融する溶融加熱部と、前記溶融加熱部による前記溶融に先行する前記母材に対する誘導加熱による予熱と、前記溶融後の前記母材に対する誘導加熱による後熱の少なくとも一方を実行可能な誘導加熱部とを備え、前記誘導加熱部は巻き線が複数回巻かれた1つの誘導コイルであり、前記母材は、前記誘導コイルに囲われて内側に位置し、軸心回りに回転しながら前記硬化肉盛原料が溶融される構成であり、前記溶融加熱部はレーザー光照射装置であり、前記レーザー光は前記誘導コイルの隣り合う巻き線の間から前記硬化肉盛原料に照射される、ことを特徴とする。 In order to achieve the above object, a hardfacing welding apparatus according to the first aspect of the present invention includes a buildup raw material supply unit that supplies a hardfacing raw material to the surface of a base material, and the hardened meat on the surface of the base material. It is possible to execute at least one of a melting heating unit for melting the raw material, preheating by induction heating for the base material preceding the melting by the melting heating unit, and post-heating by induction heating for the base material after melting An induction heating unit , wherein the induction heating unit is a single induction coil wound with a plurality of windings, and the base material is surrounded by the induction coil and positioned inside, and rotates around an axis. However, the hardened material is melted, the melting and heating unit is a laser beam irradiation device, and the laser beam is irradiated to the hardened material from between adjacent windings of the induction coil. , characterized in that.

高周波誘導加熱等の誘導加熱は、誘導コイルによる電磁誘導によって金属製部材に渦電流が流れ、この渦電流と該金属性部材自体の電気抵抗によってジュール熱が発生することで自ら発熱する。すなわち、当該金属性部材自体が前記渦電流によって自己発熱する。
従って、渦電流が流れる部分だけが自己発熱するので直接加熱となり、また局部加熱となり、バーナーやヒーターによる従来の間接加熱に比べて加熱効率を容易に向上することができる。ここで、加熱周波数を高くすることで、表皮効果の現象によって、金属性部材の表面に熱を一層集中して発生させることができる。また誘導加熱では、ヒーターのような発熱源は存在しないので、周囲が高温にならずに済む。更に、直接加熱であることから急速加熱が可能である。
Induction heating such as high-frequency induction heating causes eddy current to flow through a metal member by electromagnetic induction by an induction coil, and generates heat by generating Joule heat due to the eddy current and electrical resistance of the metallic member itself. That is, the metallic member itself generates heat by the eddy current.
Accordingly, since only the portion where the eddy current flows is self-heated, it is directly heated and locally heated, and the heating efficiency can be easily improved as compared with the conventional indirect heating using a burner or a heater. Here, by increasing the heating frequency, heat can be generated more concentrated on the surface of the metallic member due to the phenomenon of the skin effect. In induction heating, there is no heat source such as a heater, so the surroundings do not have to be hot. Furthermore, since it is direct heating, rapid heating is possible.

本態様によれば、硬化肉盛溶接の予熱処理も後熱処理も誘導加熱部による前記誘導加熱によって実行可能であるので、前記予熱処理と後熱処理を金属製の母材自体の自己発熱による直接加熱によって簡単に行うことができる。また、誘導加熱はバーナーやヒーターによる従来の間接加熱に比べて加熱効率が高いので、硬化肉盛溶接を行う際の消費エネルギーを削減することができる。   According to this aspect, since pre-heat treatment and post-heat treatment of hardfacing welding can be performed by the induction heating by the induction heating unit, the pre-heat treatment and post-heat treatment are directly heated by self-heating of the metal base material itself. Can be done easily. Moreover, since induction heating has a higher heating efficiency than conventional indirect heating by a burner or a heater, it is possible to reduce energy consumption when performing hardfacing welding.

また、本態様によれば、前記母材は、前記誘導コイルに囲われて内側に位置し、更に軸心回りに回転しながら前記硬化肉盛原料が溶融される構成である。従って、誘導コイルの電磁誘導による渦電流が母材の全表面にほぼ均一に流れ、該母材表面の硬化肉盛溶接部分を全体に亘ってほぼ均一に且つ一様な温度に加熱することができる。即ち、母材表面の硬化肉盛溶接部分に対して、予熱の際も後熱の際も加熱制御を容易に行うことができる。
尚、本態様とは別の態様になるが、母材が誘導コイルに囲まれて内側に位置するのではなく、電磁調理器のように母材に沿って誘導コイルユニットが位置する配置でも、母材表面を一様に加熱することは可能である。
Moreover, according to this aspect, the said base material is the structure enclosed by the said induction coil, is located inside, and also the said hardening build-up raw material is fuse | melted, rotating around an axial center. Therefore, the eddy current due to electromagnetic induction of the induction coil flows almost uniformly over the entire surface of the base material, and the hardfacing welded portion of the base material surface can be heated to a substantially uniform and uniform temperature throughout. it can. That is, it is possible to easily control the heating of the hardfacing welded portion on the surface of the base material during preheating and afterheating.
In addition, although it is an aspect different from this aspect, the base material is not surrounded by the induction coil and positioned inside, but the induction coil unit is positioned along the base material like an electromagnetic cooker, It is possible to heat the surface of the base material uniformly.

また、本態様によれば、溶融加熱部はレーザー光照射装置であるので、レーザー溶接のメリットである、低入熱で且つ加熱領域を絞ることが可能であることにより硬化肉盛原料部分に入熱を集中することができ、以て母材の溶融を抑制して当該硬化肉盛原料の希釈化を低くできるメリットを活かすことができる。レーザー溶接で硬化肉盛溶接を行う場合は、特に前記予熱処理と後熱処理の必要性が高まるが、本発明によれば誘導加熱によって金属製の母材自体の自己発熱によって簡単に行うことができる。
尚、本態様とは別の態様になるが、溶融加熱部はレーザー光照射装置に限定されない。他の溶融加熱部としては、周知の被覆アーク溶接法、TIG法、PTA法などが挙げられる。
In addition, according to this aspect, since the melting and heating part is a laser beam irradiation device, it is a merit of laser welding. Heat can be concentrated, so that the advantage of suppressing the melting of the base material and reducing the dilution of the cured build-up raw material can be utilized. When performing hardfacing welding by laser welding, the need for the pre-heat treatment and post-heat treatment is particularly increased, but according to the present invention, it can be easily performed by self-heating of the metal base material itself by induction heating. .
In addition, although it becomes an aspect different from this aspect, a fusion | melting heating part is not limited to a laser beam irradiation apparatus. Examples of other melting and heating parts include a well-known covered arc welding method, TIG method, and PTA method.

また、本態様によれば、前記誘導加熱部は巻き線が複数回巻かれた1つの誘導コイルであり、レーザー光は前記誘導コイルの隣り合う巻き線の間から前記硬化肉盛原料に照射されるので、レーザー溶接と誘導加熱とを構造簡単且つ効果的に合体させることができる。
硬化肉盛溶接では、硬化肉盛原料は通常粉末状態で母材表面の硬化肉盛溶接部分に供給される。この粉末原料の供給も前記誘導コイルの隣り合う巻き線の間から行うことが可能である。
Further , according to this aspect, the induction heating unit is one induction coil in which a winding is wound a plurality of times, and laser light is applied to the cured cladding material from between adjacent windings of the induction coil. Therefore, the laser welding and the induction heating can be combined easily and effectively with the structure.
In the hardening build-up welding, the hardening build-up raw material is usually supplied in a powder state to the hardening build-up welding portion on the surface of the base material. The powder raw material can also be supplied from between adjacent windings of the induction coil.

本発明の第の態様に係る硬化肉盛溶接装置は、前記第の態様において、前記母材は、前記誘導加熱部、前記肉盛原料供給部及び前記溶融加熱部に対して軸心に沿って相対移動する構成であることを特徴とする。 The hardfacing welding apparatus according to a second aspect of the present invention is the first aspect, wherein the base material is axially centered with respect to the induction heating unit, the overlaying material supply unit, and the melting heating unit. It is the structure which moves relatively along.

硬化肉盛溶接は、母材の軸心方向に沿ってある範囲に亘って設けられるのが通常である。本態様によれば、前記母材が前記誘導加熱部、前記肉盛原料供給部及び前記溶融加熱部に対して軸心に沿って相対移動する構成であるので、母材の軸心方向に沿う前記範囲に亘って容易に硬化肉盛溶接を行うことができる。   The hardfacing welding is usually provided over a certain range along the axial direction of the base material. According to this aspect, since the base material is configured to move relative to the induction heating unit, the build-up raw material supply unit, and the melt heating unit along the axial center, the base material follows the axial direction of the base material. Hardened welding can be easily performed over the above range.

本発明の第の態様に係る硬化肉盛溶接装置は、前記第1又は第2の態様において、前記母材の表面温度を非接触で計測する非接触温度計測部を備えていることを特徴とする。
ここで、「母材の表面温度」における温度が計測される「母材の表面」とは、硬化肉盛溶接部分の近傍における母材表面が好ましいが、誘導加熱によって温度がほぼ一様に上昇する範囲内であれば前記近傍よりも離れていてもよい。或いは、硬化肉盛溶接がされた部分の表面、即ち母材の表面に設けられた硬化肉盛溶接層の表面を計測してその計測値を利用することも可能である。
The hardfacing welding apparatus according to the third aspect of the present invention is characterized in that, in the first or second aspect, a non-contact temperature measuring unit that measures the surface temperature of the base material in a non-contact manner is provided. And
Here, the “base metal surface” where the temperature at the “base metal surface temperature” is measured is preferably the base metal surface in the vicinity of the hardfacing weld, but the temperature rises almost uniformly by induction heating. As long as it is within the range, it may be separated from the vicinity. Alternatively, it is also possible to measure the surface of the portion subjected to the hardfacing welding, that is, the surface of the hardfacing welded layer provided on the surface of the base material and use the measured value.

本態様によれば、非接触温度計測部を用いるので、母材の温度を誘導加熱による電磁誘導の影響を受けることなく、計測することができる。
また、母材の温度の計測値によって前記誘導加熱部の出力を調整し、以って母材表面の温度をねらいとする温度範囲に維持することができる。
また、母材の温度の計測値によって溶融加熱部の出力を適切に調整することも可能となり、以って適切な溶融加熱を行うことができる。
According to this aspect, since the non-contact temperature measurement unit is used, the temperature of the base material can be measured without being affected by electromagnetic induction due to induction heating.
In addition, the output of the induction heating unit can be adjusted according to the measured value of the temperature of the base material, so that it can be maintained in a temperature range aiming at the temperature of the surface of the base material.
In addition, it is possible to appropriately adjust the output of the melting and heating unit according to the measured value of the temperature of the base material, and thus it is possible to perform appropriate melting and heating.

本発明の第の態様に係る硬化肉盛溶接方法は、母材の少なくとも表面を誘導加熱部による誘導加熱によって加熱する予熱工程と、硬化肉盛原料を前記母材の表面に供給する肉盛原料供給工程と、前記予熱工程を経た母材表面の前記硬化肉盛原料を溶融加熱部によって溶融する溶融加熱工程と、前記溶融加熱工程後の前記溶融された部分を誘導加熱部による誘導加熱によって加熱する後熱工程とを備え、前記誘導加熱部は巻き線が複数回巻かれた1つの誘導コイルであり、前記母材は、前記誘導コイルに囲われて内側に位置し、軸心回りに回転しながら前記硬化肉盛原料が溶融され、前記溶融加熱部はレーザー光照射装置であり、前記レーザー光は前記誘導コイルの隣り合う巻き線の間から前記硬化肉盛原料に照射される、ことを特徴とする。 In the hardfacing welding method according to the fourth aspect of the present invention, the preheating step of heating at least the surface of the base material by induction heating by the induction heating unit, and the surfacing for supplying the hardfacing raw material to the surface of the base material. A raw material supplying step, a melting and heating step for melting the cured build-up raw material on the surface of the base material that has undergone the preheating step by a melting and heating unit, and the molten portion after the melting and heating step by induction heating by an induction heating unit The induction heating unit is a single induction coil in which a winding is wound a plurality of times, and the base material is surrounded by the induction coil and positioned on the inner side, around the axis The cured build-up raw material is melted while rotating, the melting and heating unit is a laser beam irradiation device, and the laser beam is irradiated to the cured build-up material from between adjacent windings of the induction coil, you said

本態様によれば、硬化肉盛溶接の予熱処理も後熱処理も誘導加熱部による前記誘導加熱によって行うので、前記予熱処理と後熱処理を金属製の母材自体の自己発熱による直接加熱によって簡単に行うことができる。また、誘導加熱はバーナーやヒーターによる従来の間接加熱に比べて加熱効率が高いので、硬化肉盛溶接を行う際の消費エネルギーを削減することができる。   According to this aspect, since the pre-heat treatment and post-heat treatment of hardfacing welding are performed by the induction heating by the induction heating unit, the pre-heat treatment and post-heat treatment can be easily performed by direct heating by self-heating of the metal base material itself. It can be carried out. Moreover, since induction heating has a higher heating efficiency than conventional indirect heating by a burner or a heater, it is possible to reduce energy consumption when performing hardfacing welding.

また、本態様によれば、前記母材は、前記誘導コイルに囲われて内側に位置し、更に軸心回りに回転しながら前記硬化肉盛原料が溶融される。従って、誘導コイルの電磁誘導による渦電流が母材の全表面にほぼ均一に流れ、該母材表面の硬化肉盛溶接部分を全体に亘ってほぼ均一に且つ一様な温度に加熱することができる。即ち、母材表面の硬化肉盛溶接部分に対して、予熱の際も後熱の際も加熱制御を容易に行うことができる。  Further, according to this aspect, the base material is located on the inner side surrounded by the induction coil, and the hardfacing raw material is melted while rotating around the axis. Therefore, the eddy current due to electromagnetic induction of the induction coil flows almost uniformly over the entire surface of the base material, and the hardfacing welded portion of the base material surface can be heated to a substantially uniform and uniform temperature throughout. it can. That is, it is possible to easily control the heating of the hardfacing welded portion on the surface of the base material during preheating and afterheating.

また、本態様によれば、溶融加熱部はレーザー光照射装置であるので、レーザー溶接のメリットである、低入熱で且つ加熱領域を絞ることが可能であることにより硬化肉盛原料部分に入熱を集中することができ、以て母材の溶融を抑制して当該硬化肉盛原料の希釈化を低くできるメリットを活かすことができる。レーザー溶接で硬化肉盛溶接を行う場合は、特に前記予熱処理と後熱処理の必要性が高まるが、本発明によれば誘導加熱によって金属製の母材自体の自己発熱によって簡単に行うことができる。
また、本態様によれば、前記誘導加熱部は巻き線が複数回巻かれた1つの誘導コイルであり、レーザー光は前記誘導コイルの隣り合う巻き線の間から前記硬化肉盛原料に照射されるので、レーザー溶接と誘導加熱とを構造簡単且つ効果的に合体させることができる。
硬化肉盛溶接では、硬化肉盛原料は通常粉末状態で母材表面の硬化肉盛溶接部分に供給される。この粉末原料の供給も前記誘導コイルの隣り合う巻き線の間から行うことが可能である。
In addition, according to this aspect, since the melting and heating part is a laser beam irradiation device, it is a merit of laser welding. Heat can be concentrated, so that the advantage of suppressing the melting of the base material and reducing the dilution of the cured build-up raw material can be utilized. When performing hardfacing welding by laser welding, the need for the pre-heat treatment and post-heat treatment is particularly increased, but according to the present invention, it can be easily performed by self-heating of the metal base material itself by induction heating. .
Further, according to this aspect, the induction heating unit is one induction coil in which a winding is wound a plurality of times, and laser light is applied to the cured cladding material from between adjacent windings of the induction coil. Therefore, the laser welding and the induction heating can be combined easily and effectively with the structure.
In the hardening build-up welding, the hardening build-up raw material is usually supplied in a powder state to the hardening build-up welding portion on the surface of the base material. The powder raw material can also be supplied from between adjacent windings of the induction coil.

本発明の第の態様に係る硬化肉盛溶接方法は、前記第の態様において、前記予熱工程の際と後熱工程の際の少なくとも一方において前記母材の表面温度をそれぞれ非接触で計測し、計測値が設定範囲外である場合に前記誘導加熱部の出力を調整することを特徴とする。
本態様によれば、母材の温度の計測値によって前記誘導加熱部の出力を増減調整することで母材表面の温度を設定温度範囲内に維持することができる。
The hardfacing welding method according to the fifth aspect of the present invention is the fourth aspect, wherein the surface temperature of the base material is measured in a non-contact manner in at least one of the preheating step and the postheating step. And when the measured value is outside the set range, the output of the induction heating unit is adjusted.
According to this aspect, the temperature of the surface of the base material can be maintained within the set temperature range by adjusting the output of the induction heating unit according to the measured value of the temperature of the base material.

本発明の第の態様に係る硬化肉盛溶接方法は、前記第の態様のいずれか一つの態様において、前記予熱工程後の母材の表面温度を非接触で計測し、計測値が設定範囲外である場合に前記溶融加熱部の出力を調整することを特徴とする。
本態様によれば、母材の温度の計測値によって前記溶融加熱部の出力を増減調整することで適切な溶融加熱を行うことができる。
The build-up welding method according to the sixth aspect of the present invention is the method according to any one of the fifth aspects, wherein the surface temperature of the base material after the preheating step is measured in a non-contact manner, and the measurement value is set. When it is out of the range, the output of the melting and heating unit is adjusted.
According to this aspect, appropriate melting and heating can be performed by adjusting the output of the melting and heating unit according to the measured value of the temperature of the base material.

本発明に係る硬化肉盛溶接装置の実施例1を示す概略構成図である。It is a schematic block diagram which shows Example 1 of the hardening overlay welding apparatus which concerns on this invention. 母材の硬化肉盛溶接された部分の断面図である。It is sectional drawing of the part by which the overlay welding of the base material was carried out. 同実施例1の構成を説明するブロック図である。It is a block diagram explaining the structure of the Example 1. FIG. 同実施例1の制御を説明するフローチャートである。It is a flowchart explaining control of the Example 1. FIG.

以下、本発明に係る硬化肉盛溶接装置の実施例1を図面に基づいて詳細に説明する。
図1に示したように、本実施例1の硬化肉盛溶接装置は、断面円形の長尺な金属製の母材1の表面2に硬化肉盛原料3を供給する肉盛原料供給部4と、前記母材表面2の前記硬化肉盛原料3を溶融する溶融加熱部5と、前記溶融加熱部5による前記溶融に先行する前記母材1に対する誘導加熱による予熱と、前記溶融後の前記母材1に対する誘導加熱による後熱の少なくとも一方を実行可能な誘導加熱部6とを備える。
Hereinafter, Example 1 of the hardfacing welding apparatus according to the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the hardfacing welding apparatus of the first embodiment is a surfacing raw material supply unit 4 that supplies a hardfacing raw material 3 to the surface 2 of a long metal base material 1 having a circular cross section. A melting heating part 5 for melting the cured build-up raw material 3 on the surface 2 of the base material, preheating by induction heating for the base material 1 preceding the melting by the melting heating part 5, and the melting after the melting And an induction heating unit 6 capable of performing at least one of post-heating by induction heating on the base material 1.

ここで、母材1の素材は、例えば炭素鋼、低合金鋼、ステンレス鋼等である。母材1の太さ(直径)は50mm〜80mmである。母材1の素材、太さ(直径)及び断面形状は、上記のものに限定されないことは勿論である。
また、硬化肉盛原料は、例えばステライト等のコバルト合金や、コルモノイ等のニッケル合金である。硬化肉盛溶接では通常粉状の硬化肉盛原料が用いられるが、粉状のものに限定されず、棒状等の他の形状でもよい。
Here, the raw material of the base material 1 is carbon steel, low alloy steel, stainless steel, etc., for example. The thickness (diameter) of the base material 1 is 50 mm to 80 mm. Of course, the material, thickness (diameter), and cross-sectional shape of the base material 1 are not limited to those described above.
The hardfacing raw material is, for example, a cobalt alloy such as stellite or a nickel alloy such as colmonoy. In the hardfacing welding, a powdered hardfacing raw material is usually used, but the raw material is not limited to a powdery one, and may be other shapes such as a rod.

[誘導加熱部]
先ず誘導加熱部6について説明する。
高周波誘導加熱等の誘導加熱は、誘導コイル7による電磁誘導によって金属製の母材1に渦電流が流れ、この渦電流と該母材1自体の電気抵抗によってジュール熱が発生することで自ら発熱する。すなわち、当該母材1自体が前記渦電流によって自己発熱する。
従って、誘導加熱は渦電流が流れる部分だけが自己発熱するので直接加熱となり、また局部加熱となり、バーナーやヒーターによる従来の間接加熱に比べて加熱効率を容易に向上することができる。誘導加熱の際に加熱周波数を高くすることで、表皮効果の現象によって、母材1の表面に熱を一層集中して発生させることができる。また誘導加熱では、ヒーターのような発熱源は存在しないので、母材1の周囲が高温にならずに済み、一層温度管理が容易である上に、肉盛原料供給部4の加熱損傷を抑制できる。更に、直接加熱であることから急速加熱が可能である。
[Induction heating section]
First, the induction heating unit 6 will be described.
Induction heating such as high-frequency induction heating causes eddy currents to flow through the metal base material 1 due to electromagnetic induction by the induction coil 7, and Joule heat is generated by the eddy current and the electrical resistance of the base material 1 itself. To do. That is, the base material 1 itself self-heats due to the eddy current.
Therefore, inductive heating is directly heated because only the portion where the eddy current flows is self-heated, and is also locally heated, so that the heating efficiency can be easily improved as compared with conventional indirect heating using a burner or a heater. By increasing the heating frequency during induction heating, heat can be generated more concentrated on the surface of the base material 1 due to the phenomenon of the skin effect. In addition, since there is no heat source such as a heater in induction heating, the temperature around the base material 1 does not have to be high, and the temperature control is further facilitated, and heating damage to the build-up raw material supply unit 4 is suppressed. it can. Furthermore, since it is direct heating, rapid heating is possible.

本実施例1では、誘導加熱部6は上記したように誘導コイル7である。そして、図1に示したように、母材1は、誘導コイル7に囲われて内側に位置し、軸心回り8に回転しながら該母材1の表面2に供給された前記硬化肉盛原料3が溶融加熱部5からの熱によって溶融される構成である。図2に示したように、この回転しつつの溶融によって一様な厚さの硬化肉盛溶接層9が得られる。この硬化肉盛溶接層9は、通常は最終的に研磨仕上げが行われる。   In the first embodiment, the induction heating unit 6 is the induction coil 7 as described above. As shown in FIG. 1, the base material 1 is surrounded by the induction coil 7, is located on the inner side, and the hardfacing supplied to the surface 2 of the base material 1 while rotating around the axis 8. In this configuration, the raw material 3 is melted by the heat from the melting and heating unit 5. As shown in FIG. 2, the cured overlay weld layer 9 having a uniform thickness is obtained by this melting while rotating. The hardfacing welded layer 9 is usually finally polished.

上記構成の誘導コイル7によって、その電磁誘導による渦電流が母材1の全表面にほぼ均一に流れ、該母材表面2の硬化肉盛溶接部分14を全体に亘ってほぼ均一に且つ一様な温度に自己発熱によって加熱することができる。誘導コイルに供給する電流を変えることで加熱温度を容易にコントロールすることができる。即ち、母材表面2の硬化肉盛溶接部分14に対して、予熱の際も後熱の際も加熱制御を容易に行うことができる。また、予熱と後熱を一連で行うことができる。   Due to the induction coil 7 having the above-described configuration, eddy current due to the electromagnetic induction flows almost uniformly on the entire surface of the base material 1, and the hardfacing welded portion 14 of the base material surface 2 is substantially uniformly and uniformly over the entire surface. It can be heated to any temperature by self-heating. The heating temperature can be easily controlled by changing the current supplied to the induction coil. That is, it is possible to easily control the heating of the hardfacing welded portion 14 of the base material surface 2 during preheating and afterheating. Moreover, preheating and afterheating can be performed in series.

[溶融加熱部]
次に、前記溶融加熱部5は、本実施例ではレーザー光照射装置10である。該レーザー光照射装置10は、集光レンズ11を備え、該集光レンズ11を通過したレーザー光12が集光されて母材1の表面2の硬化肉盛原料3が供給された部分に照射される。そして、母材1が回転することで、全周に亘って硬化肉盛溶接層9を設けることができる。
更に、後述するように、母材1がレーザー光照射装置10等に対して軸心に沿う方向13に相対移動することによって、該母材1の軸心方向に沿ってある範囲(硬化肉盛溶接部分14)に硬化肉盛溶接層9を設けることができる。
[Melting and heating section]
Next, the melting and heating unit 5 is a laser beam irradiation apparatus 10 in this embodiment. The laser beam irradiation apparatus 10 includes a condensing lens 11 and irradiates a portion of the surface 2 of the base material 1 to which the hardfacing raw material 3 is supplied by condensing the laser light 12 that has passed through the condensing lens 11. Is done. And the hardening build-up welding layer 9 can be provided over the perimeter because the base material 1 rotates.
Further, as will be described later, the base material 1 moves relative to the laser light irradiation device 10 and the like in the direction 13 along the axis, thereby causing a certain range along the axis direction of the base material 1 (hardened overlay). A hardened weld layer 9 can be provided on the welded portion 14).

溶融加熱部5をレーザー光照射装置10で構成すると、レーザー溶接のメリットである、低入熱で且つ加熱領域を絞ることが可能であることにより硬化肉盛原料部分14に入熱を集中することができ、以て母材1の溶融を抑制して当該硬化肉盛原料3の希釈化を低くできるメリットを活かすことができる。レーザー溶接で硬化肉盛溶接を行う場合は入熱量が少ないので、特に前記予熱処理と後熱処理の必要性が高まるが、本構成によれば誘導加熱によって当該予熱処理と後熱処理のいずれも母材1自体の自己発熱によって簡単に行うことができる。   Constructing the melt heating part 5 with the laser light irradiation device 10 concentrates the heat input on the cured build-up raw material part 14 by being able to narrow the heating region with low heat input, which is a merit of laser welding. Therefore, it is possible to take advantage of the advantage that the melting of the base material 1 can be suppressed and the dilution of the cured build-up raw material 3 can be reduced. When heat build-up welding is performed by laser welding, the amount of heat input is small, so the necessity of the pre-heat treatment and post-heat treatment is particularly increased. According to this configuration, both the pre-heat treatment and post-heat treatment are performed by induction heating. This can be easily done by the self-heating of the 1 itself.

本実施例1では、レーザー光照射装置10のレーザー光12は、誘導コイル7の隣り合う巻き線7aと7bの間から前記硬化肉盛原料3に照射される構成である。
この構成により、レーザー光12は誘導コイル7の隣り合う巻き線7aと7bの間から前記硬化肉盛原料3に照射されるので、レーザー溶接と誘導加熱とを構造簡単且つ効果的に合体させることができる。
硬化肉盛溶接では、硬化肉盛原料3は通常粉末状態で母材表面2の硬化肉盛溶接部分14に供給される。本実施例1では、この粉末原料の供給も前記誘導コイル7の隣り合う巻き線7aと7bの間から行う構成である。勿論、粉末以外の原料も同様に行うことができる。
In the first embodiment, the laser beam 12 of the laser beam irradiation apparatus 10 is configured to irradiate the cured cladding material 3 from between adjacent windings 7 a and 7 b of the induction coil 7.
With this configuration, the laser beam 12 is applied to the cured material 3 from between adjacent windings 7a and 7b of the induction coil 7, so that laser welding and induction heating can be combined in a simple and effective manner. Can do.
In the hardening build-up welding, the hardening build-up raw material 3 is normally supplied to the hardening build-up welding portion 14 of the base material surface 2 in a powder state. In the first embodiment, the powder raw material is supplied from between the adjacent windings 7 a and 7 b of the induction coil 7. Of course, raw materials other than powder can be similarly used.

[非接触温度計測部]
本実施例1では、前記母材1の表面温度を非接触で計測する非接触温度計測部15を備えている。ここで、非接触温度計測部15として、例えば放射温度計が挙げられる。
[Non-contact temperature measurement unit]
The first embodiment includes a non-contact temperature measuring unit 15 that measures the surface temperature of the base material 1 in a non-contact manner. Here, as the non-contact temperature measurement part 15, a radiation thermometer is mentioned, for example.

既述の通り、母材1の表面温度における温度が計測される母材1の表面とは、硬化肉盛溶接部分14の近傍における母材表面2が好ましい。しかし、誘導加熱によって温度がほぼ一様に上昇する範囲内の母材表面2であれば前記近傍よりも離れていてもよい。或いは、硬化肉盛溶接がされた部分14の表面、即ち母材1の表面に設けられた硬化肉盛溶接層19の表面を計測してその計測値を利用することも可能である。   As described above, the surface of the base material 1 at which the temperature at the surface temperature of the base material 1 is measured is preferably the base material surface 2 in the vicinity of the hardfacing welded portion 14. However, the base material surface 2 within a range in which the temperature rises substantially uniformly by induction heating may be separated from the vicinity. Alternatively, it is also possible to measure the surface of the portion 14 that has undergone hardfacing welding, that is, the surface of the hardfacing welded layer 19 provided on the surface of the base material 1 and use the measured value.

非接触温度計測部15を用いる構成としたことにより、母材1の温度を誘導加熱による電磁誘導の影響を受けることなく、計測することができる。
また、母材1の温度の計測値によって前記誘導加熱部の出力を調整し、以って母材表面2の温度をねらいとする温度範囲に維持することができる。
また、母材1の温度の計測値によって溶融加熱部5の出力を適切に調整することも可能となり、以って適切な溶融加熱を行うことができる。
With the configuration using the non-contact temperature measurement unit 15, the temperature of the base material 1 can be measured without being affected by electromagnetic induction due to induction heating.
Further, the output of the induction heating unit can be adjusted according to the measured value of the temperature of the base material 1, thereby maintaining the temperature range aiming at the temperature of the base material surface 2.
In addition, it is possible to appropriately adjust the output of the melting and heating unit 5 according to the measured value of the temperature of the base material 1, so that appropriate melting and heating can be performed.

[母材の移動]
また、本実施例1では、母材1は、前記誘導加熱部6(誘導コイル7)、肉盛原料供給部4、溶融加熱部5(レーザー光照射装置10)及び非接触温度計測部15に対して軸心に沿って相対移動する構成である。ここでは、誘導加熱部6(誘導コイル7)、肉盛原料供給部4、溶融加熱部5(レーザー光照射装置10)及び非接触温度計測部15が単一の移動用ユニット16に組み付けられている。該移動用ユニット16は、位置固定の母材1に対して前記軸心に沿う方向13に移動可能に構成されている。
[Move base material]
In Example 1, the base material 1 is added to the induction heating unit 6 (induction coil 7), the build-up raw material supply unit 4, the melt heating unit 5 (laser light irradiation device 10), and the non-contact temperature measurement unit 15. On the other hand, it is the structure which moves relatively along an axial center. Here, the induction heating unit 6 (induction coil 7), the build-up raw material supply unit 4, the melt heating unit 5 (laser light irradiation device 10), and the non-contact temperature measurement unit 15 are assembled in a single moving unit 16. Yes. The moving unit 16 is configured to be movable in a direction 13 along the axis with respect to the base material 1 whose position is fixed.

また、母材1は回転機構17によって軸心回り8に回転するように支持されている。
即ち、母材1は、既述の如く、誘導コイル7に囲われて内側に位置し、当該回転機構17によって軸心回り8に回転しながら母材1の表面2に供給された前記硬化肉盛原料3が溶融加熱部5からの熱によって溶融される構成である。
回転機構17の具体的構造としては、母材1をモーターの回転軸にホルダーを介して直接連結してもよいし、或いはギア輪列を介して動力伝達する構造であってもよい。
Further, the base material 1 is supported by the rotation mechanism 17 so as to rotate about the axis 8.
That is, the base material 1 is surrounded by the induction coil 7 and positioned inside as described above, and the hardened meat supplied to the surface 2 of the base material 1 while rotating around the axis 8 by the rotation mechanism 17. In this configuration, the raw material 3 is melted by the heat from the melting and heating unit 5.
As a specific structure of the rotation mechanism 17, the base material 1 may be directly connected to the rotation shaft of the motor via a holder, or a structure for transmitting power via a gear train.

硬化肉盛溶接は、母材1の軸心方向13に沿ってある範囲(硬化肉盛溶接部分14)に亘って設けられるのが通常である。本構成によれば、前記母材1が軸心に沿う方向13に対して位置固定され、前記誘導加熱部6、肉盛原料供給部4、溶融加熱部5及び非接触温度計測部15が一体となって前記方向13に沿って移動する構成であるので、母材1の軸心方向に沿う前記範囲(硬化肉盛溶接部分14)に亘って容易に硬化肉盛溶接を行うことができる。
具体的には、母材1の回転速度と前記軸心に沿う方向13への移動速度を関係付けることで、母材1の表面2に螺旋状に一連の硬化肉盛溶接線が形成され、これにより硬化肉盛溶接層9を形成することができる。既述の通り、この硬化肉盛溶接層9は、通常は最終的に研磨仕上げが行われる。
In general, the hardfacing welding is provided over a certain range (hardening surfacing weld portion 14) along the axial direction 13 of the base material 1. According to this configuration, the base material 1 is fixed with respect to the direction 13 along the axis, and the induction heating unit 6, the build-up raw material supply unit 4, the melt heating unit 5, and the non-contact temperature measurement unit 15 are integrated. Thus, since it is configured to move along the direction 13, it is possible to easily carry out the hardfacing welding over the range (hardening welded portion 14) along the axial direction of the base material 1.
Specifically, by associating the rotational speed of the base material 1 and the moving speed in the direction 13 along the axis, a series of hardfacing weld lines are formed spirally on the surface 2 of the base material 1, Thereby, the hardfacing welded layer 9 can be formed. As described above, the hardfacing welded layer 9 is usually finally polished.

図3は前記実施例1の各構成部材の関係を示すブロック図である。
前記誘導加熱部6、肉盛原料供給部4及び、溶融加熱部5及び回転機構17は、制御部18から送られる制御信号を受けて駆動する。前記移動ユニット16も制御部18から送られる制御信号を受けて駆動する。
非接触温度計測部15で計測された温度情報は、制御部18に送られ、この温度情報に基づいて各種制御が実行される。
FIG. 3 is a block diagram showing the relationship among the constituent members of the first embodiment.
The induction heating unit 6, the build-up raw material supply unit 4, the melt heating unit 5, and the rotation mechanism 17 are driven in response to a control signal sent from the control unit 18. The moving unit 16 is also driven in response to a control signal sent from the control unit 18.
The temperature information measured by the non-contact temperature measuring unit 15 is sent to the control unit 18, and various controls are executed based on this temperature information.

[硬化肉盛溶接方法の説明]
図4のフローチャートに基づいて、上記硬化肉盛溶接装置を用いた硬化肉盛溶接方法の一例を説明する。
ステップS1で、前記誘導コイル7に電流を供給して誘導加熱によって母材1に対する予熱を開始する。これにより、母材1の誘導コイル7で囲われた部分はほぼ一様な設定温度に予熱される。この段階では母材の回転機構17が駆動されて母材1は軸心回り8に回転している。
[Explanation of curing overlay welding method]
Based on the flowchart of FIG. 4, an example of the hardening build-up welding method using the said hardening build-up welding apparatus is demonstrated.
In step S1, a current is supplied to the induction coil 7 and preheating of the base material 1 is started by induction heating. Thereby, the part surrounded by the induction coil 7 of the base material 1 is preheated to a substantially uniform set temperature. At this stage, the base material rotating mechanism 17 is driven to rotate the base material 1 around the axis 8.

ステップS2で、非接触温度計測部15によって母材1の表面2の温度が常時又は一定時間毎に計測され、その計測された温度情報が制御部18に送られ、計測値が設定範囲内であるか判定される。
設定範囲内でないと判定された場合は、ステップS3に進み、誘導加熱の出力が設定範囲内になるように調整される。具体的には、設定温度より低い場合は前記出力をアップし、設定温度よりも高い場合は前記出力をダウンする。そして所定時間経過後にステップS2に戻る。
設定範囲内であると判定された場合は、ステップS4に進む。
In step S2, the temperature of the surface 2 of the base material 1 is measured constantly or at regular intervals by the non-contact temperature measuring unit 15, and the measured temperature information is sent to the control unit 18, and the measured value is within the set range. Judgment is made.
If it is determined that it is not within the set range, the process proceeds to step S3, and the induction heating output is adjusted to be within the set range. Specifically, when the temperature is lower than the set temperature, the output is increased, and when the temperature is higher than the set temperature, the output is decreased. Then, after a predetermined time has elapsed, the process returns to step S2.
If it is determined that it is within the set range, the process proceeds to step S4.

ステップS4では、制御部18から送られる制御信号によって、肉盛原料供給部4から母材表面2に硬化肉盛原料3が供給される。また、溶融加熱部5からレーザー光12が照射され、前記硬化肉盛原料3が溶融されて肉盛溶接が行われる。このとき母材1は回転しているので、該母材1の周方向に肉盛溶接が進行する。また母材1は軸心に沿う方向13に所定速度で移動することで、母材1の表面2に螺旋状に一連の硬化肉盛溶接線が形成され、これにより硬化肉盛溶接層9を形成することができる。   In step S <b> 4, the cured build-up raw material 3 is supplied from the build-up raw material supply unit 4 to the base material surface 2 by a control signal sent from the control unit 18. Moreover, the laser beam 12 is irradiated from the melting and heating unit 5, the cured build-up raw material 3 is melted, and build-up welding is performed. At this time, since the base material 1 is rotating, build-up welding proceeds in the circumferential direction of the base material 1. Further, the base material 1 moves at a predetermined speed in the direction 13 along the axis, whereby a series of hardfacing weld lines are formed in a spiral on the surface 2 of the base material 1, whereby the hardfacing weld layer 9 is formed. Can be formed.

この硬化肉盛溶接中も前記ステップS2及びステップS3で説明した母材表面温度の計測とそれに基づく誘導加熱の出力調整は平行して行われている。従って、硬化肉盛溶接において必要な予熱が不足あるいは過剰の状態になることを防止できる。   The measurement of the base material surface temperature described in Steps S2 and S3 and the output adjustment of induction heating based on the measurement are performed in parallel during the hardfacing welding. Therefore, it is possible to prevent the preheating necessary for the hardfacing welding from being insufficient or excessive.

次にステップS5に進み、硬化肉盛溶接が全範囲(硬化肉盛溶接部分14)に亘って行われたかが判断され、未だの場合(NO)は、ステップS4に戻る。
硬化肉盛溶接が全範囲(硬化肉盛溶接部分14)に亘って行われた場合(YES)は、ステップS6に進む。
Next, it progresses to step S5, it is judged whether the hardening build-up welding was performed over the whole range (hardening build-up welding part 14), and if not yet (NO), it returns to step S4.
When the hardening build-up welding is performed over the entire range (the hardening build-up welding portion 14) (YES), the process proceeds to step S6.

ステップS6では、予熱工程は終わり、後熱工程に入る。溶融加熱部5はOFFとなり、溶融された硬化肉盛原料3を急激な温度低下をしないようにして徐々に冷やす。そのために、誘導加熱部6による誘導加熱は継続する。
即ち、この後熱工程中も前記ステップS2及びステップS3で説明した母材表面温度の計測とそれに基づく誘導加熱の出力調整は平行して行われている。従って、硬化肉盛溶接において必要な後熱が不足の状態になることを防止できる。
In step S6, the preheating process ends and the postheating process starts. The melting and heating unit 5 is turned off, and the molten hardfacing raw material 3 is gradually cooled without causing a rapid temperature drop. Therefore, induction heating by the induction heating unit 6 is continued.
That is, during the post-heating process, the measurement of the base material surface temperature described in steps S2 and S3 and the output adjustment of induction heating based on the measurement are performed in parallel. Therefore, it is possible to prevent the post heat necessary for the hardfacing welding from being insufficient.

そして、ステップS7に進み、後熱工程が終了した場合に全終了となる。この判断は、後熱工程の時間を予め決めておくことで、その時間の経過によって行うことができる。   And it progresses to step S7 and is complete | finished when a post-heating process is complete | finished. This determination can be made by elapse of time by determining the time of the post-heating process in advance.

[実施例1の作用]
本実施例1によれば、硬化肉盛溶接の予熱処理も後熱処理も誘導加熱部6による誘導加熱によって実行可能であるので、前記予熱処理と後熱処理を金属製の母材1自体の自己発熱による直接加熱によって簡単に行うことができる。また、誘導加熱はバーナーやヒーターによる従来の間接加熱に比べて加熱効率が高いので、硬化肉盛溶接を行う際の消費エネルギーを削減することができる。
[Operation of Example 1]
According to the first embodiment, the pre-heat treatment and post-heat treatment of hardfacing welding can be performed by induction heating by the induction heating unit 6, and thus the pre-heat treatment and post-heat treatment are performed by self-heating of the metal base material 1 itself. Can be done easily by direct heating. Moreover, since induction heating has a higher heating efficiency than conventional indirect heating by a burner or a heater, it is possible to reduce energy consumption when performing hardfacing welding.

また、前記母材1は、前記誘導コイル7に囲われて内側に位置し、更に軸心回り8に回転しながら前記硬化肉盛原料3が溶融される構成である。従って、誘導コイル7の電磁誘導による渦電流が母材1の全表面にほぼ均一に流れ、該母材表面2の硬化肉盛溶接部分14を全体に亘ってほぼ均一に且つ一様な温度に加熱することができる。即ち、母材表面2の硬化肉盛溶接部分14に対して、予熱の際も後熱の際も加熱制御を容易に且つ一連に行うことができる。   The base material 1 is surrounded by the induction coil 7 and is located on the inner side, and the hardfacing material 3 is melted while rotating around the axis 8. Therefore, the eddy current due to electromagnetic induction of the induction coil 7 flows almost uniformly on the entire surface of the base material 1, and the hardfacing welded portion 14 of the base material surface 2 is brought to a substantially uniform and uniform temperature throughout. Can be heated. That is, it is possible to easily and continuously perform heating control on the hardened welded portion 14 on the base material surface 2 during preheating and afterheating.

[その他の実施例]
本発明は、上記の実施例1の構造に限定されないことは勿論である。例えば、以下のように構成することも可能である。
[Other Examples]
Of course, the present invention is not limited to the structure of the first embodiment. For example, the following configuration is also possible.

(1)上記実施例1では、前記母材1は、誘導コイル7に囲われて内側に位置し、更に軸心回り8に回転しながら硬化肉盛原料3が溶融される構成である。この構成により、誘導コイル7の電磁誘導による渦電流が母材1の全表面にほぼ均一に流れ、該母材表面2の硬化肉盛溶接部分14を全体に亘ってほぼ均一に且つ一様な温度に加熱することができる。
しかし、以下のように構成してもよい。
母材1が誘導コイル7に囲まれて内側に位置する構成ではなく、電磁調理器のように母材1に沿って誘導コイルユニットが位置する配置でも、母材表面2を一様に加熱することが可能である。
(1) In the first embodiment, the base material 1 is surrounded by the induction coil 7 and is located on the inner side, and the hardfacing raw material 3 is melted while rotating around the axis 8. With this configuration, an eddy current due to electromagnetic induction of the induction coil 7 flows substantially uniformly over the entire surface of the base material 1, and the hardfacing welded portion 14 of the base material surface 2 is substantially uniformly and uniformly over the entire surface. Can be heated to temperature.
However, you may comprise as follows.
Even if the base material 1 is not surrounded by the induction coil 7 and positioned inside, but the induction coil unit is positioned along the base material 1 like an electromagnetic cooker, the base material surface 2 is uniformly heated. It is possible.

(2)実施例1では、溶融加熱部5はレーザー光照射装置10であるが、これに限定されない。他の溶融加熱部としては、周知の被覆アーク溶接法、TIG法、PTA法などが挙げられる。 (2) In Example 1, although the fusion | melting heating part 5 is the laser beam irradiation apparatus 10, it is not limited to this. Examples of other melting and heating parts include a well-known covered arc welding method, TIG method, and PTA method.

1 母材、 2 表面、 3 硬化肉盛原料、 4 肉盛原料供給部、
5 溶融加熱部、 6 誘導加熱部、 7 誘導コイル、 8 軸心回り、
9 硬化肉盛溶接層、 10 レーザー光照射装置、 11 集光レンズ、
12 レーザー光、 13 軸心に沿う方向、 14 硬化肉盛溶接部分、
15 非接触温度計測部、 16 移動用ユニット、 17 母材の回転機構、
18 制御部
1 base material, 2 surface, 3 hardfacing raw material, 4 surfacing raw material supply section,
5 Melting heating part, 6 Induction heating part, 7 Induction coil, 8 Axis center,
9 Hardfacing weld layer, 10 Laser irradiation device, 11 Condensing lens,
12 laser beam, 13 direction along axis, 14 hardfacing welded part,
15 non-contact temperature measurement unit, 16 moving unit, 17 base material rotation mechanism,
18 Control unit

Claims (6)

母材の表面に硬化肉盛原料を供給する肉盛原料供給部と、
前記母材表面の前記硬化肉盛原料を溶融する溶融加熱部と、
前記溶融加熱部による前記溶融に先行する前記母材に対する誘導加熱による予熱と、前記溶融後の前記母材に対する誘導加熱による後熱の少なくとも一方を実行可能な誘導加熱部と、を備え、
前記誘導加熱部は巻き線が複数回巻かれた1つの誘導コイルであり、
前記母材は、前記誘導コイルに囲われて内側に位置し、軸心回りに回転しながら前記硬化肉盛原料が溶融される構成であり、
前記溶融加熱部はレーザー光照射装置であり、
前記レーザー光照射装置から照射されるレーザー光は前記誘導コイルの隣り合う巻き線の間から前記硬化肉盛原料に照射される、ことを特徴とする硬化肉盛溶接装置。
A build-up raw material supply unit for supplying a hard-filled build-up raw material to the surface of the base material;
A melting and heating section for melting the cured build-up raw material on the surface of the base material;
An induction heating unit capable of performing at least one of preheating by induction heating on the base material preceding the melting by the melting heating unit and post-heating by induction heating on the base material after the melting;
The induction heating unit is one induction coil in which a winding is wound a plurality of times,
The base material is located inside and surrounded by the induction coil, and the hardfacing material is melted while rotating around an axis.
The melting and heating unit is a laser beam irradiation device,
The cured build-up welding apparatus, wherein the laser beam irradiated from the laser beam irradiation apparatus is applied to the cured build-up raw material from between adjacent windings of the induction coil.
請求項に記載の硬化肉盛溶接装置において、
前記母材は、前記誘導加熱部、前記肉盛原料供給部及び前記溶融加熱部に対して軸心に沿って相対移動する構成である、ことを特徴とする硬化肉盛溶接装置。
In the cured overlay welding apparatus according to claim 1 ,
The hardfacing welding apparatus characterized by the said base material being the structure which moves relatively along an axial center with respect to the said induction heating part, the said build-up raw material supply part, and the said fusion | melting heating part.
請求項1又は2に記載の硬化肉盛溶接装置において、
前記母材の表面温度を非接触で計測する非接触温度計測部を備えている、ことを特徴とする硬化肉盛溶接装置。
In the hardfacing welding apparatus according to claim 1 or 2,
A hardfacing welding apparatus comprising a non-contact temperature measuring unit that measures the surface temperature of the base material in a non-contact manner.
母材の少なくとも表面を誘導加熱部による誘導加熱によって加熱する予熱工程と、
硬化肉盛原料を前記母材の表面に供給する肉盛原料供給工程と、
前記予熱工程を経た母材表面の前記硬化肉盛原料を溶融加熱部によって溶融する溶融加熱工程と、
前記溶融加熱工程後の前記溶融された部分を誘導加熱部による誘導加熱によって加熱する後熱工程と、を備え、
前記誘導加熱部は巻き線が複数回巻かれた1つの誘導コイルであり、
前記母材は、前記誘導コイルに囲われて内側に位置し、軸心回りに回転しながら前記硬化肉盛原料が溶融され、
前記溶融加熱部はレーザー光照射装置であり、
前記レーザー光照射装置から照射されるレーザー光は前記誘導コイルの隣り合う巻き線の間から前記硬化肉盛原料に照射される、ことを特徴とする硬化肉盛溶接方法。
A preheating step of heating at least the surface of the base material by induction heating by an induction heating unit;
A build-up raw material supply step of supplying a hard-build raw material to the surface of the base material;
A melting and heating step of melting the cured build-up raw material on the surface of the base material that has undergone the preheating step by a melting and heating unit;
A post-heating step of heating the melted portion after the melting and heating step by induction heating by an induction heating unit,
The induction heating unit is one induction coil in which a winding is wound a plurality of times,
The base material is located inside surrounded by the induction coil, and the hardfacing raw material is melted while rotating around an axis,
The melting and heating unit is a laser beam irradiation device,
The cured overlay welding method, wherein the laser beam irradiated from the laser beam irradiation device is irradiated to the cured overlay material from between adjacent windings of the induction coil.
請求項4に記載の硬化肉盛溶接方法において、
前記予熱工程の際と後熱工程の際の少なくとも一方において前記母材の表面温度をそれぞれ非接触で計測し、計測値が設定範囲外である場合に前記誘導加熱部の出力を調整する、ことを特徴とする硬化肉盛溶接方法。
In the hardening overlay welding method according to claim 4,
Measuring the surface temperature of the base material in a non-contact manner in at least one of the preheating step and the postheating step, and adjusting the output of the induction heating unit when the measured value is outside the set range; Hardened overlay welding method characterized by
請求項5に記載の硬化肉盛溶接方法において、
前記予熱工程後の母材の表面温度を非接触で計測し、計測値が設定範囲外である場合に前記溶融加熱部の出力を調整する、ことを特徴とする硬化肉盛溶接方法。
In the hardening overlay welding method according to claim 5,
A hardfacing welding method characterized by measuring the surface temperature of the base material after the preheating step in a non-contact manner and adjusting the output of the melting and heating part when the measured value is outside the set range.
JP2013033443A 2013-02-22 2013-02-22 Hardfacing welding apparatus and method Active JP6050141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013033443A JP6050141B2 (en) 2013-02-22 2013-02-22 Hardfacing welding apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013033443A JP6050141B2 (en) 2013-02-22 2013-02-22 Hardfacing welding apparatus and method

Publications (2)

Publication Number Publication Date
JP2014161858A JP2014161858A (en) 2014-09-08
JP6050141B2 true JP6050141B2 (en) 2016-12-21

Family

ID=51613002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013033443A Active JP6050141B2 (en) 2013-02-22 2013-02-22 Hardfacing welding apparatus and method

Country Status (1)

Country Link
JP (1) JP6050141B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105154875B (en) * 2015-09-14 2017-08-11 温州大学 A kind of laser induction composite covers process equipment
JP6289713B1 (en) * 2017-06-12 2018-03-07 南海鋼材株式会社 Welding system and welding method
CN108907417A (en) * 2018-07-20 2018-11-30 四川汇源钢建装配建筑有限公司 A kind of steel plate interconnection method and welding steel
CN109894728A (en) * 2019-04-03 2019-06-18 李建 A kind of continuous weld heat treatment welding system
DE102019207292A1 (en) 2019-05-18 2020-11-19 Robert Bosch Gmbh Friction brake body for a friction brake of a motor vehicle, friction brake and method for producing a friction brake body

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033890A (en) * 1983-08-06 1985-02-21 Nippon Steel Corp Method of metal working by using laser
JPH0663044B2 (en) * 1984-09-25 1994-08-17 バブコツク日立株式会社 Overlay welding heat treatment method
JPH02207969A (en) * 1989-02-09 1990-08-17 Mitsubishi Heavy Ind Ltd Automatic welding device for steel pipe
ES2110985T3 (en) * 1990-06-13 1998-03-01 Sulzer Metco Ag PROCEDURE FOR MANUFACTURING SURFACE LAYERS ON WORKPIECES, DEVICE TO CARRY OUT THE PROCEDURE, AS WELL AS WORKPIECE WITH SURFACE LAYER MADE ACCORDING TO THE PROCEDURE.
JP2974553B2 (en) * 1993-08-23 1999-11-10 日産自動車株式会社 Magnetostriction measurement axis
JPH08267266A (en) * 1995-03-30 1996-10-15 Nissan Motor Co Ltd Cladding by welding equipment of piston for internal combustion engine
JP3674085B2 (en) * 1995-06-30 2005-07-20 石川島播磨重工業株式会社 Heat treatment method for reactor pressure vessel nozzle
JP2000312977A (en) * 1999-03-02 2000-11-14 Daido Steel Co Ltd Jointing method of different metals
DE10322344A1 (en) * 2003-05-17 2004-12-02 Mtu Aero Engines Gmbh Process for heating components
CN102554401B (en) * 2011-11-28 2014-04-23 石家庄巨力科技有限公司 Method for welding copper oxygen lance end for steelmaking with steel pipe sub

Also Published As

Publication number Publication date
JP2014161858A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
JP6050141B2 (en) Hardfacing welding apparatus and method
JP3112758B2 (en) Method and apparatus for welding superalloy workpieces
TWI727986B (en) System and method for single crystal growth with additive manufacturing
US10464170B2 (en) Temperature regulation for a device for the additive manufacturing of components and corresponding production method
JP3200387U (en) System using consumables with welding puddles
US10201853B2 (en) Multiple coil arrangement for a device for generative production of components and corresponding production method
US10285222B2 (en) Method and device for generatively producing at least one component area
US11919103B2 (en) Laser welding, cladding, and/or additive manufacturing systems and methods of laser welding, cladding, and/or additive manufacturing
CN103038016B (en) The method comprising the welding system of heating system, heating system and welding or cut workpiece are heated
US20150246481A1 (en) Creation of residual compressive stresses during additve manufacturing
CN108367349A (en) Device and method for increasing material manufacturing welding wire
EP2583773A2 (en) Additive manufacturing process comprising relieving stresses of the manufactured workpiece
JP2008114290A (en) High temperature electron beam welding
US20080164301A1 (en) High temperature laser welding
RU2015131826A (en) SUPER ALLOY APPLICATION USING POWDER FLUX AND METAL
JP2007532314A (en) Laser welding method and apparatus for parts formed from superalloys
CN102554401A (en) Method for welding copper oxygen lance end for steelmaking with steel pipe sub
CA2670142C (en) Method and apparatus for the heat treatment of welds
JP2019000854A (en) Welding system and welding method
JP2013245383A (en) Welding rotor and manufacturing method therefor
JP5907718B2 (en) Overlay welding method
JP5245972B2 (en) Laser welding method and laser welding apparatus
JP5931341B2 (en) Welding method
CN107635706B (en) Welding method and welding device
JP2005279686A (en) Laser brazing apparatus, and its method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161124

R150 Certificate of patent or registration of utility model

Ref document number: 6050141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350