JP5245972B2 - Laser welding method and laser welding apparatus - Google Patents

Laser welding method and laser welding apparatus Download PDF

Info

Publication number
JP5245972B2
JP5245972B2 JP2009075961A JP2009075961A JP5245972B2 JP 5245972 B2 JP5245972 B2 JP 5245972B2 JP 2009075961 A JP2009075961 A JP 2009075961A JP 2009075961 A JP2009075961 A JP 2009075961A JP 5245972 B2 JP5245972 B2 JP 5245972B2
Authority
JP
Japan
Prior art keywords
welding
laser
energy density
value
filler wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009075961A
Other languages
Japanese (ja)
Other versions
JP2010227951A5 (en
JP2010227951A (en
Inventor
幸太郎 猪瀬
桂 大脇
友洋 杉野
文夫 松坂
順子 神林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009075961A priority Critical patent/JP5245972B2/en
Publication of JP2010227951A publication Critical patent/JP2010227951A/en
Publication of JP2010227951A5 publication Critical patent/JP2010227951A5/ja
Application granted granted Critical
Publication of JP5245972B2 publication Critical patent/JP5245972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明はレーザ溶接方法及びレーザ溶接装置、特にホットワイヤを補助熱源としたレーザ溶接方法及びレーザ溶接装置に関するものである。   The present invention relates to a laser welding method and a laser welding apparatus, and more particularly to a laser welding method and a laser welding apparatus using a hot wire as an auxiliary heat source.

レーザ溶接方法は、エネルギ密度が高く、小さい入熱量で深い溶込みが得られるものであり、溶接歪みが少なく、高精度の溶接を可能とする。   The laser welding method has a high energy density, a deep penetration can be obtained with a small amount of heat input, has little welding distortion, and enables high-precision welding.

従来、レーザ溶接方法は、フィラーメタルを用いない突合わせ溶接に実施され、対象となるものは、通常小型精密部品の溶接、或は薄板の溶接等であった。   Conventionally, the laser welding method has been carried out by butt welding without using filler metal, and the target is usually welding of small precision parts or welding of thin plates.

一方で、レーザ溶接を鋼構造物に適用することで、高精度の溶接、溶接作業効率の改善が期待でき、近年ではレーザ溶接とTIG溶接、或はMIG溶接を組合わせたハイブリッド溶接方法が実施されている。   On the other hand, by applying laser welding to steel structures, high precision welding and improvement in welding work efficiency can be expected. In recent years, hybrid welding methods combining laser welding and TIG welding or MIG welding have been implemented. Has been.

ハイブリッド溶接方法では、TIG溶接、或はMIG溶接のアークでフィラーメタルを溶融させ、レーザ溶接では得られない適正なビードを形成することができる。   In the hybrid welding method, the filler metal is melted by an arc of TIG welding or MIG welding, and an appropriate bead that cannot be obtained by laser welding can be formed.

ところが、ハイブリッド溶接方法では、レーザ溶接装置とTIG溶接装置、或はMIG溶接装置の2種類の溶接装置を備えなければならないので、装置が大掛りに、又高価な溶接装置となる。更に、ハイブリッド溶接方法では、アークによる入熱量が低く抑えられるが、低く抑えることでアークの発生が溶接材料の表面状態に影響され易くなり、溶接材料の表面に施されている下地処理が完全に除去されていない場合はアークが安定せず溶接が不安定になるという問題があった。   However, in the hybrid welding method, it is necessary to provide two types of welding devices, ie, a laser welding device and a TIG welding device, or an MIG welding device, so that the device becomes a large-scale and expensive welding device. Furthermore, in the hybrid welding method, the heat input by the arc can be kept low, but by making it low, the generation of the arc is easily affected by the surface condition of the welding material, and the ground treatment applied to the surface of the welding material is completely completed. If not removed, there was a problem that the arc was not stable and the welding became unstable.

特表2004−512965号公報Special table 2004-512965 gazette 特開2003−320454号公報JP 2003-320454 A

本発明は斯かる実情に鑑み、安価な装置で実施可能であり、溶接状況に対応した適正なビードが得られ、而もビード幅及びビード高さの調整を可能としたレーザ溶接方法及びレーザ溶接装置を提供するものである。   In view of such circumstances, the present invention can be implemented with an inexpensive apparatus, and a suitable bead corresponding to the welding situation can be obtained, and a laser welding method and a laser welding capable of adjusting the bead width and bead height. A device is provided.

本発明は、溶接部位にレーザを照射すると共に加熱したフィラーワイヤを供給するレーザ溶接方法に於いて、前記レーザをデフォーカス状態で照射すると共に、レーザ光束断面でのエネルギ密度平均値/エネルギ密度最大値が所定の値となる様にデフォーカス状態を設定するレーザ溶接方法に係るものである。   The present invention provides a laser welding method for irradiating a welding site with a laser and supplying a heated filler wire, irradiating the laser in a defocused state, and at the same time, energy density average value / energy density maximum in a laser beam cross section. The present invention relates to a laser welding method in which the defocus state is set so that the value becomes a predetermined value.

又本発明は、前記エネルギ密度平均値/エネルギ密度最大値は、求められるビードの幅又は高さに基づき設定されるレーザ溶接方法に係るものである。   The present invention also relates to a laser welding method in which the average energy density value / maximum energy density value is set based on the required width or height of the bead.

更に又本発明は、溶接部材にレーザを集光して照射する溶接トーチと、レーザの照射部位に加熱したフィラーワイヤを供給するフィラーワイヤ供給装置と、デフォーカス状態を変更する集光位置変更手段と、エネルギ密度平均値/エネルギ密度最大値が所定の値となる様に該集光位置変更手段のデフォーカス状態を制御する制御部とを具備するレーザ溶接装置に係るものである。   Furthermore, the present invention provides a welding torch for condensing and irradiating a laser on a welding member, a filler wire supply device for supplying a heated filler wire to a laser irradiation portion, and a condensing position changing means for changing a defocus state. And a control unit that controls the defocusing state of the converging position changing means so that the average energy density value / the maximum energy density value becomes a predetermined value.

本発明によれば、溶接部位にレーザを照射すると共に加熱したフィラーワイヤを供給するレーザ溶接方法に於いて、前記レーザをデフォーカス状態で照射すると共に、レーザ光束断面でのエネルギ密度平均値/エネルギ密度最大値が所定の値となる様にデフォーカス状態を設定するので、簡単な調整によりビード形状の制御が可能となり、更にアークによるフィラーワイヤの溶融ではないので、溶接が安定し、溶接品質が向上する。   According to the present invention, in a laser welding method of irradiating a laser beam to a welding site and supplying a heated filler wire, the laser beam is irradiated in a defocused state, and an energy density average value / energy in a laser beam cross section is obtained. Since the defocus state is set so that the maximum density value becomes a predetermined value, it is possible to control the bead shape by simple adjustment, and since the filler wire is not melted by the arc, welding is stable and welding quality is improved. improves.

又本発明によれば、前記エネルギ密度平均値/エネルギ密度最大値は、求められるビードの幅又は高さに基づき設定されるので、求めるビード形状が簡単に得られる。   Further, according to the present invention, the average energy density value / maximum energy density value is set based on the required width or height of the bead, so that the desired bead shape can be easily obtained.

更に又本発明によれば、溶接部材にレーザを集光して照射する溶接トーチと、レーザの照射部位に加熱したフィラーワイヤを供給するフィラーワイヤ供給装置と、デフォーカス状態を変更する集光位置変更手段と、エネルギ密度平均値/エネルギ密度最大値が所定の値となる様に該集光位置変更手段のデフォーカス状態を制御する制御部とを具備するので、ビード形状の制御が容易であり、更にアークによるフィラーワイヤの溶融ではないので、溶接が安定し、溶接品質が向上するという優れた効果を発揮する。   Furthermore, according to the present invention, a welding torch for condensing and irradiating a laser to a welding member, a filler wire supply device for supplying a heated filler wire to a laser irradiation portion, and a condensing position for changing a defocus state The bead shape can be easily controlled by including the changing means and a control unit that controls the defocus state of the condensing position changing means so that the average energy density value / maximum energy density value becomes a predetermined value. In addition, since the filler wire is not melted by arc, the welding is stable and the welding quality is improved.

本発明が実施されるレーザ溶接装置を示す概略図である。It is the schematic which shows the laser welding apparatus by which this invention is implemented. 該レーザ溶接装置に於いて、デフォーカス比を変更した場合の溶接金属断面積の変化を示す線図である。In this laser welding apparatus, it is a diagram which shows the change of a weld metal cross-sectional area at the time of changing a defocus ratio. 溶接金属の状態を示す説明図である。It is explanatory drawing which shows the state of a weld metal. 溶接部材に対するデフォーカスの状態を示す説明図である。It is explanatory drawing which shows the state of the defocus with respect to a welding member. ビードの形状とビードのエネルギ密度との関係を示す線図である。It is a diagram which shows the relationship between the shape of a bead and the energy density of a bead.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、図1に於いて、本発明が実施されるレーザ溶接装置1の一例を説明する。図中、2は溶接トーチであり、3はフィラーワイヤ供給装置を示している。本実施例で用いられるレーザはファイバレーザであり、深い溶込み深さが得られる。   First, referring to FIG. 1, an example of a laser welding apparatus 1 in which the present invention is implemented will be described. In the figure, 2 is a welding torch, and 3 is a filler wire supply device. The laser used in this embodiment is a fiber laser, and a deep penetration depth is obtained.

レーザ光源(図示せず)から発せられたレーザは光ファイバ4により前記溶接トーチ2迄導かれる。該溶接トーチ2には、集光光学系5が内蔵されており、該集光光学系5によって前記光ファイバ4から射出したレーザ6を溶接部材7の所要の位置に集光させている。尚、図1中、fは前記集光光学系5の焦点距離である。   A laser emitted from a laser light source (not shown) is guided to the welding torch 2 by an optical fiber 4. The welding torch 2 incorporates a condensing optical system 5, and the laser 6 emitted from the optical fiber 4 is condensed at a required position of the welding member 7 by the condensing optical system 5. In FIG. 1, f is the focal length of the condensing optical system 5.

前記フィラーワイヤ供給装置3は、ワイヤドラム8、ワイヤ矯正機9、ワイヤホルダ11等を有し、前記ワイヤドラム8から送出されたフィラーワイヤ12は前記ワイヤ矯正機9で巻癖が矯正されて前記ワイヤホルダ11に送出される。   The filler wire supply device 3 includes a wire drum 8, a wire straightening machine 9, a wire holder 11, etc., and the filler wire 12 sent out from the wire drum 8 has its curl corrected by the wire straightening machine 9 and the wire holder 11 is sent out.

該ワイヤホルダ11は前記フィラーワイヤ12に対する給電部となっており、前記ワイヤホルダ11と前記溶接部材7との間に電源部13によって前記フィラーワイヤ12に加熱用の電流が供給されている。前記フィラーワイヤ12に電流が供給されることで、ジュール熱により、前記フィラーワイヤ12が加熱される様になっている。前記ワイヤホルダ11から送出された前記フィラーワイヤ12は、前記レーザ6の照射部に供給される。   The wire holder 11 serves as a power supply unit for the filler wire 12, and a heating current is supplied to the filler wire 12 by the power supply unit 13 between the wire holder 11 and the welding member 7. By supplying current to the filler wire 12, the filler wire 12 is heated by Joule heat. The filler wire 12 delivered from the wire holder 11 is supplied to the irradiation unit of the laser 6.

尚、前記フィラーワイヤ12の加熱温度は、該フィラーワイヤ12の先端が溶融池に接触した時点で溶融する程度に加熱されることが好ましい。   In addition, it is preferable that the heating temperature of the said filler wire 12 is heated to such an extent that it melt | melts when the front-end | tip of this filler wire 12 contacts a molten pool.

又、前記フィラーワイヤ供給装置3のワイヤ供給速度、前記レーザ6の出力、前記溶接トーチ2の移動速度(溶接速度)、前記フィラーワイヤ12への給電状態(加熱状態)及び焦点位置の調整は制御部10によって制御される様になっている。   Also, the wire supply speed of the filler wire supply device 3, the output of the laser 6, the moving speed of the welding torch 2 (welding speed), the power supply state (heating state) to the filler wire 12 and the adjustment of the focal position are controlled. It is controlled by the unit 10.

本発明者は、上記レーザ溶接装置1に於いて、溶接を実施した場合に、前記溶接部材7の表面からの焦点の位置(デフォーカス量)と成形されるビード幅、又溶込み深さとの関係について検証した。   The present inventor, when performing welding in the laser welding apparatus 1, determines the position of the focal point (defocus amount) from the surface of the welding member 7 and the formed bead width or penetration depth. The relationship was verified.

尚、溶接条件は、レーザパワーが3KW、前記フィラーワイヤ12に供給する電流値が50A、溶接速度が1m/sである。又、図2に示されるグラフの縦軸は、溶接金属の断面積mm2 であり、曲線Aは溶着金属、曲線Bは溶融金属(図3参照)のそれぞれ断面積を示し、横軸はデフォーカス比(デフォーカス量/焦点:Df/f)を示している。又、(Df/f)の−は前記溶接部材7の表面から離反する方向、(Df/f)の+は前記溶接部材7の内部に向って移動する方向である(図4参照)。 The welding conditions are a laser power of 3 kW, a current value supplied to the filler wire 12 of 50 A, and a welding speed of 1 m / s. Also, the vertical axis of the graph shown in FIG. 2 is the cross-sectional area mm 2 of the weld metal, curve A shows the cross-sectional area of the deposited metal, curve B shows the cross-sectional area of the molten metal (see FIG. 3), and the horizontal axis shows the cross-sectional area. The focus ratio (defocus amount / focus: Df / f) is shown. Further,-in (Df / f) is a direction away from the surface of the welding member 7, and + in (Df / f) is a direction moving toward the inside of the welding member 7 (see FIG. 4).

先ず、母材側の溶融状態、即ち溶融金属Bの断面積とデフォーカス比の関係は、曲線Bに見られる様に、デフォーカス比=0の時、即ち前記レーザ6の焦点が前記溶接部材7の表面に一致した時に、最大且つ極大であり、+側、−側でデフォーカス比が大きくなるに従って、減少する。即ち、溶込み量はデフォーカス比が大きくなるに従って、減少する。これは、デフォーカス比が大きくなることによって、光束断面が増大し、エネルギ密度が低下することによる。   First, the relationship between the molten state on the base material side, that is, the cross-sectional area of the molten metal B and the defocus ratio, as seen in the curve B, is when the defocus ratio = 0, that is, the focus of the laser 6 is the welding member. 7 is the maximum and maximum when matching the surface, and decreases as the defocus ratio increases on the + and − sides. That is, the penetration amount decreases as the defocus ratio increases. This is because as the defocus ratio increases, the beam cross section increases and the energy density decreases.

次に、溶着金属の状態、即ち溶着金属Aの断面積とデフォーカス比の関係は、曲線Aに示される。溶着金属Aの断面積が最小、極小となるのはデフォーカス比+0.2の時であり、デフォーカス比=0から+側にずれている。   Next, the state of the weld metal, that is, the relationship between the cross-sectional area of the weld metal A and the defocus ratio is shown by a curve A. The cross-sectional area of the weld metal A is minimum and minimum when the defocus ratio is +0.2, and the defocus ratio is shifted from 0 to the + side.

又、前記曲線Aに見られる様に溶着金属Aはデフォーカス比が極小値の時のデフォーカス比から離れるに従って、増大し、デフォーカス比が−0.2及び+0.4で極大となり、更に離反すると、減少に転ずると共に−0.3及び+0.4を越えると溶接ができなくなる。   Further, as seen in the curve A, the weld metal A increases as it departs from the defocus ratio when the defocus ratio is a minimum value, and the defocus ratio becomes maximum at −0.2 and +0.4. If it separates, it will turn to decrease, and if it exceeds -0.3 and +0.4, welding will become impossible.

尚、図示していないが、前記フィラーワイヤ12に供給する電流を増減することで、溶接金属の状態が変化する。   Although not shown, the state of the weld metal changes by increasing or decreasing the current supplied to the filler wire 12.

前記フィラーワイヤ12への供給電流を増減した場合、図2の傾向を保ちつつ、主に溶着金属Aに影響が大きく現れ、電流を増大すると、前記曲線Aは断面積が増大する方向に移動する。又、電流を減少すると、前記曲線Aは断面積が減少する方向に移動する。   When the supply current to the filler wire 12 is increased / decreased, the influence of the weld metal A appears largely while maintaining the tendency of FIG. 2, and when the current is increased, the curve A moves in a direction in which the cross-sectional area increases. . When the current is decreased, the curve A moves in a direction in which the cross-sectional area decreases.

而して、デフォーカス比、前記フィラーワイヤ12への供給電流を制御することで、溶接状態、即ち溶込み深さ、ビード幅、ビード脚長を制御できる。特に、入熱量を一定にした状態でも、デフォーカスの状態を制御することで、肉盛り金属を多くしたり、或は溶込み深さを深くしたりできる等溶接状態、ビードの成形状態を制御することができる。   Thus, by controlling the defocus ratio and the supply current to the filler wire 12, the welding state, that is, the penetration depth, the bead width, and the bead leg length can be controlled. In particular, even when the heat input is constant, controlling the defocusing state can control the welding state and bead forming state, such as increasing the build-up metal or increasing the penetration depth. can do.

例えば、隅肉溶接を行う場合は、多くの溶着金属を必要とするので、デフォーカス比を大きくし、必要ならば前記フィラーワイヤ12への供給電力を増大させて溶接を行う。又、I型開先による突合わせ溶接を行う場合は、溶込み深さが必要とされるので、デフォーカス比(Df/f)=0又はデフォーカス比=0の近傍で溶接を行う等である。   For example, when performing fillet welding, a large amount of deposited metal is required, so that the defocus ratio is increased, and if necessary, the power supplied to the filler wire 12 is increased for welding. In addition, when performing butt welding with an I-type groove, since a penetration depth is required, welding is performed in the vicinity of a defocus ratio (Df / f) = 0 or a defocus ratio = 0. is there.

次に、前記レーザ6をデフォーカスした場合、光束中心部のエネルギ密度は高く、周辺部ではエネルギ密度が低くなる。従って、デフォーカスすると、光束径が拡大すると共にエネルギ密度分布の不均一化が進む。   Next, when the laser 6 is defocused, the energy density at the center of the light beam is high and the energy density at the periphery is low. Therefore, when defocusing is performed, the beam diameter is increased and the energy density distribution is made non-uniform.

本発明者は斯かる現象に着目し、エネルギ密度とビード形状の相関を求めエネルギ密度をファクタとして溶接状態、或はビードの成形状態を制御することを発案した。   The inventor of the present invention pays attention to such a phenomenon, and proposes to obtain the correlation between the energy density and the bead shape and control the welding state or the bead forming state by using the energy density as a factor.

図5は横軸にエネルギ密度、縦軸にビードの形状(ビードの幅、ビードの高さ)を示している。尚、エネルギ密度を評価する指標として、レーザ光束断面でのエネルギ密度平均値(Eave )/エネルギ密度最大値(Epeak)とした。例えば、(Eave )/(Epeak)=1は、最大値が無く完全なハット状となったものである。 FIG. 5 shows the energy density on the horizontal axis and the bead shape (bead width, bead height) on the vertical axis. As an index for evaluating the energy density, the energy density average value (E ave ) / energy density maximum value (E peak ) at the cross section of the laser beam was used. For example, (E ave ) / (E peak ) = 1 has a maximum value with no maximum value.

又、図5を得る溶接条件としては、入熱量が一定、及びレーザパワー、フィラーワイヤ12への通電量、該フィラーワイヤ12の供給量、溶接速度を一定とした。   Further, as welding conditions for obtaining FIG. 5, the amount of heat input was constant, and the laser power, the energization amount to the filler wire 12, the supply amount of the filler wire 12, and the welding speed were constant.

図5中、プロット▽で示される直線Cは、形成されるビードの幅を示し、プロット△で示される直線Dは、形成されるビードの高さを示している。   In FIG. 5, a straight line C indicated by a plot ▽ indicates the width of the formed bead, and a straight line D indicated by a plot Δ indicates the height of the formed bead.

直線Cは、(Eave )/(Epeak)の値の増加に対して比例的に増加し、直線Dは(Eave )/(Epeak)の値の増加に対して反比例的に減少している。 The straight line C increases in proportion to the increase in the value of (E ave ) / (E peak ), and the straight line D decreases in inverse proportion to the increase in the value of (E ave ) / (E peak ). ing.

尚、デフォーカスした場合の、(Eave )/(Epeak)の値、及びビードの幅、ビードの高さについては図2に示されるデータに基づき算出している。 Note that the value of (E ave ) / (E peak ), the width of the bead, and the height of the bead when defocused are calculated based on the data shown in FIG.

図5に示される様に、(Eave )/(Epeak)の値と、形成されるビードの幅、ビードの高さとはリニアの関係にあり、(Eave )/(Epeak)の値がビード形成を制御する為に適したファクターであることが分る。 As shown in FIG. 5, the value of (E ave ) / (E peak ) and the width of the formed bead and the height of the bead are in a linear relationship, and the value of (E ave ) / (E peak ) Is a suitable factor for controlling bead formation.

図5の(Eave )/(Epeak)と、ビードの幅、ビードの高さとの関係を利用すると、例えば、ビードの高さを1mmとした場合、ビードの幅は略5mmとなる等ビード形状の設定が簡単に行える。 Using the relationship between (E ave ) / (E peak ) in FIG. 5 and the bead width and bead height, for example, when the bead height is 1 mm, the bead width is approximately 5 mm. The shape can be easily set.

次に、上記レーザ溶接方法を上記したレーザ溶接装置1に適用する場合は、レーザパワー、溶接速度、前記フィラーワイヤ12への給電量等を所定の条件に固定した場合の図5で示す(Eave )/(Epeak)−ビード形状を求めておき、前記制御部10に設定入力する。 Next, when the laser welding method is applied to the laser welding apparatus 1 described above, the laser power, the welding speed, the amount of power supplied to the filler wire 12 and the like are fixed to predetermined conditions as shown in FIG. ave ) / (E peak ) -bead shape is obtained and set and input to the control unit 10.

溶接を実行する場合は、前記制御部10に溶接条件、例えば、隅肉溶接、突合わせ溶接、板厚等の条件を考慮し、図5に基づき(Eave )/(Epeak)を設定する。 When performing welding, the control unit 10 sets (E ave ) / (E peak ) based on FIG. 5 in consideration of welding conditions such as fillet welding, butt welding, and plate thickness. .

前記制御部10は設定された(Eave )/(Epeak)に対応する最適なデフォーカス比を演算又は選択し、演算又は選択されたデフォーカス比となる様に前記溶接トーチ2を上下に変位させデフォーカス比を設定し、溶接を実行する。 The controller 10 calculates or selects an optimum defocus ratio corresponding to the set (E ave ) / (E peak ), and moves the welding torch 2 up and down so that the calculated or selected defocus ratio is obtained. Displace and set the defocus ratio and perform welding.

又、図5に示される直線C、直線Dはレーザパワー、溶接速度、前記フィラーワイヤ12の供給速度を変更することで、勾配が変更される。従って、例えばレーザパワーをパラメータとしてレーザパワーを変更した際の直線Cn 、直線Dn を複数取得しておけば、(Eave )/(Epeak)に対応する多様なビード形状が得られ、最適な溶接条件が得られる。 Further, the gradients of the straight lines C and D shown in FIG. 5 are changed by changing the laser power, the welding speed, and the supply speed of the filler wire 12. Therefore, for example, if a plurality of straight lines Cn and Dn are obtained when the laser power is changed using the laser power as a parameter, a variety of bead shapes corresponding to (E ave ) / (E peak ) can be obtained. Welding conditions are obtained.

溶接が実行されるに於いて、前記フィラーワイヤ12はアークによって溶融されていないので、溶接状態は安定で高品質の溶接が可能である。   When the welding is performed, the filler wire 12 is not melted by the arc, so that the welding state is stable and high quality welding is possible.

尚、上記実施例では、集光位置変更手段として前記溶接トーチ2を上下させて焦点位置の変更を行ったが、集光位置変更手段は焦点長さを変更して焦点位置の変更を行う、光学的な集光位置変更手段であってもよい。   In the above embodiment, the focal position is changed by moving the welding torch 2 up and down as the condensing position changing means, but the condensing position changing means changes the focal length by changing the focal length. Optical condensing position changing means may be used.

又、上記実施例ではファイバレーザについて説明したが、LDレーザ、YAGレーザ、CO2 レーザ等を使用した場合にも実施可能であることは言う迄もない。   In the above embodiment, the fiber laser has been described. Needless to say, the present invention can also be implemented when an LD laser, a YAG laser, a CO2 laser, or the like is used.

1 レーザ溶接装置
2 溶接トーチ
3 フィラーワイヤ供給装置
4 光ファイバ
5 集光光学系
6 レーザ
7 溶接部材
8 ワイヤドラム
9 ワイヤ矯正機
10 制御部
11 ワイヤホルダ
12 フィラーワイヤ
13 電源部
DESCRIPTION OF SYMBOLS 1 Laser welding apparatus 2 Welding torch 3 Filler wire supply apparatus 4 Optical fiber 5 Condensing optical system 6 Laser 7 Welding member 8 Wire drum 9 Wire straightening machine 10 Control part 11 Wire holder 12 Filler wire 13 Power supply part

Claims (3)

溶接部位にレーザを照射すると共に加熱したフィラーワイヤを供給するレーザ溶接方法に於いて、前記レーザをデフォーカス状態で照射すると共に、レーザ光束断面でのエネルギ密度平均値/エネルギ密度最大値が所定の値となる様にデフォーカス状態を設定することを特徴とするレーザ溶接方法。   In a laser welding method of irradiating a laser beam to a welding site and supplying a heated filler wire, the laser beam is irradiated in a defocused state, and an energy density average value / energy density maximum value in a laser beam cross section is a predetermined value. A laser welding method, wherein a defocus state is set so as to be a value. 前記エネルギ密度平均値/エネルギ密度最大値は、求められるビードの幅又は高さに基づき設定される請求項1のレーザ溶接方法。   2. The laser welding method according to claim 1, wherein the average energy density value / maximum energy density value is set based on a width or height of a bead to be obtained. 溶接部材にレーザを集光して照射する溶接トーチと、レーザの照射部位に加熱したフィラーワイヤを供給するフィラーワイヤ供給装置と、デフォーカス状態を変更する集光位置変更手段と、エネルギ密度平均値/エネルギ密度最大値が所定の値となる様に該集光位置変更手段のデフォーカス状態を制御する制御部とを具備することを特徴とするレーザ溶接装置。   A welding torch for condensing and irradiating a laser to a welding member, a filler wire supply device for supplying a heated filler wire to a laser irradiation portion, a condensing position changing means for changing a defocus state, and an energy density average value A laser welding apparatus comprising: a control unit that controls a defocus state of the condensing position changing means so that a maximum energy density value becomes a predetermined value.
JP2009075961A 2009-03-26 2009-03-26 Laser welding method and laser welding apparatus Active JP5245972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009075961A JP5245972B2 (en) 2009-03-26 2009-03-26 Laser welding method and laser welding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009075961A JP5245972B2 (en) 2009-03-26 2009-03-26 Laser welding method and laser welding apparatus

Publications (3)

Publication Number Publication Date
JP2010227951A JP2010227951A (en) 2010-10-14
JP2010227951A5 JP2010227951A5 (en) 2011-12-01
JP5245972B2 true JP5245972B2 (en) 2013-07-24

Family

ID=43044324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009075961A Active JP5245972B2 (en) 2009-03-26 2009-03-26 Laser welding method and laser welding apparatus

Country Status (1)

Country Link
JP (1) JP5245972B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5860264B2 (en) * 2011-10-21 2016-02-16 株式会社Ihi How to repair cracks
JP6432467B2 (en) 2015-08-26 2018-12-05 トヨタ自動車株式会社 Laser welding method
CN105624672A (en) * 2015-12-30 2016-06-01 无锡透平叶片有限公司 Method for preventing turbine blade from water erosion through wire heating and laser cladding
US10994371B2 (en) 2016-02-24 2021-05-04 Mitsubishi Electric Research Laboratories, Inc. System and method for depositing a metal to form a three-dimensional part

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194884A (en) * 1987-02-06 1988-08-12 Toyota Motor Corp Laser build-up welding method
JP2597464B2 (en) * 1994-03-29 1997-04-09 株式会社ジーティシー Laser annealing equipment
JP2005224837A (en) * 2004-02-13 2005-08-25 Nissan Motor Co Ltd Laser beam welding apparatus
JP5235332B2 (en) * 2007-05-22 2013-07-10 新日鐵住金株式会社 Laser welding method and welding apparatus for steel plate

Also Published As

Publication number Publication date
JP2010227951A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP3200387U (en) System using consumables with welding puddles
CA3026330C (en) Laser processing apparatus and method
US20180221989A1 (en) Laser welding method
KR20120104325A (en) A welding process and a welding arrangement
US9050674B2 (en) Method and system of edging cladding operation
JP5611757B2 (en) Heat repair device and heat repair method
CN110238528B (en) Laser-hot wire TIG (tungsten inert gas) hybrid welding method for normal wire feeding
JP5245972B2 (en) Laser welding method and laser welding apparatus
JP7412428B2 (en) Method especially for spatter-free welding using solid state lasers
JP5812527B2 (en) Hot wire laser welding method and apparatus
JP5381221B2 (en) Laser welding apparatus and laser welding method
JP6299136B2 (en) Laser welding method and laser welding apparatus for steel sheet
CN104014933A (en) Laser-TOPTIG hybrid welding method
JP2010120023A (en) Laser welding method and laser welding device used for the same
JP7416999B2 (en) Laser-arc hybrid welding equipment
JP6213332B2 (en) Hot wire laser combined welding method for thick steel plate
JP6211340B2 (en) Welding apparatus and welding method
RU2668625C1 (en) Formulated pipe stock butt joint laser-arc welding with consumable electrode method in an atmosphere of shielding gas
JP7386118B2 (en) Welding method and welding equipment
JP2019018246A (en) Method and system of using consumable and heat source with weld puddle
JP7284014B2 (en) Laser-arc hybrid welding equipment
EP3012057B1 (en) Method of welding in deep joints
CN115210029A (en) Method for laser welding two coated workpieces
CN111774728B (en) Stator copper wire welding method, controller, laser processing machine and readable program carrier
JP7482502B2 (en) Welding equipment and method for plated steel sheets

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111014

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R151 Written notification of patent or utility model registration

Ref document number: 5245972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250