JP6049137B2 - Gear pair design equipment - Google Patents

Gear pair design equipment Download PDF

Info

Publication number
JP6049137B2
JP6049137B2 JP2012274993A JP2012274993A JP6049137B2 JP 6049137 B2 JP6049137 B2 JP 6049137B2 JP 2012274993 A JP2012274993 A JP 2012274993A JP 2012274993 A JP2012274993 A JP 2012274993A JP 6049137 B2 JP6049137 B2 JP 6049137B2
Authority
JP
Japan
Prior art keywords
tooth surface
gear
conjugate
information
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012274993A
Other languages
Japanese (ja)
Other versions
JP2014119042A (en
Inventor
狩野 正樹
正樹 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2012274993A priority Critical patent/JP6049137B2/en
Publication of JP2014119042A publication Critical patent/JP2014119042A/en
Application granted granted Critical
Publication of JP6049137B2 publication Critical patent/JP6049137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、互いに噛合する歯車の一方の歯面が歯面修正によって非共役歯面に創成加工される歯車対の設計装置に関する。   The present invention relates to a gear pair design apparatus in which one tooth surface of a gear meshing with each other is created into a non-conjugated tooth surface by tooth surface modification.

一般に、傘歯車やハイポイドギヤ等の歯車対において、実用に供される各歯車の歯面形状(実歯面形状)は、理論的に共役な数学的に表現される歯面ではなく、加工可能な近似歯面形状となる。すなわち、実用に供されるハイポイドギヤ等の歯車対は、一般に、共役歯面に対して歯面修正(歯切り)が行われた非共役歯面となる。   Generally, in a gear pair such as a bevel gear and a hypoid gear, the tooth surface shape (actual tooth surface shape) of each gear used for practical use is not a theoretically conjugate tooth surface expressed mathematically, and can be processed. Approximate tooth surface shape. That is, a gear pair such as a hypoid gear that is practically used is generally a non-conjugated tooth surface in which tooth surface correction (tooth cutting) is performed on the conjugate tooth surface.

このような歯面修正にはグリーソン方式等による歯切り法が広く用いられており、例えば、グリーソン方式のハイポイドギヤの歯切り法では、Formate法或いはHelixiform法等の直接創成法によって、ピニオンの歯切りが行われる。そして、この種の歯車対では、創成された実歯面の歯当たり解析(例えば、特許文献1参照)に基づいて、その強度評価や、振動騒音評価等が行われる。このような、歯車対に対する歯面修正及び評価は繰り返し行われ、これにより、所望の特性(性能)を確保した歯車対を得ることが可能となる。   For such tooth surface modification, the Gleason method or the like is widely used. For example, in the Gleason type hypoid gear gear cutting method, the pinion gear cutting is performed by the direct creation method such as the Formate method or the Helixiform method. Is done. And in this kind of gear pair, the strength evaluation, vibration noise evaluation, etc. are performed based on the tooth contact analysis (for example, refer patent document 1) of the created real tooth surface. Such tooth surface correction and evaluation of the gear pair are repeatedly performed, and thereby it is possible to obtain a gear pair that secures desired characteristics (performance).

WO2006/112369号公報WO 2006/112369

しかしながら、上述のような歯面加工を行う際に加工機に設定される各種諸元からは創成後の歯面形状等を直感的に把握することが困難であるため、この種の加工機設定は、オペレータの経験等に大きく左右される。従って、オペレータ等の負荷を軽減するためには、所望の特性を得るための指標となる歯面情報をオペレータ等に対して事前に把握させることが有効となる。   However, since it is difficult to intuitively understand the tooth surface shape after creation from various specifications set in the processing machine when performing the tooth surface processing as described above, this type of processing machine setting Greatly depends on the experience of the operator. Therefore, in order to reduce the load on the operator or the like, it is effective to make the operator or the like know the tooth surface information that is an index for obtaining a desired characteristic in advance.

本発明は上記事情に鑑みてなされたもので、所望の特性を得るための歯面情報をオペレータ等に提示することができる歯車対の設計装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a gear pair design apparatus capable of presenting tooth surface information for obtaining desired characteristics to an operator or the like.

本発明の一態様による歯車対の設計装置は、互いに噛合する第1の歯車と第2の歯車の基本的な形状及び組立状態を示す諸元に基づいて定まる前記第1の歯車の第1の共役歯面と前記第2の歯車の第2の共役歯面のうち前記第2の共役歯面が歯面修正によって非共役歯面に創成される歯車対の特性情報として、前記第1の共役歯面と前記非共役歯面との接触点の軌跡と、前記接触点の軌跡上における伝達誤差情報と、前記第1の共役歯面と前記非共役歯面との接触線上での隙間情報と、を含む情報が入力される入力手段と、前記伝達誤差情報と前記隙間情報とを前記第1の共役歯面上で三次元的に合成して前記第1の共役歯面と前記非共役歯面との相対的な歯面間の隙間の三次元的な分布情報を示すイースオフを演算する演算手段と、を備え、前記演算手段は、前記伝達誤差情報及び前記隙間情報を、ヒールを原点とするトーまでの距離及びルートを原点とするフェースまでの距離をそれぞれ規格化した前記第1の共役歯面上の前記接触点の軌跡に沿って変動する関数及び同時接触線方向に沿って変動する関数にそれぞれ変換し、変換後の前記伝達誤差情報と前記隙間情報とを加算することで前記イースオフを演算し、前記演算手段は、規格化した前記第1の共役歯面に対する前記第2の共役歯面の噛合情報として、前記第2の共役歯面の接触線角度、及び、前記第2の共役歯面の平均1歯間隔を演算し、前記噛合情報に基づいて、前記伝達誤差情報及び前記隙間情報を規格化した前記第1の共役歯面上の関数に変換し、前記演算手段は、前記第1の共役歯面上の前記ヒールを起点とする歯筋方向と前記ルートを起点とする歯丈方向とにマトリクス状に設定した各格子点と、前記各格子点が前記第2の共役歯面と接触するときの前記第1の歯車の各回転角度との関係に基づいて、規格化した前記第1の共役歯面上の任意の点において前記第2の共役歯面が接触するときの前記第1の歯車の回転角度を求め、前記回転角度が等しくなる任意の点の分布に基づいて前記噛合情報を算出するものである。 A gear pair designing apparatus according to an aspect of the present invention includes a first gear of the first gear that is determined based on specifications indicating a basic shape and an assembled state of a first gear and a second gear that mesh with each other. Of the conjugate tooth surface and the second conjugate tooth surface of the second gear, the second conjugate tooth surface is generated as a non-conjugate tooth surface by tooth surface modification, and the first conjugate is used as characteristic information of the gear pair. The locus of the contact point between the tooth surface and the non-conjugated tooth surface, the transmission error information on the locus of the contact point, and the gap information on the contact line between the first conjugate tooth surface and the non-conjugated tooth surface , And the transmission error information and the gap information are three-dimensionally synthesized on the first conjugate tooth surface and the first conjugate tooth surface and the non-conjugated tooth. comprising a calculating means for calculating a Isuofu showing a three-dimensional distribution information of the gap between the relative tooth surface with the surface, the The calculation means includes the contact on the first conjugate tooth surface in which the transmission error information and the gap information are normalized with respect to a distance to a toe having a heel as an origin and a distance to a face having a root as an origin. Converting into a function that fluctuates along the locus of the point and a function that fluctuates along the simultaneous contact line direction, and calculates the ease-off by adding the converted transmission error information and the gap information, and the calculation The means includes the contact line angle of the second conjugate tooth surface and the average of the second conjugate tooth surfaces as the meshing information of the second conjugate tooth surface with the normalized first conjugate tooth surface. A tooth interval is calculated, and based on the mesh information, the transmission error information and the gap information are converted into normalized functions on the first conjugate tooth surface, and the calculation means includes the first conjugate tooth. Starting from the heel on the surface Each grid point set in a matrix in the tooth trace direction to be performed and the tooth height direction starting from the route, and each of the first gears when each grid point contacts the second conjugate tooth surface Based on the relationship with the rotation angle, the rotation angle of the first gear when the second conjugate tooth surface contacts at an arbitrary point on the normalized first conjugate tooth surface is obtained, and the rotation The meshing information is calculated based on a distribution of arbitrary points with equal angles .

本発明の歯車対の設計装置によれば、所望の特性を得るための歯面情報をオペレータ等に提示することができる。   According to the gear pair designing apparatus of the present invention, tooth surface information for obtaining desired characteristics can be presented to an operator or the like.

ハイポイドギヤの斜視図Perspective view of hypoid gear 歯車対の設計装置の概略構成図Schematic configuration diagram of gear pair design device 歯車対の設計装置を実現するためのコンピュータシステムの一例を示す概略構成図Schematic configuration diagram showing an example of a computer system for realizing a gear pair design device ユーザ入力される各接触点上の歯面変動関数(伝達誤差)の一例を示す特性図Characteristic diagram showing an example of tooth surface variation function (transmission error) on each contact point input by the user ユーザ入力される接触線上の隙間関数の一例を示す特性図Characteristic diagram showing an example of the gap function on the contact line input by the user 正規化された無次元ギヤ歯面を示す説明図Explanatory drawing showing normalized dimensionless gear tooth surface 歯面情報演算ルーチンを示すフローチャートFlow chart showing tooth surface information calculation routine 所定の演算条件で演算したドライブ側のイースオフを示す特性図Characteristic diagram showing drive-side ease-off calculated under specified calculation conditions 所定の演算条件で演算したコースト側のイースオフを示す特性図Characteristic chart showing coast-side ease-off calculated under specified calculation conditions ギヤ共役歯面と図8,9のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のドライブ側の歯面距離分布を示す特性図Characteristic chart showing the tooth surface distance distribution on the drive side when tooth contact analysis is performed using the gear conjugate tooth surface and the pinion non-conjugate tooth surface theoretically defined from the ease-off of FIGS. ギヤ共役歯面と図8,9のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のコースト側の歯面距離分布を示す特性図Characteristic diagram showing the tooth surface distance distribution on the coast side when tooth contact analysis is performed using the gear conjugate tooth surface and the pinion non-conjugate tooth surface theoretically defined from the ease-off in FIGS. ギヤ共役歯面と図8,9のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のバックラッシュの変動を示す特性図Characteristic chart showing fluctuation of backlash when tooth contact analysis is performed using gear conjugate tooth surface and pinion non-conjugate tooth surface which is theoretically defined from ys-off in FIGS. ギヤ共役歯面と図8,9のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のドライブ側の歯面変動関数を示す特性図Characteristic chart showing the drive-side tooth surface variation function when tooth contact analysis is performed using the gear conjugate tooth surface and the pinion non-conjugate tooth surface theoretically defined from the ease-off of FIGS. ギヤ共役歯面と図8,9のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のコースト側の歯面変動関数を示す特性図Characteristic chart showing the tooth surface variation function on the coast side when tooth contact analysis is performed using the gear conjugate tooth surface and the pinion non-conjugate tooth surface theoretically defined from the ease-off of FIGS. 所定の演算条件で演算したドライブ側のイースオフを示す特性図Characteristic diagram showing drive-side ease-off calculated under specified calculation conditions 所定の演算条件で演算したコースト側のイースオフを示す特性図Characteristic chart showing coast-side ease-off calculated under specified calculation conditions ギヤ共役歯面と図15,16のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のドライブ側の歯面距離分布を示す特性図Characteristic chart showing tooth surface distance distribution on the drive side when tooth contact analysis is performed using a gear conjugate tooth surface and a pinion non-conjugate tooth surface that is theoretically defined from the ease-off of FIGS. ギヤ共役歯面と図15,16のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のコースト側の歯面距離分布を示す特性図Fig. 15 is a characteristic diagram showing a tooth surface distance distribution on the coast side when tooth contact analysis is performed using a gear conjugate tooth surface and a pinion non-conjugate tooth surface that is theoretically defined from the ease-off of Figs. ギヤ共役歯面と図15,16のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のバックラッシュの変動を示す特性図Characteristic chart showing fluctuation of backlash when tooth contact analysis is performed using gear conjugate tooth surface and pinion non-conjugate tooth surface theoretically defined from ease-off of FIGS. ギヤ共役歯面と図15,16のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のドライブ側の歯面変動関数を示す特性図FIG. 15 is a characteristic diagram showing a tooth side variation function on the drive side when tooth contact analysis is performed using a gear conjugate tooth surface and a pinion non-conjugate tooth surface theoretically defined from the ease-off of FIGS. ギヤ共役歯面と図15,16のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のコースト側の歯面変動関数を示す特性図FIG. 15 is a characteristic diagram showing a coast side tooth surface variation function when tooth contact analysis is performed using a gear conjugate tooth surface and a pinion non-conjugate tooth surface theoretically defined from the ease-off of FIGS.

以下、図面を参照して本発明の形態を説明する。図面は本発明の一実施形態に係わり、図1はハイポイドギヤの斜視図、図2は歯車対の設計装置の概略構成図、図3は歯車対の設計装置を実現するためのコンピュータシステムの一例を示す概略構成図、図4はユーザ入力される各接触点上の歯面変動関数(伝達誤差)の一例を示す特性図、図5はユーザ入力される接触線上の隙間関数の一例を示す特性図、図6は正規化された無次元ギヤ歯面を示す説明図、図7は歯面情報演算ルーチンを示すフローチャート、図8は所定の演算条件で演算したドライブ側のイースオフを示す特性図、図9は所定の演算条件で演算したコースト側のイースオフを示す特性図、図10はギヤ共役歯面と図8,9のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のドライブ側の歯面距離分布を示す特性図、図11はギヤ共役歯面と図8,9のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のコースト側の歯面距離分布を示す特性図、図12はギヤ共役歯面と図8,9のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のバックラッシュの変動を示す特性図、図13はギヤ共役歯面と図8,9のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のドライブ側の歯面変動関数を示す特性図、図14はギヤ共役歯面と図8,9のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のコースト側の歯面変動関数を示す特性図、図15は所定の演算条件で演算したドライブ側のイースオフを示す特性図、図16は所定の演算条件で演算したコースト側のイースオフを示す特性図、図17はギヤ共役歯面と図15,16のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のドライブ側の歯面距離分布を示す特性図、図18はギヤ共役歯面と図15,16のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のコースト側の歯面距離分布を示す特性図、図19はギヤ共役歯面と図15,16のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のバックラッシュの変動を示す特性図、図20はギヤ共役歯面と図15,16のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のドライブ側の歯面変動関数を示す特性図、図21はギヤ共役歯面と図15,16のイースオフから理論上定義されるピニオン非共役歯面とを用いて歯当たり解析を行った際のコースト側の歯面変動関数を示す特性図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a hypoid gear, FIG. 2 is a schematic configuration diagram of a gear pair design apparatus, and FIG. 3 is an example of a computer system for realizing the gear pair design apparatus. 4 is a characteristic diagram showing an example of a tooth surface variation function (transmission error) on each contact point inputted by the user, and FIG. 5 is a characteristic diagram showing an example of a gap function on the contact line inputted by the user. FIG. 6 is an explanatory diagram showing a normalized dimensionless gear tooth surface, FIG. 7 is a flowchart showing a tooth surface information calculation routine, and FIG. 8 is a characteristic diagram showing drive-side ease-off calculated under predetermined calculation conditions. 9 is a characteristic diagram showing coast-side ease-off calculated under predetermined calculation conditions, and FIG. 10 is a tooth contact analysis using a gear conjugate tooth surface and a pinion non-conjugated tooth surface theoretically defined from the ease-off in FIGS. Dry when performing FIG. 11 is a characteristic diagram showing the tooth surface distance distribution on the side, and FIG. 11 is a coast side when tooth contact analysis is performed using a gear conjugate tooth surface and a pinion non-conjugate tooth surface theoretically defined from the ease-off of FIGS. Fig. 12 is a characteristic diagram showing the tooth flank distance distribution, and Fig. 12 shows the backlash of the backlash when the tooth contact analysis is performed using the gear conjugated tooth surface and the pinion non-conjugated tooth surface theoretically defined from the ease-off of Figs. FIG. 13 is a characteristic diagram showing the variation, and FIG. 13 shows the tooth surface variation function on the drive side when the tooth contact analysis is performed using the gear conjugate tooth surface and the pinion non-conjugate tooth surface theoretically defined from the ease-off of FIGS. FIG. 14 shows a coast side tooth surface variation function when the tooth contact analysis is performed using the gear conjugate tooth surface and the pinion non-conjugate tooth surface theoretically defined from the ease-off of FIGS. The characteristic diagram shown in FIG. 15 is calculated under predetermined calculation conditions. FIG. 16 is a characteristic diagram showing coast-side ease-off calculated under a predetermined calculation condition, and FIG. 17 is a theoretical view of pinion non-definition defined from the gear conjugate tooth surface and the ease-off of FIGS. FIG. 18 is a characteristic diagram showing a tooth surface distance distribution on the drive side when tooth contact analysis is performed using a conjugate tooth surface, and FIG. 18 is a pinion non-conjugate theoretically defined from the gear conjugate tooth surface and the ease-off of FIGS. FIG. 19 is a characteristic diagram showing the tooth side distance distribution on the coast side when tooth contact analysis is performed using the tooth surface. FIG. 19 is a pinion non-conjugated tooth theoretically defined from the gear conjugate tooth surface and the ease-off of FIGS. FIG. 20 shows a gear conjugate tooth surface and a pinion non-conjugated tooth surface that is theoretically defined from the ease-off of FIGS. 15 and 16. Toothpaste FIG. 21 is a characteristic diagram showing a tooth side variation function on the drive side when the analysis is performed, and FIG. 21 shows a tooth contact using a gear conjugate tooth surface and a pinion non-conjugated tooth surface theoretically defined from the ease-off of FIGS. It is a characteristic view which shows the tooth surface variation function of the coast side at the time of analyzing.

図1に示す歯車対100は、例えば、ハイポイドギヤであり、この歯車対100は、大径をなす一方の歯車である第1の歯車(以下、ギヤともいう)101Gと、小径をなす他方の歯車である第2の歯車(以下、ピニオンともいう)101Pとが互いに噛合して構成されている。   The gear pair 100 shown in FIG. 1 is, for example, a hypoid gear, and this gear pair 100 is a first gear (hereinafter also referred to as a gear) 101G that is one gear having a large diameter and the other gear having a small diameter. And a second gear (hereinafter also referred to as a pinion) 101P.

この歯車対100のギヤ101G及びピニオン101Pを構成する各歯面は、例えば、フェースホブ方式のカッタヘッド(図示せず)を用いて加工される。具体的には、例えば、ギヤ101Gを構成するギヤ歯面102G(凸歯面102Ga及び凹歯面102Gb)は共役歯面(第1の共役歯面)であり、このギヤ歯面102Gは、カッタヘッドを用いて成形加工される。一方、例えば、ピニオン101Pを構成するピニオン歯面102P(凸歯面102Pa及び凹歯面102Pb)は非共役歯面であり、このピニオン歯面102Pは、カッタヘッドを用いて創成加工される。すなわち、ピニオン歯面102Pは、共役歯面(第2の共役歯面)に対し、所定の歯面修正量にて歯面修正が施すことで創成された非共役歯面となる。なお、上述したギヤ101G及びピニオン101Pの各共役歯面は、歯車の基本的な形状及び組立状態を示す諸元に基づいて一義的に定まるものである。   Each tooth surface constituting the gear 101G and the pinion 101P of the gear pair 100 is processed using, for example, a face hob type cutter head (not shown). Specifically, for example, the gear tooth surface 102G (the convex tooth surface 102Ga and the concave tooth surface 102Gb) constituting the gear 101G is a conjugate tooth surface (first conjugate tooth surface), and the gear tooth surface 102G is a cutter. It is molded using the head. On the other hand, for example, the pinion tooth surface 102P (convex tooth surface 102Pa and concave tooth surface 102Pb) constituting the pinion 101P is a non-conjugated tooth surface, and this pinion tooth surface 102P is created using a cutter head. That is, the pinion tooth surface 102P is a non-conjugated tooth surface created by performing tooth surface correction on the conjugate tooth surface (second conjugate tooth surface) with a predetermined tooth surface correction amount. The conjugate tooth surfaces of the gear 101G and the pinion 101P described above are uniquely determined based on the basic shape of the gear and specifications indicating the assembled state.

このような歯面加工(歯切り)を行う加工機には、例えば、歯車対100の諸元として、ギヤ101G及びピニオン101Pの基本的な形状を規定するための諸元、ギヤ101Gとピニオン101Pとの組立状態を規定するための諸元、及び、ピニオン101Pの歯面修正量を規定するための諸元等が設定される。そして、加工機は、これら設定された諸元等に基づいて歯面加工を行う。   A processing machine that performs such tooth surface processing (gear cutting) includes, for example, specifications for defining the basic shapes of the gear 101G and the pinion 101P as the specifications of the gear pair 100, the gear 101G and the pinion 101P. And specifications for defining the assembly state, and specifications for defining the tooth surface correction amount of the pinion 101P are set. And a processing machine performs a tooth surface process based on these set specifications.

このような加工機設定に先立ち、所望の性能を有する歯車対の歯面情報をオペレータ等に提示すべく、例えば、図2に示す歯車対の設計装置1では、設計対象となる歯車対100の歯面間に対して所望の特性(伝達誤差特性及び隙間特性)を持たせるための歯面情報として、共役なギヤ歯面(ギヤ共役歯面)と非共役なピニオン歯面(ピニオン非共役歯面)との相対歯面情報を示すイースオフ(Ease-off)が演算される。   Prior to such processing machine setting, in order to present the tooth surface information of a gear pair having a desired performance to an operator or the like, for example, in the gear pair design apparatus 1 shown in FIG. As tooth surface information for providing desired characteristics (transmission error characteristics and clearance characteristics) between tooth surfaces, a conjugate gear tooth surface (gear conjugate tooth surface) and a non-conjugated pinion tooth surface (pinion non-conjugated tooth) Ease-off indicating the relative tooth surface information with respect to the surface) is calculated.

設計装置1は、設計対象となる歯車対100の各種諸元やオペレータ等が所望する特性等を入力する入力手段としての入力部5と、歯車対100の諸元や特性等の入力情報に基づいて各種演算を行う演算手段としての演算部6と、演算部6で実行される各種演算プログラム等を格納するとともに、入力部5からの入力情報等を適宜記憶する記憶部7と、演算部6での演算結果等を出力する出力部8とを有して構成されている。なお、本実施形態の設計装置1は、例えば、図3に示すコンピュータシステム10で実現される。コンピュータシステム10は、例えば、コンピュータ本体11に、キーボード12と、ディスプレイ装置13と、プリンタ14とがケーブル15を介して接続されて要部が構成されている。そして、このコンピュータシステム10において、例えば、コンピュータ本体11に配設された各種ドライブ装置やキーボード12等が入力部5として機能するとともに、コンピュータ本体11に内蔵されたCPU、ROM、RAM等が演算部6として機能する。また、コンピュータ本体11に内蔵されたハードディスク等が記憶部7として機能するとともに、ディスプレイ装置13やプリンタ14等が出力部8として機能する。   The design apparatus 1 is based on an input unit 5 as input means for inputting various specifications of the gear pair 100 to be designed, characteristics desired by an operator, and the like, and input information such as specifications and characteristics of the gear pair 100. The calculation unit 6 as a calculation means for performing various calculations, the various calculation programs executed by the calculation unit 6 and the like, the storage unit 7 for appropriately storing the input information from the input unit 5, and the calculation unit 6 And an output unit 8 for outputting a calculation result or the like. In addition, the design apparatus 1 of this embodiment is implement | achieved by the computer system 10 shown in FIG. 3, for example. The computer system 10 includes, for example, a computer main body 11, a keyboard 12, a display device 13, and a printer 14 that are connected via a cable 15 to constitute a main part. In this computer system 10, for example, various drive devices, a keyboard 12, and the like disposed in the computer main body 11 function as the input unit 5, and a CPU, ROM, RAM, and the like built in the computer main body 11 are arithmetic units. 6 functions. Further, a hard disk or the like built in the computer main body 11 functions as the storage unit 7, and the display device 13, the printer 14, and the like function as the output unit 8.

本実施形態において、入力部5には、例えば、設計対象となる歯車対100の基本的な形状を示す諸元(例えば、ギヤ101G及びピニオン101Pの円錐角、捩れ角、ピッチ円半径等)が入力されるとともに、歯車対100の組立状態を示す諸元(例えば、ギヤ比(ギヤ歯数N及びピニオン歯数N)、オフセットΕ、交差角Σ等(図1参照))が入力される。 In the present embodiment, the input unit 5 includes, for example, specifications indicating the basic shape of the gear pair 100 to be designed (for example, the cone angle, the twist angle, the pitch circle radius, etc. of the gear 101G and the pinion 101P). is input, specifications showing an assembled state of the gear pair 100 (e.g., the gear ratio (the gear number of teeth N G and pinion tooth number N P), offset E, crossing angle Σ, and the like (see FIG. 1)) is input The

また、入力部5には、設計対象となる歯車対100に対して所望する特性情報として、ギヤ歯面(共役歯面)102Gに対するピニオン歯面(非共役歯面)102Pの接触点の軌跡、各接触点上における伝達誤差情報、ギヤ歯面(共役歯面)102Gとピニオン歯面(非共役歯面)102Pとの接触線上での隙間情報が入力される。さらに、入力部5には、設計対象となる歯車対100に所望する特性情報として、ギヤ歯面102Gとピニオン歯面102PとのバックラッシュBが入力される。 Further, the input unit 5 includes, as characteristic information desired for the gear pair 100 to be designed, a locus of contact points of the pinion tooth surface (non-conjugated tooth surface) 102P with respect to the gear tooth surface (conjugate tooth surface) 102G, The transmission error information on each contact point and the gap information on the contact line between the gear tooth surface (conjugate tooth surface) 102G and the pinion tooth surface (non-conjugate tooth surface) 102P are input. Further, the input unit 5, as the characteristic information desired to gear pair 100 to be designed, backlash B L of the gear tooth surface 102G and the pinion tooth surface 102P is input.

ここで、本実施形態において、接触点軌跡上における伝達誤差情報は、例えば、図4に示すように、一歯について(すなわち、一歯間隔(2π/歯数)を「1」として)規格化された関数(モーションカーブ)y(x) [μ radian]によって与えられる。また、接触線上における隙間情報は、例えば、図5に示すように、歯幅を「1」として規格化された関数e(a) [μm]によって与えられる。なお、図4,5に例示する特性は、例えば、ドライブ側(ギヤ歯面102Gの凸歯面102Ga側)における特性を示すものであり、コースト側(ギヤ歯面102Gの凹歯面102Gb側)についても、同様に所定の特性情報が入力される。 Here, in this embodiment, the transmission error information on the contact point trajectory is normalized for one tooth (that is, assuming that one tooth interval (2π / number of teeth) is “1”) as shown in FIG. Given function (motion curve) y (x) [μ radian]. Further, the gap information on the contact line is given by, for example, a function e (a) [μm] standardized with a tooth width of “1” as shown in FIG. The characteristics illustrated in FIGS. 4 and 5 indicate, for example, characteristics on the drive side (the convex tooth surface 102Ga side of the gear tooth surface 102G), and the coast side (the concave tooth surface 102Gb side of the gear tooth surface 102G). In the same way, predetermined characteristic information is input.

また、入力部5には、後述するイースオフの演算を行う際の各種演算条件を入力することが可能となっている。具体的には、例えば、イースオフの演算に用いる接触点軌跡の型として、接触点軌跡がギヤ歯面上のルートからフェースまで貫通する「貫通型」を採用するか、或いは、接触点軌跡がピニオン有効歯先位置及びギヤ有効歯先位置においてクランク状に折曲する「Z型」を採用するかを設定入力することが可能となっている。また、例えば、イースオフの演算に用いる伝達誤差の変動距離単位(すなわち、図4に示す特性図の横軸の距離単位)として、一歯間隔を接触点軌跡に沿う距離単位に換算した「換算一歯型」を採用するか、或いは、換算しな「一歯型」を採用するかを設定入力することが可能となっている。さらに、例えば、イースオフの演算に用いる隙間の接触幅距離単位(すなわち、図5に示す特性図の横軸の距離単位)として、歯幅を同時接触線に沿う距離単位に換算した「換算歯幅型」を採用するか、或いは、換算しない「歯幅型」を採用するかを設定入力することが可能となっている。   In addition, it is possible to input various calculation conditions to the input unit 5 when performing an later-described calculation of ease-off. Specifically, for example, as a type of contact point locus used for the calculation of ease-off, a “penetration type” in which the contact point locus penetrates from the root on the gear tooth surface to the face is adopted, or the contact point locus is a pinion. It is possible to set and input whether to adopt a “Z shape” that bends in a crank shape at the effective tooth tip position and the gear effective tooth tip position. Further, for example, as a variable distance unit of transmission error used for the calculation of ease-off (that is, a distance unit on the horizontal axis of the characteristic diagram shown in FIG. 4), the one-tooth interval is converted into a distance unit along the contact point locus. It is possible to set and input whether to adopt a “tooth type” or a converted “one-tooth type”. Furthermore, for example, as the contact width distance unit of the gap used for the EAS-off calculation (that is, the distance unit on the horizontal axis of the characteristic diagram shown in FIG. 5), the tooth width is converted into the distance unit along the simultaneous contact line. It is possible to set and input whether to adopt a “type” or a “tooth width type” that is not converted.

次に、演算部6において実行される歯面情報(イースオフ)の演算処理について、図7に示す歯面情報演算ルーチンのフローチャートに従って説明する。ここで、本実施形態において、演算部6は、共役歯面からなるギヤ歯面(ギヤ共役歯面)を規格化した無次元歯面の座標上において、所望の伝達誤差情報と隙間情報とを合成することにより、歯面情報を演算する。なお、このような歯面情報の演算は、設計対象となる歯車対100においてギヤ歯面102Gを基準とするドライブ側(例えば、右歯面側)及びコースト側(例えば、左歯面側)についてそれぞれ行われるが、これらは略同様の処理であるため、以下のフローチャートの説明においては、適宜コースト側の処理の説明は省略する。   Next, the tooth surface information (eas-off) calculation process executed in the calculation unit 6 will be described with reference to the flowchart of the tooth surface information calculation routine shown in FIG. Here, in the present embodiment, the calculation unit 6 calculates desired transmission error information and gap information on the coordinates of the dimensionless tooth surface obtained by standardizing the gear tooth surface (gear conjugate tooth surface) including the conjugate tooth surface. By synthesizing, tooth surface information is calculated. Note that such calculation of tooth surface information is performed on the drive side (for example, the right tooth surface side) and the coast side (for example, the left tooth surface side) with reference to the gear tooth surface 102G in the gear pair 100 to be designed. Although these are respectively performed, since these are substantially the same processing, the description of the coast side processing will be omitted as appropriate in the following description of the flowchart.

このルーチンがスタートすると、演算部6は、先ず、ステップS101において、入力部5を通じて入力された上述の各種入力情報について、記憶部7からの読み込みを行う。   When this routine starts, the calculation unit 6 first reads from the storage unit 7 the above-described various input information input through the input unit 5 in step S101.

続くステップS102において、演算部6は、設計対象となる歯車対100の基本的な形状を示す諸元及び組立諸元等に基づいて、ギヤ101G及びピニオン101Pの各共役歯面(ギヤ共役歯面、及び、ピニオン共役歯面)を一義的に演算する。なお、例えば、ギヤ101G及びピニオン101Pの各共役歯面の情報については、予め算出された情報を、入力部5を通じて入力することも可能である。   In the subsequent step S102, the calculation unit 6 determines each conjugate tooth surface (gear conjugate tooth surface) of the gear 101G and the pinion 101P based on the specifications and assembly specifications indicating the basic shape of the gear pair 100 to be designed. , And the pinion conjugate tooth surface). In addition, for example, as for information of each conjugate tooth surface of the gear 101G and the pinion 101P, it is possible to input information calculated in advance through the input unit 5.

続くステップS103において、演算部6は、ステップS102で得られたギヤ共役歯面の情報を規格化して、無次元歯面を生成する。すなわち、演算部6は、例えば、図6に示すように、ヒールからトーまでの距離が「1」となり、且つ、ルートからフェースまでの距離が「1」となるよう規格化したギヤ共役歯面を生成する。ここで、このように規格化されたギヤ共役歯面上には、例えば、ヒールを「0(原点)」としトーを「1」とする歯筋方向の座標rと、ルートを「0(原点)」としフェース「1」とする歯丈方向の座標rとからなる直交座標が与えられる。また、このように規格化されたギヤ共役歯面(無次元座標系)上には、各種入力情報等に基づいて、接触点軌跡角度β、ピニオン有効歯先位置ril、ギヤ有効歯先位置riu等が一義的に付与される。 In subsequent step S103, the calculation unit 6 normalizes the information of the gear conjugate tooth surface obtained in step S102, and generates a dimensionless tooth surface. In other words, for example, as shown in FIG. 6, the calculation unit 6 standardizes the gear conjugate tooth surface so that the distance from the heel to the toe is “1” and the distance from the root to the face is “1”. Is generated. Here, on the gear conjugate tooth surface standardized in this way, for example, the coordinate r j of the tooth trace direction with the heel being “0 (origin)” and the toe being “1”, and the route being “0 ( Cartesian coordinate consisting of the tooth depth direction of the coordinate r i which is the origin) "to the face" 1 "is given. Further, on the gear conjugate tooth surface (dimensionalless coordinate system) thus standardized, the contact point locus angle β, the pinion effective tooth tip position r il , the gear effective tooth tip position based on various input information and the like. riu etc. are uniquely given.

続くステップS104において、演算部6は、規格化したギヤ共役歯面に対して規格化したピニオン共役歯面を噛合したと仮定したときの噛合情報として、ピニオン共役歯面の接触線角度α、及び、ピニオン共役歯面の平均一歯間隔pを演算する。   In subsequent step S104, the calculation unit 6 uses the contact line angle α of the pinion conjugate tooth surface as the engagement information when it is assumed that the normalized pinion conjugate tooth surface meshes with the normalized gear conjugate tooth surface, and Then, an average single tooth interval p of the pinion conjugate tooth surface is calculated.

これら接触線角度α及び平均一歯間隔pの演算に際し、演算部6は、先ず、ギヤ共役歯面上に設定された各格子点がピニオン共役歯面と接触するときのギヤ回転角度ωを算出する。すなわち、ギヤ共役歯面上には、例えば、ヒールを起点として歯筋方向に数える格子番号をj(j=1〜n)とし、且つ、ルートを基点として歯丈方向に数える格子番号をi(i=1〜n)とする複数(例えば、3×4個)の格子点が予めマトリクス状に設定されている。そこで、演算部6は、各格子点(j,i)においてギヤ共役歯面がピニオン共役歯面と接触するときのギヤ回転角度ωjiを算出する。 In calculating the contact line angle α and the average tooth spacing p, the calculation unit 6 first calculates the gear rotation angle ω when each lattice point set on the gear conjugate tooth surface comes into contact with the pinion conjugate tooth surface. To do. That is, on the gear conjugate tooth surface, for example, the lattice number counting in the tooth trace direction starting from the heel is j (j = 1 to n j ), and the lattice number counting in the tooth height direction starting from the root is i. A plurality of (for example, 3 × 4) lattice points (i = 1 to n i ) are set in advance in a matrix. Therefore, the calculation unit 6 calculates a gear rotation angle ω ji when the gear conjugate tooth surface contacts the pinion conjugate tooth surface at each lattice point (j, i).

次に、演算部6は、各格子点(j,i)でのギヤ回転角度ωjiを、r−r直交座標上において以下の(1)〜(3)式で近似し、(1)式中の各係数aωj,aωi,aωを、最小自乗法を用いた(4)式を解くことにより求める。

Figure 0006049137
Then, calculating unit 6, the gear rotation angle omega ji at each grid point (j, i), r j -r i Cartesian coordinates on the following (1) is approximated to (3), (1 ) The coefficients a ωj , a ωi , and a ω in the equation are obtained by solving the equation (4) using the least square method.
Figure 0006049137

これにより、規格化したギヤ共役歯面上の任意の点(r,r)においてピニオン共役歯面が接触するときのギヤ回転角度ωは、(1)式を用いて求めることが可能となる。換言すれば、(1)式の関係を用いることにより、ギヤ回転角度ωの値が等しくなる座標群(すなわち、同時接触線)を求めることが可能となる。 As a result, the gear rotation angle ω when the pinion conjugate tooth surface contacts at an arbitrary point (r j , r i ) on the normalized gear conjugate tooth surface can be obtained using the equation (1). Become. In other words, by using the relationship of the expression (1), it is possible to obtain a coordinate group (that is, a simultaneous contact line) in which the values of the gear rotation angle ω are equal.

そして、演算部6は、(1)式の関係を用いることにより、例えば、以下の(5)式及び(6)式により、ピニオン共役歯面の接触線角度α、及び、平均一歯間隔pを求める。

Figure 0006049137
And the calculating part 6 uses the relationship of (1) Formula, for example by the following (5) Formula and (6) Formula, the contact line angle (alpha) of a pinion conjugate tooth surface, and average 1 tooth | gear space | interval p Ask for.
Figure 0006049137

続くステップS105において、演算部6は、接触点軌跡上における伝達誤差情報(すなわち、伝達誤差関数y(x))と、接触線上における隙間情報(すなわち、隙間関数e(a))とを規格化したギヤ共役歯面上の関数に変換し、変換後の伝達誤差情報と隙間情報とを加算することでイースオフFjiを演算する。 In subsequent step S105, the calculation unit 6 normalizes the transmission error information (that is, the transmission error function y (x)) on the contact point locus and the gap information (that is, the gap function e (a)) on the contact line. The function is converted into a function on the gear conjugate tooth surface, and the post-conversion transmission error information and the gap information are added to calculate the ease-off F ji .

ところで、伝達誤差情報は接触点軌跡に沿って変動し、隙間情報は同時接触線方向に沿って変動するものである。そこで、演算部6は、先ず、r−r直交座標系を、以下の(7)式及び(8)式により、接触点軌跡に沿う座標をaとし、且つ、同時接触線方向に沿う座標をbとするa−b非直交座標系に変換する。

Figure 0006049137
By the way, the transmission error information varies along the contact point locus, and the gap information varies along the simultaneous contact line direction. Therefore, calculation unit 6, first, the r j -r i orthogonal coordinate system by the following equation (7) and (8), the coordinates along the contact point trajectory is a, and, along the simultaneous contact line direction Convert to ab non-orthogonal coordinate system with coordinates b.
Figure 0006049137

ここで、(8)式中において、rjO,及びriOは、例えば、ギヤ共役歯面に対し、オペレータ等によって任意に設定される基準点の座標(基準点無次元座標)である。 Here, in the equation (8), r jO and r iO are, for example, reference point coordinates (reference point non-dimensional coordinates) arbitrarily set by an operator or the like with respect to the gear conjugate tooth surface.

そして、演算部6は、a−b非直交座標系を用い、以下の(9.1)式〜(16)式により、イースオフFjiを算出する。

Figure 0006049137
Then, calculating unit 6, using a-b a non-orthogonal coordinate system, the following (9.1) to (16), calculates the Isuofu F ji.
Figure 0006049137

ここで、(16)式中の右辺第1項は、隙間e(a)に関する項である。本項において、e’は、(13)式で与えられる隙間関数である。(13)式中のa’は、隙間関数横軸とaのシフトを表す変数であり、オペレータ等により設定入力された接触点軌跡の型に応じて異なる値となる。すなわち、接触点軌跡の型が「Z型」である場合にはa’は(9.1)式〜(9.5)式を用いた(9)式で与えられ、接触点軌跡の型が「貫通型」である場合にはa’は(10)式で与えられる。   Here, the first term on the right side in the equation (16) is a term relating to the gap e (a). In this section, e ′ is a gap function given by equation (13). In the equation (13), a 'is a variable representing the gap function horizontal axis and the shift of a, and takes a different value depending on the type of the contact point locus set and input by the operator or the like. That is, when the type of the contact point locus is “Z type”, a ′ is given by Equation (9) using Equations (9.1) to (9.5). In the case of “penetrating type”, a ′ is given by the equation (10).

また、(13)式中のcは、隙間関数距離単位を示す係数であり、オペレータ等により設定入力された隙間の接触幅距離単位に応じて異なる値となる。すなわち、隙間の接触幅距離単位が「換算歯幅型(無次元型)」である場合にはcは(11)式で与えられ、隙間の接触幅距離単位が「歯幅型」である場合にはcは(12)式で与えられる。 Further, the c a in (13), a coefficient indicating the gap function distance unit, a different value depending on the contact width distance units of the gap that has been set and input by an operator or the like. That is, when the contact width distance unit of the gap is “converted tooth width type (non-dimensional type)”, ca is given by the equation (11), and the contact width distance unit of the gap is “tooth width type”. In this case, c a is given by equation (12).

また,(13)式中のUjiは、ギヤ格子(j,i)の共役歯面点の角度座標と外向き歯面法線方向距離の換算半径を示す係数であり、この係数は、単位系が [μm]によって与えられる隙間情報と、単位系が [μ radian]によって与えられる伝達誤差情報との単位系を統一するためのものである。 U ji in the equation (13) is a coefficient indicating the angle radius of the conjugate tooth surface point of the gear lattice (j, i) and the converted radius of the outward tooth surface normal direction distance. This is to unify the unit system between the gap information given by [μm] and the transmission error information given by [μ radian].

また、(16)式中の右辺第2項は、伝達誤差y(x)に関する項である。本項において、cは、変動関数距離単位を示す係数であり、オペレータ等により設定入力された伝達誤差の変動距離単位に応じて異なる値となる。すなわち、伝達誤差の変動距離単位が「換算一歯型(無次元型)」である場合にはcは(14)式で与えられ、伝達誤差の変動距離単位が「一歯型」である場合にはcは(15)式で与えられる。 Further, the second term on the right side in the equation (16) is a term relating to the transmission error y (x). In this section, c b is a coefficient indicating the variation function distance unit, and takes a different value depending on the variation distance unit of the transmission error set and input by an operator or the like. That is, when the transmission error fluctuation distance unit is “converted single-tooth type (non-dimensional type)”, c b is given by equation (14), and the transmission error fluctuation distance unit is “single-tooth type”. In this case, cb is given by equation (15).

また、(16)式中の右辺第3項は、バックラッシュBに関する項である。本項は、単にイースオフのみを知りたい場合には適宜省略可能な項であるが、イースオフをピニオン共役歯面に対する歯面修正量として求める場合には必要となる。本項において、RBLは、角度座標をバックラッシュ方向の換算半径を示す係数であり、本係数も単位系を統一するためのものである。 Further, the third term on the right side in the equation (16) is a term relating to the backlash BL . This term is a term that can be omitted as appropriate when only the ease-off is desired. However, this term is necessary when the ease-off is obtained as a tooth surface correction amount for the pinion conjugate tooth surface. In this section, R BL is a coefficient indicating the converted radius in the backlash direction in terms of angular coordinates, and this coefficient is also for unifying the unit system.

また、(16)式中の右辺第4項は、歯を溝に変換するための項であり、本項においても,適宜省略することが可能である。   Further, the fourth term on the right side in the equation (16) is a term for converting the tooth into a groove, and can be omitted as appropriate in this term.

このように演算されたイースオフは、例えば、歯車対100の設計に際し、ピニオン歯面に対する歯面修正量を設定する際の指標として、ディスプレイ装置13等の出力部8を通じてオペレータ等に提示される(例えば、図8,9、或いは、図15,16参照)。   The ease-off calculated in this way is presented to an operator or the like through the output unit 8 of the display device 13 or the like as an index for setting the tooth surface correction amount for the pinion tooth surface, for example, when designing the gear pair 100 ( (For example, see FIGS. 8 and 9 or FIGS. 15 and 16).

ここで、図8,9に示すイースオフは、例えば、接触点軌跡角度としてβ=0°が設定され、演算条件として、接触点軌跡の型に「Z型」、伝達誤差の変動距離単位に「換算一歯型」、隙間の接触幅距離単位に「換算歯幅型」が設定されたときのドライブ側及びコースト側のイースオフを示す。また、図15,16に示すイースオフは、例えば、接触点軌跡角度としてβ=45°が設定され、演算条件として、接触点軌跡の型に「貫通型」、伝達誤差の変動距離単位に「換算一歯型」、隙間の接触幅距離単位に「換算歯幅型」が設定されたときのドライブ側及びコースト側のイースオフを示す。   8 and 9, for example, β = 0 ° is set as the contact point trajectory angle, and the calculation conditions are “Z type” for the contact point trajectory type and “ It shows the drive-off and coast-side ease-off when the “converted tooth width type” and the “converted tooth width type” are set in the contact width distance unit of the gap. 15 and 16, for example, β = 45 ° is set as the contact point trajectory angle, and the calculation conditions include “through type” for the contact point trajectory type and “conversion to the variable distance unit of transmission error”. This shows the drive-off and coast-side ease-off when “one-tooth type” and “converted tooth width type” are set as the contact width distance unit of the gap.

なお、図8,9に示すイースオフに基づいて理論上定義されるピニオン非共役歯面と、ギヤ共役歯面との関係について歯当たり解析を行った結果、例えば、歯面距離分布の特性として図10,11に示す特性を得ることができ、バックラッシュの特性として図11に示す特性を得ることができ、さらに、歯面変動関数の特性として図13,14に示す特性を得ることができた。同様に、図15,16に示すイースオフに基づいて理論上適宜されるピニオン非共役歯面と、ギヤ共役歯面との関係について解析を行った結果、例えば、歯面距離分布の特性として図17,18に示す特性を得ることができ、バックラッシュの特性として図19に示す特性を得ることができ、さらに、歯面変動関数の特性として図20,21に示す特性を得ることができた。   In addition, as a result of tooth contact analysis about the relationship between the pinion non-conjugated tooth surface theoretically defined based on the ease-off shown in FIGS. The characteristics shown in FIGS. 10 and 11 can be obtained, the characteristics shown in FIG. 11 can be obtained as the backlash characteristics, and the characteristics shown in FIGS. 13 and 14 can be obtained as the characteristics of the tooth surface variation function. . Similarly, as a result of analyzing the relationship between the pinion non-conjugate tooth surface theoretically appropriate based on the ease-off shown in FIGS. 15 and 16 and the gear conjugate tooth surface, for example, FIG. 18, the characteristics shown in FIG. 19 can be obtained as the backlash characteristics, and the characteristics shown in FIGS. 20 and 21 can be obtained as the characteristics of the tooth surface variation function.

このような実施形態によれば、例えば、設計対象となる歯車対100のピニオン共役歯面に対する歯面修正を行うことでピニオン非共役歯面を創成するための加工機設定等を行うに際し、オペレータ等が所望するギヤ共役歯面とピニオン非共役歯面との接触点の軌跡と、接触点の軌跡上における伝達誤差情報と、ギヤ共役歯面とピニオン非共役歯面との接触線上での隙間情報とを入力し、伝達誤差情報と隙間情報とをギヤ共役歯面上で三次元的に合成してギヤ共役歯面とピニオン非共役歯面との相対歯面情報を示すイースオフを演算することにより、歯面修正によって所望の特性を得るための指標となる歯面情報をオペレータ等に提示することができる。従って、オペレータ等は,経験等に大きく左右されることなく、目標とする創成歯面に関する情報を事前に把握することができ、歯面修正等に対する工程を効率化することができる。   According to such an embodiment, for example, when performing processing machine setting for creating a pinion non-conjugated tooth surface by correcting the tooth surface with respect to the pinion conjugate tooth surface of the gear pair 100 to be designed, the operator Of the contact point between the gear conjugate tooth surface and the pinion non-conjugated tooth surface, transmission error information on the contact point locus, and the clearance on the contact line between the gear conjugate tooth surface and the pinion non-conjugated tooth surface. Information is input, and transmission error information and gap information are synthesized three-dimensionally on the gear conjugate tooth surface to calculate an eth-off indicating relative tooth surface information between the gear conjugate tooth surface and the pinion non-conjugate tooth surface. Thus, tooth surface information serving as an index for obtaining desired characteristics by tooth surface correction can be presented to an operator or the like. Therefore, the operator or the like can grasp in advance information on the target tooth surface without being greatly influenced by experience and the like, and can improve the efficiency of the process for tooth surface correction and the like.

なお、本発明は、以上説明した各実施形態に限定されることなく、種々の変形や変更が可能であり、それらも本発明の技術的範囲内である。例えば、上述の実施形態においては、本発明をハイポイドギヤに対して適用した一例について説明したが、本発明はこれに限定されるものではなく、他の種類の歯車対に対して適用が可能であることは勿論である。   In addition, this invention is not limited to each embodiment described above, A various deformation | transformation and change are possible, and they are also in the technical scope of this invention. For example, in the above-described embodiment, an example in which the present invention is applied to a hypoid gear has been described. However, the present invention is not limited to this, and can be applied to other types of gear pairs. Of course.

1 … 設計装置
5 … 入力部(入力手段)
6 … 演算部(演算手段)
7 … 記憶部
8 … 出力部
10 … コンピュータシステム
11 … コンピュータ本体
12 … キーボード
13 … ディスプレイ装置
14 … プリンタ
15 … ケーブル
100 … 歯車対
101G … ギヤ(第1の歯車)
101P … ピニオン(第2の歯車)
102G … ギヤ歯面
102Ga … 凸歯面
102Gb … 凹歯面
102P … ピニオン歯面
102Pa … 凸歯面
102Pb … 凹歯面
DESCRIPTION OF SYMBOLS 1 ... Design apparatus 5 ... Input part (input means)
6 ... Calculation part (calculation means)
DESCRIPTION OF SYMBOLS 7 ... Memory | storage part 8 ... Output part 10 ... Computer system 11 ... Computer main body 12 ... Keyboard 13 ... Display apparatus 14 ... Printer 15 ... Cable 100 ... Gear pair 101G ... Gear (1st gear)
101P ... Pinion (second gear)
102G ... Gear tooth surface 102Ga ... Convex tooth surface 102Gb ... Concave tooth surface 102P ... Pinion tooth surface 102Pa ... Convex tooth surface 102Pb ... Concave tooth surface

Claims (2)

互いに噛合する第1の歯車と第2の歯車の基本的な形状及び組立状態を示す諸元に基づいて定まる前記第1の歯車の第1の共役歯面と前記第2の歯車の第2の共役歯面のうち前記第2の共役歯面が歯面修正によって非共役歯面に創成される歯車対の特性情報として、前記第1の共役歯面と前記非共役歯面との接触点の軌跡と、前記接触点の軌跡上における伝達誤差情報と、前記第1の共役歯面と前記非共役歯面との接触線上での隙間情報と、を含む情報が入力される入力手段と、
前記伝達誤差情報と前記隙間情報とを前記第1の共役歯面上で三次元的に合成して前記第1の共役歯面と前記非共役歯面との相対的な歯面間の隙間の三次元的な分布情報を示すイースオフを演算する演算手段と、を備え
前記演算手段は、前記伝達誤差情報及び前記隙間情報を、ヒールを原点とするトーまでの距離及びルートを原点とするフェースまでの距離をそれぞれ規格化した前記第1の共役歯面上の前記接触点の軌跡に沿って変動する関数及び同時接触線方向に沿って変動する関数にそれぞれ変換し、変換後の前記伝達誤差情報と前記隙間情報とを加算することで前記イースオフを演算し、
前記演算手段は、規格化した前記第1の共役歯面に対する前記第2の共役歯面の噛合情報として、前記第2の共役歯面の接触線角度、及び、前記第2の共役歯面の平均1歯間隔を演算し、
前記噛合情報に基づいて、前記伝達誤差情報及び前記隙間情報を規格化した前記第1の共役歯面上の関数に変換し、
前記演算手段は、前記第1の共役歯面上の前記ヒールを起点とする歯筋方向と前記ルートを起点とする歯丈方向とにマトリクス状に設定した各格子点と、前記各格子点が前記第2の共役歯面と接触するときの前記第1の歯車の各回転角度との関係に基づいて、規格化した前記第1の共役歯面上の任意の点において前記第2の共役歯面が接触するときの前記第1の歯車の回転角度を求め、前記回転角度が等しくなる任意の点の分布に基づいて前記噛合情報を算出することを特徴とする歯車対の設計装置。
The first conjugate tooth surface of the first gear and the second gear of the second gear, which are determined based on the basic shape of the first gear and the second gear meshing with each other and specifications indicating the assembled state. As the characteristic information of the gear pair in which the second conjugate tooth surface of the conjugate tooth surface is created on the non-conjugated tooth surface by the tooth surface modification, the contact point between the first conjugate tooth surface and the non-conjugated tooth surface is obtained. Input means for inputting information including a locus, transmission error information on the locus of the contact point, and gap information on a contact line between the first conjugate tooth surface and the non-conjugated tooth surface;
The gap between the relative tooth surfaces of the transmission error information and the gap information and the three-dimensionally combined and the first conjugate tooth surface on said first conjugate tooth surface wherein the non-conjugated tooth surface Computing means for computing ease-off indicating three-dimensional distribution information ,
The calculation means includes the contact on the first conjugate tooth surface in which the transmission error information and the gap information are normalized with respect to a distance to a toe having a heel as an origin and a distance to a face having a root as an origin. Converting each into a function that varies along the locus of the point and a function that varies along the simultaneous contact line direction, calculating the ease-off by adding the transmission error information and the gap information after the conversion,
The calculation means, as the meshing information of the second conjugate tooth surface with respect to the normalized first conjugate tooth surface, the contact line angle of the second conjugate tooth surface, and the second conjugate tooth surface Calculate the average tooth spacing,
Based on the mesh information, the transmission error information and the gap information is converted into a normalized function on the first conjugate tooth surface,
The calculation means includes a lattice point set in a matrix in a tooth trace direction starting from the heel on the first conjugate tooth surface and a tooth height direction starting from the root, and the lattice points are The second conjugate tooth at an arbitrary point on the first conjugate tooth surface normalized based on the relationship with each rotation angle of the first gear when contacting the second conjugate tooth surface. An apparatus for designing a gear pair, characterized in that a rotation angle of the first gear when a surface comes into contact is obtained, and the meshing information is calculated based on a distribution of arbitrary points at which the rotation angles are equal .
前記入力手段は、前記歯車対の特性情報としてバックラッシュが入力され、  The input means receives backlash as characteristic information of the gear pair,
前記演算手段は、前記バックラッシュを加えた前記イースオフを、前記第2の共役歯面に対して前記歯面修正を行う際の歯面修正量として演算することを特徴とする請求項1に記載の歯車対の設計装置。  The said calculating means calculates the said ease-off which added the said backlash as a tooth surface correction amount at the time of performing the said tooth surface correction with respect to a said 2nd conjugate tooth surface. Gear pair design device.
JP2012274993A 2012-12-17 2012-12-17 Gear pair design equipment Active JP6049137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012274993A JP6049137B2 (en) 2012-12-17 2012-12-17 Gear pair design equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274993A JP6049137B2 (en) 2012-12-17 2012-12-17 Gear pair design equipment

Publications (2)

Publication Number Publication Date
JP2014119042A JP2014119042A (en) 2014-06-30
JP6049137B2 true JP6049137B2 (en) 2016-12-21

Family

ID=51174056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274993A Active JP6049137B2 (en) 2012-12-17 2012-12-17 Gear pair design equipment

Country Status (1)

Country Link
JP (1) JP6049137B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3628428A1 (en) * 2018-09-25 2020-04-01 Klingelnberg AG Method and device for lapping gear pairs

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108999952B (en) * 2018-08-31 2020-08-18 西安交通大学 Bevel gear tooth surface modification method aiming at dislocation quantity and verification method thereof
CN110362858B (en) * 2019-06-05 2021-10-22 徐州圣邦机械有限公司 Reliability evaluation method for high-pressure internal gear pump gear pair

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1036417C (en) * 1988-01-29 1997-11-12 国家机械工业委员会成都工具研究所 Method & implement of gearing error measuring by mating and separating
JP3267364B2 (en) * 1993-01-18 2002-03-18 キヤノン株式会社 Graphic processing apparatus and method
JP3484879B2 (en) * 1995-06-05 2004-01-06 株式会社豊田中央研究所 Gear design method, gear and gear measurement method
JP3048887B2 (en) * 1995-06-26 2000-06-05 富士通テン株式会社 Gear figure processing device
JP2005069713A (en) * 2003-08-27 2005-03-17 Asano Gear Co Ltd Tooth surface shape measurement/evaluation method of gear
US7707879B2 (en) * 2005-04-15 2010-05-04 Fuji Jukogyo Kabushiki Kaisha Gear pair evaluation apparatus, gear pair evaluation program, and gear pair whose tooth surfaces are evaluated using the apparatus and program
JP5578714B2 (en) * 2010-07-12 2014-08-27 武蔵精密工業株式会社 Design program for gear meshing with pinion, mold manufacturing method by the design program, mold manufactured by the manufacturing method, manufacturing method for gear meshing with pinion by the design program, and meshing pinion manufactured by the manufacturing method gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3628428A1 (en) * 2018-09-25 2020-04-01 Klingelnberg AG Method and device for lapping gear pairs

Also Published As

Publication number Publication date
JP2014119042A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
Vimercati Mathematical model for tooth surfaces representation of face-hobbed hypoid gears and its application to contact analysis and stress calculation
JP4823897B2 (en) Gear pair evaluation device and gear pair evaluation program
US7599824B2 (en) Gear cutting simulation method, gear cutting simulation program, and gear cutting simulation device
Simon Optimization of face-hobbed hypoid gears
JP6049137B2 (en) Gear pair design equipment
CN109630652B (en) Three-arc harmonic gear slotting cutter and tooth profile design method thereof
TWI518310B (en) Method for determining the precision of gears
CN103671820B (en) Gear and its manufacture method
CN102243679B (en) Method for modeling straight-tooth non-conical gears
JP5299895B2 (en) Method, program and apparatus for generating contour shape of a pair of non-circular gears
JP2008175694A (en) Evaluation device of gear pair, evaluation program, and evaluation method of gear pair using this
JP5276358B2 (en) Hypoid gear analysis system
CN102262696B (en) Modeling method for cylindrical gear of straight tooth or helical tooth
JP5481219B2 (en) Gear pair evaluation device
Bruzhas et al. Development of solid-state models for the gears of different geometry
Kolivand et al. An ease-off based method for loaded tooth contact analysis of hypoid gears having local and global surface deviations
CN108856910B (en) A kind of method and device of polishing gear edge by use
CN102278453B (en) Modeling method for straight cone gear
JP5400375B2 (en) Gear pair evaluation device
JP2006090466A (en) Conical shape involute gear pair
Oladejo et al. Development of Computer-Based Model for Design and Analyses of Worm Gearing Mechanism
CN110160763B (en) Method for measuring working performance of wave generator
JP2012063145A (en) Gear strength evaluation method
JP2005332423A (en) Gear wheel processing simulation method, gear wheel processing simulation program, and gear wheel processing simulation device
JP2013248711A (en) Setting device for hypoid gear machining machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161118

R150 Certificate of patent or registration of utility model

Ref document number: 6049137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250