JP6048852B2 - Vacuum insulation - Google Patents

Vacuum insulation Download PDF

Info

Publication number
JP6048852B2
JP6048852B2 JP2015163048A JP2015163048A JP6048852B2 JP 6048852 B2 JP6048852 B2 JP 6048852B2 JP 2015163048 A JP2015163048 A JP 2015163048A JP 2015163048 A JP2015163048 A JP 2015163048A JP 6048852 B2 JP6048852 B2 JP 6048852B2
Authority
JP
Japan
Prior art keywords
heat insulating
radiation
insulating material
vacuum heat
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015163048A
Other languages
Japanese (ja)
Other versions
JP2016102584A (en
Inventor
西川 幸男
幸男 西川
宝 晃
晃 宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to CN201510702231.1A priority Critical patent/CN105605863B/en
Priority to US14/932,890 priority patent/US9671055B2/en
Publication of JP2016102584A publication Critical patent/JP2016102584A/en
Application granted granted Critical
Publication of JP6048852B2 publication Critical patent/JP6048852B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Description

本開示は、冷蔵庫や保冷車などに用いる真空断熱材に関する。   The present disclosure relates to a vacuum heat insulating material used for a refrigerator, a cold car, and the like.

従来の真空断熱材は、ガラスウールなどから成る芯材をガスバリア性フィルムからなる外被材で覆って内部を減圧封止することで作製される。この真空断熱材は、主に作製方法や信頼性の都合から、その多くが厚さ3mmから20mmの平板状をしており、その形状のまま冷蔵庫などの製品に適用されることがほとんどである。また、真空断熱材の断熱特性の向上には、熱の伝導や輻射を抑制するために、構成する材料に熱が伝達し難い物質を用いること、材料間の接触面積を小さくすること、熱伝達を断熱方向と直角の面方向に制御すること、が重要になる。   A conventional vacuum heat insulating material is manufactured by covering a core material made of glass wool or the like with a jacket material made of a gas barrier film and sealing the inside under reduced pressure. Most of these vacuum heat insulating materials have a flat plate shape with a thickness of 3 mm to 20 mm for the convenience of manufacturing method and reliability, and are mostly applied to products such as refrigerators in the shape. . In addition, in order to improve the heat insulation characteristics of the vacuum heat insulating material, in order to suppress heat conduction and radiation, a material that does not easily transfer heat is used as the constituent material, the contact area between the materials is reduced, heat transfer It is important to control the surface direction perpendicular to the heat insulation direction.

真空断熱材の適用例としては、断熱方向と直角に繊維を配置して熱伝導量を抑制したもの(例えば、特許文献1参照。)や、輻射熱の遮蔽効果に優れる金属箔または金属蒸着フィルムを埋設したもの(例えば、特許文献2参照。)、輻射熱の遮蔽効果に優れるマイカなどの板状物質をグラスマット等の芯材と樹脂で一体化して面内に積層させたもの(例えば、特許文献3参照。)がある。特許文献3では、輻射熱の遮蔽効果に優れるマイカなどの板状物質を分散させたスラリー液をグラスマット上に均一分散させて、板状物質が面方向に積層した複合材を形成している。   As an application example of the vacuum heat insulating material, a metal foil or a metal vapor deposition film excellent in the shielding effect of radiant heat, such as one in which fibers are arranged at right angles to the heat insulating direction to suppress the heat conduction amount (for example, see Patent Document 1). An embedded material (for example, see Patent Document 2), a plate-like substance such as mica that has an excellent shielding effect against radiant heat, and an integrated material such as a glass mat and a resin and laminated in a plane (for example, Patent Document) 3). In Patent Document 3, a slurry liquid in which a plate-like substance such as mica having an excellent radiant heat shielding effect is dispersed is uniformly dispersed on a glass mat to form a composite material in which the plate-like substances are laminated in the surface direction.

また、断熱されるべき部位は、必ずしも平面形状であるとは限らない。断熱部位に角部、突起や段差がある場合には、真空断熱材に曲げ、穴明け等の加工を施したり、あらかじめ外装材の形状を成形しておくことで、真空断熱材の形状を断熱部位の形状に対応させる方法が知られている。成形する方法としては、袋状外殻材に粉状あるいは粒状の充填物を収納し、凸部を持った型を用いて外殻材の上下を圧縮して、外殻材内部を真空排気することで表面に凹部を形成するもの(例えば、特許文献4参照。)や、断熱材が充填されたフィルム容器内部を減圧し、ヒートシールによって密封して作製される板状の真空断熱材を真空容器に入れて減圧した状態で型によって成形し、これを保持した状態で常圧に戻すもの(例えば、特許文献5参照。)がある。   Moreover, the site | part which should be insulated is not necessarily plane shape. If there are corners, protrusions or steps in the heat insulation part, the vacuum heat insulating material can be insulated by bending or punching the vacuum heat insulating material, or by shaping the exterior material in advance. A method of corresponding to the shape of a part is known. As a molding method, a powdery or granular filling is stored in a bag-like outer shell material, and the upper and lower portions of the outer shell material are compressed using a mold having a convex portion, and the inside of the outer shell material is evacuated. Vacuum the plate-shaped vacuum insulation material that is formed by reducing the pressure inside the film container filled with the heat insulating material and sealing it by heat sealing (for example, see Patent Document 4). There is one that is molded with a mold in a state where the pressure is reduced in a container, and is returned to normal pressure while being held (see, for example, Patent Document 5).

特開昭60−208696号公報JP-A-60-208696 特開昭62−13979号公報Japanese Patent Laid-Open No. 62-13979 特開平10−238938号公報Japanese Patent Laid-Open No. 10-238938 特開昭61−168772号公報JP 61-168772 A 特開昭63−163764号公報Japanese Patent Laid-Open No. 63-163764

しかし、金属箔や金属蒸着フィルムを単に埋設するだけでは、これらの有限の長さに由来する不連続部で、電磁波が漏れて輻射が大きくなる。板状物質を積層した樹脂を芯材と一体化すると、伝導伝熱が大きくなり、断熱特性が低下する。また、断熱される部位には角部を有することがある。角部を有する製品に真空断熱材を適用する場合、前記従来の成形する方法の構成では、真空チャンバー内に成形型を設置するか、成形型そのものを真空排気装置とするため装置が大掛かりなものとなる課題があった。また、外殻材のフィルムや輻射効果のある板状物質が成形時に伸ばされ真空断熱材の信頼性が低下するという問題点があった。   However, if a metal foil or a metal vapor deposition film is simply embedded, electromagnetic waves leak and radiation increases at these discontinuous portions derived from these finite lengths. When the resin in which the plate-like substance is laminated is integrated with the core material, the conduction heat transfer becomes large, and the heat insulating properties are deteriorated. Further, the part to be insulated may have a corner. When applying a vacuum heat insulating material to a product having corners, the conventional molding method configuration requires a large apparatus because a molding die is installed in a vacuum chamber or the molding die itself is a vacuum exhaust device. There was a problem. Further, there has been a problem that the film of the outer shell material and the plate-like substance having a radiation effect are stretched at the time of molding and the reliability of the vacuum heat insulating material is lowered.

本開示の目的は、断熱特性が良好で、かつ信頼性の高い角部を容易に形成できる真空断熱材を提供することである。   An object of the present disclosure is to provide a vacuum heat insulating material that has a good heat insulating property and can easily form a highly reliable corner.

本開示に係る真空断熱材は、無機質の繊維状集合体を含む芯材と、
前記芯材の少なくとも一方の面を覆う外被材と、
を含み、内部を減圧封止した真空断熱材であって、
前記外被材は、
最外にある樹脂層と、
前記樹脂層の内側の輻射防止層と、
を有し、前記輻射防止層は、その一部において、少なくとも2層以上の輻射防止層が積層した重複部を有する。
The vacuum heat insulating material according to the present disclosure includes a core material including an inorganic fibrous aggregate;
A jacket material covering at least one surface of the core material;
A vacuum heat insulating material whose inside is sealed under reduced pressure,
The jacket material is
The outermost resin layer,
A radiation preventing layer inside the resin layer;
The radiation prevention layer has, in part, an overlapping portion in which at least two layers of radiation prevention layers are laminated.

本構成によって、真空断熱材に角部を設けるために曲げたとしても、外殻材のフィルムは伸ばされ、延性の小さな輻射効果のある板状物質は積層した2層の間ですべりが起こり必ず重なっているため輻射防止効果を確保できる。また、信頼性を低下させることなく角部を形成できる。   Even if the vacuum insulation material is bent to provide corners, the outer shell film is stretched, and the plate-like material having a small ductility and radiation effect slips between the two layers without fail. Since they overlap, the radiation prevention effect can be secured. In addition, corners can be formed without reducing reliability.

以上のように、本開示の真空断熱材によれば、輻射防止効果が低下しないため断熱特性が良好で、かつ信頼性の高い角部を容易に形成できる真空断熱材を提供できる。   As described above, according to the vacuum heat insulating material of the present disclosure, it is possible to provide a vacuum heat insulating material that can easily form corner portions with good heat insulating characteristics and high reliability because the radiation preventing effect does not decrease.

実施の形態1に係る真空断熱材の断面図である。3 is a cross-sectional view of the vacuum heat insulating material according to Embodiment 1. FIG. 実施の形態1に係る真空断熱材の外被材の断面拡大図である。3 is an enlarged cross-sectional view of a jacket material of the vacuum heat insulating material according to Embodiment 1. FIG. 図2の平面図である。FIG. 3 is a plan view of FIG. 2. 変形例の真空断熱材の外被材の断面拡大図である。It is a cross-sectional enlarged view of the jacket material of the vacuum heat insulating material of a modification. 実施の形態1に係る真空断熱材を金型で曲げる工程の概念図である。It is a conceptual diagram of the process of bending the vacuum heat insulating material which concerns on Embodiment 1 with a metal mold | die. 実施の形態1に係る真空断熱材が直角に曲げられた断面概念図である。1 is a conceptual cross-sectional view in which a vacuum heat insulating material according to Embodiment 1 is bent at a right angle. 実施の形態1に係る真空断熱材を曲げ加工後の外被材の拡大図である。It is an enlarged view of the jacket material after bending the vacuum heat insulating material which concerns on Embodiment 1. FIG. 実施の形態2に係る真空断熱材の外被材の断面拡大図である。6 is an enlarged cross-sectional view of a jacket material of a vacuum heat insulating material according to Embodiment 2. FIG. 図8の平面図である。It is a top view of FIG. 実施の形態3に係る真空断熱材の外被材の断面拡大図である。FIG. 6 is an enlarged cross-sectional view of a jacket material of a vacuum heat insulating material according to a third embodiment. 全反射しない入射角θで樹脂層10に入射した電磁波が、上下の輻射防止層5の間で反射を繰り返して樹脂層9に入射する場合の模式図である。FIG. 5 is a schematic diagram when an electromagnetic wave incident on the resin layer 10 at an incident angle θ that does not totally reflect is repeatedly reflected between the upper and lower radiation prevention layers 5 and incident on the resin layer 9. 実施の形態3に係る真空断熱材の曲げ加工後の外被材の拡大図である。It is an enlarged view of the jacket material after the bending process of the vacuum heat insulating material which concerns on Embodiment 3. FIG. 実施の形態4に係る真空断熱材の外被材の断面拡大図である。It is a cross-sectional enlarged view of the jacket material of the vacuum heat insulating material which concerns on Embodiment 4. FIG. 図13の平面図である。FIG. 14 is a plan view of FIG. 13. 実施の形態4に係る真空断熱材の曲げ加工後の外被材の拡大図である。It is an enlarged view of the jacket material after the bending process of the vacuum heat insulating material which concerns on Embodiment 4. FIG.

第1の態様に係る真空断熱材は、無機質の繊維状集合体を含む芯材と、
前記芯材の少なくとも一方の面を覆う外被材と、
を含み、内部を減圧封止した真空断熱材であって、
前記外被材は、
最外にある樹脂層と、
前記樹脂層の内側の輻射防止層と、
を有し、前記輻射防止層は、その一部において、少なくとも2層以上の輻射防止層が積層した重複部を有する。
The vacuum heat insulating material according to the first aspect includes a core material including an inorganic fibrous aggregate,
A jacket material covering at least one surface of the core material;
A vacuum heat insulating material whose inside is sealed under reduced pressure,
The jacket material is
The outermost resin layer,
A radiation preventing layer inside the resin layer;
The radiation prevention layer has, in part, an overlapping portion in which at least two layers of radiation prevention layers are laminated.

第2の態様に係る真空断熱材は、上記第1の態様において、前記重複部は、重複した前記輻射防止層の間に空間を有してもよい。   In the vacuum heat insulating material according to the second aspect, in the first aspect, the overlapping portion may have a space between the overlapping radiation prevention layers.

第3の態様に係る真空断熱材は、上記第1又は第2の態様において、前記輻射防止層は、薄板状であって、前記重複部の長さは、積層した前記輻射防止層の間に設置された樹脂層の厚さに対し、tan15°×(樹脂層の厚さ)×(20−(樹脂層の積層数+1))以上であってもよい。   The vacuum heat insulating material according to a third aspect is the above first or second aspect, wherein the radiation preventing layer is a thin plate, and the length of the overlapping portion is between the laminated radiation preventing layers. It may be tan15 ° × (resin layer thickness) × (20− (the number of laminated resin layers + 1)) or more with respect to the thickness of the installed resin layer.

第4の態様に係る真空断熱材は、上記第1から第3のいずれかの態様において、前記真空断熱材は、角部を有し、前記真空断熱材の板厚は、前記角部の曲げ半径の4倍以下であってもよい。   The vacuum heat insulating material according to a fourth aspect is any one of the first to third aspects, wherein the vacuum heat insulating material has a corner, and the thickness of the vacuum heat insulating material is the bending of the corner. It may be 4 times or less of the radius.

第5の態様に係る真空断熱材は、上記第4の態様において、前記外被材の最外の前記樹脂層は、200%以上の伸びが可能な材料からなるものであってもよい。   In the vacuum heat insulating material according to the fifth aspect, in the fourth aspect, the outermost resin layer of the jacket material may be made of a material capable of elongation of 200% or more.

第6の態様に係る真空断熱材は、上記第1から第5のいずれかの態様において、前記輻射防止層は、金属層を含み、前記金属層の厚さが40nm以上であってもよい。   In the vacuum heat insulating material according to a sixth aspect, in any one of the first to fifth aspects, the radiation prevention layer may include a metal layer, and the thickness of the metal layer may be 40 nm or more.

第7の態様に係る真空断熱材は、上記第6の態様において、前記輻射防止層の前記金属層は、アルミニウムからなるものであってもよい。   In the vacuum heat insulating material according to a seventh aspect, in the sixth aspect, the metal layer of the radiation preventing layer may be made of aluminum.

第8の態様に係る真空断熱材は、上記第1から第7のいずれかの態様において、前記輻射防止層は、
貫通孔を有する第1の輻射防止層と、
前記貫通孔を覆うと共に、前記貫通孔の周囲で前記第1の輻射防止層と積層する環状の重複部を形成する第2の輻射防止層と、
を含んでもよい。
The vacuum heat insulating material according to an eighth aspect is any one of the first to seventh aspects, wherein the radiation preventing layer is
A first radiation preventing layer having a through hole;
A second radiation preventing layer that covers the through hole and forms an annular overlapping portion that is laminated with the first radiation preventing layer around the through hole;
May be included.

以下、本発明の実施の形態に係る真空断熱材について、添付図面を参照しながら説明する。なお、図面において、実質的に同一の部材については同一の符号を付している。   Hereinafter, a vacuum heat insulating material according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the drawings, substantially the same members are denoted by the same reference numerals.

(実施の形態1)
図1は、本発明の実施の形態1における真空断熱材の断面図である。図1に示すように、真空断熱材1は、芯材2と、芯材2を覆う外被材3と、を含む。この真空断熱材1は、内部が減圧封止されている。外被材3は、芯材2の両面を覆うように設けられている。
なお、真空断熱材1の減圧封止は、大気圧よりも減圧していればよい。また、その封止も厳密な気密性を必要とするものではない。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 1 of the present invention. As shown in FIG. 1, the vacuum heat insulating material 1 includes a core material 2 and a jacket material 3 that covers the core material 2. The vacuum heat insulating material 1 is sealed under reduced pressure. The jacket material 3 is provided so as to cover both surfaces of the core material 2.
In addition, the vacuum sealing of the vacuum heat insulating material 1 should just be pressure-reduced rather than atmospheric pressure. Also, the sealing does not require strict airtightness.

以下に、この真空断熱材1を構成する構成部材について説明する。   Below, the structural member which comprises this vacuum heat insulating material 1 is demonstrated.

<芯材>
芯材2は、無機質の繊維状集合体であればよい。芯材2としては、例えば、ガラスウール、ロックウール、炭素繊維、セラミック繊維等を用いることができる。なお、上記記載は例示であってこれらに限定されるものではない。また、角部に用いられる場合には、角部の形成時の屈曲可能な材料からなるものが好ましい。
<Core>
The core material 2 should just be an inorganic fibrous aggregate. As the core material 2, for example, glass wool, rock wool, carbon fiber, ceramic fiber, or the like can be used. In addition, the said description is an illustration and is not limited to these. Moreover, when using for a corner | angular part, what consists of the material which can be bent at the time of formation of a corner | angular part is preferable.

<外被材>
図2は、外被材3の断面拡大図である。図3は、図2の平面図である。外被材3は、内側の樹脂層4と、輻射防止層5−1、5−2と、最外層の樹脂層6と、の積層構造を有する。輻射防止層5−1、5−2は、端部において部分的に重ね合わされて重複部Aを形成している。
図4は、変形例の真空断熱材の外被材3の断面拡大図である。この変形例では、輻射防止層5−1の端部18を先端側で先細となるテーパ状端部としているが、これに限られない。例えば、端部18を三角形状、くさび状等にしてもよい。これによって、輻射防止層5−1と輻射防止層5−2との重なり合う重複部A1の変形時におけるすべりをよくすることができる。
<Coating material>
FIG. 2 is an enlarged cross-sectional view of the jacket material 3. FIG. 3 is a plan view of FIG. The jacket material 3 has a laminated structure of an inner resin layer 4, radiation prevention layers 5-1 and 5-2, and an outermost resin layer 6. The radiation preventing layers 5-1 and 5-2 are partially overlapped at the end portions to form an overlapping portion A.
FIG. 4 is an enlarged cross-sectional view of the jacket 3 of the vacuum heat insulating material according to the modification. In this modification, the end portion 18 of the radiation preventing layer 5-1 is a tapered end portion that is tapered on the front end side, but is not limited thereto. For example, the end 18 may have a triangular shape, a wedge shape, or the like. As a result, it is possible to improve slippage during deformation of the overlapping portion A1 where the radiation preventing layer 5-1 and the radiation preventing layer 5-2 overlap.

<輻射防止材>
輻射防止層5−1、5−2は、電磁波を透過させず、遮蔽するものであればよい。例えば、アルミニウム箔(板厚0.1mm)からなるものであってもよい。なお、輻射防止層5−1、5−2は、アルミニウム箔に限られず、アルミニウム蒸着フィルム等であってもよい。また、アルミニウム以外の金属や、同様に輻射防止機能を有する材料であればよい。この輻射防止層5−1、5−2は、長さAの範囲にわたって2層の輻射防止層5−1、5−2(例えば、アルミニウム箔)が重ね合わされている重複部Aを有する。重複部Aでは、輻射防止層5−1、5−2の間にほとんど隙間は無いので、わずかでも重複部があれば板厚方向に輻射を起こす電磁波の通過は起こらない。物体中の熱の移動機構を大別すると、伝導伝熱、気体伝熱、対流伝熱、輻射伝熱およびこれらの組合せとなる。この真空断熱材1では、内部の真空度が十分高いため、対流、気体伝熱の影響をほとんど無視でき、伝導伝熱と輻射伝熱のみとなる。伝導伝熱については、芯材2と外被材3との接触面積を小さくしたり、芯材3との接触面に熱伝導性の悪い樹脂材料などを配置すれば、伝導伝熱の影響を無視できる。輻射伝熱については、電磁波を途中で遮蔽する物質を設ければ、温度が高い側からの伝熱を防ぐことが出来る。そのため、内側の樹脂層4の外側にアルミニウム箔を輻射防止層5−1、5−2として設置している。輻射防止層5−1と輻射防止層5−2とは、それぞれの端部を重ね合わせるように配置されている。アルミニウムは、延性と加工性に優れた金属である。一般に物質では吸収長と呼ばれる、それ以上の深さでは電磁波を通過しない厚さがある。吸収長は、例えば、電磁波の強度が1/e以下に減衰する厚さとしてもよい。波長1μmの近赤外線や波長10μmの遠赤外線に対して、アルミニウムでは厚さが15nm以上、他の実用金属材料で最も吸収長の深いニッケルでも厚さが40nm以上あれば、電磁波を通さない。そこで、輻射防止層5−1、又は、輻射防止層5−2の端部の不連続部で電磁波が透過しないように、2層の輻射防止層5−1、5−2を重ね合せて重複部Aを形成している。なお、図3の平面図に示すように、重複部Aは、輻射防止層5−1、5−2のそれぞれの端部の直線で囲まれた形状を有するが、これに限られない。例えば、輻射防止層5−1、5−2の端部が曲線状の場合には、重複部Aは、曲線で囲まれた形状であってもよい。
<Radiation prevention material>
The radiation prevention layers 5-1 and 5-2 may be any layer that does not transmit electromagnetic waves and shields them. For example, an aluminum foil (plate thickness of 0.1 mm) may be used. The radiation preventing layers 5-1 and 5-2 are not limited to the aluminum foil but may be an aluminum vapor deposition film or the like. Further, any metal other than aluminum or a material having a radiation preventing function may be used. The radiation preventing layers 5-1 and 5-2 have an overlapping portion A in which two layers of the radiation preventing layers 5-1 and 5-2 (for example, aluminum foil) are overlapped over a length A range. In the overlapping part A, there is almost no gap between the radiation preventing layers 5-1 and 5-2, and therefore even if there is a slight overlapping part, the passage of electromagnetic waves that cause radiation in the thickness direction does not occur. The heat transfer mechanism in the body is roughly classified into conduction heat transfer, gas heat transfer, convection heat transfer, radiation heat transfer, and combinations thereof. In this vacuum heat insulating material 1, since the internal vacuum degree is sufficiently high, the effects of convection and gas heat transfer can be almost ignored, and only conduction heat transfer and radiation heat transfer are provided. For conduction heat transfer, if the contact area between the core material 2 and the jacket material 3 is reduced, or if a resin material having poor thermal conductivity is disposed on the contact surface with the core material 3, the effect of conduction heat transfer is reduced. Can be ignored. As for radiant heat transfer, heat transfer from the higher temperature side can be prevented by providing a substance that shields electromagnetic waves halfway. Therefore, the aluminum foil is installed on the outer side of the inner resin layer 4 as the radiation preventing layers 5-1 and 5-2. The radiation preventing layer 5-1 and the radiation preventing layer 5-2 are disposed so that the respective end portions thereof are overlapped. Aluminum is a metal excellent in ductility and workability. In general, a substance is called an absorption length, and there is a thickness that does not pass electromagnetic waves at a depth greater than that. The absorption length may be, for example, a thickness at which the electromagnetic wave intensity is attenuated to 1 / e 2 or less. With respect to near-infrared rays having a wavelength of 1 μm and far-infrared rays having a wavelength of 10 μm, aluminum does not transmit electromagnetic waves if the thickness is 15 nm or more, and nickel having the deepest absorption length among other practical metal materials has a thickness of 40 nm or more. Therefore, the two radiation prevention layers 5-1 and 5-2 are overlapped so that the electromagnetic waves do not pass through the radiation prevention layer 5-1 or the discontinuous portion at the end of the radiation prevention layer 5-2. Part A is formed. In addition, as shown in the top view of FIG. 3, although the duplication part A has the shape enclosed by the straight line of each edge part of the radiation prevention layers 5-1, 5-2, it is not restricted to this. For example, when the end portions of the radiation preventing layers 5-1 and 5-2 are curved, the overlapping portion A may have a shape surrounded by a curve.

なお、図2に示すように、この重複部Aでは、わずかながら空間17が存在する。空間17が存在すると、この部分の伝熱性が悪くなり断熱特性の効果が大きくなる。一方、図4の変形例では、重複部A1の空間17が減るが、上述のように変形時のすべりがよくなる。輻射防止層5−1、5−2は、アルミニウムに限られず、アルミニウム以外の金属や、同様に輻射防止機能を有する材料であればよい。内側の樹脂層4は、輻射防止層5−1を固定する役割を有していてもよい。なお、内側の樹脂層4は、輻射防止層5−2を固定しなくてもよい。一方、最外層の樹脂層6は、外気からの熱伝導を防ぐことと、輻射防止層5−2の固定の役割を有していてもよい。最外層の樹脂層6は、輻射防止層5−1を固定しなくてもよい。あるいは、輻射防止層5−1、5−2のいずれか一方又は両方は、樹脂層4、6の両方に対して固定されていなくてもよい。輻射防止層5−1、5−2の少なくとも一方が樹脂層4、6の少なくとも一方に対して固定されていないことによって、重複部Aを保持しながら変形時のすべりが容易に行われる。なお、輻射防止層5−1、5−2と樹脂層4、6との固定は、例えば、接着剤又は熱圧着によって行ってもよい。   As shown in FIG. 2, in this overlapping portion A, there is a slight space 17. If the space 17 exists, the heat transfer property of this portion is deteriorated, and the effect of the heat insulating property is increased. On the other hand, in the modified example of FIG. 4, the space 17 of the overlapping portion A1 is reduced, but the sliding at the time of deformation is improved as described above. The radiation preventing layers 5-1 and 5-2 are not limited to aluminum, but may be any metal other than aluminum or a material having a radiation preventing function. The inner resin layer 4 may have a role of fixing the radiation preventing layer 5-1. The inner resin layer 4 may not fix the radiation preventing layer 5-2. On the other hand, the outermost resin layer 6 may have a role of preventing heat conduction from the outside air and fixing the radiation prevention layer 5-2. The outermost resin layer 6 may not fix the radiation preventing layer 5-1. Alternatively, either one or both of the radiation preventing layers 5-1 and 5-2 may not be fixed to both the resin layers 4 and 6. Since at least one of the radiation preventing layers 5-1 and 5-2 is not fixed to at least one of the resin layers 4 and 6, slipping during deformation is easily performed while holding the overlapping portion A. Note that the radiation prevention layers 5-1 and 5-2 and the resin layers 4 and 6 may be fixed by, for example, an adhesive or thermocompression bonding.

<樹脂層>
外被材3は、内側の樹脂層4と、最外の樹脂層6と、を含む。樹脂層4、6は、後述する角部の形成時の伸びが可能な材料からなるものが好ましい。樹脂層4、6として、例えば、ポリアミド、フッ素樹脂や塩化ビニル樹脂を用いることができる。ポリアミド、フッ素樹脂や塩化ビニル樹脂は、伸びが3倍程度までの用途に用いることができる。また、樹脂層4、6として、ポリプロピレン、ポリエチレンを用いることができる。ポリプロピレンやポリエチレンは、伸びが8倍程度までの用途に用いることができる。内側の樹脂層4と最外の樹脂層6とはそれぞれ異なる材料からなるものであってもよい。
<Resin layer>
The jacket material 3 includes an inner resin layer 4 and an outermost resin layer 6. The resin layers 4 and 6 are preferably made of a material that can be stretched at the time of forming corners described later. As the resin layers 4 and 6, for example, polyamide, fluorine resin, or vinyl chloride resin can be used. Polyamide, fluororesin and vinyl chloride resin can be used for applications where the elongation is up to about 3 times. Further, as the resin layers 4 and 6, polypropylene and polyethylene can be used. Polypropylene and polyethylene can be used for applications having an elongation of up to about 8 times. The inner resin layer 4 and the outermost resin layer 6 may be made of different materials.

図5は、真空断熱材1を製品の角部に適用するため、金型で曲げる工程の概念図である。例えば、雌型7の上に真空断熱材1を設置し、雄型8を押し下げて真空断熱材1を折り曲げて、雌型7の凹部に沿って角部を形成してもよい。なお、真空断熱材1に角部を形成する方法は上記金型を用いる方法に限られない。   FIG. 5 is a conceptual diagram of a process of bending with a mold in order to apply the vacuum heat insulating material 1 to the corner of the product. For example, the vacuum heat insulating material 1 may be installed on the female die 7, the male die 8 may be pushed down to bend the vacuum heat insulating material 1, and the corner may be formed along the concave portion of the female die 7. In addition, the method of forming a corner | angular part in the vacuum heat insulating material 1 is not restricted to the method of using the said metal mold | die.

図6は、直角に曲げられた真空断熱材1の断面概念図で、Rは曲げ半径、Wは真空断熱材1の厚さである。ここでは、板厚Wが実用的に最大に近い20mmの真空断熱材1を、実用的に最も小さい曲げ半径R 5mmで直角に曲げた場合を想定している。この加工により、外被材の外周側3aの伸びは、外被材の内側3bの5倍になる。また板厚Wが5mmであれば、外被材の外周側3aの伸びは、外被材の内側3bの2倍になる。このとき、樹脂層4、6には200%の伸びが発生するので、これ以上の伸びが可能な材料でなければならない。伸びが3倍程度までであれば、ポリアミド、フッ素樹脂や塩化ビニル樹脂で対応でき、8倍までの伸びにはポリプロピレンやポリエチレンで対応できる。角部が円弧の場合、内径と外径の差から生じる伸びは、板厚Wの7倍までは樹脂層4、6は破損しない。しかし、これ以上の伸びを与えると、芯材2を曲げることができても、外被材3の樹脂層6が破れ、真空性を保てなくなる。そこで、真空断熱材1に負荷を与える場合にはその材料に応じた負荷を与えることが好ましい。   FIG. 6 is a conceptual cross-sectional view of the vacuum heat insulating material 1 bent at a right angle, where R is a bending radius and W is the thickness of the vacuum heat insulating material 1. Here, it is assumed that the vacuum heat insulating material 1 having a plate thickness W practically the maximum of 20 mm is bent at a right angle with a practically smallest bending radius R 5 mm. By this processing, the elongation of the outer peripheral side 3a of the jacket material is five times that of the inner side 3b of the jacket material. If the plate thickness W is 5 mm, the elongation on the outer peripheral side 3a of the jacket material is twice that of the inner side 3b of the jacket material. At this time, since 200% elongation occurs in the resin layers 4 and 6, the resin layers 4 and 6 must be made of a material capable of further elongation. If the elongation is up to about 3 times, polyamide, fluororesin or vinyl chloride resin can be used, and up to 8 times can be handled by polypropylene or polyethylene. In the case where the corner is an arc, the resin layers 4 and 6 are not damaged until the elongation resulting from the difference between the inner diameter and the outer diameter is 7 times the plate thickness W. However, if elongation beyond this is given, even if the core material 2 can be bent, the resin layer 6 of the jacket material 3 is torn and the vacuum property cannot be maintained. Therefore, when applying a load to the vacuum heat insulating material 1, it is preferable to apply a load according to the material.

図7は、図6の場合の曲げ加工後の外被材3の拡大図で、A2は、輻射防止層5−1、5−2の重ね合せ長さである。外被材3を構成する樹脂層4や6の伸びに比べ、輻射防止層5は、延性の良いアルミニウムでも伸びは最大でも50%以下である。そのため、樹脂層4や6の大きな伸びを吸収するために、曲げ加工前の図2において、伸びは、曲げ半径R 5mmと真空断熱材1の板厚W20mmとの和(R+W)を半径とする4分の1円の長さ39.25mmとなる。算出された上記伸びよりも大きな重複長さAとして、例えば50mmを設定し、曲げ加工部に重複部が含まれるようにしておけば、曲げ加工後の図7においても重複長さA2を確保し輻射防止層5−1、5−2が輻射面として不連続にならない。このため、断熱性を低下させることがない。また重ね合せ部は、表面処理などで潤滑処理がされていると滑りやすく望ましい。   FIG. 7 is an enlarged view of the outer cover material 3 after bending in the case of FIG. 6, and A2 is the overlapping length of the radiation preventing layers 5-1, 5-2. Compared to the elongation of the resin layers 4 and 6 constituting the outer covering material 3, the radiation preventing layer 5 has a ductility of aluminum and the elongation is 50% or less at the maximum. Therefore, in order to absorb the large elongation of the resin layers 4 and 6, in FIG. 2 before bending, the elongation is the sum of the bending radius R 5 mm and the plate thickness W 20 mm of the vacuum heat insulating material 1 (R + W). The length of a quarter circle is 39.25 mm. If, for example, 50 mm is set as the overlapping length A larger than the calculated elongation, and the overlapping portion is included in the bent portion, the overlapping length A2 is secured in FIG. 7 after bending. The radiation preventing layers 5-1 and 5-2 do not become discontinuous as a radiation surface. For this reason, heat insulation is not reduced. Further, it is desirable that the overlapping portion is slippery if it is lubricated by surface treatment or the like.

(実施の形態2)
図8は、本発明の実施の形態2の真空断熱材の外被材の断面拡大図である。図9は、図8の平面図である。図8において、図2と同じ構成要素については同じ符号を用い、説明を省略する。図8の真空断熱材の外被材は、図2の真空断熱材の外被材と対比すると、環状の第1の輻射防止層5−1を貫通する孔19が円形状の不連続部である点で相違する。また、環状の第2の輻射防止層5−2は、第1の輻射防止層5−1の孔19を覆うと共に、孔19の周囲の第1の輻射防止層5−1と第2の輻射防止層5−2とが積層する環状の重複部Bを形成している点で相違する。
上記外被材で角部(コーナ部)等を立体的に覆う際に第1の輻射防止材5−1の円形の孔19を角部に対応させることができる。孔19の周囲に環状の重複部Bが設けられているので、角部を中心とした若干のずれが生じた場合にも輻射防止材5−1、5−2が不連続にならないため断熱性を低下させることがない。なお、重複部Bは、表面処理などで潤滑処理がなされていると滑りやすく望ましい。
(Embodiment 2)
FIG. 8 is an enlarged cross-sectional view of the outer cover material of the vacuum heat insulating material according to the second embodiment of the present invention. FIG. 9 is a plan view of FIG. In FIG. 8, the same components as those in FIG. The vacuum insulation material shown in FIG. 8 is a discontinuous portion in which the hole 19 penetrating the annular first radiation prevention layer 5-1 is a circular discontinuity as compared with the vacuum insulation material shown in FIG. There are some differences. The annular second radiation preventing layer 5-2 covers the hole 19 of the first radiation preventing layer 5-1, and the first radiation preventing layer 5-1 around the hole 19 and the second radiation. The difference is that an annular overlapping portion B is formed on which the prevention layer 5-2 is laminated.
When the corner portion (corner portion) or the like is three-dimensionally covered with the jacket material, the circular hole 19 of the first radiation preventing material 5-1 can correspond to the corner portion. Since the annular overlapping portion B is provided around the hole 19, the radiation preventing materials 5-1 and 5-2 do not become discontinuous even when a slight deviation occurs around the corner portion. Is not reduced. The overlapping portion B is preferably slippery if it is lubricated by surface treatment or the like.

(実施の形態3)
図10は、本発明の実施の形態3の真空断熱材の外被材の断面拡大図である。図10において、樹脂層9、11等は、図2における樹脂層4、6等と対応する。図2と同じ構成要素については同じ符号を用い、説明を省略する。図10の真空断熱材の外被材は、図2の真空断熱材の外被材と対比すると、最外の樹脂層11と輻射防止層5とだけでなく、重複部を構成する2枚の輻射防止層5−1、5−2の間に樹脂層10を設けている点で異なる。A3は輻射防止層5の重複長さである。外被材3中に入った電磁波は内部で乱反射する。矢印で示す電磁波の入射角θが、全反射を起こす臨界角より大きければ外被材3の外から電磁波は真空断熱材の内部に入らない。全反射の条件は、sinθ>sin(臨界角)=1/(屈折率)で与えられる。樹脂の屈折率は、最も大きな材料のアクリル樹脂で1.53であり、1.6をみておけば十分である。屈折率1.6での臨界角は38.7度である。
(Embodiment 3)
FIG. 10 is an enlarged cross-sectional view of the envelope material of the vacuum heat insulating material according to Embodiment 3 of the present invention. In FIG. 10, the resin layers 9, 11 and the like correspond to the resin layers 4, 6 and the like in FIG. The same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted. 10 is not only the outermost resin layer 11 and the radiation prevention layer 5, but also two sheets constituting an overlapping portion. The difference is that a resin layer 10 is provided between the radiation preventing layers 5-1 and 5-2. A3 is the overlapping length of the radiation preventing layer 5. The electromagnetic waves that have entered the jacket material 3 are diffusely reflected inside. If the incident angle θ of the electromagnetic wave indicated by the arrow is larger than the critical angle causing total reflection, the electromagnetic wave does not enter the vacuum heat insulating material from the outside of the jacket material 3. The condition of total reflection is given by sin θ> sin (critical angle) = 1 / (refractive index). The refractive index of the resin is 1.53 for the largest acrylic resin, and it is sufficient to see 1.6. The critical angle at a refractive index of 1.6 is 38.7 degrees.

次に、全反射しない入射角の場合について述べる。つまり、入射角が38.7°より小さい場合には電磁波は全反射されることなく樹脂層11から樹脂層10に入射する。その後、上下の輻射防止層5−1、5−2の間で反射を繰り返して樹脂層9に入射して芯材2に至る。
図11は、全反射しない入射角θで樹脂層10に入射した電磁波が、上下の輻射防止層5−1、5−2の間で反射を繰り返して樹脂層9に入射する場合の模式図である。なお、図11では5回の反射で樹脂層9に入射しているが、反射の回数は図に表すための便宜上のものであって後述するように、入射角θ、樹脂層の厚さD及び重複部の長さA3によって反射の回数は変化する。
Next, a case where the incident angle is not totally reflected will be described. That is, when the incident angle is smaller than 38.7 °, the electromagnetic wave enters the resin layer 10 from the resin layer 11 without being totally reflected. Thereafter, reflection is repeated between the upper and lower radiation prevention layers 5-1 and 5-2 and enters the resin layer 9 to reach the core material 2.
FIG. 11 is a schematic diagram when an electromagnetic wave incident on the resin layer 10 at an incident angle θ that does not totally reflect is repeatedly reflected between the upper and lower radiation prevention layers 5-1 and 5-2 and then enters the resin layer 9. is there. In FIG. 11, the light is incident on the resin layer 9 with five reflections. However, the number of reflections is for convenience of illustration, and as will be described later, the incident angle θ and the resin layer thickness D are as follows. The number of reflections varies depending on the length A3 of the overlapping portion.

そこで、必要とされる重複部の長さA3について検討を行う。入射する電磁波が十分減衰したと考えられる電磁波強度は、元の電磁波強度を1とした場合に、およそ1/e=0.135である。入射角θを5°とした場合、透過率は0.94である。このため、電磁波強度1の電磁波が入射角5°で樹脂層11から樹脂層9を通過して、上記電磁波強度0.135となるには、反射により32回樹脂層の界面を通過することが必要である。前記32回の反射には、大気と樹脂層11の界面と、樹脂層11と樹脂層10の界面と、樹脂層10と輻射防止層5−1の界面と、樹脂層9と芯材2側の界面と、の4回の透過時の損失が含まれる。したがって、前記4回の損失を除いた反射回数(32−4)が必要になる。そのために必要な重複長さA3は、tan5°×厚さD×(32−4)回より求まり、厚さDの2.5倍となる。同様に、入射角10°の場合は、透過率0.92のため、24回の界面通過で重複長さA3は厚さDの3.5倍となる。入射角15°の場合は、透過率0.9のため、20回の界面通過で重複長さA3は厚さDの4.3倍となる。入射角20°の場合は、透過率0.85のため、13回の界面通過で重複長さA3は厚さDの3.3倍となる。入射角25°の場合は、透過率0.75のため、7回の界面通過で重複長さA3は厚さDの1.4倍となる。入射角30°の場合は、透過率0.62のため、5回の界面通過で重複長さA3は厚さDの0.6倍となる。上記のように、入射角5°から入射角15°までは必要な重複長さA3は増加していき、入射角15°の場合に厚さDの4.3倍となる。その後、入射角15°を越えると必要な重複長さA3は減少し、入射角30°では、必要な重複長さA3は厚さDの0.6倍となる。そこで、必要な重複長さA3としては、入射角15°の場合に対応できる厚さDの4.5倍以上を設定しておけば、大気から芯材2内へ通過する輻射電磁波の強度を十分小さくすることができる。また芯材2から反対側の外被材を通過して大気中に出る輻射電磁波には同様の損失が発生するので、電磁波強度は、最初に大気中から入射した時の0.02倍以下に小さくなる。 Therefore, the required overlapping portion length A3 is examined. The electromagnetic wave intensity considered that the incident electromagnetic wave is sufficiently attenuated is approximately 1 / e 2 = 0.135 when the original electromagnetic wave intensity is 1. When the incident angle θ is 5 °, the transmittance is 0.94. For this reason, in order for an electromagnetic wave having an electromagnetic wave intensity of 1 to pass through the resin layer 9 from the resin layer 11 at an incident angle of 5 ° to reach the electromagnetic wave intensity of 0.135, it is necessary to pass through the interface of the resin layer 32 times by reflection. is there. The 32 reflections include the interface between the atmosphere and the resin layer 11, the interface between the resin layer 11 and the resin layer 10, the interface between the resin layer 10 and the radiation prevention layer 5-1, and the resin layer 9 and the core material 2 side. Loss at the time of four transmissions. Therefore, the number of reflections (32-4) excluding the four losses is required. The overlap length A3 required for this is determined from tan 5 ° × thickness D × (32-4) times, and is 2.5 times the thickness D. Similarly, when the incident angle is 10 °, the transmissivity is 0.92, so that the overlap length A3 is 3.5 times the thickness D after 24 passes through the interface. When the incident angle is 15 °, the transmittance is 0.9, so that the overlap length A3 is 4.3 times the thickness D after passing through the interface 20 times. In the case of an incident angle of 20 °, the transmittance is 0.85, so that the overlap length A3 is 3.3 times the thickness D after passing through the interface 13 times. When the incident angle is 25 °, the transmittance is 0.75, so that the overlap length A3 is 1.4 times the thickness D after passing through the interface seven times. When the incident angle is 30 °, the transmittance is 0.62, and thus the overlap length A3 is 0.6 times the thickness D after passing through the interface five times. As described above, the necessary overlap length A3 increases from an incident angle of 5 ° to an incident angle of 15 °, and becomes 4.3 times the thickness D when the incident angle is 15 °. Thereafter, when the incident angle exceeds 15 °, the necessary overlap length A3 decreases, and at the incident angle of 30 °, the required overlap length A3 becomes 0.6 times the thickness D. Therefore, as the necessary overlap length A3, if the thickness D is set to 4.5 times or more of the thickness D that can correspond to the incident angle of 15 °, the intensity of the radiated electromagnetic wave passing from the atmosphere into the core material 2 is set. It can be made sufficiently small. In addition, since a similar loss occurs in the radiated electromagnetic wave that passes through the outer jacket material on the opposite side from the core material 2 and exits into the atmosphere, the electromagnetic wave intensity is 0.02 times or less that when it first enters from the atmosphere. Get smaller.

図12は、曲げ加工後の外被材3の拡大図で、A4は、輻射防止層5−1、5−2の重複長さである。中間の樹脂層10が伸びることで、上下2枚の輻射防止層5−1、5−2の移動が円滑に行われる。実施の形態1で述べたように、曲げ加工部に重複部が含まれるようにしておけば、曲げ加工後の輻射防止層5−1、5−2が輻射面として不連続にならないため、断熱性を低下させることがない。樹脂層の伸びに比べ、輻射防止層5−1、5−2の伸びが小さいため、重ね合せ長さA4は、図10の重ね合せ長さA3よりも短くなる。   FIG. 12 is an enlarged view of the jacket material 3 after bending, and A4 is the overlapping length of the radiation preventing layers 5-1, 5-2. By extending the intermediate resin layer 10, the upper and lower radiation prevention layers 5-1 and 5-2 are smoothly moved. As described in the first embodiment, if an overlapping portion is included in the bent portion, the radiation preventing layers 5-1 and 5-2 after the bending step do not become discontinuous as a radiation surface. It does not deteriorate the sex. Since the extension of the radiation preventing layers 5-1 and 5-2 is smaller than the extension of the resin layer, the overlap length A4 is shorter than the overlap length A3 of FIG.

(実施の形態4)
図13は、実施の形態3に係る真空断熱材の外被材の断面拡大図である。図14は、図13の平面図である。図13において、樹脂層12、15等は、図2における樹脂層4、6等と対応し、図10における樹脂層9、11等と対応する。また、輻射防止層16−1、16−2、16−3等は、図2及び図9における輻射防止層5−1、5−2等と対応する。そこで、これらの対応する構成要素については詳細な説明を省略する。図13の真空断熱材の外被材は、図2の真空断熱材の外被材と対比すると、最外の樹脂層15と一層の輻射防止層16−3とだけでなく、3層の輻射防止層16−1、16−2、16−3と、各輻射防止層16−1、16−2、16−3の間にそれぞれ樹脂層13、14と、その外側に樹脂層12を設けている点で相違している。つまり、輻射防止層16−1、16−2、16−3を2層から3層に多層にし、輻射防止層16−1、16−2、16−3の間に樹脂層13、14をそれぞれ設けている。また、輻射防止層16−1、16−2、16−3には、曲げ方向と直角な方向(紙面に垂直な方向)に延在するスリット20を設け、不連続部としていることを特徴とする。輻射防止層16−1、16−2、16−3は、不連続にしていても、板厚方向で見れば、複数の輻射防止層が重複する重複長さA5を確保するように配置されている。このような配置は、アルミニウム箔であれば、製造時に帯状のアルミニウム箔を適切な間隔で並べればよい。また蒸着フィルムでは、蒸着の形状を調整すればよい。
(Embodiment 4)
FIG. 13 is an enlarged cross-sectional view of the jacket material of the vacuum heat insulating material according to the third embodiment. FIG. 14 is a plan view of FIG. In FIG. 13, the resin layers 12, 15 and the like correspond to the resin layers 4 and 6 and the like in FIG. 2, and correspond to the resin layers 9 and 11 and the like in FIG. Further, the radiation preventing layers 16-1, 16-2, 16-3 and the like correspond to the radiation preventing layers 5-1, 5-2 and the like in FIGS. Therefore, detailed description of these corresponding components is omitted. 13 is not only the outermost resin layer 15 and one radiation prevention layer 16-3, but also three layers of radiation, as compared with the vacuum insulation material shown in FIG. The resin layers 13 and 14 are provided between the prevention layers 16-1, 16-2, and 16-3 and the radiation prevention layers 16-1, 16-2, and 16-3, respectively, and the resin layer 12 is provided on the outside thereof. Is different. That is, the radiation prevention layers 16-1, 16-2, and 16-3 are multilayered from two layers to three layers, and the resin layers 13 and 14 are disposed between the radiation prevention layers 16-1, 16-2, and 16-3, respectively. Provided. Further, the radiation preventing layers 16-1, 16-2, 16-3 are provided with slits 20 extending in a direction perpendicular to the bending direction (a direction perpendicular to the paper surface) to form discontinuous portions. To do. Even if the radiation prevention layers 16-1, 16-2, and 16-3 are discontinuous, when viewed in the plate thickness direction, the radiation prevention layers 16-1, 16-2, and 16-3 are arranged so as to ensure an overlapping length A5 in which a plurality of radiation prevention layers overlap. Yes. If such an arrangement is an aluminum foil, strip-shaped aluminum foils may be arranged at an appropriate interval during production. Moreover, what is necessary is just to adjust the shape of vapor deposition in a vapor deposition film.

輻射防止層16−1、16−2、16−3の板面方向の必要な重複長さA5は、図10に関する記述において示したように入射角15°付近で最大となる。樹脂層が1層増える毎に樹脂層の界面が1面増えるので、必要な最小の重複長さA5は、厚さDが一定値の場合の一般式として、tan15°×厚さD×(20−(n+1))で表される重複長さが確保されればよい。ここで、nは積層された樹脂層の数である。つまり、3層以上の輻射防止層16−1、16−2、16−3を設けることで、輻射防止層の間に設けられる樹脂層の層数が増える。上層側の樹脂層15から2枚の輻射防止層16−2、16−3の間の樹脂層14に入射した電磁波は、2枚の輻射防止層16−2、16−3の間での反射を繰り返した後、下層側の樹脂層13に入射していき、同様の反射を繰り返してさらに下層側の樹脂層12に入射する。そこで、輻射防止層16−1、16−2、16−3の間に設けられる樹脂層の層数が増えることによって、必要とされる輻射防止層16−1、16−2、16−3の重複長さA5が短くなるという利点がある。本実施の形態では、nは4層なので、必要な重複長さA5は、厚さDの4.0倍となる。   The necessary overlapping length A5 in the plate surface direction of the radiation preventing layers 16-1, 16-2, 16-3 is the maximum near the incident angle of 15 ° as shown in the description with reference to FIG. As the number of resin layers increases by one, the number of resin layer interfaces increases by one. Therefore, the minimum overlap length A5 is tan 15 ° × thickness D × (20 as a general formula when the thickness D is a constant value. The overlap length represented by − (n + 1)) may be ensured. Here, n is the number of laminated resin layers. That is, by providing three or more radiation prevention layers 16-1, 16-2, and 16-3, the number of resin layers provided between the radiation prevention layers increases. An electromagnetic wave incident on the resin layer 14 between the two radiation prevention layers 16-2 and 16-3 from the upper resin layer 15 is reflected between the two radiation prevention layers 16-2 and 16-3. After repeating the above, the light enters the resin layer 13 on the lower layer side, repeats the same reflection, and further enters the resin layer 12 on the lower layer side. Therefore, by increasing the number of resin layers provided between the radiation preventing layers 16-1, 16-2, 16-3, the required radiation preventing layers 16-1, 16-2, 16-3 There is an advantage that the overlap length A5 is shortened. In the present embodiment, since n is four layers, the required overlap length A5 is 4.0 times the thickness D.

図15は、曲げ加工後の外被材3の拡大図である。中間の樹脂層13と14と輻射防止層16−1、16−2、16−3間の樹脂が伸びることで、3層の輻射防止層16−1、16−2、16−3の移動が円滑に行われる。そこで、この真空断熱材では、実施の形態1や2に係る真空断熱材と異なり、重複部を狙って曲げ加工を行わなくとも広い範囲で曲げ加工後の輻射防止層16−1、16−2、16−3が輻射面として不連続にならないため、断熱性を低下させることがない。
なお、図15において、樹脂層13、14、15と輻射防止層16−1、16−2、16−3は、それぞれ3層としたが、3層に限られず、更に多層にしてもよい。
FIG. 15 is an enlarged view of the jacket material 3 after bending. As the resin between the intermediate resin layers 13 and 14 and the radiation preventing layers 16-1, 16-2, 16-3 stretches, the three layers of radiation preventing layers 16-1, 16-2, 16-3 move. It is done smoothly. Therefore, in this vacuum heat insulating material, unlike the vacuum heat insulating materials according to the first and second embodiments, the radiation preventing layers 16-1 and 16-2 after bending in a wide range without performing bending processing aiming at the overlapping portion. 16-3 does not become discontinuous as a radiating surface, so that the heat insulation is not lowered.
In FIG. 15, the resin layers 13, 14, and 15 and the radiation prevention layers 16-1, 16-2, and 16-3 are each three layers, but are not limited to three layers, and may be further multilayered.

本開示の真空断熱材は、断熱特性が良好で、輻射防止効果が低下せず、かつ信頼性の高い角部を容易に形成できるので、建築等の断熱壁の用途にも適用できる。   The vacuum heat insulating material of the present disclosure has good heat insulating properties, does not deteriorate the radiation prevention effect, and can easily form a highly reliable corner, and therefore can be applied to uses of heat insulating walls such as buildings.

1 真空断熱材
2 芯材
3 外被材
4 内側の樹脂層
5、5−1、5−2 輻射防止層
6 最外層の樹脂層
7 雌型
8 雄型
9 樹脂層
10 樹脂層
11 樹脂層
12 樹脂層
13 樹脂層
14 樹脂層
15 樹脂層
16−1、16−2、16−3 輻射防止層
17 空間
18 テーパ状端部
19 孔
20 スリット
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Core material 3 Cover material 4 Inner resin layer 5, 5-1, 5-2 Radiation prevention layer 6 Outermost resin layer 7 Female type 8 Male type 9 Resin layer 10 Resin layer 11 Resin layer 12 Resin layer 13 Resin layer 14 Resin layer 15 Resin layers 16-1, 16-2, 16-3 Radiation prevention layer 17 Space 18 Tapered end 19 Hole 20 Slit

Claims (7)

無機質の繊維状集合体を含む芯材と、
前記芯材の少なくとも一方の面を覆う外被材と、
を含み、内部を減圧封止した真空断熱材であって、
前記外被材は、
最外にある樹脂層と、
前記樹脂層の内側の輻射防止層と、
を有し、前記輻射防止層は、その一部において、少なくとも2層以上の輻射防止層が積層した重複部を有すると共に、
前記輻射防止層は、薄板状であって、前記重複部の長さは、積層した前記輻射防止層の間に設置された樹脂層の厚さに対し、tan15°×(樹脂層の厚さ)×(20−(樹脂層の積層数+1))以上である、真空断熱材。
A core material containing an inorganic fibrous aggregate;
A jacket material covering at least one surface of the core material;
A vacuum heat insulating material whose inside is sealed under reduced pressure,
The jacket material is
The outermost resin layer,
A radiation preventing layer inside the resin layer;
The radiation prevention layer has, in part, an overlapping portion in which at least two layers of radiation prevention layers are laminated ,
The radiation prevention layer has a thin plate shape, and the length of the overlapping portion is tan 15 ° × (resin layer thickness) with respect to the thickness of the resin layer disposed between the laminated radiation prevention layers. The vacuum heat insulating material which is more than x (20- (number of laminated resin layers + 1)) .
前記重複部は、重複した前記輻射防止層の間に空間を有する、請求項1に記載の真空断熱材。   The vacuum heat insulating material according to claim 1, wherein the overlapping portion has a space between the overlapping radiation prevention layers. 前記真空断熱材は、角部を有し、前記真空断熱材の板厚は、20mm以下である、請求項1又は2に記載の真空断熱材。 The said vacuum heat insulating material has a corner | angular part, The plate | board thickness of the said vacuum heat insulating material is 20 mm or less, The vacuum heat insulating material of Claim 1 or 2 . 前記外被材の最外の前記樹脂層は、200%以上の伸びが可能な材料からなる、請求項に記載の真空断熱材。 The vacuum heat insulating material according to claim 3 , wherein the outermost resin layer of the jacket material is made of a material capable of elongation of 200% or more. 前記輻射防止層は、金属層を含み、前記金属層の厚さが40nm以上である、請求項1からのいずれか一項に記載の真空断熱材。 The vacuum radiation insulating material according to any one of claims 1 to 4 , wherein the radiation prevention layer includes a metal layer, and the thickness of the metal layer is 40 nm or more. 前記輻射防止層の前記金属層は、アルミニウムからなる、請求項に記載の真空断熱材。 The vacuum heat insulating material according to claim 5 , wherein the metal layer of the radiation preventing layer is made of aluminum. 前記輻射防止層は、
貫通孔を有する第1の輻射防止層と、
前記貫通孔を覆うと共に、前記貫通孔の周囲で前記第1の輻射防止層と積層する環状の重複部を形成する第2の輻射防止層と、
を含む、請求項1からのいずれか一項に記載の真空断熱材。
The radiation prevention layer is
A first radiation preventing layer having a through hole;
A second radiation preventing layer that covers the through hole and forms an annular overlapping portion that is laminated with the first radiation preventing layer around the through hole;
The vacuum heat insulating material as described in any one of Claim 1 to 6 containing this.
JP2015163048A 2014-11-13 2015-08-20 Vacuum insulation Expired - Fee Related JP6048852B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510702231.1A CN105605863B (en) 2014-11-13 2015-10-26 Vacuum heat insulation material
US14/932,890 US9671055B2 (en) 2014-11-13 2015-11-04 Vacuum heat insulating material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014230597 2014-11-13
JP2014230597 2014-11-13

Publications (2)

Publication Number Publication Date
JP2016102584A JP2016102584A (en) 2016-06-02
JP6048852B2 true JP6048852B2 (en) 2016-12-21

Family

ID=56088662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015163048A Expired - Fee Related JP6048852B2 (en) 2014-11-13 2015-08-20 Vacuum insulation

Country Status (1)

Country Link
JP (1) JP6048852B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280170A (en) * 1994-04-12 1995-10-27 Kubota Corp Packing structure of packing material for vacuum heat insulating body
JP4591026B2 (en) * 2004-10-07 2010-12-01 パナソニック株式会社 Insulation tank and electric water heater
JP2007056973A (en) * 2005-08-24 2007-03-08 Hitachi Appliances Inc Vacuum heat insulating panel and refrigerator using the same
JP2010284855A (en) * 2009-06-11 2010-12-24 Dainippon Printing Co Ltd Gas barrier laminated film for vacuum heat insulating material, and vacuum heat insulating material
JP2011058537A (en) * 2009-09-08 2011-03-24 Hitachi Appliances Inc Vacuum heat insulating material, and cooling equipment or insulated container using the same
JP5835042B2 (en) * 2012-03-19 2015-12-24 三菱電機株式会社 Hot water storage water heater

Also Published As

Publication number Publication date
JP2016102584A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP4545126B2 (en) Vacuum insulation panel and refrigerator using the same
JP2014533813A (en) Radiant heat insulation vacuum insulation
US20140008374A1 (en) Containers including insulating materials
WO2018062541A1 (en) Laminate structure
US20190017646A1 (en) Insulated Pipe
JP2007056972A5 (en)
JP5198504B2 (en) Vacuum insulation panel for refrigerator and refrigerator using the same
KR20060034302A (en) Film for suppressing conduction of radiant heat and heat insulating member employing it
TWI461146B (en) Emi shielding heat shrinkable tapes
EP2980467B1 (en) Vacuum heat-insulating material
JP6048852B2 (en) Vacuum insulation
KR102435770B1 (en) Infrared heater and infrared processing device
WO2018167411A8 (en) Multilayer material
US9671055B2 (en) Vacuum heat insulating material
WO2016190259A1 (en) Low-reflection graphene and low-reflection graphene for optical member use
JP2005163989A (en) Vacuum insulating material and using method of same
ITMI20001488A1 (en) EVACUATED PANEL FOR THERMAL INSULATION OF CYLINDRICAL BODIES
JP2012052674A (en) Water heater
JP2014005872A (en) Vacuum heat insulation body
JP2018012637A (en) Method for producing double-layered glass
JP2009092224A (en) Vacuum heat insulating material and building adopting vacuum heat insulation material
JP2008256038A (en) Vacuum heat insulating material
US11181223B2 (en) Insulated pipe
KR20140001181A (en) The insulator and its manufacturing method
JP2016142366A (en) Vacuum heat insulation material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161110

R151 Written notification of patent or utility model registration

Ref document number: 6048852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees