JP2016142366A - Vacuum heat insulation material - Google Patents

Vacuum heat insulation material Download PDF

Info

Publication number
JP2016142366A
JP2016142366A JP2015019530A JP2015019530A JP2016142366A JP 2016142366 A JP2016142366 A JP 2016142366A JP 2015019530 A JP2015019530 A JP 2015019530A JP 2015019530 A JP2015019530 A JP 2015019530A JP 2016142366 A JP2016142366 A JP 2016142366A
Authority
JP
Japan
Prior art keywords
vacuum heat
heat insulating
radiation
layer
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015019530A
Other languages
Japanese (ja)
Inventor
西川 幸男
Yukio Nishikawa
幸男 西川
宝 晃
Akira Takara
晃 宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015019530A priority Critical patent/JP2016142366A/en
Publication of JP2016142366A publication Critical patent/JP2016142366A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure showing a superior heat insulation characteristic even if a corner part is formed by bending a vacuum heat insulation material.SOLUTION: There are provided a core material 2 that is non-organic fibrous aggregate and an outer covering material. The outer covering material has an outer-most resin layer 6 and a radiation preventive layer 5 inside the resin layer. The radiation preventive layer 5 has corrugated shapes in the longitudinal direction. A crest height or a valley depth of one corrugation is set to be 0.9 times to 4 times of a corrugation width, resulting in that even if the vacuum heat insulation material is bent to form a corner part, the film of an outer shell material is extended. The radiation preventive layer 5 having a radiation effect with a small ductility can assure the radiation preventive effect since the crest or valley of the corrugated structure becomes low and extends toward a direction of external force and it is possible to form the corner part without reducing the reliability in operation.SELECTED DRAWING: Figure 3

Description

本発明は、冷蔵庫や保冷車などに用いる真空断熱材に関する。   The present invention relates to a vacuum heat insulating material used for a refrigerator, a cold car, and the like.

従来の真空断熱材は、ガラスウールなどから成る芯材をガスバリア性フィルムからなる外被材で覆って内部を減圧封止することで作製される。   A conventional vacuum heat insulating material is manufactured by covering a core material made of glass wool or the like with a jacket material made of a gas barrier film and sealing the inside under reduced pressure.

この真空断熱材は、主に作製方法や信頼性の都合から、その多くが厚さ3mmから20mmの平板状をしており、その形状のまま冷蔵庫などの製品に適用されることが大半である。また、真空断熱材の断熱特性の向上には、熱の伝導や輻射を抑制するために、構成する材料に熱が伝達し難い物質を用いること、材料間の接触面積を小さくすること、熱伝達を断熱方向と直角の面方向に制御すること、が重要となる。   Most of these vacuum heat insulating materials have a flat plate shape with a thickness of 3 mm to 20 mm, and are mostly applied to products such as refrigerators as they are because of their manufacturing method and reliability. . In addition, in order to improve the heat insulation characteristics of the vacuum heat insulating material, in order to suppress heat conduction and radiation, a material that does not easily transfer heat is used as the constituent material, the contact area between the materials is reduced, heat transfer It is important to control the surface direction perpendicular to the heat insulation direction.

真空断熱材の適用例としては、断熱方向と直角に繊維を配置して熱伝導量を抑制したもの(例えば、特許文献1参照)や、輻射熱の遮蔽効果に優れる金属箔または金属蒸着フィルムを埋設したもの(例えば、特許文献2参照)、輻射熱の遮蔽効果に優れるマイカなどの板状物質をグラスマット等の芯材と樹脂で一体化して面内に積層させたもの(例えば、特許文献3参照)がある。   Examples of application of the vacuum heat insulating material include a fiber disposed at a right angle to the heat insulating direction to suppress heat conduction (for example, refer to Patent Document 1), or a metal foil or metal vapor deposition film having an excellent radiant heat shielding effect. (For example, see Patent Document 2), a plate-like substance such as mica having an excellent shielding effect against radiant heat, integrated with a core material such as a glass mat and a resin and laminated in a plane (for example, see Patent Document 3) )

このうち、特許文献3の真空断熱材は、輻射熱の遮蔽効果に優れるマイカなどの板状物質を分散させたスラリー液をグラスマット上に均一分散させて、板状物質が両方向に積層した複合材で形成される。   Among these, the vacuum heat insulating material of Patent Document 3 is a composite material in which a slurry liquid in which a plate-like substance such as mica having excellent radiation heat shielding effect is dispersed is uniformly dispersed on a glass mat, and the plate-like substances are laminated in both directions. Formed with.

また、断熱されるべき部位は、必ずしも平面形状であるとは限らない。   Moreover, the site | part which should be insulated is not necessarily plane shape.

具体的には、断熱部位に角部、突起や段差がある場合には、真空断熱材に曲げ、穴明け等の加工を施したり、予め外装材の形状を成形したりすることで、真空断熱材の形状を断熱部位の形状に対応させる方法が知られる。   Specifically, if there are corners, protrusions or steps in the heat insulation part, the vacuum heat insulation can be bent, drilled, etc., or the shape of the exterior material can be molded in advance to achieve vacuum insulation. A method for matching the shape of the material with the shape of the heat insulating part is known.

成形する方法としては、袋状外殻材に粉状、或いは、粒状の充填物を収納し、凸部を持った型を用いて外殻材の上下を圧縮して、外殻材内部を真空排気することで表面に凹部を形成するもの(例えば、特許文献4参照)がある。その他、断熱材が充填されたフィルム容器内部を減圧し、ヒートシールによって密封して作製される板状の真空断熱材を真空容器に入れて減圧した状態で型によって成形し、これを保持した状態で常圧に戻すもの(例えば、特許文献5参照)も知られる。   As a molding method, a powdery or granular filling is stored in a bag-like outer shell material, and the upper and lower surfaces of the outer shell material are compressed using a mold having a convex portion, and the inside of the outer shell material is vacuumed. There is one that forms a recess on the surface by exhausting (see, for example, Patent Document 4). In addition, the inside of the film container filled with a heat insulating material is decompressed, and a plate-like vacuum heat insulating material produced by sealing by heat sealing is put into a vacuum container and molded by a mold, and this is held. (For example, refer to Patent Document 5).

特開昭60−208696号公報JP-A-60-208696 特開昭62−013979号公報JP 62-013979 A 特開平10−238938号公報Japanese Patent Laid-Open No. 10-238938 特開昭61−168772号公報JP 61-168772 A 特開昭63−163764号公報Japanese Patent Laid-Open No. 63-163764

しかしながら、金属箔や金属蒸着フィルムを単に埋設するだけでは、これらの有限の長さに由来する不連続部で、電磁波が漏れて輻射が大きくなる。板状物質を積層した樹脂を芯材と一体化すると、伝導伝熱が大きくなり、断熱特性が低下する。また、断熱される部位には角部を有することがある。   However, if a metal foil or a metal vapor deposition film is simply embedded, electromagnetic waves leak at the discontinuous portions derived from these finite lengths and radiation increases. When the resin in which the plate-like substance is laminated is integrated with the core material, the conduction heat transfer becomes large, and the heat insulating properties are deteriorated. Further, the part to be insulated may have a corner.

角部を有する製品に真空断熱材を適用する場合、上記従来の成形する方法の構成では、真空チャンバー内に成形型を設置するか、成形型そのものを真空排気装置とするため、装置が大掛かりなものとなると言った課題があった。また、外殻材のフィルムや輻射効果のある板状物質が成形時に伸ばされ真空断熱材の信頼性が低下するという問題点もあった。   In the case of applying a vacuum heat insulating material to a product having a corner, the conventional molding method configuration requires a large apparatus because a molding die is installed in a vacuum chamber or the molding die itself is a vacuum exhaust device. There was a problem that said it would be a thing. Further, there has been a problem that the film of the outer shell material and the plate-like substance having a radiation effect are stretched at the time of molding and the reliability of the vacuum heat insulating material is lowered.

本願発明は、上記従来の問題点を解決するものであり、断熱特性が良好で、かつ信頼性の高い角部を容易に形成できる真空断熱材を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and an object thereof is to provide a vacuum heat insulating material that has excellent heat insulating properties and can easily form highly reliable corners.

上記目的を達成するために、本発明の真空断熱材は、無機質の繊維状集合体である芯材と、外被材からなり、外被材は芯材と接する樹脂層と、その外側の輻射防止層とを有し、輻射防止層は長手方向に波状を有し、一つの波の山の高さまたは谷の深さは波の幅の0.9倍から4倍という構成を有するものである。   In order to achieve the above object, the vacuum heat insulating material of the present invention comprises a core material that is an inorganic fibrous aggregate, and a jacket material. The jacket material is a resin layer in contact with the core material, and radiation on the outside thereof. The radiation prevention layer has a wave shape in the longitudinal direction, and the height of the peak of one wave or the depth of the valley is 0.9 to 4 times the width of the wave. is there.

本構成によって、真空断熱材に角部を設けるために曲げたとしても、外殻材のフィルムは伸ばされ、延性の小さな輻射効果のある輻射防止層は波状構造の山や谷が低くなり外力方向に伸びるので、熱特性が良好で、かつ信頼性を低下させることなく角部を形成できる。   Even if the vacuum insulation material is bent to provide corners, the outer shell film is stretched, and the radiation prevention layer with a small ductility radiation effect reduces the peaks and valleys of the wavy structure. Therefore, the corner portion can be formed without deteriorating the reliability.

以上のように、本願の真空断熱材によれば、輻射防止効果が低下しないため断熱特性が良好で、かつ信頼性の高い角部を容易に形成できる真空断熱材を提供できる。   As described above, according to the vacuum heat insulating material of the present application, it is possible to provide a vacuum heat insulating material that can easily form corner portions with good heat insulating characteristics and high reliability because the radiation preventing effect does not decrease.

本発明の実施の形態1における真空断熱材の断面図Sectional drawing of the vacuum heat insulating material in Embodiment 1 of this invention 本発明の実施の形態1における輻射防止層に波状形状を付与する工程の拡大図The enlarged view of the process of providing a wavy shape to the radiation prevention layer in Embodiment 1 of this invention 本発明の実施の形態1における真空断熱材の外被材の断面拡大図The cross-sectional enlarged view of the jacket material of the vacuum heat insulating material in Embodiment 1 of this invention 本発明の実施の形態1における真空断熱材を金型で曲げる工程の概念図The conceptual diagram of the process of bending the vacuum heat insulating material in Embodiment 1 of this invention with a metal mold | die. 本発明の実施の形態1における真空断熱材の直角に曲げられた断面概念図Cross-sectional conceptual diagram bent at a right angle of the vacuum heat insulating material in Embodiment 1 of the present invention 本発明の実施の形態1における樹脂層の伸びと輻射防止層の変形の模式図Schematic diagram of elongation of resin layer and deformation of radiation prevention layer in Embodiment 1 of the present invention 本発明の実施の形態1における真空断熱材の曲げ加工後の外被材の断面拡大図The cross-sectional enlarged view of the jacket material after the bending process of the vacuum heat insulating material in Embodiment 1 of this invention 本発明の実施の形態2における真空断熱材の外被材の断面拡大図The cross-sectional enlarged view of the jacket material of the vacuum heat insulating material in Embodiment 2 of this invention 本発明の実施の形態3における真空断熱材の外被材の拡大図The enlarged view of the jacket material of the vacuum heat insulating material in Embodiment 3 of this invention

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における真空断熱材の断面図である。図1において、1は真空断熱材、2は芯材、3は外被材である。芯材2はガラスウールである。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 1 of the present invention. In FIG. 1, 1 is a vacuum heat insulating material, 2 is a core material, and 3 is a jacket material. The core material 2 is glass wool.

図2は、輻射防止層5に波状形状を付与する工程の拡大図である。図2において、4は芯材2と接する内側の樹脂層、5は輻射防止層である。   FIG. 2 is an enlarged view of a step of imparting a wave shape to the radiation preventing layer 5. In FIG. 2, 4 is an inner resin layer in contact with the core material 2, and 5 is a radiation preventing layer.

図2(a)に示すように、波状を有する前の状態において、箔帯である輻射防止層5を樹脂層4の上部に設置する。   As shown in FIG. 2 (a), the radiation prevention layer 5, which is a foil strip, is provided on the upper part of the resin layer 4 in a state before having a wave shape.

次に、図2(b)に示すように、樹脂層4と輻射防止層5の積層物に所定の形状を有する歯車7を回転させ、押し込みながら移動させると、図2(c)に示すように、波形状が残る。このとき、輻射防止層5の継ぎ目で複数の輻射防止層5が重なっている場合には、そのまま波状形状を形成すれば良い。また、波状が形成された後には、樹脂層を塗布などにより形成しても良い。   Next, as shown in FIG. 2B, when the gear 7 having a predetermined shape is rotated in the laminate of the resin layer 4 and the radiation prevention layer 5 and moved while being pushed, as shown in FIG. The wave shape remains. At this time, when the plurality of radiation prevention layers 5 overlap each other at the joint of the radiation prevention layer 5, the corrugated shape may be formed as it is. Further, after the wave shape is formed, the resin layer may be formed by coating or the like.

図3は、外被材3の断面拡大図で、6は最外層の樹脂層の積層構造である。   FIG. 3 is an enlarged cross-sectional view of the jacket material 3, and 6 is a laminated structure of the outermost resin layer.

輻射防止層5は、アルミニウム箔(板厚は0.1mm)で高さH、幅Wで波状を有している。物体中の熱の移動機構を大別すると、伝導伝熱、気体伝熱、対流伝熱、輻射伝熱およびこれらの組合せとなる。   The radiation preventing layer 5 is an aluminum foil (plate thickness is 0.1 mm) and has a wave shape with a height H and a width W. The heat transfer mechanism in the body is roughly classified into conduction heat transfer, gas heat transfer, convection heat transfer, radiation heat transfer, and combinations thereof.

真空断熱材1では、真空度が十分高いため、対流、気体伝熱の影響をほとんど無視でき、伝導伝熱と輻射伝熱のみとなる。伝導伝熱は、芯材2と外被材3との接触面積を小さくしたり、芯材2との接触面に熱伝導性の悪い樹脂材料などを配置したりすれば良い。輻射伝熱については、電磁波を途中で遮蔽する物質を設ければ、温度が高い側からの伝熱を防ぐことが出来る。   In the vacuum heat insulating material 1, since the degree of vacuum is sufficiently high, the effects of convection and gas heat transfer can be almost ignored, and only conduction heat transfer and radiation heat transfer are provided. Conductive heat transfer may be achieved by reducing the contact area between the core material 2 and the jacket material 3 or arranging a resin material having poor thermal conductivity on the contact surface with the core material 2. As for radiant heat transfer, heat transfer from the higher temperature side can be prevented by providing a substance that shields electromagnetic waves halfway.

このため、内側の樹脂層4の外側にアルミニウム箔を輻射防止層5として設置している。アルミニウムは延性と加工性に優れた金属である。物質では吸収長と呼ばれる、それ以上の深さでは電磁波の透過が小さい厚さがある。波長:1μmの近赤外線や波長:10μmの遠赤外線に対して、アルミニウムでは厚さが15nm以上、他の実用金属材料で最も吸収長の深いニッケルでも厚さ40nm以上あれば、電磁波はほとんど透過しない。   For this reason, the aluminum foil is installed as the radiation preventing layer 5 on the outer side of the inner resin layer 4. Aluminum is a metal with excellent ductility and workability. In a substance, there is a thickness called absorption length. For near-infrared with a wavelength of 1 μm and far-infrared with a wavelength of 10 μm, aluminum has a thickness of 15 nm or more, and even nickel having the deepest absorption length among other practical metal materials has a thickness of 40 nm or more and hardly transmits electromagnetic waves. .

輻射防止層5は、アルミニウム以外の金属や、他の同様に輻射防止機能を有する材料であれば良い。最外層の樹脂層6は、外気からの熱伝導を防ぐことと、輻射防止層5の固定の役割を持っている。   The radiation preventing layer 5 may be any metal other than aluminum or any other material having a radiation preventing function. The outermost resin layer 6 serves to prevent heat conduction from the outside air and to fix the radiation prevention layer 5.

図4は、真空断熱材1を製品の角部に適用するため、金型で曲げる工程の概念図である。雌型8の上に真空断熱材1を設置し、雄型9を押し下げて折り曲げる。   FIG. 4 is a conceptual diagram of a process of bending with a mold in order to apply the vacuum heat insulating material 1 to a corner portion of a product. The vacuum heat insulating material 1 is installed on the female mold 8, and the male mold 9 is pushed down and bent.

図5は、直角に曲げられた真空断熱材1の断面概念図で、Rは曲げ半径、Tは真空断熱材の板厚である。   FIG. 5 is a conceptual cross-sectional view of the vacuum heat insulating material 1 bent at a right angle, where R is a bending radius and T is a plate thickness of the vacuum heat insulating material.

ここでは、板厚Tが実用的に最大に近い20mmの真空断熱材1を、実用的に最も小さい曲げ半径R5mmで直角に曲げた場合を想定している。この加工により、外被材の外周側3aの伸びは、外被材の内側3bの5倍になる。また、板厚Tが5mmであれば、外被材の外周側3aの伸びは、外被材の内側3bの2倍になる。このとき、樹脂層4や樹脂層6には200%の伸びが発生するので、これ以上の伸びが可能な材料でなければならない。   Here, it is assumed that the vacuum heat insulating material 1 having a plate thickness T practically the maximum of 20 mm is bent at a right angle with a practically smallest bending radius R5 mm. By this processing, the elongation of the outer peripheral side 3a of the jacket material is five times that of the inner side 3b of the jacket material. Further, if the plate thickness T is 5 mm, the elongation on the outer peripheral side 3a of the jacket material is twice that of the inner side 3b of the jacket material. At this time, since 200% elongation occurs in the resin layer 4 and the resin layer 6, the material must be capable of further elongation.

伸びが3倍程度までであれば、ポリアミド、フッ素樹脂や塩化ビニル樹脂で対応でき、8倍までなら伸びが800%あるポリプロピレンやポリエチレンで対応できる。また、角部が円弧の場合、内径と外径の差から生じる伸びは、曲げ半径Rの7倍までは樹脂層4や6は破損しないが、これ以上の伸びを与えると、芯材2を曲げることができても、外被材3の樹脂層6が破れ、真空性を保てなくなる。   If the elongation is up to about 3 times, it can be handled by polyamide, fluororesin or vinyl chloride resin, and if it is up to 8 times, it can be handled by polypropylene or polyethylene having an elongation of 800%. When the corner is an arc, the elongation caused by the difference between the inner diameter and the outer diameter does not damage the resin layers 4 and 6 up to 7 times the bending radius R. Even if it can be bent, the resin layer 6 of the jacket 3 is torn and the vacuum property cannot be maintained.

輻射防止層5については、樹脂層4や6の伸びに対応して、波状形状が伸ばされることになる。   About the radiation prevention layer 5, a wavy shape will be extended corresponding to the expansion | extension of the resin layers 4 and 6. FIG.

図6は、樹脂層の伸びと輻射防止層の変形の関係を示す模式図である。図6(a)は、樹脂層の伸びが生じる前、図6(b)は、樹脂層の伸びが生じた後の状態を示す。   FIG. 6 is a schematic diagram showing the relationship between the elongation of the resin layer and the deformation of the radiation preventing layer. FIG. 6A shows a state before the resin layer is stretched, and FIG. 6B shows a state after the resin layer is stretched.

輻射防止層5は直線とし、波は一辺の長さがLの三角形としている。樹脂層4や6に2倍の伸びが生じる場合、波の幅Wの半分が2倍に伸びる。すなわち、L>(W/2)×2、の関係を満足すれば、輻射防止層5が樹脂層4や樹脂層6の伸びによって引きちぎられることはない。   The radiation prevention layer 5 is a straight line, and the wave is a triangle having a side length L. When double expansion occurs in the resin layers 4 and 6, half of the wave width W extends twice. That is, if the relationship of L> (W / 2) × 2 is satisfied, the radiation preventing layer 5 is not torn off by the elongation of the resin layer 4 or the resin layer 6.

この関係が満足されるとき、伸びが発生する前の図6(a)の状態では、三平方の定理より、波の高さH>平方根(L2−(W/2)2)=0.87W、となる。すなわち、波の高さHを幅Wの0.9倍以上にすれば、輻射防止層5は2倍の伸びが生じても破断はしない。波の形が上または下に凸の場合には、Lの長さがより長くなるので、破断に対して一層の余裕がある。 When this relationship is satisfied, in the state of FIG. 6A before the elongation occurs, the wave height H> square root (L 2 − (W / 2) 2 ) = 0. 87W. That is, if the wave height H is 0.9 times or more the width W, the radiation prevention layer 5 will not break even if it is doubled. When the wave shape is convex upward or downward, the length of L becomes longer, so there is more room for breakage.

谷に対しても、山と同様の関係が適用できる。伸びが2倍より小さい場合は、高さHは幅Wの0.9倍より小さくても良い。樹脂層にとって最大となる8倍の伸びが生じる場合、同様に、L>(W/2)×8、の関係を満足すれば、波の高さH>平方根(L2−(W/2)2)=4.0W、となる。すなわち、高さHを幅Wの4倍以上にすれば、輻射防止層5は8倍の伸びが生じても、破断はしない。ただし、高さHを大きくすれば外被材3が厚くなる。 The same relationship as the mountain can be applied to the valley. If the elongation is less than twice, the height H may be less than 0.9 times the width W. Similarly, when the maximum elongation of 8 times occurs for the resin layer, if the relationship of L> (W / 2) × 8 is satisfied, the wave height H> square root (L 2 − (W / 2) 2 ) = 4.0W. That is, if the height H is set to 4 times the width W or more, the radiation preventing layer 5 does not break even if the elongation is 8 times. However, if the height H is increased, the jacket material 3 becomes thicker.

図7は、曲げにより伸ばされた外被材3の断面拡大図である。樹脂層4と樹脂層6は伸びにより薄くなり、輻射防止層5の波状の山の高さや谷の深さは小さくなり、伸びきった状態では線状になる。なお、本実施の形態において、輻射防止層5はアルミニウム箔としたが、他の金属や、アルミニウム蒸着フィルムとしても良い。   FIG. 7 is an enlarged cross-sectional view of the jacket material 3 stretched by bending. The resin layer 4 and the resin layer 6 become thinner due to elongation, the height of the wavy peaks and the depth of the valleys of the radiation preventing layer 5 become smaller, and become linear when fully stretched. In the present embodiment, the radiation preventing layer 5 is made of an aluminum foil, but may be made of another metal or an aluminum vapor deposition film.

(実施の形態2)
図8は、本発明の実施の形態2の真空断熱材の外被材の断面拡大図である。
(Embodiment 2)
FIG. 8 is an enlarged cross-sectional view of the outer cover material of the vacuum heat insulating material according to the second embodiment of the present invention.

図8において、10と11は樹脂層、12は輻射防止層である。図8において、図2と異なる点は、輻射防止層12の波状構造が一部に限られることである。真空断熱材1が曲げを受ける場所が分かっておれば、その場所に輻射防止層12の波状部位を該当させれば、曲げによって輻射防止層12が伸びて破断することはない。また、高価な輻射防止層12の全長が短くなるので使用量が少なくなるという利点もある。   In FIG. 8, 10 and 11 are resin layers, and 12 is a radiation preventing layer. 8 differs from FIG. 2 in that the wave-like structure of the radiation preventing layer 12 is limited to a part. If the place where the vacuum heat insulating material 1 is subjected to bending is known, if the corrugated portion of the radiation preventing layer 12 is applied to that place, the radiation preventing layer 12 will not be stretched and broken by bending. Moreover, since the full length of the expensive radiation prevention layer 12 becomes short, there also exists an advantage that the usage-amount decreases.

(実施の形態3)
図9は、本発明の実施の形態3の真空断熱材の外被材の拡大図である。
(Embodiment 3)
FIG. 9 is an enlarged view of the jacket material of the vacuum heat insulating material according to the third embodiment of the present invention.

図9において、図9(a)は、輻射防止層13を上面から見た状態を示し、図9(b)は、図9(a)の上面図におけるM−N線の断面方向の拡大図である。   9A shows a state when the radiation preventing layer 13 is viewed from above, and FIG. 9B is an enlarged view of the cross-sectional direction of the line MN in the top view of FIG. 9A. It is.

図9において、実施の形態1,2と異なる点は、波状の山14と谷15が平面内で格子状に形成され、樹脂層16と17が上下にそれぞれ形成されている点である。   In FIG. 9, the difference from the first and second embodiments is that the wavy peaks 14 and valleys 15 are formed in a lattice pattern in the plane, and the resin layers 16 and 17 are formed vertically.

輻射防止層13の平面内に波状構造を形成することで、1次元の曲げだけでなく、筐体の頂点部のような2次元の曲げにも輻射防止層13が破断することはない。図9では波の山と谷が等間隔であり、また平滑部18が存在する構造であるが、山と谷が非等間隔であることでも、平滑部18が存在しなくても良い。   By forming a wave-like structure in the plane of the radiation preventing layer 13, the radiation preventing layer 13 is not broken not only by one-dimensional bending but also by two-dimensional bending such as the apex of the housing. In FIG. 9, the wave peaks and valleys are equally spaced and the smoothing portions 18 are present, but the peaks and valleys may be non-equally spaced or the smoothing portions 18 may not be present.

本発明の真空断熱材は、輻射防止効果が低下しないため断熱特性が良好で、かつ信頼性の高い角部を容易に形成することができるもので、建築等の断熱壁の用途にも適用できる。   The vacuum heat insulating material of the present invention has good heat insulating properties because the radiation preventing effect does not decrease, and can easily form highly reliable corners, and can be applied to heat insulating wall applications such as buildings. .

1 真空断熱材
2 芯材
3 外被材
4 樹脂層
5 輻射防止層
6 樹脂層
7 歯車
8 雌型
9 雄型
12 輻射防止層
13 輻射防止層
14 山
15 谷
16 樹脂層
18 平滑部
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Core material 3 Cover material 4 Resin layer 5 Radiation prevention layer 6 Resin layer 7 Gear 8 Female type 9 Male type 12 Radiation prevention layer 13 Radiation prevention layer 14 Mountain 15 Valley 16 Resin layer 18 Smooth part

Claims (6)

無機質の繊維状集合体を含む芯材と、前記芯材の少なくとも一方の面を覆う外被材と、を含み、内部を減圧封止した真空断熱材であって、
前記外被材は、前記芯材と接触して配置される樹脂層と、前記樹脂層の外側に輻射防止層とを有し、前記輻射防止層は長手方向に波状を為し、一つの波の山の高さまたは谷の深さは、該波の幅の0.9倍から4倍であること、
を特徴とする真空断熱材。
A vacuum heat insulating material including a core material including an inorganic fibrous aggregate, and a covering material that covers at least one surface of the core material, the inside of which is sealed under reduced pressure,
The jacket material includes a resin layer disposed in contact with the core material, and a radiation prevention layer on the outside of the resin layer, and the radiation prevention layer has a wave shape in the longitudinal direction. The height of the mountain or the depth of the valley is 0.9 to 4 times the width of the wave,
Vacuum insulation material characterized by
前記樹脂層は平滑である、請求項1記載の真空断熱材。 The vacuum heat insulating material according to claim 1, wherein the resin layer is smooth. 前記輻射防止層の山あるいは谷は、前記外被材の面内で格子状に存在する、請求項1又は2に記載の真空断熱材。 3. The vacuum heat insulating material according to claim 1, wherein peaks or valleys of the radiation preventing layer are present in a lattice shape within a surface of the outer jacket material. 前記樹脂層は、200%以上の伸びが可能な材料である、請求項1〜3の何れか一項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 3, wherein the resin layer is a material capable of elongation of 200% or more. 前記輻射防止層は金属層を含み、前記金属層の厚さは40nm以上である、請求項1〜4の何れか一項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 4, wherein the radiation prevention layer includes a metal layer, and the thickness of the metal layer is 40 nm or more. 前記金属層は、アルミニウムである、請求項5記載の真空断熱材。 The vacuum heat insulating material according to claim 5, wherein the metal layer is aluminum.
JP2015019530A 2015-02-03 2015-02-03 Vacuum heat insulation material Pending JP2016142366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015019530A JP2016142366A (en) 2015-02-03 2015-02-03 Vacuum heat insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015019530A JP2016142366A (en) 2015-02-03 2015-02-03 Vacuum heat insulation material

Publications (1)

Publication Number Publication Date
JP2016142366A true JP2016142366A (en) 2016-08-08

Family

ID=56568390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015019530A Pending JP2016142366A (en) 2015-02-03 2015-02-03 Vacuum heat insulation material

Country Status (1)

Country Link
JP (1) JP2016142366A (en)

Similar Documents

Publication Publication Date Title
JP4545126B2 (en) Vacuum insulation panel and refrigerator using the same
JP3137946B2 (en) Thermal insulation panel and manufacturing method thereof
JP4701882B2 (en) Vacuum insulation
JP5198504B2 (en) Vacuum insulation panel for refrigerator and refrigerator using the same
KR101353647B1 (en) Core material for vacuum insulation panel and vacuum insulation panel using the same
KR100718362B1 (en) Method for producing thermo-insulating cylindrical vacuum panels and panels thereby obtained
EP2980467B1 (en) Vacuum heat-insulating material
JP2016142366A (en) Vacuum heat insulation material
JP2009127683A (en) Heat resistant vacuum heat insulation material
JP3856008B2 (en) Manufacturing method of vacuum insulation
JP5334399B2 (en) Insulation, insulation sheet and heat insulation sheet
JP6359087B2 (en) Vacuum heat insulating material and heat insulator provided with the same
JP6048852B2 (en) Vacuum insulation
JP2014009723A (en) Heat insulating material and heating device including the same
JP6278864B2 (en) Vacuum heat insulating material, vacuum heat insulating material manufacturing apparatus, and heat insulating box using vacuum heat insulating material
CN105605863B (en) Vacuum heat insulation material
JP2009041648A (en) Vacuum heat insulating material and construction member applying the same
JP2004116593A (en) Multilayer vacuum insulation material and its manufacturing method
JP7065437B2 (en) Manufacturing method of vacuum heat insulating material and vacuum heat insulating material
JP2019094946A (en) Vacuum heat insulation material and method for manufacturing vacuum heat insulation material
JPS63130998A (en) Multi-layer heat insulating material
JP2007032066A (en) Heat insulating structure and heat insulating panel
JP2006118637A (en) Vacuum heat insulating material
JP5313630B2 (en) Thermal insulation structure for hot isostatic press
KR101203309B1 (en) High-performance insulation system and insulation box fabricated using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160523