JP6047389B2 - Solar cell and method for manufacturing the same - Google Patents

Solar cell and method for manufacturing the same Download PDF

Info

Publication number
JP6047389B2
JP6047389B2 JP2012268174A JP2012268174A JP6047389B2 JP 6047389 B2 JP6047389 B2 JP 6047389B2 JP 2012268174 A JP2012268174 A JP 2012268174A JP 2012268174 A JP2012268174 A JP 2012268174A JP 6047389 B2 JP6047389 B2 JP 6047389B2
Authority
JP
Japan
Prior art keywords
solar cell
wiring
back electrode
substrate
electrode type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012268174A
Other languages
Japanese (ja)
Other versions
JP2014116395A (en
Inventor
康志 吉川
康志 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012268174A priority Critical patent/JP6047389B2/en
Priority to PCT/JP2013/077556 priority patent/WO2014087736A1/en
Priority to CN201390000966.4U priority patent/CN204885192U/en
Publication of JP2014116395A publication Critical patent/JP2014116395A/en
Application granted granted Critical
Publication of JP6047389B2 publication Critical patent/JP6047389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、太陽光発電に用いることができる太陽電池およびその製造方法に関する。   The present invention relates to a solar cell that can be used for photovoltaic power generation and a method for manufacturing the solar cell.

近年、エネルギ資源の枯渇の問題や大気中の二酸化炭素の増加のような地球環境問題等から、クリーンなエネルギ源の開発が望まれており、特に太陽電池を用いた太陽光発電が新しいエネルギ源として開発され、実用化され、そして発展の道を歩んでいる。   In recent years, development of clean energy sources has been desired due to problems of depletion of energy resources and global environmental issues such as an increase in carbon dioxide in the atmosphere. In particular, solar power generation using solar cells is a new energy source. Developed, put into practical use, and are on the path of development.

このような太陽電池としては、従来から、例えば単結晶または多結晶のシリコン基板の受光面にシリコン基板とは反対の導電型の不純物を拡散することによってpn接合を形成し、そのシリコン基板の受光面と裏面にそれぞれ電極を形成した両面電極型の太陽電池セルを複数接続して形成される太陽電池が主流となっている。   As such a solar cell, conventionally, for example, a pn junction is formed by diffusing impurities of a conductivity type opposite to the silicon substrate on the light receiving surface of a single crystal or polycrystalline silicon substrate, and the light reception of the silicon substrate is performed. Solar cells formed by connecting a plurality of double-sided electrode type solar cells each having an electrode formed on the surface and the back surface are mainly used.

また、近年では、シリコン基板の受光面には電極を形成せずに、その裏面にP電極、N電極を形成する所謂裏面電極型太陽電池セルも開発されている。裏面電極型太陽電池セルにおいては、一般的に受光面に電極を有しないので電極によるシャドーロスがなく、シリコン基板の受光面と裏面とにそれぞれ電極を有する太陽電池に比べて高い出力を得ることが期待される。   In recent years, so-called back electrode type solar cells have been developed in which electrodes are not formed on the light receiving surface of a silicon substrate, but P electrodes and N electrodes are formed on the back surface thereof. In a back electrode type solar cell, since there is generally no electrode on the light receiving surface, there is no shadow loss due to the electrode, and a higher output than a solar cell having electrodes on the light receiving surface and the back surface of the silicon substrate can be obtained. There is expected.

また、太陽電池セルの接続を容易にするために配線基板を用いることが採用されており、裏面電極型太陽電池セルにおいて、絶縁性基材に配線を形成した配線基板を用いて接続することが模索されている。   In addition, the use of a wiring board is adopted to facilitate the connection of the solar cells, and in the back electrode type solar battery cell, it is possible to connect using a wiring substrate in which wiring is formed on an insulating base material. Has been sought.

また、このような電気的な接続作業を容易に行えるように、太陽電池セルと配線基板とを接着剤を用いて接着することで、太陽電池セル側の電極と配線基板に設ける配線とを接続する太陽電池およびその製造方法が既に提案されている(例えば、特許文献1参照)。   In order to facilitate such electrical connection work, the solar cell and the wiring board are connected to each other by bonding the solar cell and the wiring board using an adhesive. A solar cell and a manufacturing method thereof have already been proposed (see, for example, Patent Document 1).

また、配線基板は、絶縁性基板上に所望の配線パターンを形成したものであるが、この絶縁性基板として硬質基板を用いるもの以外に、樹脂フィルムなどの可撓性を有するフィルム基板を用いたものも既に提案されている(例えば、特許文献2参照)。   In addition, the wiring board is formed by forming a desired wiring pattern on an insulating substrate, but a flexible film substrate such as a resin film is used in addition to the insulating substrate using a hard substrate. Some have already been proposed (see, for example, Patent Document 2).

特開2009−88145号公報JP 2009-88145 A 特開2010−16074号公報JP 2010-16074 A

しかしながら、特許文献1に記載された太陽電池は、太陽電池セルと平板状の絶縁性基材に配線パターンを形成した配線基板との間に接着剤を充填して接着している構成であるので、太陽電池セルの電極非形成領域と絶縁性基材との間の隙間を多量の接着剤で埋める必要があった。   However, the solar cell described in Patent Document 1 has a configuration in which an adhesive is filled and bonded between a solar battery cell and a wiring substrate in which a wiring pattern is formed on a flat insulating base material. The gap between the electrode non-formation region of the solar battery cell and the insulating base material has to be filled with a large amount of adhesive.

また、特許文献2に記載された樹脂フィルムを用いた基板であっても、単に平板状のフィルム基板を接着剤を用いて太陽電池セルに接着する場合には、同様に太陽電池セルの電極非形成領域と基板(絶縁性基材)との間の隙間を多量の接着剤で埋める必要が生じることは同じである。   Moreover, even if it is a board | substrate using the resin film described in patent document 2, when adhering a flat film board | substrate to a photovoltaic cell simply using an adhesive agent, the electrode non-contact of a photovoltaic cell is similarly applied. It is the same that it is necessary to fill a gap between the formation region and the substrate (insulating base material) with a large amount of adhesive.

このように、太陽電池セルと配線基板とを多量の接着剤を用いて接着する構成は生産性が悪化して問題となる。そのために、少ない接着剤を用いて接合できて生産性に優れた太陽電池およびその製造方法であることが望まれる。   As described above, the configuration in which the solar battery cell and the wiring board are bonded using a large amount of adhesive causes a problem in that productivity is deteriorated. Therefore, it is desired that the solar cell can be bonded with a small amount of adhesive and has excellent productivity, and a method for manufacturing the solar cell.

そこで本発明は、上記問題点に鑑み、裏面電極型太陽電池セルと配線基板とを備える太陽電池において、多量の接着剤を用いることなく太陽電池セルと配線基板とを接合できる太陽電池およびその製造方法を提供することを目的とする。   Therefore, in view of the above problems, the present invention provides a solar battery including a back electrode type solar battery cell and a wiring board, and a solar battery capable of joining the solar battery cell and the wiring board without using a large amount of adhesive, and the production thereof. It aims to provide a method.

上記目的を達成するために本発明は、基板の一面に極性の異なる2種類の電極が設けられた裏面電極型太陽電池セルと、絶縁性基材の一面に前記電極に対応する配線が設けられた配線基板とを備える太陽電池であって、前記裏面電極型太陽電池セルの前記電極と前記配線基板の前記配線とが電気的に接続されており、前記絶縁性基材が、前記裏面電極型太陽電池セル側に屈曲して、前記裏面電極型太陽電池セルの互いに隣り合う前記電極の間に窪みを形成することを特徴としている。   In order to achieve the above object, the present invention provides a back electrode type solar cell in which two types of electrodes having different polarities are provided on one surface of a substrate, and a wiring corresponding to the electrode on one surface of an insulating substrate. A wiring board, wherein the electrode of the back electrode type solar cell and the wiring of the wiring board are electrically connected, and the insulating base material is the back electrode type. It is characterized in that it is bent toward the solar cell side and a recess is formed between the adjacent electrodes of the back electrode type solar cell.

この構成によると、絶縁性基材が、裏面電極型太陽電池セル側に屈曲して互いに隣り合う電極の間に窪みを形成するので、太陽電池セルと絶縁性基材との間の隙間に充填する接着剤の使用量を減らすことができる。また、この絶縁性基材を介して隣り合う電極間の絶縁性を確保することもできる。すなわち、多量の接着剤を用いることなく太陽電池セルと配線基板とを接合できる太陽電池を得ることができる。   According to this configuration, the insulating base material is bent toward the back electrode type solar battery cell to form a recess between the adjacent electrodes, so that the gap between the solar battery cell and the insulating base material is filled. The amount of adhesive used can be reduced. Moreover, the insulation between adjacent electrodes can also be ensured through this insulating substrate. That is, it is possible to obtain a solar battery that can join the solar battery cell and the wiring board without using a large amount of adhesive.

また、絶縁性基材の窪み部分が、裏面電極型太陽電池セルの互いに隣り合う電極の間で、裏面電極型太陽電池セルに接触することが好ましい。   Moreover, it is preferable that the hollow part of an insulating base material contacts a back electrode type solar cell between the electrodes which mutually adjoin a back electrode type solar cell.

また、絶縁性基材の窪み部分が、互いに隣り合う配線の対向する側面に接触することが好ましい。   Moreover, it is preferable that the hollow part of an insulating base material contacts the side surface which the mutually adjacent wiring opposes.

また、前記裏面電極型太陽電池セルおよび前記配線基板が封止材を用いて封止されており、前記窪みに封止材が充填されて、配線基板の互いに隣り合う配線の間に絶縁性基材を介して封止材が存在することが好ましい。   Further, the back electrode type solar cell and the wiring substrate are sealed with a sealing material, and the recess is filled with a sealing material, so that an insulating substrate is provided between wirings adjacent to each other on the wiring substrate. It is preferable that a sealing material exists through the material.

また本発明は、基板の一面に極性の異なる2種類の電極が設けられた裏面電極型太陽電池セルと、絶縁性基材の一面に前記電極に対応する配線が設けられた配線基板とを備える太陽電池の製造方法であって、前記裏面電極型太陽電池セルの前記電極と前記配線基板の前記配線とが対向するように、前記配線基板上に前記裏面電極型太陽電池セルを配置するセル配置工程と、透光性基板、第1の封止材、前記裏面電極型太陽電池セルが配置された前記配線基板および第2の封止材をこの順で重ねた構造物とする積層工程と、前記配線基板の前記絶縁性基材を前記裏面電極型太陽電池セル側に屈曲させる基材屈曲工程と、前記構造物を加熱して、前記第1の封止材及び前記第2の封止材を軟化させて、前記裏面電極型太陽電池セルが配置された前記配線基板を封止する封止工程と、を含むことを特徴としている。この構成によると、絶縁性を確保するために接着剤を用いる必要がなくなるので、多量の接着剤を用いることなく太陽電池セルと配線基板とを接合できる太陽電池の製造方法を得ることができる。   The present invention also includes a back electrode type solar cell in which two types of electrodes having different polarities are provided on one surface of the substrate, and a wiring substrate in which wiring corresponding to the electrodes is provided on one surface of the insulating base material. A method for manufacturing a solar cell, wherein the back electrode solar cell is arranged on the wiring substrate so that the electrode of the back electrode solar cell and the wiring of the wiring substrate face each other. A step of stacking the light-transmitting substrate, the first sealing material, the wiring substrate on which the back electrode type solar cells are disposed, and a structure in which the second sealing material is stacked in this order; A base material bending step of bending the insulating base material of the wiring board to the back electrode type solar cell side, heating the structure, and the first sealing material and the second sealing material. Before the back electrode type solar cell is placed It is characterized in that it comprises a sealing step of sealing the wiring substrate. According to this configuration, since it is not necessary to use an adhesive to ensure insulation, it is possible to obtain a method for manufacturing a solar battery that can join the solar battery cell and the wiring board without using a large amount of adhesive.

また、上記構成の太陽電池の製造方法において、絶縁性基材として可撓性を有するフィルム基材を用い、基材屈曲工程は、真空引きして前記フィルム基材を裏面電極型太陽電池セル側に屈曲させる真空引き工程であることが好ましい。   Moreover, in the manufacturing method of the solar cell having the above-described configuration, a flexible film substrate is used as the insulating substrate, and the substrate bending step is performed by evacuating the film substrate to the back electrode type solar cell side. It is preferable that the vacuuming process bends.

また、上記構成の太陽電池の製造方法において、基材屈曲工程および封止工程は、ラミネータ装置を用いて所定の加熱温度と所定の真空圧にて行う加熱真空圧着工程を介して一連の工程として行われることが好ましい。   Moreover, in the manufacturing method of the solar cell of the said structure, a base-material bending process and a sealing process are as a series of processes through the heating vacuum press-bonding process performed at a predetermined heating temperature and a predetermined vacuum pressure using a laminator apparatus. Preferably, it is done.

本発明によれば、裏面電極型太陽電池セルの電極面に介装する配線基板の絶縁性基材が、裏面電極型太陽電池セル側に屈曲して、裏面電極型太陽電池セルの互いに隣り合う電極の間に窪みを形成することにより、多量の接着剤を用いることなく太陽電池セルと配線基板とを接合できる太陽電池およびその製造方法を得ることができる。   According to the present invention, the insulating base material of the wiring board interposed on the electrode surface of the back electrode type solar battery cell is bent toward the back electrode type solar battery cell and is adjacent to each other of the back electrode type solar battery cell. By forming the depression between the electrodes, a solar battery that can join the solar battery cell and the wiring board without using a large amount of adhesive and a method for manufacturing the solar battery can be obtained.

本発明に係る太陽電池の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the solar cell which concerns on this invention. 本発明の太陽電池に用いられる太陽電池セルの電極構成を示す模式的な平面図である。It is a typical top view which shows the electrode structure of the photovoltaic cell used for the solar cell of this invention. 本発明の太陽電池に用いられる配線基板の配線構成を示す模式的な平面図である。It is a typical top view which shows the wiring structure of the wiring board used for the solar cell of this invention. 配線基板に太陽電池セルを接着固定する第1の実施形態例を示す模式的な平面図である。It is a typical top view which shows the 1st example of an embodiment which adhere | attaches and fixes a photovoltaic cell to a wiring board. 本発明に係る太陽電池の製造方法におけるセル配置工程を説明する模式的な断面図である。It is typical sectional drawing explaining the cell arrangement | positioning process in the manufacturing method of the solar cell which concerns on this invention. 本発明に係る太陽電池の製造方法における積層工程を説明する模式的な断面図である。It is typical sectional drawing explaining the lamination process in the manufacturing method of the solar cell which concerns on this invention. 配線基板に太陽電池セルを接着固定する第2の実施形態例を示す模式的な平面図である。It is a typical top view which shows the example of 2nd Embodiment which adheres and fixes a photovoltaic cell to a wiring board. 配線基板に太陽電池セルを接着固定する第3の実施形態例を示す模式的な平面図である。It is a typical top view which shows the 3rd embodiment which adheres and fixes a photovoltaic cell to a wiring board. 本発明に係る太陽電池の完成状態の要部構成を示す模式的な断面図である。It is typical sectional drawing which shows the principal part structure of the completion state of the solar cell which concerns on this invention.

以下に本発明の実施形態を図面を参照して説明するが、本発明はこれにより何ら制限されるものではない。また、同一構成部材については同一の符号を用い、重複する説明は適宜省略する。まず本実施形態に係る太陽電池について、図1を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto. Moreover, the same code | symbol is used about the same structural member, and the overlapping description is abbreviate | omitted suitably. First, the solar cell according to the present embodiment will be described with reference to FIG.

図1に、本発明の太陽電池1の一例の模式的な断面図を示す。この太陽電池1は、太陽電池セル10と配線基板20とを接合して、封止材2を介して一体に封止して太陽電池セル封止体を形成し、この太陽電池セル封止体の表裏両面を透光性基板3(ガラス基板)と耐候性フィルム4(バックフィルム)とで被覆して構成される。   In FIG. 1, typical sectional drawing of an example of the solar cell 1 of this invention is shown. This solar cell 1 joins the solar cell 10 and the wiring board 20, and seals together through the sealing material 2, and forms a solar cell sealing body, This solar cell sealing body Both the front and back surfaces are covered with a translucent substrate 3 (glass substrate) and a weather resistant film 4 (back film).

ここで、太陽電池セル10のn型またはp型のシリコン基板11の受光面(太陽光が主に入射する側の面)には反射防止膜12が形成されており、シリコン基板11の裏面(受光面の反対側の面)にはn型不純物が拡散して形成されたn型不純物ドーピング領域13と、p型不純物が拡散して形成されたp型不純物ドーピング領域14とが所定の間隔を空けて交互に形成されている。   Here, an antireflection film 12 is formed on the light-receiving surface (surface on which sunlight is mainly incident) of the n-type or p-type silicon substrate 11 of the solar battery cell 10, and the back surface of the silicon substrate 11 ( The n-type impurity doped region 13 formed by diffusing n-type impurities and the p-type impurity doped region 14 formed by diffusing p-type impurities have a predetermined interval on the surface opposite to the light receiving surface). They are alternately formed.

すなわち、本実施形態に係る太陽電池セル10は、基板(シリコン基板11)の一面に極性の異なる2種類の電極が設けられた裏面電極型太陽電池セル10であるので、以下、必要に応じて太陽電池セル10と称することも、裏面電極型太陽電池セル10と称することもある。   That is, the solar cell 10 according to the present embodiment is a back electrode type solar cell 10 in which two types of electrodes having different polarities are provided on one surface of a substrate (silicon substrate 11). It may also be referred to as solar cell 10 or back electrode type solar cell 10.

また、シリコン基板11の裏面にはパッシベーション膜17が形成されており、パッシベーション膜17に形成されたコンタクトホールを通して、n型不純物ドーピング領域13に接触するようにN電極15が形成され、p型不純物ドーピング領域14に接触するようにP電極16が形成されている。   Further, a passivation film 17 is formed on the back surface of the silicon substrate 11, and an N electrode 15 is formed so as to be in contact with the n-type impurity doping region 13 through a contact hole formed in the passivation film 17. A P electrode 16 is formed so as to be in contact with the doping region 14.

また、シリコン基板11と反射防止膜12との間に別のパッシベーション膜を形成する構成としてもよい。反射防止膜12およびパッシベーション膜17は、例えば窒化シリコン膜や酸化シリコン膜から形成することができる。   In addition, another passivation film may be formed between the silicon substrate 11 and the antireflection film 12. The antireflection film 12 and the passivation film 17 can be formed from, for example, a silicon nitride film or a silicon oxide film.

配線基板20は、絶縁性基材21上に所望の配線パターン(N配線22とP配線23)を形成したものをいい、絶縁性基材として硬質素材を用いるものと可撓性を有するフィルム素材を用いるものがある。本実施形態では、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)などのポリエステル系のフィルムを用いた絶縁性基材21を用いた可撓性を有する配線基板20としている。   The wiring substrate 20 is a substrate in which a desired wiring pattern (N wiring 22 and P wiring 23) is formed on an insulating substrate 21, and a film material having flexibility and a material using a hard material as an insulating substrate. Some use In the present embodiment, the wiring board 20 having flexibility using the insulating base material 21 using a polyester film such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate) is used.

この配線基板20は、例えば、基材となる絶縁性フィルムと金属箔を接着剤などを用いて貼り合わせ、金属箔表面に保護用のレジストを所望の形状に形成した後、露出した金属箔をエッチング処理し、レジストを除去することで、所望の配線パターンを有する配線基板20が形成される。   For example, the wiring substrate 20 is formed by bonding an insulating film serving as a base material and a metal foil using an adhesive or the like, forming a protective resist on the surface of the metal foil in a desired shape, and then exposing the exposed metal foil. The wiring board 20 having a desired wiring pattern is formed by etching and removing the resist.

すなわち、本実施形態に係る太陽電池は、基板(シリコン基板11)の一面に極性の異なる2種類の電極が設けられた裏面電極型太陽電池セル10と、絶縁性基材21の一面に前記電極に対応する配線(N配線22とP配線23)が設けられた可撓性を有する配線基板20とを備える太陽電池1である。   That is, the solar cell according to the present embodiment includes the back electrode type solar cell 10 in which two types of electrodes having different polarities are provided on one surface of the substrate (silicon substrate 11), and the electrode on one surface of the insulating base material 21. Is a solar cell 1 including a flexible wiring board 20 provided with wirings (N wiring 22 and P wiring 23) corresponding to.

上記したように、配線基板20は可撓性を有するフィルム基材から成るので、裏面電極型太陽電池セル10と貼り合せた後、真空引きすることにより容易に屈曲させることができる。また、加熱しながら変形させることによっても容易に屈曲させることができる。いずれにしても、貼り合せる(接合する)相手部材の表面形状に応じて屈曲させることができる。   As described above, since the wiring board 20 is made of a flexible film base material, it can be easily bent by being vacuumed after being bonded to the back electrode type solar battery cell 10. It can also be bent easily by being deformed while heating. In any case, it can be bent according to the surface shape of the mating member to be bonded (bonded).

そのために、本実施形態に係る太陽電池1は、裏面電極型太陽電池セル10の電極(N電極15、P電極16)と配線基板20の配線(N配線22とP配線23)とが電気的に接続され、絶縁性基材21が(所定の基材屈曲工程を介して)、裏面電極型太陽電池セル側に屈曲して、裏面電極型太陽電池セル10の互いに隣り合う電極の間(互いに隣り合う配線の間)に窪みKを形成する構成とされる。   Therefore, in the solar cell 1 according to the present embodiment, the electrodes (N electrode 15 and P electrode 16) of the back electrode type solar cell 10 and the wiring (N wiring 22 and P wiring 23) of the wiring board 20 are electrically connected. And the insulating base material 21 is bent toward the back electrode type solar cell side (via a predetermined base material bending step) and between the adjacent electrodes of the back electrode type solar cell 10 (to each other). A recess K is formed between adjacent wirings.

この構成であれば、絶縁性基材21が、裏面電極型太陽電池セル側に屈曲して互いに隣り合う電極(N電極15とP電極16)の間に窪みKを形成するので、太陽電池セルと絶縁性基材21との間の隙間に充填する接着剤の使用量を減らすことができる。また、この絶縁性基材21を介して隣り合う電極間の絶縁性を確保することもできる。すなわち、多量の接着剤を用いることなく太陽電池セル10と配線基板20とを接合できる太陽電池1を得ることができる。   With this configuration, the insulating base material 21 is bent toward the back electrode type solar cell side and forms a recess K between the electrodes (N electrode 15 and P electrode 16) adjacent to each other. The amount of adhesive used to fill the gap between the insulating base 21 and the insulating base 21 can be reduced. In addition, it is possible to ensure insulation between adjacent electrodes via the insulating substrate 21. That is, the solar battery 1 that can join the solar battery cell 10 and the wiring board 20 without using a large amount of adhesive can be obtained.

また、絶縁性基材21の窪み部分が、裏面電極型太陽電池セル10の互いに隣り合う電極の間で裏面電極型太陽電池セル10に接触する構成であれば、この隣り合う電極同士を確実に絶縁できるので、絶縁性を確保するために接着剤を用いる必要がなくなり、さらに、接着剤の使用量を減らすことができて好ましい。   Moreover, if the recessed part of the insulating base material 21 is the structure which contacts the back surface electrode type photovoltaic cell 10 between the electrodes which mutually adjoin the back surface electrode type photovoltaic cell 10, this adjacent electrode will be ensured. Since insulation is possible, it is not necessary to use an adhesive to ensure insulation, and the amount of adhesive can be reduced, which is preferable.

また、絶縁性基材21の窪み部分が、互いに隣り合う配線の対向する側面に接触することが好ましい。この構成であれば、隣り合う配線同士を確実に絶縁でき、さらに、隣り合う配線同士の間に封止材を充填できる。従って、この窪みKに充填される封止材を介して、隣り合う配線同士を確実に絶縁できると共に、太陽電池セル10と配線基板20との位置ずれを確実に防止できる。また、電極間、配線間の隙間を封止材で埋めることができるので、太陽電池1の機械的強度を向上させることができる。   Moreover, it is preferable that the hollow part of the insulating base material 21 contacts the side surface which the mutually adjacent wiring opposes. If it is this structure, adjacent wiring can be insulated reliably and also a sealing material can be filled between adjacent wiring. Therefore, adjacent wirings can be reliably insulated via the sealing material filled in the depressions K, and positional deviation between the solar battery cell 10 and the wiring board 20 can be reliably prevented. Moreover, since the gap between the electrodes and between the wirings can be filled with the sealing material, the mechanical strength of the solar cell 1 can be improved.

次に、図2を用いて太陽電池セル10に設ける電極(N電極15、P電極16)について説明し、図3を用いてN配線22とP配線23を備える配線基板20について説明する。   Next, the electrodes (N electrode 15 and P electrode 16) provided in the solar battery cell 10 will be described with reference to FIG. 2, and the wiring substrate 20 having the N wiring 22 and the P wiring 23 will be described with reference to FIG.

本実施形態に係る太陽電池セル10に設ける電極(N電極15、P電極16)は、例えば、図2に示すように、シリコン基板11の一面に、帯状のN電極15とP電極16を図の上下方向に交互に設けた構成とされる。すなわち、基板の一面に極性の異なる2種類の電極が櫛歯状に交互に設けられている。   For example, as shown in FIG. 2, the electrodes (N electrode 15 and P electrode 16) provided in the solar battery cell 10 according to the present embodiment include the strip-shaped N electrode 15 and P electrode 16 on one surface of the silicon substrate 11. It is set as the structure provided alternately in the up-down direction. That is, two types of electrodes having different polarities are alternately provided in a comb shape on one surface of the substrate.

また、この電極に電気的に接続される配線を備えた配線基板20は、例えば、図3に示すように、複数の太陽電池セル10を一体に接合する長寸形状とされる。本実施形態に係る配線基板20は、図3に示すように4枚の太陽電池セル10を一体に接合する長さを有する。そして、この長さの絶縁性基材21に、4枚の太陽電池セル10が有する帯状のN電極15とP電極16に対応したN配線22とP配線23がそれぞれ一体に形成されている。   Moreover, the wiring board 20 provided with the wiring electrically connected to this electrode is formed into a long shape for joining a plurality of solar battery cells 10 together as shown in FIG. 3, for example. The wiring board 20 according to the present embodiment has a length for integrally joining the four photovoltaic cells 10 as shown in FIG. The insulating base 21 having this length is integrally formed with N wirings 22 and P wirings 23 corresponding to the strip-shaped N electrodes 15 and P electrodes 16 of the four solar cells 10.

また、隣り合う太陽電池セル10にそれぞれ対応するN配線22とP配線23を電気的に接続するための接続用電極24が設けられており、絶縁性基材21の長手方向の一方の端部にバスバーP電極25、他方の端部にバスバーN電極26が設けられている。   In addition, a connection electrode 24 for electrically connecting the N wiring 22 and the P wiring 23 respectively corresponding to the adjacent solar cells 10 is provided, and one end portion in the longitudinal direction of the insulating base material 21 is provided. The bus bar P electrode 25 is provided at the other end, and the bus bar N electrode 26 is provided at the other end.

また、図示はしていないが、接合する太陽電池セル10の位置合わせのためのマークやスリットなどを設け、複数の太陽電池セル10を正確な位置に接合できる(貼り合せる)ようにして、配線の接続誤差を抑制できることが好ましい。   In addition, although not shown in the drawing, a mark, a slit, or the like for alignment of the solar cells 10 to be joined is provided so that the plurality of solar cells 10 can be joined (bonded) at an accurate position, and wiring is performed. It is preferable that the connection error can be suppressed.

この配線基板20に太陽電池セル10を接着して太陽電池セル10側の電極(N電極15、P電極16)と配線基板20側の配線(N配線22とP配線23)を接合する。この電極と配線との接合は、従来公知の導電性接着剤やはんだを用いて行うことも可能であるが、太陽電池セル10側の電極と配線基板20側の配線を位置合わせした状態で、太陽電池セル10と配線基板20を接着することでも可能である。   The solar cells 10 are bonded to the wiring substrate 20 to join the electrodes (N electrode 15 and P electrode 16) on the solar cell 10 side and the wirings (N wiring 22 and P wiring 23) on the wiring substrate 20 side. The bonding between the electrode and the wiring can be performed using a conventionally known conductive adhesive or solder, but in a state where the electrode on the solar cell 10 side and the wiring on the wiring substrate 20 side are aligned, It is also possible to bond the solar battery cell 10 and the wiring board 20 together.

そこで、本実施形態においては、電極や配線以外の領域の一部に接着剤を配置して配線基板20に太陽電池セル10を仮止めした状態で前述した封止材2を介して一体に封止することにより、太陽電池セル10側の電極と配線基板20側の配線を電気的に接続することが可能になる。   Therefore, in the present embodiment, the adhesive is disposed in a part of the region other than the electrodes and the wiring, and the solar cells 10 are temporarily fixed to the wiring substrate 20, and the sealing is performed through the sealing material 2 described above. By stopping, it becomes possible to electrically connect the electrode on the solar cell 10 side and the wiring on the wiring substrate 20 side.

従って、配線基板20の配線と太陽電池セル10の電極との接続が、導電性接着剤やはんだを用いることなく、直接接触して接続可能になるので、製造工程の短縮化に加えて、接続部における電気抵抗を低くすることができ、太陽電池の電気特性を良好なものにできる。   Accordingly, since the connection between the wiring of the wiring board 20 and the electrode of the solar battery cell 10 can be made by direct contact without using a conductive adhesive or solder, in addition to shortening the manufacturing process, the connection The electrical resistance in the portion can be lowered, and the electrical characteristics of the solar cell can be improved.

この接着剤を配置する領域は、例えば、図4に示す例(第1実施形態)では、1枚の太陽電池セル10に対して対角線上の2か所に設けている。   For example, in the example shown in FIG. 4 (first embodiment), the region where the adhesive is disposed is provided at two locations on the diagonal line with respect to one solar battery cell 10.

すなわち、図4に示す第1実施形態では、配線基板20の絶縁性基材21に、それぞれの太陽電池セル10を接合する位置の対角線上の2か所に接着剤SB1、SB2を配置する。それから、太陽電池セル10側の電極(N電極15、P電極16)と配線基板20側の配線(N配線22とP配線23)との位置を合致させるようにして、太陽電池セル10を配線基板20に仮止めする。   That is, in 1st Embodiment shown in FIG. 4, adhesive agent SB1 and SB2 are arrange | positioned on the insulating base material 21 of the wiring board 20 at two places on the diagonal line of the position where each photovoltaic cell 10 is joined. Then, the solar cells 10 are wired so that the positions of the electrodes (N electrode 15 and P electrode 16) on the solar cell 10 side and the wirings (N wiring 22 and P wiring 23) on the wiring board 20 side are matched. Temporarily fasten to the substrate 20.

このように本実施形態においては、太陽電池セル10の外周部において、部分的に接着剤SB(SB1、SB2)を用いて配線基板20を接着している。この接着剤SBは絶縁性を有する接着剤(粘着剤を含む)であることが好ましく、例えば、シリコーン系接着剤、アクリル系接着剤、エポキシ系接着剤、ゴム系接着剤、などを用いることができる。   As described above, in the present embodiment, the wiring substrate 20 is bonded to the outer peripheral portion of the solar battery cell 10 partially using the adhesive SB (SB1, SB2). The adhesive SB is preferably an insulating adhesive (including a pressure-sensitive adhesive). For example, a silicone adhesive, an acrylic adhesive, an epoxy adhesive, a rubber adhesive, or the like is used. it can.

なお、配線基板20の絶縁性基材21と太陽電池セル10の間に、これらの密着性を高めるために、隙間を埋めるように樹脂が配置されていてもよい。   In addition, in order to improve these adhesiveness between the insulating base material 21 and the photovoltaic cell 10 of the wiring board 20, resin may be arrange | positioned so that a clearance gap may be filled up.

全ての太陽電池セル10を配線基板20に仮止めした後、前述した封止材2や透光性基板3や耐候性フィルム4などを積層構成する積層工程と、封止材2を加熱して軟化させた後で硬化させる封止工程を行う。   After temporarily fixing all the solar cells 10 to the wiring substrate 20, a laminating process for laminating and forming the sealing material 2, the translucent substrate 3, the weather resistant film 4, and the like, and the sealing material 2 are heated. A sealing step of hardening after softening is performed.

封止材2は、EVA(エチレン・ビニル・アセテート)樹脂などの透光性封止材を用いることが好ましく、貼り合せた太陽電池セル10と配線基板20の上下にシート状のEVA樹脂を積層して加熱しながら真空圧着する封止工程を行うことにより、太陽電池セル10と配線基板20とを一体に封止した構成の封止材2を形成することができる。   As the sealing material 2, it is preferable to use a light-transmitting sealing material such as EVA (ethylene vinyl acetate) resin. Sheet-like EVA resin is laminated on the upper and lower sides of the solar cell 10 and the wiring substrate 20 that are bonded together. By performing the sealing step of vacuum pressure bonding while heating, the sealing material 2 having a configuration in which the solar cells 10 and the wiring substrate 20 are integrally sealed can be formed.

このように、太陽電池セル10と配線基板20とその他の部材を積層して構成される構造物を所定の温度に加熱しながら所定の真空圧まで真空引きする封止工程を行うことにより、絶縁性基材21を裏面電極型太陽電池セル10側に屈曲させて窪みKを形成し、軟化した封止材が、この窪みKに充填されることとなる。   In this way, by performing a sealing step of evacuating the structure formed by stacking the solar cell 10, the wiring substrate 20, and other members to a predetermined vacuum pressure while heating the structure to a predetermined temperature, insulation is achieved. The base material 21 is bent toward the back electrode type solar cell 10 to form the depression K, and the depression K is filled with the softened sealing material.

すなわち、封止工程における所定の温度や所定の真空圧は、使用する絶縁性基材21が屈曲して窪みKを形成すると共に、使用する封止材が軟化して窪みKに充填される温度であり真空圧である。このようにして、配線基板20の互いに隣り合う配線の間に絶縁性基材21を介して封止材が存在することにより、太陽電池セル10と配線基板20との圧着度が向上し、隣り合う電極間の絶縁性を高めることができる。従って、太陽電池セル10側の電極と配線基板20側の配線との電気的な接続を確実にすることが可能になり、電極間の絶縁性を確保するために接着剤を多量に用いる必要がなく、生産性に優れた太陽電池1を提供することが可能になる。   That is, the predetermined temperature or the predetermined vacuum pressure in the sealing process is a temperature at which the insulating base 21 to be used is bent to form the depression K and the used sealing material is softened to fill the depression K. It is a vacuum pressure. In this way, the presence of the sealing material via the insulating base material 21 between the wirings adjacent to each other on the wiring board 20 improves the degree of pressure bonding between the solar battery cell 10 and the wiring board 20, so that Insulation between the matching electrodes can be increased. Therefore, it is possible to ensure electrical connection between the electrode on the solar cell 10 side and the wiring on the wiring substrate 20 side, and it is necessary to use a large amount of adhesive to ensure insulation between the electrodes. Therefore, it is possible to provide the solar cell 1 excellent in productivity.

このように封止工程においては所定温度まで加熱するので、接着剤SBとしては、この所定温度に曝された場合でも安定した接着性を示すものを用いることが好ましい。また、加熱後も安定した接着性を発揮することにより、太陽電池セル10と配線基板20との電気的接続の確実性を維持することができる。   Thus, since it heats to predetermined temperature in a sealing process, as adhesive SB, it is preferable to use what shows the stable adhesiveness even when exposed to this predetermined temperature. Moreover, the reliability of the electrical connection between the solar battery cell 10 and the wiring board 20 can be maintained by exhibiting stable adhesiveness even after heating.

絶縁性基材21は、比較的安価であり確実な絶縁性を発揮すると共に、真空引きすることにより太陽電池セル10側に屈曲して窪みKを形成する材質であり厚みであることが好ましいので、本実施形態においては、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)などのポリエステル系のフィルムを用いている。また、その厚みは、25〜150μm程度が好ましく、50〜100μm程度がさらに好ましいといえる。   Since the insulating base material 21 is relatively inexpensive and exhibits reliable insulating properties, it is preferably a material that is bent to the side of the solar battery cell 10 by evacuation to form the depression K and has a thickness. In this embodiment, a polyester film such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate) is used. The thickness is preferably about 25 to 150 μm, more preferably about 50 to 100 μm.

次に、本実施形態に係る太陽電池の製造方法について図5、図6を用いてさらに説明する。   Next, the manufacturing method of the solar cell according to the present embodiment will be further described with reference to FIGS.

本実施形態に係る太陽電池の製造方法は、基板(シリコン基板11)の一面に極性の異なる2種類の電極が設けられた裏面電極型太陽電池セル10と、絶縁性基材21の一面に前記電極に対応する配線が設けられた配線基板20とを備える太陽電池1の製造方法である。   The method for manufacturing a solar cell according to the present embodiment includes the back electrode type solar cell 10 in which two types of electrodes having different polarities are provided on one surface of the substrate (silicon substrate 11), and the one surface of the insulating base material 21. It is a manufacturing method of the solar cell 1 provided with the wiring board 20 provided with the wiring corresponding to an electrode.

また、裏面電極型太陽電池セル10の電極と配線基板20の配線とが対向するように、配線基板上に裏面電極型太陽電池セル10を配置するセル配置工程と、透光性基板3、第1の封止材2A、裏面電極型太陽電池セル10が配置された配線基板20および第2の封止材2Bをこの順で重ねた構造物とする積層工程と、配線基板20の絶縁性基材21を裏面電極型太陽電池セル側に屈曲させる基材屈曲工程と、構造物30を加熱して、第1の封止材2A及び第2の封止材2Bを軟化させて、裏面電極型太陽電池セル10が配置された配線基板20を封止する封止工程と、を含む。   In addition, a cell disposing step of disposing the back electrode type solar cell 10 on the wiring substrate so that the electrode of the back electrode type solar cell 10 and the wiring of the wiring substrate 20 face each other; A laminating process in which the sealing material 2A, the wiring substrate 20 on which the back electrode type solar cells 10 are arranged, and the second sealing material 2B are stacked in this order, and the insulating substrate of the wiring substrate 20 The base material bending step of bending the material 21 to the back electrode type solar cell side, the structure 30 is heated, and the first sealing material 2A and the second sealing material 2B are softened to form the back electrode type. And a sealing step for sealing the wiring substrate 20 on which the solar battery cells 10 are arranged.

例えば、図5にセル配置工程を説明する模式的な断面図を示し、図6に積層工程を説明する模式的な断面図を示す。図5に示すように、本実施形態に係るセル配置工程は、シリコン基板11の一面に、極性の異なるN電極15とP電極16を交互に設けた構成の裏面電極型太陽電池セル10に、樹脂フィルムから成る絶縁性基材21にN配線22とP配線23を交互に設けた構成の配線基板20を、例えば、その対角線上の2か所に接着剤SBを介装して接着する。   For example, FIG. 5 shows a schematic cross-sectional view for explaining the cell placement step, and FIG. 6 shows a schematic cross-sectional view for explaining the stacking step. As shown in FIG. 5, the cell placement process according to the present embodiment includes a back electrode type solar cell 10 having a configuration in which N electrodes 15 and P electrodes 16 having different polarities are alternately provided on one surface of a silicon substrate 11. A wiring board 20 having a configuration in which N wirings 22 and P wirings 23 are alternately provided on an insulating base material 21 made of a resin film is bonded with, for example, adhesive SB at two locations on the diagonal line.

ここで、接着剤SBは、裏面電極型太陽電池セル10の電極非形成領域に配置してもよいが、配線基板20の配線非形成領域の方のスペースが広いため、生産性を考慮すると、配線基板20側に配置する方が好ましい。   Here, the adhesive SB may be arranged in the electrode non-formation region of the back electrode type solar battery cell 10, but since the space of the wiring non-formation region of the wiring substrate 20 is wide, considering productivity, It is preferable to arrange on the wiring board 20 side.

すなわち、図5に示す本実施形態に係るセル配置工程は、配線基板20の配線と裏面電極型太陽電池セル10の電極とが対向するように、配線基板20上に裏面電極型太陽電池セル10を配置する。ここで、配線基板20の配線非形成領域の一部に配置した接着剤SBが、裏面電極型太陽電池セル10の電極非形成領域に接して、配線基板20と裏面電極型太陽電池セル10とが接着され、仮止めされる。   That is, in the cell placement step according to the present embodiment shown in FIG. 5, the back electrode solar cell 10 is placed on the wiring substrate 20 so that the wiring of the wiring substrate 20 and the electrode of the back electrode solar cell 10 face each other. Place. Here, the adhesive SB disposed in a part of the wiring non-formation region of the wiring substrate 20 is in contact with the electrode non-formation region of the back electrode solar cell 10, and the wiring substrate 20, the back electrode solar cell 10, Are bonded and temporarily fixed.

それから図6に示す積層工程において、上から、透光性基板3(ガラス基板)、シート状の第1の封止材2A、裏面電極型太陽電池セル10が仮止めされた配線基板20、シート状の第2の封止材2B、耐候性フィルム4(バックフィルム)をこの順に積層した構造物30を形成する。   Then, in the laminating process shown in FIG. 6, from above, the translucent substrate 3 (glass substrate), the sheet-like first sealing material 2A, the wiring substrate 20 on which the back electrode type solar cells 10 are temporarily fixed, and the sheet The structure 30 which laminated | stacked the 2nd sealing material 2B of a shape and the weather resistant film 4 (back film) in this order is formed.

次に、この構造物30を、ラミネータ装置にセットする。そして、ラミネータ装置で所定の温度に加熱しながら所定の真空圧まで真空引きする封止工程を行うことにより、構造物30をその上下方向に圧着する。すると、配線基板20の絶縁性基材21が軟化して、伸長しながらセル側に屈曲し、裏面電極型太陽電池セル10側に窪みKを形成する。   Next, this structure 30 is set in a laminator device. And the structure 30 is crimped | bonded to the up-down direction by performing the sealing process which evacuates to predetermined vacuum pressure, heating to predetermined temperature with a laminator apparatus. Then, the insulating base material 21 of the wiring board 20 is softened, bent to the cell side while being elongated, and a depression K is formed on the back electrode type solar cell 10 side.

また、絶縁性基材21が軟化して屈曲する過程において、裏面電極型太陽電池セル10と配線基板20との間の隙間を埋めるように、その隙間を小さくしていく。さらに、封止材2A、2Bが軟化して、この窪みKに充填される構成となる。また、第1の封止材2Aと第2の封止材2Bは一体となり前述した封止材2を形成する。   Further, in the process in which the insulating base material 21 is softened and bent, the gap is reduced so as to fill the gap between the back electrode type solar cell 10 and the wiring substrate 20. Further, the sealing materials 2A and 2B are softened and filled into the depression K. Further, the first sealing material 2A and the second sealing material 2B are integrated to form the sealing material 2 described above.

ここで、配線基板20の絶縁性基材21を裏面電極型太陽電池セル側に屈曲させる基材屈曲工程と、構造物30を加熱して、第1の封止材2A及び第2の封止材2Bを軟化させて、裏面電極型太陽電池セル10が配置された配線基板20を封止する封止工程とは、上記したラミネータ装置を用いて一連の工程として行ってもよいが、これらの基材屈曲工程と封止工程とをそれぞれ独立させて行ってもよい。   Here, the base material bending step of bending the insulating base material 21 of the wiring board 20 to the back electrode type solar cell side, the structure 30 is heated, and the first sealing material 2A and the second sealing material are heated. The sealing step of softening the material 2B and sealing the wiring substrate 20 on which the back electrode type solar cells 10 are arranged may be performed as a series of steps using the laminator device described above. The substrate bending step and the sealing step may be performed independently of each other.

その場合には、配線基板20と裏面電極型太陽電池セル10とを接着して仮止めした後、真空引きする方法や、熱風を吹き付けて加熱しながらエアー圧により圧着する方法などを採用することができる。ただ、太陽電池1の製造工程においては、加熱しながら真空引きする封止工程が採用されるので、この封止工程を利用して、基材屈曲工程を実施することができる。このように、基材屈曲工程と封止工程を一連の工程として行う方法であれば、製造工程の短縮化を図ることが可能になり、コスト的にも工程単純化のためにも有効な製造方法となって好ましい。   In that case, after bonding the wiring board 20 and the back electrode type solar cell 10 and temporarily fixing them, a method of evacuating or a method of applying pressure by air pressure while blowing hot air and heating is adopted. Can do. However, in the manufacturing process of the solar cell 1, a sealing process for evacuating while heating is employed, and thus the base material bending process can be performed using this sealing process. In this way, if the base bending process and the sealing process are performed as a series of processes, the manufacturing process can be shortened, and the manufacturing is effective in terms of cost and process simplification. Preferred as a method.

例えば、所定の加熱温度と所定の真空圧で加熱真空圧着工程を行うラミネータ装置を介して、基材屈曲工程および封止工程を一連の工程として実施することができる。この構成であれば、製造工程の短縮化を図ることが可能になり、コスト的にも工程単純化のためにも有効な製造方法となって好ましい。   For example, the base material bending step and the sealing step can be carried out as a series of steps via a laminator device that performs a heating vacuum pressing step at a predetermined heating temperature and a predetermined vacuum pressure. With this configuration, it is possible to shorten the manufacturing process, which is preferable as a manufacturing method effective for cost and process simplification.

すなわち、ラミネータ装置を用いて真空圧着工程と加熱硬化工程を一連の工程として行うことにより、上記の基材屈曲工程と封止工程を連続して実施できる。例えば、裏面電極型太陽電池セル10と封止材2(EVA)と透光性基板3と耐候性フィルム4を一体に積層した構造体30をラミネータ装置に設置して、真空排気しながら、140℃で7分間保持した(真空圧着工程)後、145℃で40分間加熱する(加熱硬化工程)ことによりEVAが硬化して裏面電極型太陽電池セル10を圧着封止し、太陽電池1を作製する。   That is, by performing a vacuum pressure bonding process and a heat curing process as a series of processes using a laminator device, the above-described base material bending process and sealing process can be performed continuously. For example, the structure 30 in which the back electrode type solar cell 10, the sealing material 2 (EVA), the translucent substrate 3, and the weather-resistant film 4 are integrally laminated is installed in a laminator device and evacuated while being evacuated. After holding at 7 ° C. for 7 minutes (vacuum pressure bonding step), by heating at 145 ° C. for 40 minutes (heat curing step), EVA is cured and the back electrode type solar cell 10 is pressure-bonded and sealed to produce solar cell 1. To do.

なお、上記では、セル配置領域の外周部近傍で配線基板の配線非形成領域の一部において、接着剤(粘着材)SBを、一枚のセル(裏面電極型太陽電池セル10)に対して対角線上の2か所に点状に設ける構成(第1実施形態)について説明したが、この接着剤(粘着材)SBの配置位置はこのような構成に限定されるものではない。   In the above, the adhesive (adhesive material) SB is applied to one cell (back electrode type solar battery cell 10) in a part of the wiring non-formation region of the wiring board in the vicinity of the outer periphery of the cell arrangement region. Although the configuration (first embodiment) provided in two points on the diagonal line has been described, the arrangement position of the adhesive (adhesive material) SB is not limited to such a configuration.

例えば、図7に示す例(第2実施形態)では、セルの一辺に対して複数個所(一辺に対して2箇所で、セル一枚に対して合計4箇所)の点状に配置した接着剤SB1〜SB4を採用している。また、図8に示す例(第3実施形態)では、互いに対向する辺の2箇所にライン状に配置した接着剤SB5、SB6を採用している。   For example, in the example shown in FIG. 7 (second embodiment), the adhesives are arranged in a plurality of spots in a plurality of places with respect to one side of the cell (two places for one side and a total of four places for one cell). SB1 to SB4 are adopted. Further, in the example shown in FIG. 8 (third embodiment), the adhesives SB5 and SB6 arranged in a line at two locations on opposite sides are employed.

いずれにしても、セル配置領域の外周部近傍で配線基板20の配線非形成領域の一部に接着剤SB(SB1〜SB6)を配置して、配線基板20と太陽電池セル10とを貼り合せることは同じである。すなわち、基板内部の配線形成領域には接着剤(粘着剤を含む)
を配置する必要はないので、接着剤や粘着剤の量は少なくてよい。
In any case, the adhesive SB (SB1 to SB6) is disposed in a part of the wiring non-formation region of the wiring substrate 20 near the outer periphery of the cell arrangement region, and the wiring substrate 20 and the solar battery cell 10 are bonded together. The same is true. In other words, adhesive (including adhesive) in the wiring formation area inside the board
Therefore, the amount of the adhesive and the pressure-sensitive adhesive may be small.

すなわち、必要な接着剤や粘着剤の量は、基材屈曲工程や封止工程において、配線基板20と太陽電池セル10とが位置ずれしない程度に接着できて仮止めできる程度であればよく、セル配置領域の外周部近傍の複数個所に、点状あるいはライン状に接着剤SB(SB1〜SB6)を設置しておくだけでよい。   That is, the amount of the necessary adhesive or pressure-sensitive adhesive is sufficient if it can be adhered and temporarily fixed to the extent that the wiring substrate 20 and the solar battery cell 10 are not misaligned in the base material bending step or the sealing step, Adhesives SB (SB1 to SB6) need only be installed at a plurality of locations in the vicinity of the outer peripheral portion of the cell arrangement region in the form of dots or lines.

上記したように、本実施形態に係る太陽電池の製造方法は、電極や配線以外の領域の一部に接着剤SBを配置して可撓性を有する配線基板20と太陽電池セル10と、を仮止めするセル配置工程と、構造物30を形成する積層工程と、配線基板20の絶縁性基材21を太陽電池セル側に屈曲させる基材屈曲工程と、構造物30を加熱して封止する封止工程とを含む。   As described above, the solar cell manufacturing method according to the present embodiment includes the flexible wiring board 20 and the solar battery cell 10 by arranging the adhesive SB in a part of the region other than the electrode and the wiring. A cell placement step for temporarily fixing, a laminating step for forming the structure 30, a base material bending step for bending the insulating base material 21 of the wiring board 20 to the solar cell side, and heating and sealing the structure 30 Sealing step.

この太陽電池の製造方法であれば、配線形成領域内の絶縁性を確保するために接着剤を用いる必要がなくなるので、多量の接着剤を用いることなく太陽電池セル10と配線基板20とを接合できる太陽電池の製造方法を得ることができる。   With this solar cell manufacturing method, it is not necessary to use an adhesive to ensure insulation in the wiring formation region, so the solar cells 10 and the wiring substrate 20 can be joined without using a large amount of adhesive. The manufacturing method of the solar cell which can be obtained can be obtained.

上記のような工程を経て太陽電池1を作製し、図9に示すように、太陽電池1の周囲にアルミ製の枠体40を取り付け、外部へ電気を取り出すために端子ボックス8を取り付けてモジュール化した太陽電池モジュールMを完成する。太陽電池モジュールMが生成する電気は出力ケーブル81を介して取り出すことができる。   The solar cell 1 is manufactured through the steps as described above, and as shown in FIG. 9, an aluminum frame 40 is attached around the solar cell 1 and a terminal box 8 is attached to take out electricity to the outside. The converted solar cell module M is completed. The electricity generated by the solar cell module M can be taken out via the output cable 81.

また、ガラス基板3以外の部分を、水分の透過を抑制する機能を有する金属フィルムと、絶縁性を有する樹脂フィルムとを積層した積層フィルムで覆うことによって、太陽電池1への水分の浸入を有効に抑制する構成とし、さらにこの外周にアルミ製の枠体40を嵌め込む構成としてもよい。   Moreover, the penetration | invasion of the water | moisture content to the solar cell 1 is effective by covering parts other than the glass substrate 3 with the laminated | multilayer film which laminated | stacked the metal film which has the function which suppresses permeation | transmission of water | moisture, and the resin film which has insulation. Further, a configuration in which the aluminum frame 40 is fitted around the outer periphery may be adopted.

上記したように、本発明の請求項1に対応した課題を解決する手段は、基板(シリコン基板11)の一面に極性の異なる2種類の電極(N電極15、P電極16)が設けられた裏面電極型太陽電池セル10と、絶縁性基材21の一面に前記電極に対応する配線(N配線22とP配線23)が設けられた配線基板20とを備える太陽電池1であって、裏面電極型太陽電池セル10の電極と配線基板20の配線とが電気的に接続されており、絶縁性基材21が、裏面電極型太陽電池セル10側に屈曲して、裏面電極型太陽電池セル10の互いに隣り合う電極の間に窪みKを形成することである。   As described above, the means for solving the problem corresponding to claim 1 of the present invention is provided with two types of electrodes (N electrode 15 and P electrode 16) having different polarities on one surface of the substrate (silicon substrate 11). A solar cell 1 comprising a back electrode type solar battery cell 10 and a wiring substrate 20 provided with wiring (N wiring 22 and P wiring 23) corresponding to the electrode on one surface of an insulating base material 21. The electrode of the electrode type solar cell 10 and the wiring of the wiring board 20 are electrically connected, and the insulating base material 21 is bent toward the back electrode type solar cell 10 side, so that the back electrode type solar cell. The depression K is formed between 10 adjacent electrodes.

この請求項1に対応した効果は、絶縁性基材21が、裏面電極型太陽電池セル側に屈曲して互いに隣り合う電極の間に窪みKを形成するので、太陽電池セル10と絶縁性基材21との間の隙間に充填する接着剤の使用量を減らすことができる。また、この絶縁性基材21を介して隣り合う電極間の絶縁性を確保することもできる。すなわち、多量の接着剤を用いることなく太陽電池セル10と配線基板20とを接合できる太陽電池1を得ることができる。   The effect corresponding to the first aspect is that the insulating base material 21 is bent toward the back electrode type solar battery cell and forms a recess K between the adjacent electrodes. The amount of adhesive used to fill the gap between the material 21 can be reduced. In addition, it is possible to ensure insulation between adjacent electrodes via the insulating substrate 21. That is, the solar battery 1 that can join the solar battery cell 10 and the wiring board 20 without using a large amount of adhesive can be obtained.

請求項2に対応した課題を解決する手段は、絶縁性基材21の窪み部分が、裏面電極型太陽電池セル10の互いに隣り合う電極の間で、裏面電極型太陽電池セル10に接触することである。この請求項2に対応した効果は、隣り合う電極同士を確実に絶縁できるので、絶縁性を確保するために接着剤を用いる必要がなくなり、さらに、接着剤の使用量を減らすことが可能になる。   The means for solving the problem corresponding to claim 2 is that the recessed portion of the insulating base 21 is in contact with the back electrode solar cell 10 between the electrodes of the back electrode solar cell 10 adjacent to each other. It is. The effect corresponding to the second aspect is that the adjacent electrodes can be reliably insulated from each other, so that it is not necessary to use an adhesive to ensure insulation, and the amount of the adhesive can be reduced. .

請求項3に対応した課題を解決する手段は、絶縁性基材21の窪み部分が、互いに隣り合う配線の対向する側面に接触することである。この請求項3に対応した効果は、隣り合う配線同士を確実に絶縁でき、さらに、隣り合う配線同士の間に封止材を充填できる。   A means for solving the problem corresponding to claim 3 is that the recessed portion of the insulating base material 21 is in contact with the opposite side surfaces of the wirings adjacent to each other. The effect corresponding to the third aspect is that the adjacent wirings can be reliably insulated from each other, and the sealing material can be filled between the adjacent wirings.

請求項4に対応した課題を解決する手段は、裏面電極型太陽電池セル10および配線基板20が封止材2を用いて封止されており、窪みKに封止材2が充填されて、配線基板20の互いに隣り合う配線の間に絶縁性基材21を介して封止材が存在することである。この請求項4に対応した効果は、窪みKに充填される封止材を介して、隣り合う電極と配線との接続部間を確実に絶縁し、さらに、太陽電池セル10と配線基板20との位置ずれを確実に防止することができる。   A means for solving the problem corresponding to claim 4 is that the back electrode type solar cell 10 and the wiring substrate 20 are sealed with the sealing material 2, and the recess K is filled with the sealing material 2, That is, a sealing material exists between the wirings adjacent to each other on the wiring board 20 via the insulating base material 21. The effect corresponding to the fourth aspect is that the connecting portions between the adjacent electrodes and the wiring are reliably insulated via the sealing material filled in the depression K, and further, the solar battery cell 10 and the wiring substrate 20 Can be reliably prevented.

請求項5に対応した課題を解決する手段は、基板の一面に極性の異なる2種類の電極が設けられた裏面電極型太陽電池セル10と、絶縁性基材21の一面に前記電極に対応する配線が設けられた配線基板20とを備える太陽電池1の製造方法であって、裏面電極型太陽電池セル10の電極と配線基板20の配線とが対向するように、配線基板上に裏面電極型太陽電池セル10を配置するセル配置工程と、透光性基板3、第1の封止材2A、裏面電極型太陽電池セル10が配置された配線基板20および第2の封止材2Bをこの順で重ねた構造物30とする積層工程と、配線基板20の絶縁性基材21を裏面電極型太陽電池セル側に屈曲させる基材屈曲工程と、構造物30を加熱して、第1の封止材2A及び第2の封止材2Bを軟化させて、裏面電極型太陽電池セル10が配置された配線基板20を封止する封止工程と、を含むことである。この請求項5に対応した効果は、隣り合う電極間の絶縁性を確保するために接着剤を用いる必要がなくなるので、多量の接着剤を用いることなく太陽電池セル10と配線基板20とを接合できる太陽電池1の製造方法を得ることができる。   The means for solving the problem corresponding to claim 5 corresponds to the back electrode type solar cell 10 in which two kinds of electrodes having different polarities are provided on one surface of the substrate, and the electrode on one surface of the insulating base 21. A method of manufacturing a solar cell 1 including a wiring substrate 20 provided with wiring, wherein the back electrode type solar cell 10 and the wiring of the wiring substrate 20 are opposed to each other so that the electrodes on the wiring substrate 20 face each other. The cell placement step for placing the solar cells 10, the translucent substrate 3, the first sealing material 2 </ b> A, the wiring substrate 20 on which the back electrode solar cells 10 are placed, and the second sealing material 2 </ b> B A laminating process for sequentially stacking the structure 30, a base material bending process for bending the insulating base material 21 of the wiring substrate 20 toward the back electrode type solar cell side, and heating the structure 30, Soften the sealing material 2A and the second sealing material 2B, The wiring board 20 electrode type solar cell 10 is disposed is to include a sealing step of sealing. The effect corresponding to claim 5 is that it is not necessary to use an adhesive in order to ensure insulation between adjacent electrodes, so that the solar battery cell 10 and the wiring substrate 20 can be joined without using a large amount of adhesive. The manufacturing method of the solar cell 1 which can be obtained can be obtained.

請求項6に対応した課題を解決する手段は、絶縁性基材として可撓性を有するフィルム基材を用い、基材屈曲工程は、真空引きして前記フィルム基材を裏面電極型太陽電池セル側に屈曲させる真空引き工程であることである。この請求項6に対応した効果は、可撓性を有するフィルム基材を真空引きして、基材屈曲工程を容易に実施することができる。   A means for solving the problem corresponding to claim 6 uses a flexible film base material as the insulating base material, and the base material bending step evacuates the film base material to form a back electrode type solar cell. It is a vacuum drawing process to bend to the side. The effect corresponding to the sixth aspect is that the flexible film substrate can be evacuated and the substrate bending step can be easily performed.

請求項7に対応した課題を解決する手段は、基材屈曲工程および封止工程は、ラミネータ装置を用いて所定の加熱温度と所定の真空圧にて行う加熱真空圧着工程を介して一連の工程として行われる太陽電池1の製造方法としたことである。この請求項7に対応した効果は、所定の温度に加熱して真空圧着を行う加熱真空圧着工程を介して、基材屈曲工程と封止工程を一連の工程として実施することができる。従って、製造工程の短縮化を図ることが可能になり、コスト的にも工程単純化のためにも有効な製造方法となる。   A means for solving the problem corresponding to claim 7 is a series of steps through a heating vacuum pressure bonding step in which the base material bending step and the sealing step are performed at a predetermined heating temperature and a predetermined vacuum pressure using a laminator device. It is that it was set as the manufacturing method of the solar cell 1 performed as follows. The effect corresponding to the seventh aspect is that the base material bending step and the sealing step can be carried out as a series of steps through a heating / vacuum pressing step in which vacuum pressing is performed by heating to a predetermined temperature. Therefore, the manufacturing process can be shortened, and the manufacturing method is effective in terms of cost and process simplification.

上記したように、本発明によれば、裏面電極型太陽電池セルの電極面に介装する配線基板の絶縁性基材が、裏面電極型太陽電池セル側に屈曲して、裏面電極型太陽電池セルの互いに隣り合う電極の間に窪みを形成することにより、多量の接着剤を用いることなく太陽電池セルと配線基板とを接合できる太陽電池およびその製造方法を得ることができる。   As described above, according to the present invention, the insulating base material of the wiring board interposed in the electrode surface of the back electrode type solar cell is bent toward the back electrode type solar cell side, and the back electrode type solar cell By forming a recess between the electrodes adjacent to each other in the cell, a solar battery that can join the solar battery cell and the wiring board without using a large amount of adhesive and a method for manufacturing the solar battery can be obtained.

また、配線基板の配線と裏面電極型太陽電池セルの電極との接続が、導電性接着剤を用いることなく、直接接触して接続可能になるので、製造工程の短縮化に加えて、接続部における電気抵抗を低くすることができ、太陽電池の電気特性を良好にできる。   In addition, the connection between the wiring of the wiring board and the electrode of the back electrode type solar battery cell can be made by direct contact without using a conductive adhesive. The electrical resistance of the solar cell can be reduced, and the electrical characteristics of the solar cell can be improved.

本発明に係る太陽電池およびその方法は、多量の接着剤を用いることなく太陽電池セルと配線基板とを接合できるので、製造工程の短縮化と低コスト化を図ることが求められる太陽電池およびその製造方法に好適に利用可能となる。   Since the solar cell and the method thereof according to the present invention can join the solar cell and the wiring board without using a large amount of adhesive, the solar cell required to shorten the manufacturing process and reduce the cost, and its It can be suitably used for the manufacturing method.

1 太陽電池
2 封止材
3 透光性基板
4 耐候性フィルム
10 太陽電池セル(裏面電極型太陽電池セル)
11 シリコン基板
12 反射防止膜
13 n型不純物ドーピング領域
14 p型不純物ドーピング領域
15 N電極
16 P電極
17 パッシベーション膜
20 配線基板
21 絶縁性基材
22 N配線
23 P配線
30 構造物
40 枠体
K 窪み
M 太陽電池モジュール
SB(SB1〜SB6) 接着剤
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Sealing material 3 Translucent substrate 4 Weather resistance film 10 Solar cell (back electrode type solar cell)
DESCRIPTION OF SYMBOLS 11 Silicon substrate 12 Antireflection film 13 N-type impurity doping area | region 14 P-type impurity doping area | region 15 N electrode 16 P electrode 17 Passivation film | membrane 20 Wiring board 21 Insulating base material 22 N wiring 23 P wiring 30 Structure 40 Frame K hollow M Solar cell module SB (SB1 to SB6) Adhesive

Claims (4)

基板の一面に極性の異なる2種類の電極が設けられた裏面電極型太陽電池セルと、絶縁性基材の一面に前記電極に対応する配線が設けられた配線基板とを備える太陽電池であって、
前記裏面電極型太陽電池セルの前記電極と前記配線基板の前記配線とが電気的に接続されており、
前記絶縁性基材が、前記裏面電極型太陽電池セル側に屈曲して、前記裏面電極型太陽電池セルの互いに隣り合う前記電極の間に窪みを形成し、
前記絶縁性基材の窪み部分が、前記裏面電極型太陽電池セルの互いに隣り合う前記電極の間で、前記裏面電極型太陽電池セルに接触することを特徴とする太陽電池。
A solar cell comprising a back electrode type solar cell in which two types of electrodes having different polarities are provided on one surface of a substrate, and a wiring substrate in which a wire corresponding to the electrode is provided on one surface of an insulating substrate. ,
The electrode of the back electrode solar cell and the wiring of the wiring board are electrically connected;
The insulative base material is bent toward the back electrode solar cell side to form a recess between the electrodes of the back electrode solar cell adjacent to each other;
The solar cell, wherein the indented portion of the insulating base material is in contact with the back electrode type solar battery cell between the adjacent electrodes of the back electrode type solar battery cell.
前記絶縁性基材の窪み部分が、互いに隣り合う前記配線の対向する側面に接触することを特徴とする請求項1に記載の太陽電池。   2. The solar cell according to claim 1, wherein the recessed portion of the insulating base material is in contact with opposing side surfaces of the wirings adjacent to each other. 前記裏面電極型太陽電池セルおよび前記配線基板が封止材を用いて封止されており、前記窪みに封止材が充填されて、前記配線基板の互いに隣り合う前記配線の間に前記絶縁性基材を介して前記封止材が存在することを特徴とする請求項1または2に記載の太陽電池。   The back electrode type solar cell and the wiring board are sealed with a sealing material, the recess is filled with a sealing material, and the insulating property is provided between the wirings adjacent to each other on the wiring board. The solar cell according to claim 1, wherein the sealing material is present via a base material. 前記裏面電極型太陽電池セルおよび前記配線基板が封止材を用いて封止されており、前記封止材とは別に、前記裏面電極型太陽電池セルの外周部で前記裏面電極型太陽電池セルと前記配線基板とを接着する絶縁性接着剤が設けられていることを特徴とする請求項1から3のいずれかに記載の太陽電池。   The back electrode type solar cell and the wiring substrate are sealed with a sealing material, and separately from the sealing material, the back electrode type solar cell at the outer periphery of the back electrode type solar cell. 4. The solar cell according to claim 1, further comprising an insulating adhesive that adheres the wiring board to the wiring board.
JP2012268174A 2012-12-07 2012-12-07 Solar cell and method for manufacturing the same Active JP6047389B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012268174A JP6047389B2 (en) 2012-12-07 2012-12-07 Solar cell and method for manufacturing the same
PCT/JP2013/077556 WO2014087736A1 (en) 2012-12-07 2013-10-10 Solar cell and method for manufacturing same
CN201390000966.4U CN204885192U (en) 2012-12-07 2013-10-10 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012268174A JP6047389B2 (en) 2012-12-07 2012-12-07 Solar cell and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2014116395A JP2014116395A (en) 2014-06-26
JP6047389B2 true JP6047389B2 (en) 2016-12-21

Family

ID=50883164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012268174A Active JP6047389B2 (en) 2012-12-07 2012-12-07 Solar cell and method for manufacturing the same

Country Status (3)

Country Link
JP (1) JP6047389B2 (en)
CN (1) CN204885192U (en)
WO (1) WO2014087736A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150104A1 (en) * 2016-03-04 2017-09-08 シャープ株式会社 Photoelectric conversion element and photoelectric conversion module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679478B2 (en) * 1995-11-29 2005-08-03 三洋電機株式会社 Bending film-like solar cell element
JP2009043842A (en) * 2007-08-07 2009-02-26 Sharp Corp Solar battery module
JP2011159779A (en) * 2010-02-01 2011-08-18 Hitachi Cable Ltd Solar cell module, and method of manufacturing the same
JP5123409B2 (en) * 2011-03-30 2013-01-23 シャープ株式会社 Method for manufacturing solar cell with wiring board and method for manufacturing solar cell module

Also Published As

Publication number Publication date
CN204885192U (en) 2015-12-16
WO2014087736A1 (en) 2014-06-12
JP2014116395A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
EP2169725B1 (en) Solar cell module manufacturing method
JP6139580B2 (en) Solar cell module and manufacturing method thereof
WO2010116973A1 (en) Interconnect sheet, solar cell with interconnect sheet, solar module, and method of producing solar cell with interconnect sheet
JP4958187B2 (en) Solar cell, wiring sheet, solar cell with wiring sheet and solar cell module
JP5203176B2 (en) Wiring sheet, solar cell with wiring sheet and solar cell module
JP5424235B2 (en) Solar cell module and method for manufacturing solar cell module
JP5430326B2 (en) Solar cell module
JP5100206B2 (en) Solar cell module
JP5631661B2 (en) Manufacturing method of solar cell module
JP6163014B2 (en) Manufacturing method of solar cell module
JP2012079838A (en) Solar cell module and method for manufacturing the same
JP6047389B2 (en) Solar cell and method for manufacturing the same
JP5591146B2 (en) INSULATING SHEET WITH WIRING AND ITS MANUFACTURING METHOD, SOLAR CELL INTEGRATED INSULATING SHEET WITH WIRING AND ITS MANUFACTURING METHOD, SOLAR BATTERY MODULE MANUFACTURING METHOD
JP5652911B2 (en) Manufacturing method of solar cell module
JP5456128B2 (en) Solar cell module
JP5288409B2 (en) Solar cell with wiring sheet, solar cell module, method for manufacturing solar cell with wiring sheet, and method for manufacturing solar cell module
JP2010245399A (en) Wiring sheet, solar cell with wiring sheet, solar cell module, method of manufacturing solar cell with wiring sheet, and method of manufacturing solar cell module
JP5942136B2 (en) Solar cell module and manufacturing method thereof
JP5025592B2 (en) Manufacturing method of solar cell module
JP2016122733A (en) Solar battery module
WO2017056363A1 (en) Method for producing solar cell module
JP2013143401A (en) Solar cell module and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160825

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6047389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150