JP6045132B2 - Cooking method of mochi rice - Google Patents

Cooking method of mochi rice Download PDF

Info

Publication number
JP6045132B2
JP6045132B2 JP2011221908A JP2011221908A JP6045132B2 JP 6045132 B2 JP6045132 B2 JP 6045132B2 JP 2011221908 A JP2011221908 A JP 2011221908A JP 2011221908 A JP2011221908 A JP 2011221908A JP 6045132 B2 JP6045132 B2 JP 6045132B2
Authority
JP
Japan
Prior art keywords
rice
heating
water
temperature
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011221908A
Other languages
Japanese (ja)
Other versions
JP2013081393A (en
Inventor
朋之 田中
朋之 田中
Original Assignee
朋之 田中
朋之 田中
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朋之 田中, 朋之 田中 filed Critical 朋之 田中
Priority to JP2011221908A priority Critical patent/JP6045132B2/en
Publication of JP2013081393A publication Critical patent/JP2013081393A/en
Application granted granted Critical
Publication of JP6045132B2 publication Critical patent/JP6045132B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、香気・風味が優れ、健康に良い成分を有する米飯を加熱調理する方法に関する。   The present invention relates to a method for cooking cooked rice having excellent aroma and flavor and having healthy components.

米は、ウルチ米とモチ米に大別される。モチ米はデンプン粒結合型デンプン合成酵素Iの機能が欠損しているため、アミロースを全く含まず、アミロペクチンのみを含む。アミロース及びアミロペクチンはともに還元糖の一種であるグルコースがグルコシド結合によって重合した高分子であるが、デンプン構造が異なる。これにより、ウルチ米とモチ米には様々な物性・加工特性の違いがある。   Rice is roughly divided into Uruchi rice and Mochi rice. Since glutinous rice is deficient in the function of starch granule-bound starch synthase I, it does not contain any amylose and contains only amylopectin. Amylose and amylopectin are both polymers in which glucose, which is a kind of reducing sugar, is polymerized by a glucoside bond, but the starch structure is different. As a result, Uruchi rice and mochi rice have various physical properties and processing characteristics.

ウルチ米は、日本を含め世界中で広く利用されており、炊く、煮る、蒸す、炒める、あるいはそれらを組み合わせた様々な調理方法(米粒の形を残した調理法)や、米粉麺や米粉パン、あるいは団子や煎餅などの菓子類、日本酒や甘酒などの飲料など、様々な加工品を作製する方法が開発されている。このうち、日常的に主食として食べるための調理技術に関しては、日本では、炊き干し法が一般的である。炊き干し法は、水加減と火加減を調節することで米粒を煮た後に蒸し、テクスチャーの優れた米飯を作る調理法であり、一般家庭でも該調理法を簡便に実現できるガス式又は電気式の自動炊飯器が開発されている(特許文献1参照)。ただし、炊き干し法による米飯の食味は概して淡泊であり、香り・風味に大きな特徴はなく、日本における米消費量低下の大きな原因の一つと考えられる。
一方、モチ米はその多くが餅や赤飯、あるいは菓子類などの加工食品に利用され、ハレの日など特別な日にのみ摂食されることが多い。すなわち、ウルチ米のように味付け等をせずにそのまま日常的に摂食することはモチ米ではほとんどなされておらず、そのための調理方法も日本では確立していない。
Uruchi rice is widely used all over the world, including Japan, and it can be cooked, boiled, steamed, fried, or a combination of these (cooking methods that leave the shape of rice grains), rice flour noodles, and rice flour bread. In addition, methods for producing various processed products such as confectionery such as dumplings and rice crackers, and beverages such as Japanese sake and amazake have been developed. Among these, the cooking method for eating as a staple food on a daily basis is common in Japan. The cooking and drying method is a cooking method that cooks rice grains by adjusting the amount of water and heat, then steams them to make cooked rice with an excellent texture. An automatic rice cooker has been developed (see Patent Document 1). However, the taste of cooked and dried rice is generally light, and there are no major characteristics in fragrance and flavor, which is considered to be one of the major causes of the decline in rice consumption in Japan.
On the other hand, most of the sticky rice is used for processed foods such as rice cakes, red rice, and confectionery, and is often consumed only on special days such as a halle day. That is, as in the case of Uruchi rice, it is rarely eaten on a daily basis without seasoning, etc., and the cooking method for that is not established in Japan.

特開2001−46224号公報JP 2001-46224 A 特開2010−63572号公報JP 2010-63572 A 特開2008−18096号公報JP 2008-18096 A 特表2007−532712号公報Special table 2007-532712 gazette

高宮和彦ら編「色から見た食品のサイエンス」、株式会社サイエンスフォーラム、2004年2月13日Kazuhiko Takamiya et al. “Science of food viewed from color”, Science Forum Inc., February 13, 2004 化学と生物9、pp.85-96、社団法人日本農芸化学会、1971年Chemistry and Biology 9, pp.85-96, Japan Society for Agricultural Chemistry, 1971 貝沼やす子、福田靖子、「竹炭による米飯の性状改善効果」日本調理科学会誌35:139-147、2002年Yasuko Kakinuma, Kyoko Fukuda, “Effects of improving the quality of cooked rice with bamboo charcoal” Journal of the Japan Society for Cooking Science 35: 139-147 小林健治、土佐典照、原安夫、堀江修二、「電解水による炊飯特性の検討」日本食品科学工学会誌43:930-938、1996年Kenji Kobayashi, Noriaki Tosa, Yasuo Hara, Shuji Horie, “Examination of Cooking Characteristics with Electrolyzed Water” Journal of Japanese Society for Food Science and Technology 43: 930-938, 1996 農林水産省消費・安全局、消費者の部屋通信12月号:8-9、2010年Ministry of Agriculture, Forestry and Fisheries, Consumer Affairs and Safety Bureau, Consumer Room Communication December Issue: 8-9, 2010 Awazuhara et al、Distribution and characterization of enzymes causing starch degradation in rice (Oryza sativa cv. koshihikari)., J Agric. Food Chem. 48、pp.245-52、2000年Awazuhara et al, Distribution and characterization of enzymes causing starch degradation in rice (Oryza sativa cv.koshihikari)., J Agric. Food Chem. 48, pp.245-52, 2000

本発明が解決しようとする課題は、米(特にモチ米)を味付けしなくてもおいしく食することができる米飯の加熱調理方法を提供することである。   The problem to be solved by the present invention is to provide a method for cooking cooked rice that can be eaten deliciously without seasoning rice (particularly mochi rice).

本発明者は鋭意研究を重ねた結果、精米方法や水浸漬方法、加熱方法を最適化することで、甘味の質と量を制御するとともにpHや水分活性を調節し、還元糖とアミノ酸によるメイラード反応を促進させることで優れた香気・風味と抗酸化性のあるメラノイジンを有する米飯を生成できることを見いだした。   As a result of extensive research, the present inventor has optimized the rice milling method, water immersion method, and heating method to control the quality and amount of sweetness and adjust pH and water activity. It was found that cooked rice having excellent fragrance and flavor and antioxidant melanoidin can be produced by promoting the reaction.

本発明はかかる知見に基づいて完成したものであり、具体的には、
モチ米の米粒を水中に浸漬した後、水切りして加熱することによりモチ米を加熱調理する方法であって、
米粒を浸漬した水のpHを6.5以上10.0以下に調整すると共に、
加熱調理後の米飯の水分含有率が39%〜49%になるような加熱状態に調節して、米粒温度が55℃から65℃に至るまでに要する時間が20分以上となる第1加熱工程と、少なくとも40分で60℃から90℃まで上に凸の曲線を描くように温度上昇させる第2加熱工程と、少なくとも60分、100℃で加熱する第3加熱工程により、前記米粒を蒸気加熱することを特徴とする。
The present invention has been completed based on such findings, and specifically,
A method of cooking rice cakes by immersing rice grains of rice cakes in water, draining and heating,
While adjusting the pH of the water in which the rice grains are immersed to 6.5 to 10.0,
The first heating process in which the time required for the rice grain temperature to reach from 55 ° C to 65 ° C is 20 minutes or longer by adjusting the heating state so that the moisture content of the cooked rice is 39% to 49 %. And steam heating the rice grains by a second heating step that raises the temperature so as to draw a convex curve from 60 ° C. to 90 ° C. in at least 40 minutes and a third heating step that heats at 100 ° C. for at least 60 minutes. It is characterized by doing.

米粒を浸漬した水のpHは6.5以上10.0以下であれば十分においしい米飯を提供することができるが、6.8以上、好ましくは7.1以上であれば更においしい米飯を提供することができる。米粒を浸漬した水のpHは、pH調整剤を用いたり適切な米粒を選択したりすることで調整することができる。   A sufficiently delicious cooked rice can be provided if the pH of the water in which the rice grains are immersed is 6.5 or more and 10.0 or less, but a more delicious cooked rice can be provided if the pH is 6.8 or more, preferably 7.1 or more. The pH of the water in which the rice grains are immersed can be adjusted by using a pH adjuster or selecting appropriate rice grains.

また、加熱調理後の米飯の水分含有率は、加熱前の浸漬水量によって、あるいは蒸気加熱時の蒸気量・打ち水量によって調節することができる。
さらに、60℃は米粒に含まれる糖化酵素(アミログルコシダーゼ)の至適温度であることから、60℃付近となる時間を長くすることにより加熱調理後の米粒に含まれる還元糖を増加させることができる。
Moreover, the moisture content of cooked rice after cooking can be adjusted by the amount of immersion water before heating, or by the amount of steam and the amount of hammering water during steam heating.
Furthermore, since 60 ° C is the optimum temperature for saccharifying enzyme (amyloglucosidase) contained in rice grains, it is possible to increase the reducing sugar contained in the rice grains after cooking by increasing the time around 60 ° C. it can.

本発明のモチ米の加熱調理方法にあっては、水浸漬時において、米粒に対するグルコースの重量比が0.1%〜10.0%になるように、グルコースを添加したり、バリン、グリシン、トレオニンの少なくとも1つのアミノ酸を添加したりすることが好ましい。グルコースやアミノ酸を単独で添加しても良く、両方を添加しても良い。
グルコースは、メイラード反応の基質の一つであり米粒の主成分(デンプン)から生じるものである。また、バリン、グリシン、トレオニンもメイラード反応基質であり米粒に含まれるアミノ酸である。従って、これらのいずれかを水浸漬時に添加することによりメイラード反応を促進することができる。
In the heat cooking method of mochi rice of the present invention, at the time of immersion in water , glucose is added so that the weight ratio of glucose to rice grains is 0.1% to 10.0%, or at least one of valine, glycine and threonine. It is preferable to add two amino acids. Glucose and amino acids may be added alone, or both may be added.
Glucose is one of the substrates of the Maillard reaction and is produced from the main component (starch) of rice grains. Valine, glycine and threonine are also Maillard reaction substrates and are amino acids contained in rice grains. Therefore, the Maillard reaction can be promoted by adding any of these during water immersion .

また、本発明のモチ米の加熱調理方法では、蒸気加熱することが好ましく、これにより加熱調理後の水分含有率を低く抑えることができる
Moreover, in the heating cooking method of the glutinous rice of this invention, it is preferable to carry out steam heating, and, thereby, the moisture content after cooking can be suppressed low .

また、25℃よりも低温で貯蔵されたモチ米の玄米を0〜20%の歩合で搗精し、搗精後1ヶ月以内に、好ましくは2週間以内に、米の40〜100重量%であって25℃〜40℃の温度範囲に調整された水に浸漬した後に加熱調理することが好ましい。
Also, brown rice of mochi rice stored at a temperature lower than 25 ° C is refined at a rate of 0-20%, and within 40 months of rice, preferably within 2 weeks, within 2 months It is preferable to heat cook after immersing in water adjusted to a temperature range of 25 ° C to 40 ° C.

本発明のモチ米の加熱調理方法では、メイラード反応を促進するための条件、すなわち基質の種類と量、加熱温度と時間、pH、水分活性を制御することで、優れた香気・風味を有する米飯を提供することができる。また、メイラード反応により抗酸化作用を有するメラノイジンを多く生じさせることができるため、健康維持増進を図ることができる。 In the cooking method of mochi rice according to the present invention, the conditions for promoting the Maillard reaction, that is, the type and amount of the substrate, the heating temperature and time, the pH, and the water activity are controlled so that the cooked rice has an excellent aroma and flavor. Can be provided. Moreover, since many melanoidins which have an antioxidant effect can be produced by Maillard reaction, health maintenance promotion can be aimed at.

本発明の実施例1の結果を示す図であり、(a)は品種・栽培年と搗精歩合の違いによる米粒中の遊離糖含有率の変化を示す図、(b)は搗精歩合の違いによる米粒中の糖化酵素活性の変化を示す図。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the result of Example 1 of this invention, (a) is a figure which shows the change of the free sugar content rate in the rice grain by the difference in a variety and a cultivation year, and a milling rate, (b) is by the difference in a milling rate The figure which shows the change of the saccharifying enzyme activity in a rice grain. 本発明の実施例2の結果を示す図であり、水浸漬温度と水浸漬時間の違いによる遊離糖の割合が、品種や精米・貯蔵方法によって異なることを示す図。It is a figure which shows the result of Example 2 of this invention, and is a figure which shows that the ratio of the free saccharide | sugar by the difference in water immersion temperature and water immersion time changes with varieties, rice milling, and storage methods. 本発明の実施例3の結果を示す図であり、(a)はグルコース含有率に影響する米飯の温度変化が、加熱方法の違いによりどのように推移するかを示す図、(b)は75wで加熱した時の加熱時間とグルコース含有率の関係を示す参考図。It is a figure which shows the result of Example 3 of this invention, (a) is a figure which shows how the temperature change of cooked rice which influences glucose content changes with the difference in a heating method, (b) is 75w. The reference figure which shows the relationship between the heating time when it heats with glucose, and glucose content rate. (a)は本発明の実施例4〜6の結果を示す図であり、浸漬水の量と加熱方法の違いによる遊離糖の含有率の変化が、精米・貯蔵方法によって異なることを示す図、(b)は本発明の実施例7の結果を示す図であり、加熱調理方法による米飯の褐色化の違い(メイラード反応の進行程度)を示す図。(A) is a figure which shows the result of Examples 4-6 of this invention, The figure which shows that the change of the content rate of free sugar by the difference in the quantity of immersion water and a heating method changes with milled rice and the storage method, (B) is a figure which shows the result of Example 7 of this invention, and is a figure which shows the difference of the browning of cooked rice by the cooking method (the progress degree of the Maillard reaction). (a)は本発明の実施例9の結果を示す図であり、重曹添加量が米飯の黄化・褐色化に及ぼす影響を示すための写真、(b)は本発明の実施例10の結果を示す図であり、弱アルカリ性条件下でグルコース添加量が米飯の黄化・褐色化に及ぼす影響を示すための写真。(A) is a figure which shows the result of Example 9 of this invention, The photograph for showing the influence which baking soda addition amount has on the yellowing and browning of cooked rice, (b) is the result of Example 10 of this invention The photograph for showing the influence which glucose addition amount has on the yellowing and browning of cooked rice under weak alkaline conditions. 本発明の実施例11〜12の結果を示す図であり、重曹、グルコース、グリシン、バリン添加により生成した香気成分を示すGC-MS分析の図。It is a figure which shows the result of Examples 11-12 of this invention, and is the figure of the GC-MS analysis which shows the aromatic component produced | generated by sodium bicarbonate, glucose, glycine, and valine addition.

本発明の米調理方法は、米を加熱した後に得られる米飯においてメラノイジンを生じさせるようにした調理方法を含む。メラノイジンは、アミノ酸・タンパク質等のアミノ化合物と還元糖等のカルボニル化合物が複雑な反応(アミノ・カルボニル反応)を経て生じる最終生成物であり、褐色色素である。この生成反応は、1912年にL.C.Maillardにより見出され、メイラード反応と呼ばれている。メラノイジンは醤油や味噌など長期間熟成させた発酵食品、あるいはパンやコーヒーなど高温で加熱・焙煎した食品に含まれ、抗酸化性をはじめとして様々な生理機能性を有することが知られている。メラノイジンの化学構造は明らかになっていないが、多数の着色物質による集合体と考えられ、その含有率は波長400nmにおける吸光度と高い相関があることが知られている(非特許文献1参照)。   The rice cooking method of the present invention includes a cooking method in which melanoidin is produced in cooked rice obtained after heating the rice. Melanoidin is a brown product and is a final product produced through a complex reaction (amino-carbonyl reaction) of an amino compound such as amino acid / protein and a carbonyl compound such as reducing sugar. This production reaction was discovered by L.C. Maillard in 1912 and is called the Maillard reaction. Melanoidins are contained in fermented foods such as soy sauce and miso that have been aged for a long time, or foods that have been heated and roasted at high temperatures such as bread and coffee, and are known to have various physiological functions including antioxidant properties. . Although the chemical structure of melanoidin has not been clarified, it is considered to be an aggregate of many colored substances, and its content is known to be highly correlated with the absorbance at a wavelength of 400 nm (see Non-Patent Document 1).

また、メイラード反応の過程では、アミノ酸と還元糖の種類、加熱温度によってカラメル・チョコレートなどの甘い香りやポップコーンのような香ばしい香りが生じることが単純化されたモデル実験系により明らかにされている(非特許文献2参照)。これまで米飯の調理過程でメイラード反応に着目した例は少なく、局所的におこげを生成する炊飯器(特許文献2参照)や、炊飯後長時間保温する際に生じる不快な黄変・酸化を抑制する炊飯器(特許文献3参照)が開発されたのみである。しかしながら、上述の醤油、味噌、パン、コーヒーを始め、ローストした肉など様々な食品において、メイラード反応により独特の優れた香気・風味が付与されることから、メイラード反応の制御は米の加熱調理においても重要であると考え、本発明を着想した。   In the process of the Maillard reaction, it has been clarified by a simplified model experiment system that sweet scents such as caramel and chocolate and scented scents such as popcorn are produced depending on the types of amino acids and reducing sugars and the heating temperature ( Non-patent document 2). There have been few examples that have focused on the Maillard reaction in the cooking process of cooked rice so far, and it suppresses unpleasant yellowing and oxidation that occurs when a rice cooker (see Patent Document 2) that locally produces rice cake and keep warm for a long time after cooking rice The rice cooker (refer patent document 3) to develop is only developed. However, in various foods such as the above-mentioned soy sauce, miso, bread, coffee, and roasted meat, the Maillard reaction gives a unique and excellent aroma and flavor. The idea of the present invention was also conceived.

メイラード反応には未解明な部分が多く、特に食品などの複雑な成分から構成される不均一系において該反応を制御することは容易ではない。ただし、メイラード反応がpHや水分活性、酸素及び金属の存在、加熱温度及び加熱時間に影響を受けること、二酸化硫黄等により反応が阻害されること等が示されており(特許文献4参照)、これらの条件をうまく調整すれば、メイラード反応により生じるメラノイジンや香気成分の量と質を変えることができると推察される。   There are many unexplained parts in the Maillard reaction, and it is not easy to control the reaction in a heterogeneous system composed of complex components such as foods. However, it has been shown that the Maillard reaction is affected by pH, water activity, presence of oxygen and metal, heating temperature and heating time, the reaction is inhibited by sulfur dioxide and the like (see Patent Document 4), If these conditions are adjusted well, it is presumed that the amount and quality of melanoidin and aroma components produced by the Maillard reaction can be changed.

米の加熱調理においてpHやpHに影響するミネラルに関する知見は限られている。日本の水道水基準pH5.8〜8.6よりも高いpHの水として、竹炭浸漬液(pH8.6〜9.6、非特許文献3参照)や飲用アルカリ性電解水(pH9〜10、非特許文献4参照)を使用したところ、米飯が柔らかくなり溶出物が増えることが明らかにされた。また、硬水に多く含まれるカルシウムやマグネシウムは米飯を黄化させ、カルシウムは米飯を硬くするとされる(非特許文献5参照)。しかしながら、香気や風味に及ぼす影響は不明であった。   Knowledge regarding pH and minerals that affect pH in rice cooking is limited. Bamboo charcoal soaking solution (pH 8.6 to 9.6, see non-patent document 3) and drinking alkaline electrolyzed water (pH 9 to 10, see non-patent document 4) as water with a pH higher than the Japanese tap water standard pH 5.8 to 8.6 As a result, it was clarified that the cooked rice became softer and the amount of eluate increased. In addition, calcium and magnesium contained in a large amount of hard water yellow the cooked rice, and calcium hardens the cooked rice (see Non-Patent Document 5). However, the effect on flavor and flavor was unknown.

一方、本発明者は後述するように、食品添加物として認められている重曹を適量用いることで米粒浸漬水のpHを弱アルカリ性に高め、その濃度に応じてメイラード反応を著しく促進させうることを見出した。また、米粒に含まれる脂肪は貯蔵中に分解され脂肪酸を生じることが知られているが、本発明者は後述するように、25℃以上では精米後の貯蔵時間とともに米粒浸漬水のpHが低下することを認めた。
従って、pHを調節することでメイラード反応を促進する場合、重曹や他のアルカリ剤(炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム及びリン酸類のカリウム又はナトリウム塩のうち1種以上を含む)、上記の弱アルカリ性水等を使用するとともに、米粒の保存履歴に注意することが有効である。
On the other hand, the present inventor, as will be described later, by using an appropriate amount of baking soda recognized as a food additive, the pH of rice grain immersion water is increased to weak alkalinity, and the Maillard reaction can be remarkably accelerated depending on the concentration. I found it. In addition, it is known that fat contained in rice grains is decomposed during storage to produce fatty acids, but the present inventor, as will be described later, the pH of rice grain soaking water decreases with storage time after milling at 25 ° C or higher. Admitted to do.
Therefore, when the Maillard reaction is promoted by adjusting the pH, sodium bicarbonate and other alkaline agents (including one or more of potassium carbonate, sodium carbonate, sodium bicarbonate and potassium phosphate or sodium salts), the above-mentioned It is effective to use weak alkaline water and pay attention to the storage history of rice grains.

また、日常的に調理して摂食することを考えた場合、出来るだけ簡便な手法によってメイラード反応を促進することが望まれる。本発明者は、水分活性(水分含有率)及び加熱温度・時間を適宜の値に設定すると、米飯におけるメラノイジン含有率の有効な指標である褐変化が促進されることを見出した。水分活性を調整するためには、蒸し器を使って加熱調理を行うと良く、実際に蒸し器を使った加熱調理によって得られるモチ米飯の水分含有率を調べると、39.0%程度であった。   Moreover, when considering cooking and eating on a daily basis, it is desirable to promote the Maillard reaction by a method as simple as possible. The present inventor has found that when the water activity (water content) and the heating temperature / time are set to appropriate values, browning, which is an effective index of melanoidin content in cooked rice, is promoted. In order to adjust the water activity, it is better to cook with a steamer, and when the moisture content of mochi rice obtained by cooking with a steamer was actually examined, it was about 39.0%.

代表的な米調理加工食品の水分含有率は、飯:65.0%、赤飯:58.0%、餅:44.5%(四訂日本食品標準成分表、科学技術庁資源調査会編、1982年(後述の表1参照))であることを考慮すると、蒸し器を使った加熱調理で得られるモチ米飯の水分含有率は低く抑えられていることが分かる。これは、例えば、水浸漬を十分に行った後、加熱前に余分な水分を十分に除去するとともに、低い蒸気発生量で加熱し、通常加熱中に加えられる打ち水を控えることで達成できる。また、加熱中に打ち水を適度に加えた場合、加熱後の水分含有率は例えば49.0%程度にまでなり、その際には褐変化は抑制される。   The water content of typical cooked rice processed foods is as follows: rice: 65.0%, red rice: 58.0%, rice cake: 44.5% (Fourth Japan Food Standard Composition Table, Science and Technology Agency Resource Research Committee, 1982) 1))), it can be seen that the moisture content of mochi rice obtained by cooking using a steamer is kept low. This can be achieved, for example, by sufficiently removing water before the heating after sufficiently immersing in water, heating with a low steam generation amount, and refraining the hammering water normally applied during heating. In addition, when water is appropriately added during heating, the water content after heating reaches, for example, about 49.0%, and browning is suppressed at that time.

メイラード反応を進める前提条件として、十分な量の還元糖とアミノ酸・タンパク質等のアミノ化合物が米粒に含有されている必要がある。アミノ酸・タンパク質等のアミノ化合物を増やすためには、作物栽培分野で既知である技術、例えば登熟期の窒素施肥量を増やすなどイネの栽培方法を工夫することで実現できる。一方、それらの代謝・蓄積量が変化した突然変異体を利用することも可能である。還元糖含有率を高めるためには、米に内在する糖化酵素の働きを利用することが重要であるが、糖化酵素の活性は、栽培環境や品種の違いにも影響を受ける。従って、調理に用いる米の品種・栽培履歴の選択は重要である。   As a precondition for advancing the Maillard reaction, a sufficient amount of reducing sugar and amino compounds such as amino acids and proteins must be contained in the rice grain. Increasing amino compounds such as amino acids and proteins can be realized by devising rice cultivation techniques such as techniques known in the field of crop cultivation, such as increasing the amount of nitrogen fertilization during the ripening period. On the other hand, it is also possible to use mutants whose metabolism / accumulation amount is changed. In order to increase the reducing sugar content, it is important to utilize the action of saccharifying enzymes in rice. The activity of saccharifying enzymes is also affected by differences in the cultivation environment and varieties. Therefore, selection of rice varieties and cultivation history used for cooking is important.

また、タンパク質含有率は搗精歩合を高めると低下する。さらに、後述するように、搗精歩合を高めると収穫時点で多く含まれるスクロースの含有率を減らすことができ、品種・栽培条件により異なるが、搗精歩合4%で約4割が、8%で約8割が、20%で約9割が除かれる。このことから、スクロースなどの強い甘味を好む場合は4%程度の低い搗精歩合で、グルコースなどの上品な甘味を好む場合は8〜20%の比較的高い搗精歩合で精米すると良い。   In addition, the protein content decreases as the fineness ratio is increased. Furthermore, as will be described later, increasing the milling ratio can reduce the content of sucrose, which is abundant at the time of harvest, and it varies depending on the variety and cultivation conditions, but about 40% at the milling ratio 4% and about 8% 80% is 20% and about 90% is excluded. Therefore, it is better to polish rice at a low milling rate of about 4% if you prefer a strong sweetness such as sucrose, and 8% to 20% if you prefer an elegant sweetness such as glucose.

一方、本発明者は、後述するように、搗精後の時間経過とともにαアミラーゼ活性やアミログルコシダーゼ活性が低下する傾向を見いだした。また、高い貯蔵温度でpHが低下する傾向を見いだした(後述の表2参照)。このことから、常に低温で貯蔵し、搗精後1カ月以内に、更に好ましくは2週間以内に調理加工することが望ましい。   On the other hand, the present inventor has found that α-amylase activity and amyloglucosidase activity tend to decrease with the lapse of time after sperm as described later. Moreover, the tendency for pH to fall by high storage temperature was found (refer Table 2 mentioned later). For this reason, it is desirable to always store at a low temperature, and to cook and process within one month after pouring, more preferably within two weeks.

また、米を水に浸漬している間にも糖化反応は進行する。60℃程度までの範囲で水浸漬温度が高いほど、また浸漬時間が長いほど還元糖は増加するが、生成した還元糖の一部は浸漬水中に溶出する。そのため、浸漬水の量を加減することも重要になる。具体的には、水浸漬前の米重量に対し、一般に最大で約3割の水が吸水されることから、米の少なくとも3割の重量の水で浸漬すれば還元糖の溶出による損失を抑えられると考えられる。ただし、吸水ムラを防ぐためには4割程度の水に浸漬することが好ましい。
強い甘味を呈するスクロースは、水浸漬中や加熱中に増加することはなく、一部は水浸漬・加熱中に分解される。しかし、上品な甘味のみを求める場合には、その要求度合いに応じて多めの水に浸漬しスクロースを溶出させると良い。なお、浸漬温度が高いと、浸漬水に混入した微生物の活動により腐敗が進行するため、浸漬温度を高くする場合は滅菌処理が必要である。
The saccharification reaction also proceeds while the rice is immersed in water. The higher the water immersion temperature in the range up to about 60 ° C. and the longer the immersion time, the more the reducing sugar increases, but a part of the generated reducing sugar is eluted in the immersion water. Therefore, it is important to adjust the amount of immersion water. Specifically, approximately 30% of water is absorbed in water at maximum, and the loss due to elution of reducing sugar can be suppressed by immersing in at least 30% of water. It is thought that. However, in order to prevent uneven water absorption, it is preferable to immerse in about 40% of water.
Sucrose exhibiting strong sweetness does not increase during water immersion or heating, and part of it is decomposed during water immersion / heating. However, when only elegant sweetness is desired, it is preferable to elute sucrose by immersing in more water depending on the degree of requirement. In addition, since rot progresses by the activity of the microorganisms mixed in immersion water when immersion temperature is high, when raising immersion temperature, a sterilization process is required.

米の調理加工過程において、還元糖含有率に最も影響を及ぼす要因の一つが加熱方法である。特許文献1にあるように、また非特許文献6に示されるように、40℃、60℃をそれぞれ至適温度とするαアミラーゼ、アミログルコシダーゼの活性の利用を図ることが有効であると考えられている。   One of the most influential factors in reducing sugar content in the cooking process of rice is the heating method. As described in Patent Document 1 and as shown in Non-Patent Document 6, it is considered effective to utilize the activities of α-amylase and amyloglucosidase at 40 ° C. and 60 ° C. as optimum temperatures, respectively. ing.

本発明者は、糖化酵素の影響が現れやすいことが知られているモチ米を使って水分含有率39.0%における種々の加熱パターンを調べた結果、米飯温度が約60℃となる加熱では4時間までは加熱時間に比例して、その後8時間までは緩やかに還元糖が増加することを見いだした(8時間以降12時間までは微増した)。ただし、約60℃で2時間加熱するよりも、約60℃で1時間加熱したのち約90℃まで1時間かけて加熱した方が還元糖は多く生成した。このことから、還元糖含有率はアミログルコシダーゼの至適温度のみに左右される訳ではないことが分かる。   As a result of investigating various heating patterns at a moisture content of 39.0% using mochi rice, which is known to be susceptible to the effects of saccharifying enzymes, the present inventor has found that the cooking rice temperature is about 60 ° C. for 4 hours. Until then, it was found that reducing sugar increased slowly until 8 hours (from 8 hours until 12 hours). However, more reducing sugar was produced when heated at about 60 ° C. for 1 hour and then heated to about 90 ° C. for 1 hour than when heated at about 60 ° C. for 2 hours. From this, it can be seen that the reducing sugar content does not depend only on the optimum temperature of amyloglucosidase.

また、蒸気発生量が少ない蒸し器により60℃程度の比較的低温で加熱を続けると、表層にある一部の米粒で乾燥が進み、テクスチャーの低下と不均一化が生じることが明らかになった。また、過度の加熱継続は、過酸化物やアクリルアミドなど有害な物質を生成する恐れがある。一方、加熱が不十分な場合にはデンプンの糊化(α化)が不足し、消化性・テクスチャーが著しく悪化する。そのため、どの程度の加熱温度・加熱時間が最適であるか、また米飯の水分含有率はどの程度が最適であるか、見極めておく必要がある。   In addition, it was found that when heating was continued at a relatively low temperature of about 60 ° C. with a steamer with a small amount of steam generation, drying progressed with some rice grains on the surface layer, resulting in a decrease in texture and unevenness. In addition, excessive heating may generate harmful substances such as peroxides and acrylamide. On the other hand, when heating is insufficient, starch gelatinization (alpha-ization) is insufficient, and digestibility and texture are remarkably deteriorated. For this reason, it is necessary to determine the optimum heating temperature and heating time and the optimum moisture content of the cooked rice.

以上の点を考慮して、本発明者は、テクスチャーに著しい変化をもたらすことなく、米飯の温度と水分含有率を比較的長時間低く維持できる蒸し器を使って、ウルチ米及びモチ米を加熱調理する方法を明らかにした。本発明に係る調理方法を開発するにあたり、特に考慮した加熱条件は以下の2点である。
(1)甘味が少な目ではあるがテクスチャーが良い加熱条件
米飯温度を約60℃で20分間維持したのち40分間で90℃程度まで上に凸の曲線を描くように温度を上げる。しかる後に100℃で1〜3時間加熱するが、その間できるだけ低い蒸気発生量にて加熱する。
(2)テクスチャーは固めでやや劣るが上品な甘味が比較的強い加熱条件
1時間で約60℃まで上に凸の曲線を描くように温度を上げる。次の1時間で90℃程度まで上に凸の曲線を描くように温度を上げる。しかるのちに100℃で1〜3時間加熱するが、その間できるだけ低い蒸気発生量にて加熱する。
以下、上記加熱調理条件の作用を確認するために行ったいくつかの実施例について説明する。但し、本発明はこれらに何ら限定されるものではない。
In consideration of the above points, the present inventor has cooked uruchi rice and glutinous rice using a steamer that can maintain the temperature and moisture content of the cooked rice for a relatively long time without causing significant changes in texture. Clarified how to do. In developing the cooking method according to the present invention, the heating conditions particularly considered are the following two points.
(1) Heating conditions with low sweetness but good texture Maintain the cooked rice temperature at about 60 ° C for 20 minutes, then increase the temperature to draw a convex curve up to about 90 ° C in 40 minutes. After that, it is heated at 100 ° C. for 1 to 3 hours.
(2) Heating conditions that the texture is firm and slightly inferior, but the elegant sweetness is relatively strong
Raise the temperature to draw a convex curve up to about 60 ° C in 1 hour. Raise the temperature to draw a convex curve up to about 90 ° C in the next hour. After that, heating is performed at 100 ° C. for 1 to 3 hours, and during that time, heating is performed with the lowest possible steam generation amount.
Hereinafter, some examples performed in order to confirm the effect | action of the said heat cooking conditions are demonstrated. However, the present invention is not limited to these.

精米方法による遊離糖含有率と糖化酵素活性の違いを調べた。
平成20年産コシヒカリと平成21年産朝紫の玄米を、それぞれ家庭用精米機(TWINBIRD社製MR-D510)を用いて搗精し、粉砕機で微粉末にした。コシヒカリは、0%、8%、20%の歩合で、朝紫は0%、4%の歩合でそれぞれ搗精した。搗精後、10倍容の80%エタノールにて遊離糖を抽出したのち濃縮し、抽出液中のグルコースとスクロース濃度をHPLCを用いて定量した。その結果を図1(a)に示す。
The difference in free sugar content and saccharifying enzyme activity by the rice milling method was investigated.
The brown rice of 2008 Koshihikari and 2009 Asahi was milled using a household rice mill (MR-D510, manufactured by TWINBIRD), respectively, and made into fine powder with a grinder. Koshihikari refined at a rate of 0%, 8%, and 20%, and Aso purple refined at a rate of 0% and 4%. After freezing, free sugars were extracted with 10 volumes of 80% ethanol and concentrated, and the glucose and sucrose concentrations in the extract were quantified using HPLC. The result is shown in FIG.

図1(a)に示すように、グルコース含有率はいずれの品種、搗精歩合においても0.04%以下と低かったのに対し、スクロース含有率は玄米(搗精歩合0%)で0.68〜0.80%と高く、搗精歩合が高くなるにつれ著しく減少した。このことから、玄米のスクロース含有率は品種や収穫年度により異なるが、搗精歩合によって大きく変化することが明らかになった。   As shown in FIG. 1 (a), the glucose content was as low as 0.04% or less for all varieties and milling ratios, whereas the sucrose content was as high as 0.68 to 0.80% for brown rice (milling ratio 0%). , Markedly decreased as the precision ratio increased. From this, it was clarified that the sucrose content of brown rice varies greatly depending on the variety and harvest year, but varies greatly depending on the milling rate.

次に、平成21年産ココノエモチを上記と同様の精米機を用い、0%、8%、32%の歩合で搗精し、粉砕した。搗精後、Megazyme社のαアミラーゼ活性測定キット及びインターナショナル社製F-kitを用い、国税庁所定分析法(平19国税庁訓令第6号、http://www.nta.go.jp/shiraberu/zeiho-kaishaku/tsutatsu/kobetsu/sonota/070622/01.htm)に準じて、αアミラーゼ活性とアミログルコシダーゼ活性を測定した。その結果、搗精歩合が高くなるにつれ、αアミラーゼ活性は急激に低下し、アミログルコシダーゼ活性は緩やかに低下した(図1(b))。   Next, coconoemochi produced in 2009 was milled and ground at a rate of 0%, 8%, and 32% using a rice mill similar to the above. After fertilization, Megazyme's α-amylase activity measurement kit and International F-kit were used, and the National Tax Agency prescribed analysis method (Heisei 19 National Tax Agency Instruction No. 6, http://www.nta.go.jp/shiraberu/zeiho- α amylase activity and amyloglucosidase activity were measured according to kaishaku / tsutatsu / kobetsu / sonota / 070622 / 01.htm). As a result, the α-amylase activity rapidly decreased and the amyloglucosidase activity gradually decreased as the fineness ratio increased (FIG. 1 (b)).

水浸漬中の遊離糖含有率の変化を調べた。
玄米を低温(4℃)で貯蔵し、精米後1カ月又は2カ月室温で保存した平成20年産ヒメノモチ30g、及び精米後1カ月間室温で保存した平成21年産滋賀羽二重糯30gを、それぞれ15gの水に4℃、25℃、37℃にて12時間、又は25℃にて1時間浸漬した。その後、米を浸漬した水を遠心チューブに回収し、Eppendorf社製の高速微量遠心機にて4℃・14,000rpmの条件で10分間遠心分離した。そして、上清に含まれるグルコースとスクロース濃度を、HPLCを用いて定量した。
Changes in free sugar content during water immersion were investigated.
Store brown rice at a low temperature (4 ° C) and store it at room temperature for 1 month or 2 months after milling. It was immersed in 15 g of water at 4 ° C., 25 ° C., 37 ° C. for 12 hours, or at 25 ° C. for 1 hour. Thereafter, water in which the rice was soaked was collected in a centrifuge tube and centrifuged for 10 minutes at 4 ° C. and 14,000 rpm in a high-speed microcentrifuge manufactured by Eppendorf. Then, the glucose and sucrose concentrations contained in the supernatant were quantified using HPLC.

その結果、精米後1カ月室温保存したヒメノモチ及び滋賀羽二重糯は、いずれも水浸漬温度が高いほど、及び水浸漬時間が長いほど浸漬水に溶出したグルコース量が増加した(図2参照)。
一方、精米後2カ月室温保存したヒメノモチでは、1カ月室温保存したヒメノモチと比べて溶出したグルコース量がやや少なく、水浸漬温度が25℃の時に浸漬水に溶出したグルコース量が最大となった。
As a result, both Himenomochi and Shiga Hadakaji, which were stored at room temperature for 1 month after milling, increased the amount of glucose eluted in the immersion water as the water immersion temperature was higher and the water immersion time was longer (see FIG. 2). .
On the other hand, the amount of glucose that was stored at room temperature for 2 months after milling was slightly less than that of one that was stored at room temperature for 1 month, and the amount of glucose eluted in the immersion water was maximum when the water immersion temperature was 25 ° C.

以上の結果より、精米後1カ月までは糖化酵素の活性が高く、酵素反応が水浸漬温度や水浸時間によく応答したが、精米後2カ月になると糖化酵素の活性が低下し、水浸漬温度に対する応答が鈍くなったことが示唆された。
一方、スクロース量は、精米後1カ月室温保存した試料及び2カ月室温保存した試料のいずれにおいても水浸漬温度が高くなると漸減した。このことから、スクロース量は糖化酵素の作用は受けず、分解酵素の作用をわずかに受けると考えられた。
また、浸漬水中のスクロース量は25℃で1時間水浸漬した場合でも高く、全般的に平成20年産ヒメノモチに比べて平成21年産滋賀羽二重糯で高くなる傾向がみられた。これらのことから、グルコース、スクロースともに、品種や収穫年度、精米・貯蔵方法や水浸漬方法によって浸漬水中に溶出する量が異なることが分かった。
From the above results, the saccharifying enzyme activity was high until 1 month after rice polishing, and the enzyme reaction responded well to the water immersion temperature and water immersion time. It was suggested that the response to temperature became dull.
On the other hand, the amount of sucrose gradually decreased as the water immersion temperature increased in both the sample stored at room temperature for 1 month after milling and the sample stored at room temperature for 2 months. From this, it was considered that the amount of sucrose is not affected by saccharifying enzyme but slightly affected by degrading enzyme.
In addition, the amount of sucrose in the immersion water was high even when immersed in water at 25 ° C for 1 hour, and in general, it showed a tendency to increase in 2009 Shigaha double cocoons compared to 2008 Hymenomochi. From these facts, it was found that the amount of glucose and sucrose eluted in the immersion water differs depending on the variety, harvest year, rice milling / storage method and water immersion method.

加熱条件の違いによるグルコース含有率の変化を調べた。
精米後1年間室温で貯蔵した平成20年産ハクトモチ90gを、90gの水に浸漬し室温にて一晩吸水させた後、直径18cmのステンレス製ザルに移し余分な水を15分間かけて除いた。続いて、600ミリリットルの水を入れた二段式蒸し鍋の上段にザルを載せ、パナソニック社製IH調理器KZ-PH30Pを使って、以下に示す(1)〜(6)の条件で加熱した。ただし一部の条件については、1.5リットルの水又は予備加熱により70℃に加温した温水600ミリリットルを使用した。
(1)150w・2時間 / 700w・20分
(2)150w・2時間 (水1.5リットル) / 700w・20分
(3)75w・2時間 (70℃温水) / 700w・20分
(4)75w・1時間 (70℃温水) / 150w・1時間 / 700w・20分
(5)700w・5分 / 15分静置 / 150w・40分 / 260w・60分 (以下、(5)の条件を「SRT」ともいう。)
(6)700w・20分
Changes in glucose content due to differences in heating conditions were examined.
After 90 hours of milling, 90 g of 2008 Hakutomochi stored at room temperature was immersed in 90 g of water and allowed to absorb water overnight at room temperature, then transferred to a stainless steel colander with a diameter of 18 cm, and excess water was removed over 15 minutes. Subsequently, a colander was placed on the upper stage of a two-stage steaming pot containing 600 ml of water, and heated using the Panasonic IH cooker KZ-PH30P under the following conditions (1) to (6). However, for some conditions, 1.5 liters of water or 600 ml of warm water heated to 70 ° C. by preheating was used.
(1) 150w · 2 hours / 700w · 20 minutes (2) 150w · 2 hours (1.5 liters of water) / 700w · 20 minutes (3) 75w · 2 hours (70 ℃ hot water) / 700w · 20 minutes (4) 75w・ 1 hour (70 ℃ hot water) / 150w ・ 1 hour / 700w ・ 20 minutes (5) 700w ・ 5 minutes / 15 minutes standing / 150w ・ 40 minutes / 260w ・ 60 minutes (Hereafter, the condition of (5) is Also called SRT.)
(6) 700w · 20 minutes

上記の(6)の加熱条件は米飯の加熱に通常用いられる短時間加熱法の条件である。図3(a)に(1)〜(6)の条件で加熱したときの米飯の温度変化を示す(なお、図3(a)に示す(1)〜(4)の凡例では「700w・20分」の記載を省略した)。   The heating condition (6) is a condition of a short-time heating method usually used for heating cooked rice. FIG. 3A shows the temperature change of cooked rice when heated under the conditions (1) to (6) (in the legend of (1) to (4) shown in FIG. 3A, “700w · 20 "Minute" was omitted.)

加熱後、速やかに-20℃で冷凍保存し、80℃通風乾燥機により一晩乾燥させた。そして、乾燥させた米飯を粉砕機で微粉末にした後、10倍容の80%エタノールにて遊離糖を抽出し、抽出液中のグルコース濃度を、インターナショナル社製F-kitにより定量した。その結果、(6)の条件で加熱したものはグルコース含有率が0.02%であったのに対し、(1)の条件では0.10%、(2)と(5)の条件では0.14%であった。また、(3)の条件では0.16%、(4)の条件では0.19%であった。   After heating, it was immediately stored frozen at -20 ° C and dried overnight with an 80 ° C ventilator. And after making dried rice fine powder with a grinder, free sugar was extracted with 10 times volume 80% ethanol, and the glucose concentration in an extract was quantified with F-kit by an international company. As a result, the sample heated under the condition (6) had a glucose content of 0.02%, whereas it was 0.10% under the condition (1) and 0.14% under the conditions (2) and (5). . Further, it was 0.16% under the condition (3) and 0.19% under the condition (4).

このように、加熱条件の違いによりグルコース含有率は著しく変化した。これは、温度変化パターンに起因すると考えられる。つまり、図3(a)に示すように、グルコース含有率が最も低い(6)の加熱条件では、加熱開始からすぐに100℃近くまで温度上昇したのに対して、(1)〜(5)の条件では徐々に温度が上昇している。すなわち、60℃付近の温度帯を通過する時間が長いか、60℃から90℃に至るまでの時間が長かった。
一方、加熱後の米飯のテクスチャーは、全体の加熱時間が短いほど、あるいは高温で経過する割合が大きいほど良好であった。
Thus, the glucose content significantly changed due to the difference in heating conditions. This is considered due to the temperature change pattern. That is, as shown in FIG. 3 (a), in the heating condition with the lowest glucose content (6), the temperature immediately increased to nearly 100 ° C. from the start of heating, whereas (1) to (5) Under these conditions, the temperature gradually increases. That is, it took a long time to pass through the temperature zone around 60 ° C. or a long time from 60 ° C. to 90 ° C.
On the other hand, the texture of the cooked rice was better as the overall heating time was shorter or as the ratio of elapse at high temperature was larger.

なお、図3(b)は70℃に予備加熱した温水600ミリリットルを使用し75wで加熱を継続した時の加熱時間と米飯中のグルコース含有率との関係を示す参考図である。図3(b)から、低出力で加熱して米飯温度を60℃付近に維持すると、時間の経過と共にグルコース含有率が増えるが、400分を超える頃からグルコース含有率の増加率が低下することが分かる。
以上より、加熱時の温度変化パターンが適切になるように加熱出力や加熱時間を設定する必要がある。
In addition, FIG.3 (b) is a reference figure which shows the relationship between the heating time when using 600 ml of warm water preheated at 70 degreeC, and continuing a heating at 75 w, and the glucose content rate in cooked rice. From Fig. 3 (b), when heated at a low output and maintained at a temperature of 60 ° C, the glucose content increases with time, but the rate of increase in glucose content decreases from about 400 minutes. I understand.
From the above, it is necessary to set the heating output and the heating time so that the temperature change pattern during heating becomes appropriate.

精米・貯蔵方法、水浸漬条件、加熱条件が遊離糖含有率に及ぼす影響を総合的に調べた。
精米後1年間室温で貯蔵したY社の平成20年産ヒメノモチと、玄米を低温(4℃)で貯蔵し精米後1週間経過したH社の平成20年産ヒメノモチを、それぞれ90gずつ、45g又は90gの水に浸漬し、室温にて一晩吸水させた。続いて、実施例3の標準的な器具・手順を用い、700wで20分間加熱した。
The effects of rice milling / storage methods, water immersion conditions, and heating conditions on free sugar content were comprehensively investigated.
90g, 45g or 90g of Y company's 2008 Hymenomochi which was stored at room temperature for 1 year after milling, and H's 2008 Hymenomochi of H company which stored brown rice at low temperature (4 ℃) and passed 1 week after milling. It was immersed in water and allowed to absorb water overnight at room temperature. Subsequently, using the standard equipment and procedure of Example 3, it was heated at 700 w for 20 minutes.

加熱後、速やかに-20℃で冷凍保存し、80℃で通風乾燥機により一晩乾燥させた。乾燥させた米飯は粉砕機で微粉末にした後、10倍容の80%エタノールにて遊離糖を抽出し濃縮した。抽出液中のグルコースとスクロース濃度を、HPLCを使い定量した。その結果、浸漬水量がコメの半分である45gの場合は精米後経過日数の長短又は精米方法の違いに関わらずグルコース含有率、スクロース含有率ともに0.1%程度であった。これに対して、浸漬水量がコメと等量の場合は精米後経過日数が短くてもグルコース含有率は0.03%程度しかなく、スクロースは検出されなかった(図4(a)参照)。
以上の結果より、強火による短時間加熱法では糖化酵素が失活しやすいため、精米後の経過日数や精米方法の違いは加熱後の遊離糖含有率に影響しないことが示唆された。また、浸漬水量が多くなると、遊離糖含有率のうち特にスクロース含有率が低下することが分かった。
After heating, it was immediately stored frozen at −20 ° C. and dried overnight at 80 ° C. with a draft dryer. The dried cooked rice was pulverized with a grinder, and free sugar was extracted with 10 volumes of 80% ethanol and concentrated. The glucose and sucrose concentrations in the extract were quantified using HPLC. As a result, in the case of 45 g where the amount of immersion water was half that of rice, the glucose content and the sucrose content were both about 0.1% regardless of the length of the post-milling days or the difference in the rice milling method. On the other hand, when the amount of immersion water was the same as that of rice, the glucose content was only about 0.03% even though the number of days elapsed after polishing was short, and sucrose was not detected (see FIG. 4 (a)).
From the above results, it was suggested that the saccharification enzyme tends to be inactivated by the short-time heating method by strong fire, and therefore, the elapsed days after milling and the difference in the milling method do not affect the free sugar content after heating. Moreover, when the amount of immersion water increased, it turned out that especially sucrose content rate falls among free sugar content rates.

実施例4と同様の器具・手順を用い、実施例3で示した(5)の条件によりモチ米の加熱調理を行った。その結果、実施例4における強火による短時間加熱法の場合と比べ、いずれの場合もグルコース含有率が著しく増加した(図4(a)参照)。特に糖化酵素の活性が高いと考えられる精米後経過日数の短い試料の場合には、0.31%程度と高かったことから、精米後経過日数が短いことの重要性が指摘された。スクロース含有率については実施例4と同様の結果が得られ、浸漬水量が多いほど溶出して失われる量が多くなった。   Using the same apparatus and procedure as in Example 4, the rice cake was cooked under the condition (5) shown in Example 3. As a result, compared with the case of the short-time heating method by strong fire in Example 4, the glucose content rate increased remarkably in any case (refer Fig.4 (a)). In particular, in the case of a sample with a short elapsed time after milling considered to have a high saccharifying enzyme activity, it was as high as about 0.31%, so the importance of having a short elapsed time after milling was pointed out. As for the sucrose content, the same results as in Example 4 were obtained, and the amount of elution and loss increased as the amount of immersion water increased.

玄米を低温(4℃)で貯蔵し、精米後1週間経過したH社の平成20年産ヒメノモチ90gを、90gの水に浸漬し室温にて一晩吸水させた。その後、実施例4と同様の器具・手順を用い、75wで20分間又は75wで2時間の条件で加熱をし、実施例4と同様に分析を行った。その結果、グルコース含有率は、75w・20分の加熱条件では実施例5の結果に及ばないものの、75w・2時間の加熱条件では0.39%まで増加した。一方、スクロース含有率は、いずれの加熱条件でも実施例4及び実施例5と同様に低かった(図4(a)参照)。
以上より、精米・貯蔵方法、水浸漬条件、加熱条件のいずれもが遊離糖含有率に影響を及ぼしたが、特に加熱条件の違いによりグルコース生成量は大きく異なった。
Brown rice was stored at a low temperature (4 ° C.), and 90 g of H. hinoki mochi produced in 2008 of company H, one week after milling, was immersed in 90 g of water and allowed to absorb water at room temperature overnight. Then, using the same apparatus and procedure as in Example 4, heating was performed at 75 w for 20 minutes or 75 w for 2 hours, and analysis was performed in the same manner as in Example 4. As a result, the glucose content did not reach the result of Example 5 under the heating condition of 75 w · 20 minutes, but increased to 0.39% under the heating condition of 75 w · 2 hours. On the other hand, the sucrose content was low as in Example 4 and Example 5 under any heating condition (see FIG. 4A).
From the above, the rice milling / storage method, water immersion conditions, and heating conditions all affected the free sugar content, but the amount of glucose produced differed greatly depending on the heating conditions.

加熱条件がメラノイジン生成量と香気・風味に及ぼす影響を調べた。
玄米を低温(4℃)で貯蔵し精米後4カ月間経過したH社の平成20年産ヒメノモチ90gを90gの水に浸漬し室温にて一晩吸水させた。その後、実施例4と同様の器具・手順を用い、700wで20分間加熱した後、260wで3時間まで加熱した。又は上述の(5)の加熱条件に準じた加熱を行ったが260w加熱時間は3時間まで延長した。260wの加熱開始時(0h)及び開始後1〜3時間(1〜3h)に、米飯の一部を-20℃で冷凍保存し、80℃通風乾燥機により一晩乾燥させた。米飯粒をバラバラにした後、コニカミノルタ社製分光測色計CM-5を用いて、褐色化程度を測定した(測定条件:D65光源、10°視野、直径30mmペトリ皿・正反射光除去)。また、加熱中もしくは加熱後の米飯を試食するとともに、生成する香りを官能検査により比較した。
The effects of heating conditions on melanoidin production and aroma and flavor were investigated.
Brown rice was stored at a low temperature (4 ° C.), and 90 g of 2008 H. nomenocchi from Company H, which had passed 4 months after milling, was soaked in 90 g of water and allowed to absorb water overnight at room temperature. Then, using the same apparatus and procedure as Example 4, after heating at 700w for 20 minutes, it heated at 260w to 3 hours. Alternatively, heating was performed according to the heating condition (5) described above, but the 260w heating time was extended to 3 hours. A portion of the cooked rice was stored frozen at −20 ° C. at the start of heating at 260 w (0 h) and 1 to 3 hours (1 to 3 h) after the start, and dried overnight in an 80 ° C. ventilator. After breaking up the rice grains, the browning degree was measured using Konica Minolta's spectrophotometer CM-5 (measuring conditions: D65 light source, 10 ° field of view, diameter 30 mm Petri dish, specular reflection removal) . Moreover, while cooking the cooked rice during or after heating, the scents produced were compared by a sensory test.

その結果を図4(b)に示す。700wで20分加熱の場合には、その後の260w加熱時間が長いほど赤方向の色度a*はやや増加し3時間後に4.08となる一方で、明度L*は変化せず黄方向の色度b*は微増する傾向にあった。SRT加熱((5)の加熱)の場合には、260w加熱時間が長いほど赤方向の色度a*は急増し、3時間後に8.36となる一方で、明度L*は低下し黄方向の色度b*は高くなった。このようにSRT加熱では褐色化が著しく進行し、メラノイジン生成が促進された。一方、700w・20分加熱の場合には甘味や好ましい香り・風味は認められなかったのに対し、SRT加熱では260w加熱が進むにつれ上品な甘味と好ましい香り・風味が認められた。   The result is shown in FIG. In the case of heating at 700w for 20 minutes, the longer the 260w heating time, the chromaticity a * in the red direction increases slightly to 4.08 after 3 hours, while the lightness L * does not change and the chromaticity in the yellow direction b * tended to increase slightly. In the case of SRT heating (heating of (5)), the longer the 260w heating time, the faster the chromaticity a * in the red direction increases to 8.36 after 3 hours, while the lightness L * decreases and the color in the yellow direction Degree b * became higher. In this way, browning markedly progressed with SRT heating, and melanoidin production was promoted. On the other hand, in the case of heating at 700 w for 20 minutes, sweetness and a preferred aroma / flavor were not observed, whereas in SRT heating, an elegant sweetness and a favorable aroma / flavor were observed as the heating increased by 260 w.

下記の表1は、上記実施例において得られる米飯の水分含有率と、ウルチ米の精白米、モチ米の調理加工品における水分含有率を比較したものである。この表に示すように、上記実施例で得られるモチ米の米飯(SRT)はその他に比べて水分含有率が低いことが分かる。また、加熱中に水を噴霧することにより、水分含有率が上昇することから、加熱中の水噴霧量によって水分含有率を調整できることが分かる。
Table 1 below compares the moisture content of the cooked rice obtained in the above example with the moisture content of the polished rice of Uruchi rice and cooked processed rice cake. As shown in this table, it can be seen that the mochi rice (SRT) obtained in the above examples has a lower water content than the others. Moreover, since water content rate rises by spraying water during a heating, it turns out that a water content rate can be adjusted with the amount of water spraying during heating.

精米の貯蔵条件が浸漬水のpHに及ぼす影響を調べた。
玄米を低温(4℃)で貯蔵し精米後1カ月未満のP社の平成20年産滋賀羽二重糯を4℃、25℃、35℃で1年間貯蔵した。途中、1、3、5、7カ月目に一部採取し4℃で保存した。2倍容のpH指示薬(メチルレッド・ブロモチモールブルー)を加えて混合し、上清の色調を観察するとともにpHメーター(HORIBA社製)にて上清のpHを測定した。その結果、下記の表2に示すように、貯蔵温度が高いほど時間経過とともにpHが低下し、上清の色調は青緑色から赤黄色に変化することが認められた。
The effect of storage conditions of polished rice on the pH of immersion water was investigated.
Brown rice was stored at a low temperature (4 ° C), and Shiga-Ha double cocoons produced by company P, less than a month after milling, were stored at 4 ° C, 25 ° C and 35 ° C for 1 year. On the way, some samples were collected at 1, 3, 5, and 7 months and stored at 4 ° C. Two volumes of a pH indicator (methyl red / bromothymol blue) were added and mixed. The color of the supernatant was observed, and the pH of the supernatant was measured with a pH meter (manufactured by HORIBA). As a result, as shown in Table 2 below, it was confirmed that the higher the storage temperature, the lower the pH with time, and the color tone of the supernatant changed from blue-green to red-yellow.

重曹添加量が米粒浸漬水のpHとメイラード反応に及ぼす影響を調べた。
精米後1年未満低温(4℃)で貯蔵したP社の平成21年産滋賀羽二重糯45gに対し水18gとグルコース0.58gを加え室温にて一晩吸水させた。その際、重曹を0、50、150、350mg添加した。実施例4と同様の器具・手順を用い、実施例3で示した(5)の条件により加熱した。加熱前後の米粒の写真を撮り、色調を比較したものを図5(a)に示す。重曹添加量が増えるにつれ黄化又は褐色化が進行しメイラード反応が促進されたことが推察された。
The effects of baking soda addition on the pH and Maillard reaction of rice grain immersion water were investigated.
18 g of water and 0.58 g of glucose were added to 45 g of Shiga feather double rice bran produced in 2009, which was stored at a low temperature (4 ° C.) for less than one year after milling, and allowed to absorb water overnight at room temperature. At that time, 0, 50, 150, 350 mg of sodium bicarbonate was added. The same equipment and procedure as in Example 4 were used, and heating was performed under the condition (5) shown in Example 3. FIG. 5A shows a photograph of rice grains before and after heating and a comparison of color tones. It was inferred that yellowing or browning progressed as the amount of sodium bicarbonate added increased, and the Maillard reaction was promoted.

なお、精米後約1年半低温(4℃)で貯蔵したH社の平成20年産ヒメノモチ45gを、グルコース0.5g(又は50mg)、アミノ酸の1種バリン50mg、重曹100mg、150mg、200mg、250mgとともに室温にて一晩18gの水に浸漬した結果、浸漬水のpHはそれぞれ、6.7、7.1、8.6、8.9となり、重曹添加量に応じて浸漬水のpHは上昇した。また、実施例4と同様の器具・手順を用い、実施例3で示した(6)の条件により加熱したあとの米飯のpHを測定したところ、それぞれ8.3、9.0、9.4、10.0となり、加熱によりpHは更に上昇することが確認された。   In addition, after the milling of rice, it was stored at a low temperature (4 ° C) for about a year and a half. As a result of being immersed in 18 g of water at room temperature overnight, the pH of the immersion water was 6.7, 7.1, 8.6, and 8.9, respectively, and the pH of the immersion water increased according to the amount of sodium bicarbonate added. Moreover, when the pH of the cooked rice was measured using the same equipment and procedure as in Example 4 under the conditions of (6) shown in Example 3, it was 8.3, 9.0, 9.4, and 10.0, respectively. It was confirmed that the pH increased further.

弱アルカリ性条件下でグルコース添加量がメイラード反応に及ぼす影響を調べた。
精米後1年未満低温(4℃)で貯蔵したP社の平成21年産滋賀羽二重糯45gに対し水18gと重曹350mgを加え室温にて一晩吸水させた。その際、グルコースを0g、0.2g、0.58g又はスクロース(ショ糖)を0.58g添加した。実施例4と同様の器具・手順を用い、700w・20分加熱した後、さらに260w・60分の条件で加熱した。加熱前後と途中の米粒の写真を撮り、色調を比較したものを図5(b)に示す。スクロースを添加しても色調の変化は見られなかったが、還元糖であるグルコースの添加量が増えるにつれ黄化又は褐色化が進行しメイラード反応が促進されたことが推察された。
The effect of glucose addition on Maillard reaction under weak alkaline conditions was investigated.
18 g of water and 350 mg of baking soda were added to 45 g of Shiga-Ha double cocoon produced in 2009, which was stored at a low temperature (4 ° C.) for less than one year after milling, and allowed to absorb water overnight at room temperature. At that time, 0 g, 0.2 g, 0.58 g of glucose or 0.58 g of sucrose (sucrose) was added. The same apparatus and procedure as in Example 4 were used, and after heating for 700 w · 20 minutes, the mixture was further heated under conditions of 260 w · 60 minutes. FIG. 5 (b) shows a photograph of rice grains before and after heating and a comparison of color tones. Even though sucrose was added, the color tone was not changed, but it was inferred that yellowing or browning progressed and the Maillard reaction was promoted as the amount of reducing sugar added increased.

米飯加熱調理時のメイラード反応においてアミノ酸の種類の違いが香気成分の生成に及ぼす影響を調べた。
玄米を低温(4℃)で貯蔵し精米後1カ月未満のR社の平成22年産滋賀羽二重糯45gに対し水18gを加え室温にて一晩吸水させた。その際、以下に示す(2)〜(5)の条件で添加物を加えた。
(1)添加物なし
(2)重曹0.25g
(3)重曹0.25gとグルコース0.5g
(4)重曹0.25gとグリシン0.5g
(5)重曹0.25gとグルコース0.5gとグリシン0.5g
実施例4と同様の器具・手順を用い、700w・20分 / 260w・40分の条件で加熱した。加熱後すみやかに直径9cm・高さ9cmの円筒型ガラス瓶に移し、ヘッドスペースの香気成分を50℃で1時間SPMEファイバー(75um Carboxen/PDMS)に吸着させ、株式会社島津製作所製GCMS-QP2010plus(カラムDB-WAX)にて定法に準じて分析した。その結果を図6の(1)〜(5)に示す。重曹を添加すると炭酸煎餅様の香ばしい香気が生じたが、分析の結果アセトールが多く生じていた。グリシンを添加すると甘い乳製品様の香気が生じたが、分析の結果ジメチルピラジンが多く生じていた。なお、四訂日本食品標準成分表(1982)によると、精白米45g当たり、グリシンは0.14g含まれる。
The effect of different amino acid types on the formation of aroma components in the Maillard reaction during cooked cooked rice was investigated.
Brown rice was stored at a low temperature (4 ° C.), and 18 g of water was added to 45 g of Shiga-Ha double cocoon produced in 2010 by R Company less than a month after milling and allowed to absorb water overnight at room temperature. At that time, additives were added under the conditions (2) to (5) shown below.
(1) No additives (2) Sodium bicarbonate 0.25g
(3) Sodium bicarbonate 0.25g and glucose 0.5g
(4) Sodium bicarbonate 0.25g and glycine 0.5g
(5) Sodium bicarbonate 0.25g, glucose 0.5g and glycine 0.5g
Using the same equipment and procedure as in Example 4, heating was performed under conditions of 700 w · 20 minutes / 260 w · 40 minutes. Immediately after heating, it is transferred to a cylindrical glass bottle with a diameter of 9 cm and a height of 9 cm, and the aroma components in the headspace are adsorbed to SPME fiber (75um Carboxen / PDMS) at 50 ° C for 1 hour, and GCMS-QP2010plus (column, manufactured by Shimadzu Corporation) (DB-WAX) and analyzed according to the usual method. The results are shown in (1) to (5) of FIG. When baking soda was added, a fragrant aroma like carbonated rice cracker was produced, but as a result of analysis, a lot of acetol was produced. When glycine was added, a sweet dairy-like aroma was produced, but as a result of analysis, a large amount of dimethylpyrazine was produced. According to the 4th Japanese Food Standard Composition Table (1982), 0.14g of glycine is contained per 45g of polished rice.

玄米を低温(4℃)で貯蔵し精米後1カ月未満のR社の平成22年産滋賀羽二重糯45gに対し水18gを加え室温にて一晩吸水させた。その際、以下に示す(6)〜(10)の条件で添加物を加えた。その後、全て700w・20分で加熱した後、一部については260wで加熱した。260wでの加熱時間を下記のカッコ内に示す。
(6)グルコース0.5gとバリン0.5g(260w・40分)
(7)重曹0.25gとグルコース0.5gとバリン0.5g(260w・0分)
(8)重曹0.25gとグルコース0.5gとバリン0.5g(260w・20分)
(9)重曹0.25gとグルコース0.5gとバリン0.5g(260w・40分)
(10)重曹0.25gとグルコース0.5gとトレオニン0.5g(260w・40分)
加熱後、実施例11に準じて分析した。その結果を図6の(6)〜(9)に示す。バリンを添加すると甘い卵焼き様の香気が生じたが、分析の結果イソブタナールが多く生じており、その生成量は加熱時間とともに増大することが認められた。一方、トレオニンを添加するとメープルシロップ様の好ましい香気が認められた。なお、四訂日本食品標準成分表(1982)によると、精白米45g当たり、バリンは0.19g、トレオニンは0.11g含まれる。
Brown rice was stored at a low temperature (4 ° C.), and 18 g of water was added to 45 g of Shiga-Ha double cocoon produced in 2010 by R Company less than a month after milling and allowed to absorb water overnight at room temperature. At that time, additives were added under the conditions (6) to (10) shown below. Thereafter, all were heated at 700 w · 20 minutes, and then some were heated at 260 w. The heating time at 260w is shown in parentheses below.
(6) Glucose 0.5g and Valine 0.5g (260w, 40 minutes)
(7) Sodium bicarbonate 0.25g, glucose 0.5g and valine 0.5g (260w · 0 min)
(8) Sodium bicarbonate 0.25g, glucose 0.5g and valine 0.5g (260w, 20 minutes)
(9) Sodium bicarbonate 0.25g, glucose 0.5g and valine 0.5g (260w · 40 minutes)
(10) Sodium bicarbonate 0.25g, glucose 0.5g and threonine 0.5g (260w, 40 minutes)
After heating, analysis was performed according to Example 11. The results are shown in (6) to (9) of FIG. When valine was added, a sweet fried egg-like fragrance was produced, but as a result of analysis, a large amount of isobutanal was produced, and it was found that the amount produced increased with heating time. On the other hand, when threonine was added, a preferable aroma like maple syrup was recognized. According to the 4th edition Japanese food standard ingredient table (1982), 0.19 g of valine and 0.11 g of threonine are contained per 45 g of polished rice.

玄米を低温(4℃)で貯蔵し精米後1カ月未満のR社の平成22年産滋賀羽二重糯45gに対し水18g、重曹0.25g、グルコース0.5gを加え室温にて一晩吸水させた。その際、グルタミン、グルタミン酸、アスパラギン酸、フェニルアラニン、ロイシン、アラニン、アルギニン、メチオニン、トリプトファン、プロリン、ヒスチジン、チロシン、リジン、システイン、セリン、イソロイシン、グルタチオンのうちいずれかのアミノ酸又はトリペプチド1種を0.5g加えた。実施例11に準じて700w・20分/260w・40分加熱し、生じる香気を比較した。その結果、それぞれ特徴的な香気を生じたが、特に極めて好ましい香気は認められず、優れた香気を生じさせるためには加熱調理条件の最適化が必要であると考えられた。
Brown rice was stored at a low temperature (4 ° C) and less than a month after milling, it was absorbed overnight at room temperature by adding 18 g of water, 0.25 g of baking soda, and 0.5 g of glucose to 45 g of Shigaha double rice cake produced in 2010 by R Company. . At that time, 0.5 amino acid or tripeptide of any one of glutamine, glutamic acid, aspartic acid, phenylalanine, leucine, alanine, arginine, methionine, tryptophan, proline, histidine, tyrosine, lysine, cysteine, serine, isoleucine, glutathione. g was added. According to Example 11, it heated for 700w * 20min / 260w * 40min, and the fragrance produced was compared. As a result, although each produced a characteristic fragrance, no particularly favorable fragrance was observed, and it was considered that optimization of cooking conditions was necessary to produce an excellent fragrance.

Claims (1)

モチ米の米粒を水中に浸漬した後、水切りして加熱することによりモチ米の米飯を加熱調理する方法であって、
米粒を浸漬した水のpHを6.5以上10.0以下に調整すると共に、
加熱調理後の米飯の水分含有率が39%〜49%になるような加熱状態に調節して、米粒温度が55℃から65℃に至るまでに要する時間が20分以上となる第1加熱工程と、少なくとも40分で60℃から90℃まで上に凸の曲線を描くように温度上昇させる第2加熱工程と、少なくとも60分、100℃で加熱する第3加熱工程により、前記米粒を蒸気加熱することを特徴とするモチ米の加熱調理方法。
After immersing rice grains of glutinous rice in water, draining and heating to heat cooked rice of glutinous rice,
While adjusting the pH of the water in which the rice grains are immersed to 6.5 to 10.0,
The first heating process in which the time required for the rice grain temperature to reach from 55 ° C to 65 ° C is 20 minutes or longer by adjusting the heating state so that the moisture content of the cooked rice is 39% to 49 %. And steam heating the rice grains by a second heating step that raises the temperature so as to draw a convex curve from 60 ° C. to 90 ° C. in at least 40 minutes and a third heating step that heats at 100 ° C. for at least 60 minutes. A method of cooking rice cakes characterized by
JP2011221908A 2011-10-06 2011-10-06 Cooking method of mochi rice Expired - Fee Related JP6045132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011221908A JP6045132B2 (en) 2011-10-06 2011-10-06 Cooking method of mochi rice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011221908A JP6045132B2 (en) 2011-10-06 2011-10-06 Cooking method of mochi rice

Publications (2)

Publication Number Publication Date
JP2013081393A JP2013081393A (en) 2013-05-09
JP6045132B2 true JP6045132B2 (en) 2016-12-14

Family

ID=48527300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221908A Expired - Fee Related JP6045132B2 (en) 2011-10-06 2011-10-06 Cooking method of mochi rice

Country Status (1)

Country Link
JP (1) JP6045132B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6285143B2 (en) * 2013-10-16 2018-02-28 オリエンタル酵母工業株式会社 Method for producing cooked rice and wheat flour food
CN108634166A (en) * 2018-05-17 2018-10-12 中国计量大学 A kind of boiling rice method adjusting hypoglycemic

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151149A (en) * 1978-05-17 1979-11-28 Yasuo Shimizu Production of source for *genmai* tea
JPH06165650A (en) * 1992-02-28 1994-06-14 Samuson:Kk Method for cooking rice
JPH07111868A (en) * 1993-10-17 1995-05-02 Saika Gijutsu Kenkyusho Method for cooking rice for business and the cooked rice
JP2001046224A (en) * 1999-08-06 2001-02-20 Matsushita Electric Ind Co Ltd Rice cooker
JP4414157B2 (en) * 2003-06-25 2010-02-10 昭和産業株式会社 Food capsules

Also Published As

Publication number Publication date
JP2013081393A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
CA1229057A (en) Malt-like flavor from cereal grain root cultures
CN109609304A (en) A kind of preparation method with biscuit fragrance malt
TWI710322B (en) Improver for processed grain food
JP6045132B2 (en) Cooking method of mochi rice
JP5019645B2 (en) Vinegar and method for producing the same
JP2014150742A (en) Manufacturing method of cooked rice with assorted ingredients
TWI605761B (en) Liquid seasoning
KR101824120B1 (en) red bean sediment and a method of manufacturing the ingredient containing lotus root
KR101626707B1 (en) Barley syrup manufacture method
KR20060128932A (en) Foods containing large amount of functional components and method of producing the same
JP6060456B2 (en) Production method of vinegar
JP2014003957A (en) Sweet potato processed food and manufacturing method of sweet potato processed food
KR20120105091A (en) Method for making nurungi
KR100275030B1 (en) Red pepper soypaste with persimmon and its process
KR101954907B1 (en) Method for manufacturing brown rice sprout vinegar and brown rice sprout vinegar manufactured by the same
KR102284193B1 (en) Manufacturing method of scorched rice containing natural materials
JP7309164B1 (en) Cooked rice, method for producing the same, cooked rice improver, method for improving loosening of cooked rice, and method for improving heating unevenness inside a pot when cooking rice
KR20170133667A (en) Manufacture method of grain syrup
KR20020015213A (en) An antioxidant composition for deep-frying korean confectionery and a preparing process of korean confectionery using the same
JP5273857B2 (en) Mirins, method for producing mirins
CA1339398C (en) Food processing assistant having taste-improving effect
JP2010068724A (en) Agent for improving and retaining cooked rice quality, method for producing the same, cooked rice using the same, and method for cooking rice
JP4095922B2 (en) Fermented seasoning
Reimerdes et al. Engineering and biotechnological aspects for the manufacturing of high quality fried potato products
KR20060128939A (en) Functional component-enriched barley malt rootlets and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161115

R150 Certificate of patent or registration of utility model

Ref document number: 6045132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees