JP6044756B2 - Method for synthesizing porous inorganic oxide nanoparticles, and porous inorganic oxide nanoparticles and spherical porous inorganic oxide nanoparticles produced by the synthesis method - Google Patents

Method for synthesizing porous inorganic oxide nanoparticles, and porous inorganic oxide nanoparticles and spherical porous inorganic oxide nanoparticles produced by the synthesis method Download PDF

Info

Publication number
JP6044756B2
JP6044756B2 JP2012120216A JP2012120216A JP6044756B2 JP 6044756 B2 JP6044756 B2 JP 6044756B2 JP 2012120216 A JP2012120216 A JP 2012120216A JP 2012120216 A JP2012120216 A JP 2012120216A JP 6044756 B2 JP6044756 B2 JP 6044756B2
Authority
JP
Japan
Prior art keywords
oxide nanoparticles
inorganic oxide
spherical porous
porous inorganic
acetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012120216A
Other languages
Japanese (ja)
Other versions
JP2013245137A (en
JP2013245137A5 (en
Inventor
小廣 和哉
和哉 小廣
鵬宇 王
鵬宇 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kochi Prefectural University Corp
Original Assignee
Kochi Prefectural University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kochi Prefectural University Corp filed Critical Kochi Prefectural University Corp
Priority to JP2012120216A priority Critical patent/JP6044756B2/en
Publication of JP2013245137A publication Critical patent/JP2013245137A/en
Publication of JP2013245137A5 publication Critical patent/JP2013245137A5/ja
Application granted granted Critical
Publication of JP6044756B2 publication Critical patent/JP6044756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compounds Of Iron (AREA)

Description

本発明は、多孔質無機酸化物ナノ粒子の合成方法、並びに該合成方法により製造される多孔質無機酸化物ナノ粒子及び球状多孔質無機酸化物ナノ粒子に関するものである。   The present invention relates to a method for synthesizing porous inorganic oxide nanoparticles, and to porous inorganic oxide nanoparticles and spherical porous inorganic oxide nanoparticles produced by the synthesis method.

近年、多孔質ナノ粒子が、物質の吸着、分離、除去、触媒といった様々な用途で用いられている。多孔質ナノ粒子とは、径2〜50nmの孔(メソポア)を有するナノ粒子のことをいう。
特に、酸化チタンの多孔質ナノ粒子は、特有の光学特性、光電子特性、生物学的特性、徐放性、電気特性及び化学特性を有するので、白色顔料、触媒担持、光触媒、反応触媒、光半導体、太陽電池、遺伝子導入試薬、薬物送達、細胞マーカーなどに主に用いられている。
In recent years, porous nanoparticles have been used in various applications such as adsorption, separation, removal, and catalyst of substances. The porous nanoparticle refers to a nanoparticle having pores (mesopores) having a diameter of 2 to 50 nm.
In particular, porous nanoparticles of titanium oxide have unique optical properties, optoelectronic properties, biological properties, sustained release properties, electrical properties, and chemical properties, so white pigments, catalyst support, photocatalysts, reaction catalysts, and optical semiconductors It is mainly used for solar cells, gene transfer reagents, drug delivery, cell markers and the like.

多孔質酸化チタンナノ粒子が球状であることにより、優れた安定性、単分散性、高い集光特性、再利用の容易さなどの優れた特性を示すことが明らかとなってきている。
従来用いられてきた球状多孔質酸化チタンナノ粒子の合成方法としては、水熱法、ゾル‐ゲル法、自己集合(自己組織化)法などがある。
It has been clarified that the porous titanium oxide nanoparticles have excellent characteristics such as excellent stability, monodispersibility, high light collection characteristics, and ease of reuse due to the spherical shape.
Conventionally used methods for synthesizing spherical porous titanium oxide nanoparticles include a hydrothermal method, a sol-gel method, and a self-assembly (self-assembly) method.

非特許文献1には、水熱法による、光触媒に用いられる球状多孔質酸化チタンナノ粒子の合成法が記載されている。詳しくは、Ti(SOとNHFとHOとを160℃で6時間反応させることにより、球状多孔質酸化チタンナノ粒子を合成する方法が記載されている。
非特許文献2には、ゾル‐ゲル法による、太陽電池に用いられる球状多孔質酸化チタンナノ粒子の合成法が記載されている。詳しくは、Ti(OCとジエチレングリコールとをアセトン中で8時間攪拌し、次いで1時間遠心分離することにより、球状多孔質酸化チタンナノ粒子を合成する方法が記載されている。
非特許文献3には、自己集合(自己組織化)法による、生物化学分野(ドラッグデリバリ)に用いられる球状多孔質酸化チタンナノ粒子の合成法が記載されている。詳しくは、酸化チタン粒子を集合させ、SiOでコーティングしてクラスターを形成し、焼成、シリカエッチングにより、球状多孔質酸化チタンナノ粒子を合成する方法が記載されている。
しかしながら、これら従来の合成方法は、非常に複雑であり、合成に長時間を要するという問題があった。
Non-Patent Document 1 describes a method for synthesizing spherical porous titanium oxide nanoparticles used for a photocatalyst by a hydrothermal method. Specifically, a method of synthesizing spherical porous titanium oxide nanoparticles by reacting Ti (SO 4 ) 2 , NH 4 F and H 2 O at 160 ° C. for 6 hours is described.
Non-Patent Document 2 describes a method for synthesizing spherical porous titanium oxide nanoparticles used in solar cells by a sol-gel method. Specifically, a method of synthesizing spherical porous titanium oxide nanoparticles by stirring Ti (OC 4 H 9 ) 4 and diethylene glycol in acetone for 8 hours and then centrifuging for 1 hour is described.
Non-Patent Document 3 describes a method for synthesizing spherical porous titanium oxide nanoparticles used in the field of biochemistry (drug delivery) by a self-assembly (self-assembly) method. Specifically, a method is described in which titanium oxide particles are aggregated, coated with SiO 2 to form clusters, and spherical porous titanium oxide nanoparticles are synthesized by firing and silica etching.
However, these conventional synthesis methods are very complicated and have a problem that a long time is required for synthesis.

超臨界流体中における球状多孔質ナノ粒子の合成法も知られてきている。
非特許文献4には、超臨界流体中で球状多孔質Feナノ粒子を合成する方法、非特許文献5には、超臨界流体中で球状多孔質TiOナノ粒子を合成する方法が記載されている。
超臨界流体中でチタンテトライソプロポキシドと有機修飾剤を用い、球状多孔質酸化チタンナノ粒子を合成する方法も知られている。有機修飾剤としては、ヘキサン酸、ヘキサナール、デシルホスホン酸などが知られている。
これらの超臨界流体中における球状多孔質ナノ粒子の合成法は、ワンポット合成であり、反応時間が短く操作が容易であるという利点がある。
しかしながら、これらの合成法では、用途に応じて球状多孔質酸化チタンナノ粒子の粒子径や孔径を調整することは容易ではなかった。
A method for synthesizing spherical porous nanoparticles in a supercritical fluid is also known.
Non-Patent Document 4 discloses a method of synthesizing spherical porous Fe 3 O 4 nanoparticles in a supercritical fluid, and Non-Patent Document 5 discloses a method of synthesizing spherical porous TiO 2 nanoparticles in a supercritical fluid. Have been described.
A method of synthesizing spherical porous titanium oxide nanoparticles using titanium tetraisopropoxide and an organic modifier in a supercritical fluid is also known. As the organic modifier, hexanoic acid, hexanal, decylphosphonic acid and the like are known.
The method for synthesizing spherical porous nanoparticles in these supercritical fluids is one-pot synthesis and has an advantage that the reaction time is short and the operation is easy.
However, in these synthesis methods, it is not easy to adjust the particle size and pore size of the spherical porous titanium oxide nanoparticles according to the application.

本出願人は、上述したような課題を解決するべく、国際出願PCT/JP2012/51884において、超臨界メタノール中でチタンテトライソプロポキシドとカルボン酸とを反応させる工程を備える球状多孔質酸化チタンナノ粒子の合成方法を出願している。
しかしながら、酸化チタン以外の他の無機酸化物について上述したような課題を解決した合成方法は未だ達成されていない。
In order to solve the above-described problems, the present applicant, in the international application PCT / JP2012 / 51884, has a step of reacting titanium tetraisopropoxide and a carboxylic acid in supercritical methanol. We have applied for a synthesis method.
However, a synthesis method that has solved the above-described problems with respect to inorganic oxides other than titanium oxide has not yet been achieved.

Z. Liu et al. Chem. Eur. J. 2007, 13, 1851Z. Liu et al. Chem. Eur. J. 2007, 13, 1851 W.-G. Yang et al. J. Mater. Chem. 2010, 20, 2870W.-G. Yang et al. J. Mater. Chem. 2010, 20, 2870 Y. Yin et al. Anal. Chem., 2010, 82, 7249; Angew. Chem. Int. Ed. 2010, 49, 1862Y. Yin et al. Anal. Chem., 2010, 82, 7249; Angew. Chem. Int. Ed. 2010, 49, 1862 T. Adschiri et al. J. Am. Chem. Soc. 2007, 129, 11061. Dalton Trans., 2011, 40, 1073.T. Adschiri et al. J. Am. Chem. Soc. 2007, 129, 11061. Dalton Trans., 2011, 40, 1073. T. Adschiri et al. J. Nanoparticle Res. 2007, 9, 1067; Chem. Lett. 2010, 39, 961.T. Adschiri et al. J. Nanoparticle Res. 2007, 9, 1067; Chem. Lett. 2010, 39, 961.

本発明は、上述したような問題点を解決すべくなされたものであって、操作が容易であり、合成に長い時間を必要とせず、用途に応じて多孔質無機酸化物ナノ粒子の粒径や孔径を容易に調整することができる多孔質無機酸化物ナノ粒子の合成方法、及び該合成方法により製造される多孔質無機酸化物ナノ粒子及び球状多孔質無機酸化物ナノ粒子を提供するものである。   The present invention has been made to solve the above-described problems, is easy to operate, does not require a long time for synthesis, and the size of the porous inorganic oxide nanoparticles depending on the application. And a method for synthesizing porous inorganic oxide nanoparticles whose pore diameter can be easily adjusted, and porous inorganic oxide nanoparticles and spherical porous inorganic oxide nanoparticles produced by the synthesis method is there.

請求項1に係る発明は、超臨界流体中で無機化合物とカルボン酸とを反応させる工程を備える多孔質無機酸化物ナノ粒子の合成方法であって、前記超臨界流体が超臨界メタノール又は超臨界エタノールであり、前記無機化合物が、Ti(OPr)、Zr(OPr)、ZrO(NO2HO、Ce(NO6HO、Fe(NO9HO、Ni(NO6HO又はSi(OCであり、前記カルボン酸が、ギ酸、酢酸又はオルトフタル酸であることを特徴とする多孔質無機酸化物ナノ粒子の合成方法に関する。 The invention according to claim 1 is a method for synthesizing porous inorganic oxide nanoparticles comprising a step of reacting an inorganic compound and a carboxylic acid in a supercritical fluid, wherein the supercritical fluid is supercritical methanol or supercritical fluid. Ethanol, and the inorganic compound is Ti (O i Pr) 4 , Zr (O i Pr) 4 , ZrO (NO 3 ) 2 2H 2 O, Ce (NO 3 ) 3 6H 2 O, Fe (NO 3 ) 3 9H 2 O, Ni (NO 3 ) 2 6H 2 O, or Si (OC 2 H 5 ) 4 , wherein the carboxylic acid is formic acid, acetic acid, or orthophthalic acid. The present invention relates to a method for synthesizing particles.

請求項2に係る発明は、前記工程において、さらに超臨界流体中に、酢酸エルビウム4水和物、酢酸ユーロピウムn水和物、酢酸セリウム一水和物、酢酸金、酢酸銀又は酢酸パラジウムを加えることを特徴とする請求項1記載の多孔質無機酸化物ナノ粒子の合成方法に関する。   In the invention according to claim 2, in the step, erbium acetate tetrahydrate, europium acetate n-hydrate, cerium acetate monohydrate, gold acetate, silver acetate or palladium acetate is further added to the supercritical fluid. The method for synthesizing porous inorganic oxide nanoparticles according to claim 1.

請求項3に係る発明は、請求項1記載の多孔質無機酸化物ナノ粒子の合成方法により製造される球状多孔質無機酸化物ナノ粒子に関する。   The invention according to claim 3 relates to spherical porous inorganic oxide nanoparticles produced by the method for synthesizing porous inorganic oxide nanoparticles according to claim 1.

請求項4に係る発明は、請求項2記載の多孔質無機酸化物ナノ粒子の合成方法により製造される多孔質無機酸化物ナノ粒子であって、Er、Eu、Ce、Au、Ag又はPdがドープされたことを特徴とする請求項3記載の多孔質無機酸化物ナノ粒子に関する。   The invention according to claim 4 is a porous inorganic oxide nanoparticle produced by the method for synthesizing a porous inorganic oxide nanoparticle according to claim 2, wherein Er, Eu, Ce, Au, Ag or Pd is The porous inorganic oxide nanoparticles according to claim 3, which are doped.

請求項5に係る発明は、Au又はPdが核内にドープされたことを特徴とする請求項4記載の多孔質無機酸化物ナノ粒子に関する。   The invention according to claim 5 relates to the porous inorganic oxide nanoparticles according to claim 4, wherein Au or Pd is doped in the nucleus.

請求項1に係る発明によれば、超臨界メタノール又は超臨界エタノール中でTi(OPr)、Zr(OPr)、ZrO(NO2HO、Ce(NO6HO、Fe(NO9HO、Ni(NO6HO又はSi(OCとギ酸、酢酸又はオルトフタル酸とを反応させる工程を備えることにより、一次粒子同士が分離することなく球状多孔質の酸化チタンナノ粒子、酸化ジルコニウムナノ粒子、酸化セリウムナノ粒子、酸化鉄ナノ粒子、酸化ニッケルナノ粒子、酸化ケイ素ナノ粒子を合成することができる。また、ワンポット合成とすることができ、反応時間が短く操作が容易である合成法とすることができる。 According to the invention of claim 1, in supercritical methanol or supercritical ethanol, Ti (O i Pr) 4 , Zr (O i Pr) 4 , ZrO (NO 3 ) 2 2H 2 O, Ce (NO 3 ) By comprising the step of reacting 3 6H 2 O, Fe (NO 3 ) 3 9H 2 O, Ni (NO 3 ) 2 6H 2 O or Si (OC 2 H 5 ) 4 with formic acid, acetic acid or orthophthalic acid, Spherical porous titanium oxide nanoparticles, zirconium oxide nanoparticles, cerium oxide nanoparticles, iron oxide nanoparticles, nickel oxide nanoparticles, and silicon oxide nanoparticles can be synthesized without separation of primary particles. Further, it can be a one-pot synthesis, and can be a synthesis method with a short reaction time and easy operation.

請求項2に係る発明によれば、前記工程において、さらに超臨界流体中に、酢酸エルビウム4水和物、酢酸ユーロピウムn水和物、酢酸セリウム一水和物、酢酸金、酢酸銀又は酢酸パラジウムを加えることにより、Er、Eu、Ce、Au、Ag又はPdがドープされた多孔質無機酸化物ナノ粒子を合成することができる。このEr又はEuがドープされた多孔質無機酸化物ナノ粒子は、光を照射することにより発光するので、無機物の細胞マーカーとしての利用が期待できる。また,Ce、Au、Ag又はPdがドープされた多孔質無機酸化物ナノ粒子は、光触媒、化学触媒としての利用が期待できる。   According to the invention of claim 2, in the step, erbium acetate tetrahydrate, europium acetate n hydrate, cerium acetate monohydrate, gold acetate, silver acetate or palladium acetate is further added in the supercritical fluid. Can be added to synthesize porous inorganic oxide nanoparticles doped with Er, Eu, Ce, Au, Ag or Pd. Since these porous inorganic oxide nanoparticles doped with Er or Eu emit light when irradiated with light, they can be expected to be used as inorganic cell markers. In addition, porous inorganic oxide nanoparticles doped with Ce, Au, Ag, or Pd can be expected to be used as photocatalysts and chemical catalysts.

求項3に係る発明によれば、一次粒子同士が分離することなく、優れた安定性、単分散性、高い集光特性、再利用の容易さなどの優れた特性を示す球状多孔質無機酸化物ナノ粒子とすることができる。
According to the invention of Motomeko 3 without between primary particles are separated, excellent stability, monodispersity, high condensing characteristics of spherical porous inorganic showing excellent properties such as ease of re-use It can be an oxide nanoparticle.

請求項4に係る発明によれば、Er又はEuがドープされた多孔質無機酸化物ナノ粒子は、光を照射することにより発光するので、無機物の細胞マーカーとしての利用が期待できる。さらに,Ce、Au、Ag又はPdがドープされた多孔質無機酸化物ナノ粒子は、光触媒、化学触媒としての利用が期待できる。   According to the invention of claim 4, since the porous inorganic oxide nanoparticles doped with Er or Eu emit light when irradiated with light, it can be expected to be used as an inorganic cell marker. Further, the porous inorganic oxide nanoparticles doped with Ce, Au, Ag or Pd can be expected to be used as a photocatalyst or a chemical catalyst.

請求項5に係る発明によれば、Au又はPdが核内に包含されていることにより、多孔質殻内外に化学ポテンシャルを発生し,新奇化学触媒としての機能を発現するという効果がある。   According to the invention according to claim 5, since Au or Pd is contained in the nucleus, there is an effect that a chemical potential is generated inside and outside the porous shell and a function as a novel chemical catalyst is expressed.

実施例1で得られた球状多孔質酸化ジルコニウムナノ粒子のSEM写真である。2 is a SEM photograph of spherical porous zirconium oxide nanoparticles obtained in Example 1. 実施例2で得られた球状多孔質酸化ジルコニウムナノ粒子のSEM写真である。4 is a SEM photograph of spherical porous zirconium oxide nanoparticles obtained in Example 2. 実施例5で得られた球状多孔質酸化ジルコニウムナノ粒子のX線回析結果である。FIG. 4 is an X-ray diffraction result of spherical porous zirconium oxide nanoparticles obtained in Example 5. FIG. 実施例5で得られた球状多孔質酸化ジルコニウムナノ粒子のSEM写真である。4 is a SEM photograph of spherical porous zirconium oxide nanoparticles obtained in Example 5. 実施例6で得られた球状多孔質酸化セリウムナノ粒子のX線回析結果である。It is an X-ray diffraction result of the spherical porous cerium oxide nanoparticles obtained in Example 6. 実施例6で得られた球状多孔質酸化セリウムナノ粒子のSEM写真である。4 is a SEM photograph of spherical porous cerium oxide nanoparticles obtained in Example 6. 実施例15で得られた球状多孔質酸化ケイ素ナノ粒子のSEM写真である。2 is a SEM photograph of spherical porous silicon oxide nanoparticles obtained in Example 15. 実施例16で得られた球状多孔質酸化ケイ素ナノ粒子のSEM写真である。4 is a SEM photograph of spherical porous silicon oxide nanoparticles obtained in Example 16. 実施例17で得られたErドープ球状多孔質酸化チタンナノ粒子のX線回析結果である。FIG. 6 is a result of X-ray diffraction of Er-doped spherical porous titanium oxide nanoparticles obtained in Example 17. FIG. DMFに分散させた実施例17で得られたErドープ球状多孔質酸化チタンナノ粒子のEDXマッピングである。It is an EDX mapping of Er doped spherical porous titanium oxide nanoparticles obtained in Example 17 dispersed in DMF. 実施例18で得られたEuドープ球状多孔質酸化チタンナノ粒子のX線回析結果である。FIG. 6 is an X-ray diffraction result of Eu-doped spherical porous titanium oxide nanoparticles obtained in Example 18. FIG. 実施例18で得られたEuドープ球状多孔質酸化チタンナノ粒子のTEM写真である。2 is a TEM photograph of Eu-doped spherical porous titanium oxide nanoparticles obtained in Example 18. FIG. 実施例18で得られたEuドープ球状多孔質酸化チタンナノ粒子のEDXマッピングである。4 is an EDX mapping of Eu-doped spherical porous titanium oxide nanoparticles obtained in Example 18. FIG. 実施例19で得られたCeドープ球状多孔質酸化チタンナノ粒子のX線回析結果である。FIG. 6 is an X-ray diffraction result of Ce-doped spherical porous titanium oxide nanoparticles obtained in Example 19. FIG. 実施例19で得られたCeドープ球状多孔質酸化チタンナノ粒子のTEM写真である。2 is a TEM photograph of Ce-doped spherical porous titanium oxide nanoparticles obtained in Example 19. FIG. 実施例19で得られたCeドープ球状多孔質酸化チタンナノ粒子のEDXマッピングである。4 is an EDX mapping of Ce-doped spherical porous titanium oxide nanoparticles obtained in Example 19. FIG. 実施例20で得られたAuドープ球状多孔質酸化チタンナノ粒子のX線回析結果である。It is an X-ray-diffraction result of the Au dope spherical porous titanium oxide nanoparticle obtained in Example 20. 実施例20で得られたAuドープ球状多孔質酸化チタンナノ粒子のTEM写真である。4 is a TEM photograph of Au-doped spherical porous titanium oxide nanoparticles obtained in Example 20. FIG. 実施例20で得られたAuドープ球状多孔質酸化チタンナノ粒子のEDXマッピングである。FIG. 6 is an EDX mapping of Au-doped spherical porous titanium oxide nanoparticles obtained in Example 20. FIG. 実施例21で得られたAgドープ球状多孔質酸化チタンナノ粒子のX線回析結果である。2 is an X-ray diffraction result of Ag-doped spherical porous titanium oxide nanoparticles obtained in Example 21. FIG. 実施例21で得られたAgドープ球状多孔質酸化チタンナノ粒子のTEM写真である。2 is a TEM photograph of Ag-doped spherical porous titanium oxide nanoparticles obtained in Example 21. FIG. 実施例21で得られたAgドープ球状多孔質酸化チタンナノ粒子のEDXマッピングである。2 is an EDX mapping of Ag-doped spherical porous titanium oxide nanoparticles obtained in Example 21. FIG. 実施例22で得られたPdドープ多孔質酸化チタンナノ粒子のX線回析結果である。4 is an X-ray diffraction result of Pd-doped porous titanium oxide nanoparticles obtained in Example 22. FIG. 実施例22で得られたPdドープ多孔質酸化チタンナノ粒子のTEM写真である。4 is a TEM photograph of Pd-doped porous titanium oxide nanoparticles obtained in Example 22. FIG. 実施例22で得られたPdドープ多孔質酸化チタンナノ粒子のEDXマッピングである。4 is an EDX mapping of Pd-doped porous titanium oxide nanoparticles obtained in Example 22. FIG.

以下、本発明に係る多孔質無機酸化物ナノ粒子の合成方法、並びに該合成方法により製造される多孔質無機酸化物ナノ粒子及び球状多孔質無機酸化物ナノ粒子について説明する。   Hereinafter, the method for synthesizing porous inorganic oxide nanoparticles according to the present invention, and the porous inorganic oxide nanoparticles and spherical porous inorganic oxide nanoparticles produced by the synthesis method will be described.

本発明に係る多孔質無機酸化物ナノ粒子の合成方法は、超臨界流体中で無機化合物とカルボン酸とを反応させる工程を備える多孔質無機酸化物ナノ粒子の合成方法である。
超臨界流体とは、臨界点以上の温度及び圧力下においた物質の状態のことをいい、気体と液体の区別がつかない状態といわれ、気体の拡散性と液体の溶解性をもつ。
本発明において、超臨界流体として超臨界メタノール又は超臨界エタノールが用いられる。
超臨界メタノール又は超臨界エタノールを用いることにより、一次粒子同士が分離することなく球状多孔質の無機酸化物ナノ粒子を合成することができる。
The method for synthesizing porous inorganic oxide nanoparticles according to the present invention is a method for synthesizing porous inorganic oxide nanoparticles comprising a step of reacting an inorganic compound and a carboxylic acid in a supercritical fluid.
A supercritical fluid refers to a state of a substance placed at a temperature and pressure above the critical point, and is said to be indistinguishable between gas and liquid, and has gas diffusibility and liquid solubility.
In the present invention, supercritical methanol or supercritical ethanol is used as the supercritical fluid.
By using supercritical methanol or supercritical ethanol, spherical porous inorganic oxide nanoparticles can be synthesized without separation of primary particles.

本発明の超臨界流体中でカルボン酸と反応させる無機化合物は、Ti(OPr)、Zr(OPr)、ZrO(NO2HO、Ce(NO6HO、Fe(NO9HO、Ni(NO6HO又はSi(OCである。 Inorganic compounds to be reacted with carboxylic acid in the supercritical fluid of the present invention are Ti (O i Pr) 4 , Zr (O i Pr) 4 , ZrO (NO 3 ) 2 2H 2 O, Ce (NO 3 ) 3 6H. 2 O, Fe (NO 3 ) 3 9H 2 O, Ni (NO 3 ) 2 6H 2 O, or Si (OC 2 H 5 ) 4 .

Ti(OPr)Prはイソプロピル基:−CH(CH)(チタンテトライソプロポキシド)とは、チタンアルコキシドの一種であり、CAS.No.546−68−9であって、下記(式1)に示す構造を有している。 Ti (O i Pr) 4 ( i Pr is an isopropyl group: —CH (CH 3 ) 2 ) (titanium tetraisopropoxide) is a kind of titanium alkoxide, and CAS. No. 546-68-9, which has the structure shown in the following (Formula 1).

Zr(OPr)Prはイソプロピル基:−CH(CH)(ジルコニウムテトライソプロポキシド)とは、ジルコニウムアルコキシドの一種であり、CAS.No.2171−98−4であって、下記(式2)に示す構造を有している。 Zr (O i Pr) 4 ( i Pr is an isopropyl group: —CH (CH 3 ) 2 ) (zirconium tetraisopropoxide) is a kind of zirconium alkoxide, which is a CAS. No. 2171-98-4, which has the structure shown in the following (Formula 2).

ZrO(NO2HO(硝酸ジルコニル二水和物)とは、CAS.No.14985−18−3であって、下記(式3)に示す構造を有している。 ZrO (NO 3 ) 2 2H 2 O (zirconyl nitrate dihydrate) refers to CAS. No. 14985-18-3, which has the structure shown in the following (formula 3).

Ce(NO6HO(硝酸セリウム六水和物)とは、CAS.No.10294−41−4であって、下記(式4)に示す構造を有している。 Ce (NO 3 ) 3 6H 2 O (cerium nitrate hexahydrate) refers to CAS. No. 10294-41-4, which has the structure shown in the following (formula 4).

Fe(NO9HO(硝酸鉄九水和物)とは、CAS.No.7782−61−8であって、下記(式5)に示す構造を有している。 Fe (NO 3 ) 3 9H 2 O (iron nitrate nonahydrate) refers to CAS. No. 772-61-8, which has the structure shown in the following (formula 5).

Ni(NO6HO(硝酸ニッケル六水和物)とは、CAS.No.13478−00−7であって、下記(式6)に示す構造を有している。 Ni (NO 3 ) 2 6H 2 O (nickel nitrate hexahydrate) refers to CAS. No. 13478-00-7, which has a structure shown in the following (formula 6).

Si(OC(テトラエトキシシラン)とは、CAS.No.78−10−4であって、下記(式7)に示す構造を有している。 Si (OC 2 H 5 ) 4 (tetraethoxysilane) refers to CAS. No. 78-10-4, which has a structure shown in the following (formula 7).

これら無機化合物のメタノール又はエタノールに対する濃度としては、0.01〜1.0mol/Lが好ましい。   The concentration of these inorganic compounds with respect to methanol or ethanol is preferably 0.01 to 1.0 mol / L.

本発明において、無機化合物と反応させるカルボン酸は、ギ酸、酢酸又はオルトフタル酸である。   In the present invention, the carboxylic acid to be reacted with the inorganic compound is formic acid, acetic acid or orthophthalic acid.

ギ酸は、CAS.No.64−18−6の低級カルボン酸の一種である。化学式HCOOHであって、下記(式8)に示す構造を有している。   Formic acid is available from CAS. No. It is a kind of lower carboxylic acid of 64-18-6. It has the chemical formula HCOOH and has the structure shown below (Formula 8).

酢酸は、CAS.No.64−19−7の低級カルボン酸の一種である。化学式CHCOOHであって、下記(式9)に示す構造を有している。 Acetic acid is obtained from CAS. No. It is a kind of lower carboxylic acid of 64-19-7. Chemical formula CH 3 COOH, which has the structure shown in the following (formula 9).

オルトフタル酸は、CAS.No.88−99−3の芳香族カルボン酸の一種である。化学式C(COOH)であって、下記(式10)に示す構造を有している。 Orthophthalic acid is available from CAS. No. It is a kind of 88-99-3 aromatic carboxylic acid. A chemical formula C 6 H 4 (COOH) 2 , and has a structure shown below (Equation 10).

上記のカルボン酸を、超臨界メタノール又は超臨界エタノール中で上記無機化合物と反応させることにより、一次粒子同士が分離することなく球状多孔質の酸化チタンナノ粒子、酸化ジルコニウムナノ粒子、酸化セリウムナノ粒子、酸化鉄ナノ粒子、酸化ニッケルナノ粒子、酸化ケイ素ナノ粒子を生成することができる。
上記のカルボン酸のメタノール又はエタノールに対する濃度としては、0.05〜5.0mol/Lが好ましい。
By reacting the above carboxylic acid with the above inorganic compound in supercritical methanol or supercritical ethanol, spherical porous titanium oxide nanoparticles, zirconium oxide nanoparticles, cerium oxide nanoparticles, oxidation without separation of primary particles. Iron nanoparticles, nickel oxide nanoparticles, silicon oxide nanoparticles can be generated.
As a density | concentration with respect to methanol or ethanol of said carboxylic acid, 0.05-5.0 mol / L is preferable.

超臨界メタノール又は超臨界エタノール中で上記無機化合物と上記カルボン酸とを反応させる工程において、上記カルボン酸の他に、超臨界メタノール又は超臨界エタノール中に酢酸エルビウム4水和物、酢酸ユーロピウムn水和物、酢酸セリウム一水和物、酢酸金、酢酸銀又は酢酸パラジウムを加えることができる。これにより、Er、Eu、Ce、Au、Ag又はPdがドープされた多孔質無機酸化物ナノ粒子を生成することができる。   In the step of reacting the inorganic compound and the carboxylic acid in supercritical methanol or supercritical ethanol, in addition to the carboxylic acid, erbium acetate tetrahydrate, europium acetate n water in supercritical methanol or supercritical ethanol. Japanese, cerium acetate monohydrate, gold acetate, silver acetate or palladium acetate can be added. Thereby, porous inorganic oxide nanoparticles doped with Er, Eu, Ce, Au, Ag or Pd can be generated.

酢酸エルビウム4水和物は、CAS.No.15280−57−6の化合物である。化学式Er(CHCOO)・4HOで表され、下記(式11)に示す構造を有している。 Erbium acetate tetrahydrate is available from CAS. No. 15280-57-6. It is represented by the chemical formula Er (CH 3 COO) 3 .4H 2 O and has the structure shown below (Formula 11).

酢酸エルビウム4水和物のメタノール又はエタノールに対する濃度としては、0.001〜0.02mol/Lが好ましい。
エルビウムドープ球状多孔質無機酸化物ナノ粒子は、赤外レーザ光を照射することにより緑色発光するので、無機物の細胞マーカーとしての利用が期待できる。
The concentration of erbium acetate tetrahydrate with respect to methanol or ethanol is preferably 0.001 to 0.02 mol / L.
Since erbium-doped spherical porous inorganic oxide nanoparticles emit green light when irradiated with infrared laser light, they can be expected to be used as inorganic cell markers.

酢酸ユーロピウムn水和物は、CAS.No.62667−64−5の化合物である。化学式Eu(CHCOO)・nHOで表され、下記(式12)に示す構造を有している。 Europium acetate n hydrate is available from CAS. No. It is a compound of 62667-64-5. It is represented by the chemical formula Eu (CH 3 COO) 3 .nH 2 O and has a structure shown in the following (Formula 12).

酢酸ユーロピウムn水和物のメタノール又はエタノールに対する濃度としては、0.001〜0.1 mol/Lが好ましい。
ユーロピウムドープ球状多孔質無機酸化物ナノ粒子は、紫外光で励起すると蛍光発光するので、無機蛍光体や細胞マーカーとしての利用が期待できる。
The concentration of europium acetate n hydrate with respect to methanol or ethanol is preferably 0.001 to 0.1 mol / L.
Europium-doped spherical porous inorganic oxide nanoparticles emit fluorescence when excited with ultraviolet light, and can be expected to be used as inorganic phosphors and cell markers.

酢酸セリウム一水和物は、CAS.No.537−00−8の化合物である。化学式(CHCOO)Ce・HOで表され、下記(式13)に示す構造を有している。 Cerium acetate monohydrate is available from CAS. No. 537-00-8. It is represented by the chemical formula (CH 3 COO) 3 Ce · H 2 O and has the structure shown in the following (Formula 13).

酢酸セリウム一水和物のメタノール又はエタノールに対する濃度としては、0.001〜0.1mol/Lが好ましい。
セリウムドープ球状多孔質無機酸化物ナノ粒子は、紫外光を吸収し蛍光発光するので、紫外光吸収剤,無機蛍光体や細胞マーカーとしての利用が期待できる。また,触媒としての利用も期待できる。
The concentration of cerium acetate monohydrate with respect to methanol or ethanol is preferably 0.001 to 0.1 mol / L.
Since the cerium-doped spherical porous inorganic oxide nanoparticles absorb ultraviolet light and emit fluorescence, they can be expected to be used as ultraviolet light absorbers, inorganic phosphors, and cell markers. It can also be used as a catalyst.

酢酸金は、CAS.No.15804−32−7の化合物である。化学式(CHCOO)Auで表され、下記(式14)に示す構造を有している。 Gold acetate is available from CAS. No. 15804-32-7. It is represented by the chemical formula (CH 3 COO) 3 Au and has the structure shown in the following (Formula 14).

酢酸金のメタノール又はエタノールに対する濃度としては、0.001〜0.2mol/Lが好ましい。
金ドープ球状多孔質無機酸化物ナノ粒子は、金原子が多孔質ナノ粒子に分散しているので、化学触媒としての利用が期待できる。
The concentration of gold acetate with respect to methanol or ethanol is preferably 0.001 to 0.2 mol / L.
The gold-doped spherical porous inorganic oxide nanoparticles can be expected to be used as a chemical catalyst since gold atoms are dispersed in the porous nanoparticles.

酢酸銀は、CAS.No.563−63−3の化合物である。化学式CHCOOAgで表され、下記(式15)に示す構造を有している。 Silver acetate is available from CAS. No. It is a compound of 563-63-3. It is represented by the chemical formula CH 3 COOAg and has a structure shown below (Formula 15).

酢酸銀のメタノール又はエタノールに対する濃度としては、0.001〜0.1mol/Lが好ましい。
銀ドープ球状多孔質無機酸化物ナノ粒子は、銀原子が多孔質ナノ粒子に分散しているので、化学触媒としての利用が期待できる。
The concentration of silver acetate with respect to methanol or ethanol is preferably 0.001 to 0.1 mol / L.
The silver-doped spherical porous inorganic oxide nanoparticles can be expected to be used as a chemical catalyst because silver atoms are dispersed in the porous nanoparticles.

酢酸パラジウムは、CAS.No.3375−31−3の化合物である。化学式(CHCOO)Pdで表され、下記(式16)に示す構造を有している。 Palladium acetate is available from CAS. No. 3375-31-3. It is represented by the chemical formula (CH 3 COO) 2 Pd and has a structure shown in the following (Formula 16).

酢酸パラジウムのメタノール又はエタノールに対する濃度としては、0.001〜0.1mol/Lが好ましい。
パラジウムドープ多孔質無機酸化物ナノ粒子は、パラジウム原子が多孔質ナノ粒子に分散しているので、化学触媒としての利用が期待できる。
The concentration of palladium acetate with respect to methanol or ethanol is preferably 0.001 to 0.1 mol / L.
The palladium-doped porous inorganic oxide nanoparticles can be expected to be used as a chemical catalyst because palladium atoms are dispersed in the porous nanoparticles.

このうち、AuとPdについては、多孔質無機酸化物ナノ粒子の核の中へドープすることができる。これにより、化学ポテンシャルが多孔質ナノ粒子の内外に生じるため,高機能化学触媒となる。   Of these, Au and Pd can be doped into the nuclei of the porous inorganic oxide nanoparticles. As a result, the chemical potential is generated inside and outside the porous nanoparticle, so that it becomes a highly functional chemical catalyst.

本発明において、反応温度は200℃以上が好ましく、300〜400℃がより好ましい。
反応温度が200℃より低い場合、一次粒子径が小さくなることにより孔径が小さくなりすぎ多孔質粒子を形成できないため好ましくない。
In this invention, 200 degreeC or more is preferable and, as for reaction temperature, 300-400 degreeC is more preferable.
When the reaction temperature is lower than 200 ° C., it is not preferable because the pore size becomes too small due to the primary particle size becoming small and porous particles cannot be formed.

本発明において、反応時間は少なくとも1秒以上が好ましく、1〜10分がより好ましい。   In the present invention, the reaction time is preferably at least 1 second or more, more preferably 1 to 10 minutes.

以下の実施例に基づいてさらに詳細に説明するが、本発明に係る多孔質無機酸化物ナノ粒子の合成方法、並びに該合成方法により製造される多孔質無機酸化物ナノ粒子及び球状多孔質無機酸化物ナノ粒子は、これらに限定されるものではない。   The method for synthesizing porous inorganic oxide nanoparticles according to the present invention, and the porous inorganic oxide nanoparticles and spherical porous inorganic oxide produced by the synthesis method will be described in more detail based on the following examples. The product nanoparticles are not limited to these.

実施例1
ZrO(NO2HO278mgとメタノール10mLを混合し,有機修飾剤としてギ酸235mgを0.5mol/Lとなるように添加した。この溶液を300℃まで上昇させ、超臨界メタノールとし、10分間反応させた。その後、遠心分離,メタノールでの超音波洗浄、乾燥して球状多孔質酸化ジルコニウムナノ粒子の粉体を得た。
球状多孔質酸化ジルコニウムナノ粒子のSEM写真を図1に示す。
Example 1
278 mg of ZrO (NO 3 ) 2 2H 2 O and 10 mL of methanol were mixed, and 235 mg of formic acid as an organic modifier was added to 0.5 mol / L. This solution was raised to 300 ° C. to make supercritical methanol and reacted for 10 minutes. Thereafter, centrifugal separation, ultrasonic cleaning with methanol, and drying were performed to obtain spherical porous zirconium oxide nanoparticle powders.
A SEM photograph of the spherical porous zirconium oxide nanoparticles is shown in FIG.

実施例2
実施例1とは温度を400℃としたこと以外は同じ条件で、球状多孔質酸化ジルコニウムナノ粒子の粉体を得た。
球状多孔質酸化ジルコニウムナノ粒子のSEM写真を図2に示す。
Example 2
A powder of spherical porous zirconium oxide nanoparticles was obtained under the same conditions as in Example 1 except that the temperature was 400 ° C.
An SEM photograph of the spherical porous zirconium oxide nanoparticles is shown in FIG.

実施例3
実施例1とはギ酸の代わりにオルトフタル酸を用いたこと以外は同じ条件で、球状多孔質酸化ジルコニウムナノ粒子の粉体を得た。
Example 3
A powder of spherical porous zirconium oxide nanoparticles was obtained under the same conditions as in Example 1 except that orthophthalic acid was used instead of formic acid.

実施例4
実施例3とは温度を400℃としたこと以外は同じ条件で、球状多孔質酸化ジルコニウムナノ粒子の粉体を得た。
Example 4
A spherical porous zirconium oxide nanoparticle powder was obtained under the same conditions as in Example 3 except that the temperature was 400 ° C.

実施例5
Zr(OPr)388mgとメタノール10mLを混合し,有機修飾剤としてギ酸235mgを0.5mol/Lとなるように添加した。この溶液を300℃まで上昇させ、超臨界メタノールとし、10分間反応させた。その後、遠心分離,メタノールでの超音波洗浄、乾燥して球状多孔質酸化ジルコニウムナノ粒子の粉体を得た。
得られた球状多孔質酸化ジルコニウムナノ粒子のX線回析結果を図3に、球状多孔質酸化ジルコニウムナノ粒子のSEM写真を図4に示す。
Example 5
388 mg of Zr (O i Pr) 4 and 10 mL of methanol were mixed, and 235 mg of formic acid as an organic modifier was added to 0.5 mol / L. This solution was raised to 300 ° C. to make supercritical methanol and reacted for 10 minutes. Thereafter, centrifugal separation, ultrasonic cleaning with methanol, and drying were performed to obtain spherical porous zirconium oxide nanoparticle powders.
The X-ray diffraction result of the obtained spherical porous zirconium oxide nanoparticles is shown in FIG. 3, and the SEM photograph of the spherical porous zirconium oxide nanoparticles is shown in FIG.

実施例6
Ce(NO6HO443mgとメタノール10mLを混合し,有機修飾剤としてギ酸25mgを0.5mol/Lとなるように添加した。この溶液を300℃まで上昇させ、超臨界メタノールとし、10分間反応させた。その後、遠心分離,メタノールでの超音波洗浄、乾燥して球状多孔質酸化セリウムナノ粒子の粉体を得た。
得られた球状多孔質酸化セリウムナノ粒子のX線回析結果を図5に、球状多孔質酸化セリウムナノ粒子のSEM写真を図6に示す。
Example 6
Ce (NO 3 ) 3 6H 2 O (443 mg) and methanol (10 mL) were mixed, and 25 mg of formic acid as an organic modifier was added to a concentration of 0.5 mol / L. This solution was raised to 300 ° C. to make supercritical methanol and reacted for 10 minutes. Thereafter, centrifugal separation, ultrasonic cleaning with methanol, and drying were performed to obtain spherical porous cerium oxide nanoparticle powders.
FIG. 5 shows an X-ray diffraction result of the obtained spherical porous cerium oxide nanoparticles, and FIG. 6 shows an SEM photograph of the spherical porous cerium oxide nanoparticles.

実施例7
実施例6とは温度を400℃としたこと以外は同じ条件で、球状多孔質酸化セリウムナノ粒子の粉体を得た。
Example 7
A spherical porous cerium oxide nanoparticle powder was obtained under the same conditions as in Example 6 except that the temperature was 400 ° C.

実施例8
実施例6とはギ酸の代わりにオルトフタル酸を用いたこと以外は同じ条件で、球状多孔質酸化セリウムナノ粒子の粉体を得た。
Example 8
A spherical porous cerium oxide nanoparticle powder was obtained under the same conditions as in Example 6 except that orthophthalic acid was used instead of formic acid.

実施例9
実施例8とは温度を400℃としたこと以外は同じ条件で、球状多孔質酸化セリウムナノ粒子の粉体を得た。
Example 9
A spherical porous cerium oxide nanoparticle powder was obtained under the same conditions as in Example 8, except that the temperature was 400 ° C.

実施例10
Fe(NO9HO408mgとメタノール10mLを混合し,有機修飾剤としてギ酸235mgを0.5mol/Lとなるように添加した。この溶液を400℃まで上昇させ、超臨界メタノールとし、10分間反応させた。その後、遠心分離,メタノールでの超音波洗浄、乾燥して球状多孔質酸化鉄ナノ粒子の粉体を得た。
Example 10
408 mg of Fe (NO 3 ) 3 9H 2 O and 10 mL of methanol were mixed, and 235 mg of formic acid was added as an organic modifier so as to be 0.5 mol / L. This solution was raised to 400 ° C. to make supercritical methanol and reacted for 10 minutes. Thereafter, centrifugal separation, ultrasonic cleaning with methanol, and drying were performed to obtain spherical porous iron oxide nanoparticle powders.

実施例11
実施例10とはギ酸の代わりにオルトフタル酸を用いたこと以外は同じ条件で、球状多孔質酸化鉄ナノ粒子の粉体を得た。
Example 11
A powder of spherical porous iron oxide nanoparticles was obtained under the same conditions as in Example 10 except that orthophthalic acid was used instead of formic acid.

実施例12
Ni(NO6HO297mgとメタノール10mLを混合し,有機修飾剤としてギ酸235mgを0.5mol/Lとなるように添加した。この溶液を400℃まで上昇させ、超臨界メタノールとし、10分間反応させた。その後、遠心分離,メタノールでの超音波洗浄、乾燥して球状多孔質酸化ニッケルナノ粒子の粉体を得た。
Example 12
297 mg of Ni (NO 3 ) 2 6H 2 O and 10 mL of methanol were mixed, and 235 mg of formic acid as an organic modifier was added to 0.5 mol / L. This solution was raised to 400 ° C. to make supercritical methanol and reacted for 10 minutes. Thereafter, centrifugal separation, ultrasonic cleaning with methanol, and drying were performed to obtain powders of spherical porous nickel oxide nanoparticles.

実施例13
実施例12とはギ酸の代わりにオルトフタル酸を用いたこと以外は同じ条件で、球状多孔質酸化ニッケルナノ粒子の粉体を得た。
Example 13
A powder of spherical porous nickel oxide nanoparticles was obtained under the same conditions as in Example 12 except that orthophthalic acid was used instead of formic acid.

実施例14
Si(OC0.24mLとエタノール10mLを混合し,有機修飾剤としてギ酸848mgを0.5mol/Lとなるように添加した。この溶液を400℃まで上昇させ、超臨界メタノールとし、10分間反応させた。その後、遠心分離,メタノールでの超音波洗浄、乾燥して球状多孔質酸化ケイ素ナノ粒子の粉体を得た。
Example 14
Si (OC 2 H 5 ) 4 0.24 mL and ethanol 10 mL were mixed, and 848 mg of formic acid as an organic modifier was added to 0.5 mol / L. This solution was raised to 400 ° C. to make supercritical methanol and reacted for 10 minutes. Thereafter, centrifugal separation, ultrasonic cleaning with methanol, and drying were performed to obtain spherical porous silicon oxide nanoparticle powders.

実施例15
実施例14とはエタノールの代わりにメタノール,ギ酸の代わりにオルトフタル酸を用いたこと以外は同じ条件で、球状多孔質酸化ケイ素ナノ粒子の粉体を得た。
球状多孔質酸化ケイ素ナノ粒子のSEM写真を図7に示す。
Example 15
A powder of spherical porous silicon oxide nanoparticles was obtained under the same conditions as in Example 14 except that methanol was used instead of ethanol and orthophthalic acid was used instead of formic acid.
An SEM photograph of the spherical porous silicon oxide nanoparticles is shown in FIG.

実施例16
実施例14とはギ酸の代わりにオルトフタル酸を用いたこと以外は同じ条件で、球状多孔質酸化ケイ素ナノ粒子の粉体を得た。
球状多孔質酸化ケイ素ナノ粒子のSEM写真を図8に示す。
Example 16
A spherical porous silicon oxide nanoparticle powder was obtained under the same conditions as in Example 14 except that orthophthalic acid was used instead of formic acid.
An SEM photograph of the spherical porous silicon oxide nanoparticles is shown in FIG.

実施例17
酢酸235mgの10mLメタノール溶液0.5mol/Lに0.33mL(1mmol)のチタンテトライソプロポキシドを激しく攪拌しながら加えた。そこに、酢酸エルビウム4水和物43.9mgを加え、一晩攪拌した。この溶液を3.5mL計り取り、同様のSUS316反応に移し、この溶液を400℃まで上昇させ、超臨界メタノールとし、60分間反応させた。その後、遠心分離,メタノールでの超音波洗浄、乾燥してErドープ球状多孔質酸化チタンナノ粒子の粉体を得た。
得られたErドープ球状多孔質酸化チタンナノ粒子のX線回析結果を図9に、Erドープ球状多孔質酸化チタンナノ粒子の粉体のTEM写真及びEDXマッピングを図10に示す。
Example 17
0.33 mL (1 mmol) of titanium tetraisopropoxide was added to 0.5 mol / L of 235 mg of acetic acid in 10 mL of methanol with vigorous stirring. Thereto, 43.9 mg of erbium acetate tetrahydrate was added and stirred overnight. 3.5 mL of this solution was weighed and transferred to the same SUS316 reaction, and this solution was raised to 400 ° C. to make supercritical methanol and reacted for 60 minutes. Thereafter, centrifugal separation, ultrasonic cleaning with methanol, and drying were performed to obtain powder of Er-doped spherical porous titanium oxide nanoparticles.
The X-ray diffraction result of the obtained Er-doped spherical porous titanium oxide nanoparticles is shown in FIG. 9, and a TEM photograph and EDX mapping of the powder of Er-doped spherical porous titanium oxide nanoparticles are shown in FIG.

実施例18
酢酸235mgの10mLメタノール溶液0.5mol/Lに0.33mL(1mmol)のチタンテトライソプロポキシドを激しく攪拌しながら加えた。そこに、酢酸ユーロピウムn水和物35mgを加え、一晩攪拌した。この溶液を3.5mL計り取り、同様のSUS316反応に移し、この溶液を400℃まで上昇させ、超臨界メタノールとし、60分間反応させた。その後、遠心分離,メタノールでの超音波洗浄、乾燥してEuドープ球状多孔質酸化チタンナノ粒子の粉体を得た。
得られたEuドープ球状多孔質酸化チタンナノ粒子のX線回析結果を図11に、Euドープ球状多孔質酸化チタンナノ粒子の粉体のTEM写真を図12に、EDXマッピングを図13に示す。
Example 18
0.33 mL (1 mmol) of titanium tetraisopropoxide was added to 0.5 mol / L of 235 mg of acetic acid in 10 mL of methanol with vigorous stirring. Thereto, 35 mg of europium acetate n hydrate was added and stirred overnight. 3.5 mL of this solution was weighed and transferred to the same SUS316 reaction, and this solution was raised to 400 ° C. to make supercritical methanol and reacted for 60 minutes. Thereafter, centrifugation, ultrasonic cleaning with methanol, and drying were performed to obtain a powder of Eu-doped spherical porous titanium oxide nanoparticles.
The X-ray diffraction results of the obtained Eu-doped spherical porous titanium oxide nanoparticles are shown in FIG. 11, a TEM photograph of the powder of Eu-doped spherical porous titanium oxide nanoparticles is shown in FIG. 12, and EDX mapping is shown in FIG.

実施例19
酢酸235mgの10mLメタノール溶液0.5mol/Lに0.33mL(1mmol)のチタンテトライソプロポキシドを激しく攪拌しながら加えた。そこに、酢酸セリウム一水和物(CHCOO)CeHO34mgを加え、一晩攪拌した。この溶液を3.5mL計り取り、同様のSUS316反応に移し、この溶液を400℃まで上昇させ、超臨界メタノールとし、60分間反応させた。その後、遠心分離,メタノールでの超音波洗浄、乾燥してCeドープ球状多孔質酸化チタンナノ粒子の粉体を得た。
得られたCeドープ球状多孔質酸化チタンナノ粒子のX線回析結果を図14に、Ceドープ球状多孔質酸化チタンナノ粒子の粉体のTEM写真を図15に、EDXマッピングを図16に示す。
Example 19
0.33 mL (1 mmol) of titanium tetraisopropoxide was added to 0.5 mol / L of 235 mg of acetic acid in 10 mL of methanol with vigorous stirring. Thereto, 34 mg of cerium acetate monohydrate (CH 3 COO) 3 CeH 2 O was added and stirred overnight. 3.5 mL of this solution was weighed and transferred to the same SUS316 reaction, and this solution was raised to 400 ° C. to make supercritical methanol and reacted for 60 minutes. Thereafter, centrifugal separation, ultrasonic cleaning with methanol, and drying were performed to obtain Ce-doped spherical porous titanium oxide nanoparticle powders.
FIG. 14 shows an X-ray diffraction result of the obtained Ce-doped spherical porous titanium oxide nanoparticles, FIG. 15 shows a TEM photograph of the powder of Ce-doped spherical porous titanium oxide nanoparticles, and FIG. 16 shows an EDX mapping.

実施例20
酢酸235mgの10mLメタノール溶液0.5mol/Lに0.33mL(1mmol)のチタンテトライソプロポキシドを激しく攪拌しながら加えた。そこに、酢酸金(CHCOO)Au26mgを加え、一晩攪拌した。この溶液を3.5mL計り取り、同様のSUS316反応に移し、この溶液を400℃まで上昇させ、超臨界メタノールとし、60分間反応させた。その後、遠心分離,メタノールでの超音波洗浄、乾燥してAuドープ球状多孔質酸化チタンナノ粒子の粉体を得た。
得られたAuドープ球状多孔質酸化チタンナノ粒子のX線回析結果を図17に、Auドープ球状多孔質酸化チタンナノ粒子の粉体のTEM写真を図18に、EDXマッピングを図19に示す。
Example 20
0.33 mL (1 mmol) of titanium tetraisopropoxide was added to 0.5 mol / L of 235 mg of acetic acid in 10 mL of methanol with vigorous stirring. Thereto, 26 mg of gold acetate (CH 3 COO) 3 Au was added and stirred overnight. 3.5 mL of this solution was weighed and transferred to the same SUS316 reaction, and this solution was raised to 400 ° C. to make supercritical methanol and reacted for 60 minutes. Thereafter, centrifugation, ultrasonic cleaning with methanol, and drying were performed to obtain Au-doped spherical porous titanium oxide nanoparticle powders.
FIG. 17 shows an X-ray diffraction result of the obtained Au-doped spherical porous titanium oxide nanoparticles, FIG. 18 shows a TEM photograph of the powder of Au-doped spherical porous titanium oxide nanoparticles, and FIG. 19 shows an EDX mapping.

実施例21
酢酸235mgの10mLメタノール溶液0.5mol/Lに0.33mL(1mmol)のチタンテトライソプロポキシドを激しく攪拌しながら加えた。そこに、酢酸銀CHCOOAg17mgを加え、一晩攪拌した。この溶液を3.5mL計り取り、同様のSUS316反応に移し、この溶液を400℃まで上昇させ、超臨界メタノールとし、60分間反応させた。その後、遠心分離,メタノールでの超音波洗浄、乾燥してAgドープ球状多孔質酸化チタンナノ粒子の粉体を得た。
得られたAgドープ球状多孔質酸化チタンナノ粒子のX線回析結果を図20に、Agドープ球状多孔質酸化チタンナノ粒子の粉体のTEM写真を図21に、EDXマッピングを図22に示す。
Example 21
0.33 mL (1 mmol) of titanium tetraisopropoxide was added to 0.5 mol / L of 235 mg of acetic acid in 10 mL of methanol with vigorous stirring. Thereto, 17 mg of silver acetate CH 3 COOAg was added and stirred overnight. 3.5 mL of this solution was weighed and transferred to the same SUS316 reaction, and this solution was raised to 400 ° C. to make supercritical methanol and reacted for 60 minutes. Thereafter, centrifugal separation, ultrasonic cleaning with methanol, and drying were performed to obtain a powder of Ag-doped spherical porous titanium oxide nanoparticles.
The X-ray diffraction result of the obtained Ag-doped spherical porous titanium oxide nanoparticles is shown in FIG. 20, a TEM photograph of the powder of Ag-doped spherical porous titanium oxide nanoparticles is shown in FIG. 21, and EDX mapping is shown in FIG.

実施例22
酢酸235mgの10mLメタノール溶液0.5mol/Lに0.33mL(1mmol)のチタンテトライソプロポキシドを激しく攪拌しながら加えた。そこに、酢酸パラジウム(CHCOO)Pd23mgを加え、一晩攪拌した。この溶液を3.5mL計り取り、同様のSUS316反応に移し、この溶液を400℃まで上昇させ、超臨界メタノールとし、60分間反応させた。その後、遠心分離,メタノールでの超音波洗浄、乾燥してPdドープ多孔質酸化チタンナノ粒子の粉体を得た。
得られたPdドープ多孔質酸化チタンナノ粒子のX線回析結果を図23に、Pdドープ多孔質酸化チタンナノ粒子の粉体のTEM写真を図24に、EDXマッピングを図25に示す。
Example 22
0.33 mL (1 mmol) of titanium tetraisopropoxide was added to 0.5 mol / L of 235 mg of acetic acid in 10 mL of methanol with vigorous stirring. Thereto was added 23 mg of palladium acetate (CH 3 COO) 2 Pd, and the mixture was stirred overnight. 3.5 mL of this solution was weighed and transferred to the same SUS316 reaction, and this solution was raised to 400 ° C. to make supercritical methanol and reacted for 60 minutes. Thereafter, centrifugation, ultrasonic cleaning with methanol, and drying were performed to obtain a powder of Pd-doped porous titanium oxide nanoparticles.
FIG. 23 shows an X-ray diffraction result of the obtained Pd-doped porous titanium oxide nanoparticles, FIG. 24 shows a TEM photograph of the powder of Pd-doped porous titanium oxide nanoparticles, and FIG. 25 shows an EDX mapping.

図1,2,4,6〜8のSEM写真に示すように、実施例1〜16において球状多孔質の酸化ジルコニウムナノ粒子、酸化セリウムナノ粒子、酸化鉄ナノ粒子、酸化ニッケルナノ粒子及び酸化ケイ素ナノ粒子を形成することができた。   As shown in SEM photographs of FIGS. 1, 2, 4 and 6 to 8, spherical porous zirconium oxide nanoparticles, cerium oxide nanoparticles, iron oxide nanoparticles, nickel oxide nanoparticles and silicon oxide nanoparticles in Examples 1 to 16 Particles could be formed.

図10,13,16,19,22,25に示すように、実施例17〜22においてそれぞれ、Er、Eu、Ce、Au、Ag及びPdをドープした多孔質酸化チタンナノ粒子を形成することができた。このうち、Er、Eu、Ce、Au、Agをドープした多孔質酸化チタンは球状であり、Pdをドープした多孔質酸化チタンナノ粒子は非球状であった。
また、図19,25に示すように、Au及びPdは酸化チタンナノ粒子の核内にドープされていることがわかる。
As shown in FIGS. 10, 13, 16, 19, 22, and 25, porous titanium oxide nanoparticles doped with Er, Eu, Ce, Au, Ag, and Pd can be formed in Examples 17 to 22, respectively. It was. Among these, the porous titanium oxide doped with Er, Eu, Ce, Au, and Ag was spherical, and the porous titanium oxide nanoparticles doped with Pd were non-spherical.
Further, as shown in FIGS. 19 and 25, it can be seen that Au and Pd are doped in the nucleus of the titanium oxide nanoparticles.

本発明は、白色顔料、触媒担持、反応触媒、光触媒、太陽電池、光半導体、遺伝子送達試薬、細胞マーカー、薬物送達試薬、液晶スペーサなどに好適に利用されるものである。   The present invention is suitably used for white pigments, catalyst supports, reaction catalysts, photocatalysts, solar cells, optical semiconductors, gene delivery reagents, cell markers, drug delivery reagents, liquid crystal spacers, and the like.

Claims (2)

超臨界流体中で無機化合物とカルボン酸とを反応させる工程を備える多孔質無機酸化物ナノ粒子の合成方法であって、
前記超臨界流体が超臨界メタノール又は超臨界エタノールであり、
前記超臨界流体中にはさらに、酢酸エルビウム4水和物、酢酸ユーロピウムn水和物、酢酸セリウム一水和物、酢酸金、酢酸銀又は酢酸パラジウムが加えられており、
前記無機化合物が、Ti(OPr)、Zr(OPr)、ZrO(NO2HO、Ce(NO6HO、Fe(NO9HO、Ni(NO6HO又はSi(OCであり、
前記カルボン酸が、ギ酸、酢酸又はオルトフタル酸であることを特徴とする多孔質無機酸化物ナノ粒子の合成方法。
A method for synthesizing porous inorganic oxide nanoparticles comprising a step of reacting an inorganic compound and a carboxylic acid in a supercritical fluid,
The supercritical fluid is supercritical methanol or supercritical ethanol;
In the supercritical fluid, erbium acetate tetrahydrate, europium acetate n hydrate, cerium acetate monohydrate, gold acetate, silver acetate or palladium acetate is further added,
The inorganic compound is Ti (O i Pr) 4 , Zr (O i Pr) 4 , ZrO (NO 3 ) 2 2H 2 O, Ce (NO 3 ) 3 6H 2 O, Fe (NO 3 ) 3 9H 2 O Ni (NO 3 ) 2 6H 2 O or Si (OC 2 H 5 ) 4
The method for synthesizing porous inorganic oxide nanoparticles, wherein the carboxylic acid is formic acid, acetic acid or orthophthalic acid.
超臨界流体中で無機化合物とカルボン酸とを反応させる工程を備える球状多孔質無機酸化物ナノ粒子の合成方法であって、
前記超臨界流体が超臨界メタノール又は超臨界エタノールであり、
前記超臨界流体中にはさらに、酢酸エルビウム4水和物、酢酸ユーロピウムn水和物、酢酸セリウム一水和物、酢酸金、酢酸銀又は酢酸パラジウムが加えられており、
前記無機化合物が、Ti(OPr)、Zr(OPr)、ZrO(NO2HO、Ce(NO6HO、Fe(NO9HO、Ni(NO6HO又はSi(OCであり、
前記カルボン酸が、ギ酸、酢酸又はオルトフタル酸であることを特徴とする球状多孔質無機酸化物ナノ粒子の合成方法。
A method for synthesizing spherical porous inorganic oxide nanoparticles comprising a step of reacting an inorganic compound and a carboxylic acid in a supercritical fluid,
The supercritical fluid is supercritical methanol or supercritical ethanol;
In the supercritical fluid, erbium acetate tetrahydrate, europium acetate n hydrate, cerium acetate monohydrate, gold acetate, silver acetate or palladium acetate is further added,
The inorganic compound is Ti (O i Pr) 4 , Zr (O i Pr) 4 , ZrO (NO 3 ) 2 2H 2 O, Ce (NO 3 ) 3 6H 2 O, Fe (NO 3 ) 3 9H 2 O Ni (NO 3 ) 2 6H 2 O or Si (OC 2 H 5 ) 4
The method for synthesizing spherical porous inorganic oxide nanoparticles, wherein the carboxylic acid is formic acid, acetic acid or orthophthalic acid.
JP2012120216A 2012-05-25 2012-05-25 Method for synthesizing porous inorganic oxide nanoparticles, and porous inorganic oxide nanoparticles and spherical porous inorganic oxide nanoparticles produced by the synthesis method Active JP6044756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012120216A JP6044756B2 (en) 2012-05-25 2012-05-25 Method for synthesizing porous inorganic oxide nanoparticles, and porous inorganic oxide nanoparticles and spherical porous inorganic oxide nanoparticles produced by the synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012120216A JP6044756B2 (en) 2012-05-25 2012-05-25 Method for synthesizing porous inorganic oxide nanoparticles, and porous inorganic oxide nanoparticles and spherical porous inorganic oxide nanoparticles produced by the synthesis method

Publications (3)

Publication Number Publication Date
JP2013245137A JP2013245137A (en) 2013-12-09
JP2013245137A5 JP2013245137A5 (en) 2015-09-17
JP6044756B2 true JP6044756B2 (en) 2016-12-14

Family

ID=49845199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012120216A Active JP6044756B2 (en) 2012-05-25 2012-05-25 Method for synthesizing porous inorganic oxide nanoparticles, and porous inorganic oxide nanoparticles and spherical porous inorganic oxide nanoparticles produced by the synthesis method

Country Status (1)

Country Link
JP (1) JP6044756B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6308497B2 (en) * 2014-02-04 2018-04-11 高知県公立大学法人 Method for synthesizing doped, core-shell and dispersed spherical porous anatase titanium oxide nanoparticles
JP6376560B2 (en) * 2014-10-21 2018-08-22 高知県公立大学法人 Method for producing mesoporous nanospherical particles
JP6593689B2 (en) * 2015-08-27 2019-10-23 高知県公立大学法人 Matrix for MALDI mass spectrometry, method for producing the same, and mass spectrometry using the same
CN111218720A (en) * 2020-01-09 2020-06-02 西安交通大学 Method for dehydrogenation activation of P-type nitride based on oxidative supercritical gas and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2981861B2 (en) * 1996-09-06 1999-11-22 工業技術院長 Method for producing metal oxide airgel
JP3797573B2 (en) * 1997-03-25 2006-07-19 テイカ株式会社 Method for producing anatase type fine particle titanium oxide
JP3974756B2 (en) * 2001-06-05 2007-09-12 株式会社日本触媒 Method for producing metal oxide particles
ATE547380T1 (en) * 2002-06-25 2012-03-15 Univ Aalborg METHOD FOR PRODUCING A PRODUCT HAVING A SUB-MICRON PRIMARY PARTICLE SIZE AND APPARATUS FOR APPLYING THE METHOD
EP1740644A1 (en) * 2004-04-13 2007-01-10 University College Cork-National University of Ireland, Cork A process for preparing mesoporous materials
JP2006290680A (en) * 2005-04-11 2006-10-26 National Institute Of Advanced Industrial & Technology Spherical nanoparticle porous body and method for synthesizing the same
CA2633809A1 (en) * 2005-12-11 2007-06-14 Scf Technologies A/S Production of nanosized materials
JP2009233845A (en) * 2008-03-03 2009-10-15 Tohoku Univ Method for synthesizing nanoparticle using solvothermal method
JP2012167314A (en) * 2011-02-14 2012-09-06 Kri Inc Method for producing metal nano-particle

Also Published As

Publication number Publication date
JP2013245137A (en) 2013-12-09

Similar Documents

Publication Publication Date Title
TWI690366B (en) Catalyst for the oxidative esterification of aldehydes to carboxylic esters
Zheng et al. A Monodispersed Spherical Zr‐Based Metal–Organic Framework Catalyst, Pt/Au@ Pd@ UIO‐66, Comprising an Au@ Pd Core–Shell Encapsulated in a UIO‐66 Center and Its Highly Selective CO2 Hydrogenation to Produce CO
JP6308497B2 (en) Method for synthesizing doped, core-shell and dispersed spherical porous anatase titanium oxide nanoparticles
JP4015503B2 (en) Coated oxide particles, process for producing the same, sunscreen containing the particles and use of the particles
TWI295682B (en) Surface-modified non-metal/metal oxides coated with silicon dioxide
JP4654428B2 (en) Highly dispersed silica nano hollow particles and method for producing the same
JP6044756B2 (en) Method for synthesizing porous inorganic oxide nanoparticles, and porous inorganic oxide nanoparticles and spherical porous inorganic oxide nanoparticles produced by the synthesis method
US10501331B2 (en) Totally-mesoporous zirconia nanoparticles, use and method for producing thereof
TW201100327A (en) Sulfonic acid-modified aqueous anionic silicasol and method for producing the same
Chen et al. Yolk–shell structured Bi 2 SiO 5: Yb 3+, Ln 3+(Ln= Er, Ho, Tm) upconversion nanophosphors for optical thermometry and solid-state lighting
KR101640676B1 (en) Yolk-shell particle, catalyst comprising the same and manufacturing method thereof
WO2008043060A2 (en) Highly dispersed nickel hydrogenation catalysts and methods for making the same
Li et al. Facile synthesis under near-atmospheric conditions and physicochemical properties of hairy CeO2 nanocrystallines
Du et al. Synthesis of a hollow structured core–shell Au@ CeO 2–ZrO 2 nanocatalyst and its excellent catalytic performance
CN107597130A (en) Different scale high-specific surface area cerium oxide cupric oxide composite mesopore ball and preparation method
CN104860341B (en) A kind of preparation method of high temperature resistant and high specific surface aluminium
CN104591275A (en) Synthetic method of water medium dispersed cerium zirconium oxide nano material
Walters et al. Synthesis of chiral nematic mesoporous metal and metal oxide nanocomposites and their use as heterogeneous catalysts
JP5875163B2 (en) Synthesis method of spherical porous titanium oxide nanoparticles
KR101734300B1 (en) Method for producing metal/ceramic nanostructure, metal/ceramic nanostructure produced by the same, and catalyst containing the same
CN107915255A (en) The preparation method of nano zircite and its nano zircite of preparation
JP4765381B2 (en) Manufacturing method of complex oxide with heat resistance
JP6075964B2 (en) Method for producing titanium oxide nanowire with reduced alkali metal content, and method for removing alkali metal content from titanium oxide nanowire
KR101575326B1 (en) Preparation of Spherical Alumina by Reductive Polyol solvent
JP2008247714A (en) Method for producing metal oxide powder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161101

R150 Certificate of patent or registration of utility model

Ref document number: 6044756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250