JP6042593B2 - Extruded molded product made of flame retardant light diffusing polycarbonate resin composition - Google Patents

Extruded molded product made of flame retardant light diffusing polycarbonate resin composition Download PDF

Info

Publication number
JP6042593B2
JP6042593B2 JP2010089423A JP2010089423A JP6042593B2 JP 6042593 B2 JP6042593 B2 JP 6042593B2 JP 2010089423 A JP2010089423 A JP 2010089423A JP 2010089423 A JP2010089423 A JP 2010089423A JP 6042593 B2 JP6042593 B2 JP 6042593B2
Authority
JP
Japan
Prior art keywords
polycarbonate resin
component
weight
resin composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010089423A
Other languages
Japanese (ja)
Other versions
JP2011219595A (en
Inventor
檜垣 裕二
裕二 檜垣
隆司 小田
隆司 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010089423A priority Critical patent/JP6042593B2/en
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to CN2010800501630A priority patent/CN102597111A/en
Priority to EP10828412.6A priority patent/EP2497800A4/en
Priority to US13/505,794 priority patent/US20120217439A1/en
Priority to KR1020127011509A priority patent/KR20120114220A/en
Priority to TW099138073A priority patent/TW201129605A/en
Priority to PCT/JP2010/070156 priority patent/WO2011055854A1/en
Publication of JP2011219595A publication Critical patent/JP2011219595A/en
Application granted granted Critical
Publication of JP6042593B2 publication Critical patent/JP6042593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、芳香族ポリカーボネート樹脂組成物からなる押し出し成形品に関する。さらに詳しくは高い光線透過率と拡散性を維持したままで、難燃性及び外観に優れる難燃光拡散性ポリカーボネート樹脂組成物からなる押し出し成形品に関する。   The present invention relates to an extrusion molded article comprising an aromatic polycarbonate resin composition. More specifically, the present invention relates to an extrusion-molded article comprising a flame retardant light diffusing polycarbonate resin composition excellent in flame retardancy and appearance while maintaining high light transmittance and diffusibility.

従来から各種照明カバー、ディスプレイカバー、自動車メーター、各種銘板などの光拡散性が要求される用途に、芳香族ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂といった透明性樹脂に有機物や無機物の光拡散剤を分散させた材料が広く用いられている。この様な透明性樹脂の中で特に芳香族ポリカーボネート樹脂は機械的特性、耐熱性、耐候性に優れている上、高い光線透過率を備えた樹脂として幅広く使用されている。また光拡散剤としては、架橋構造を有する有機系粒子があり、さらに詳しくは架橋アクリル系粒子、架橋シリコーン系粒子、架橋スチレン系粒子などが挙げられる。さらに炭酸カルシウム、硫酸バリウム、水酸化アルミニウム、二酸化ケイ素、酸化チタン、弗化カルシウムなどの無機系粒子あるいはガラス短繊維などの無機系繊維が挙げられる。特に有機系粒子は無機系粒子に比べて成形品の表面平滑性に優れており高度な成形品外観を達成できるため、幅広い用途に適用可能である。   Disperse organic and inorganic light diffusing agents in transparent resins such as aromatic polycarbonate resin, acrylic resin, and styrene resin for applications that require light diffusibility such as various lighting covers, display covers, automobile meters, and various nameplates. The material used is widely used. Among such transparent resins, aromatic polycarbonate resins are particularly widely used as resins having excellent mechanical properties, heat resistance, weather resistance, and high light transmittance. Examples of the light diffusing agent include organic particles having a crosslinked structure, and more specifically, crosslinked acrylic particles, crosslinked silicone particles, and crosslinked styrene particles. Further, inorganic particles such as inorganic particles such as calcium carbonate, barium sulfate, aluminum hydroxide, silicon dioxide, titanium oxide, and calcium fluoride, or short glass fibers can be used. In particular, organic particles are excellent in surface smoothness of molded products as compared with inorganic particles and can achieve a high appearance of molded products, and thus can be applied to a wide range of applications.

これらの用途では近年、樹脂製照明カバーにおいて火災時のもらい火が延焼を促進するとして、光拡散性ポリカーボネート樹脂組成物からなる押し出し成形品にもUL規格(米国アンダーライターズラボラトリー規格)−94においてV−0という高度な難燃性が要求され始めている。芳香族ポリカーボネート樹脂はアクリル樹脂、スチレン樹脂などの透明性樹脂難燃性に比べて優れた難燃特性を有しているが、高度な難燃特性(V−0)を得るためには燃焼時の樹脂の滴下(ドリップ)を防止する必要がある(特許文献1、2参照)。しかし、一般的に知られているドリップ抑制剤であるポリテトラフルオロエチレンを芳香族ポリカーボネート樹脂に添加すると、ポリテトラフルオロエチレンと芳香族ポリカーボネート樹脂が非相溶性であるために成形品の全光線透過率が低下する問題が挙げられる。   In these applications, in recent years, flaming at the time of fire in resin-made lighting covers promotes the spread of fire, so extruded products made of light diffusing polycarbonate resin compositions are also in UL standard (US Underwriters Laboratory Standard) -94. High flame retardancy of V-0 has begun to be required. Aromatic polycarbonate resin has excellent flame retardant properties compared to the flame retardant properties of transparent resins such as acrylic resin and styrene resin, but in order to obtain advanced flame retardant properties (V-0) It is necessary to prevent dripping of the resin (see Patent Documents 1 and 2). However, when polytetrafluoroethylene, a commonly known drip inhibitor, is added to the aromatic polycarbonate resin, the polytetrafluoroethylene and the aromatic polycarbonate resin are incompatible with each other, so that the total light transmission of the molded product is achieved. There is a problem that the rate decreases.

さらに分岐構造を有するポリカーボネートと有機金属塩からなる樹脂組成物(特許文献3参照)、分岐構造を有するポリカーボネートと有機金属塩および特定のシロキサン化合物からなる樹脂組成物(特許文献4、5参照)についても具体的に記載されている。これらにより優れた難燃性と透明性を維持する組成物が提供されるが、ポリカーボネート用途の多様化、製品の薄肉化により、さらなる難燃性のアップが求められている。またこれらは全光線透過率と拡散性を表す光学特性については記載されておらず、透明性についてのみ記載されている。   Further, a resin composition comprising a polycarbonate having a branched structure and an organic metal salt (see Patent Document 3), and a resin composition comprising a polycarbonate having a branched structure, an organic metal salt and a specific siloxane compound (see Patent Documents 4 and 5). Are also specifically described. Although the composition which maintains the outstanding flame retardance and transparency by these is provided, the further flame retardance improvement is calculated | required by diversification of a polycarbonate use and the thinning of a product. Moreover, these do not describe optical characteristics representing total light transmittance and diffusibility, but only describe transparency.

難燃性ポリカーボネート樹脂組成物は用途によってさまざまなものが開発されており、その難燃レベルも様々であるが、それぞれの材料の難燃レベルを少しでもアップすること、例えば電気用途において材料の難燃性指標として広く用いられているUL94規格に関し、材料の難燃ランクV−0を達成できる試験片の最小厚みを0.1mmでも薄くすることができれば、難燃材料としての用途が広がりその効果は非常に大きい。また、難燃レベルは同一であっても使用される難燃剤などの添加量を少しでも少なくすることができれば、加工時の発生ガス低減、加工性のアップ、品質の安定性、各種物性向上につながる。特に押し出しシートや賦型押し出しシートを押出し成形する場合には、加工時の発生ガスが原因で冷却ロールに付着しそれがシート表面外観を悪化させるという問題があり改善を強く求められている。   Various flame retardant polycarbonate resin compositions have been developed depending on the application, and the flame retardant level varies, but it is necessary to raise the flame retardant level of each material as much as possible, for example, in the electrical application With regard to the UL94 standard widely used as a flammability index, if the minimum thickness of a specimen that can achieve the flame retardance rank V-0 of the material can be reduced even by 0.1 mm, the use as a flame retardant material will be expanded and its effect Is very big. Also, if the amount of flame retardant used can be reduced even if the flame retardant level is the same, reducing the amount of gas generated during processing, improving workability, improving quality stability, and improving various physical properties. Connected. In particular, when extruding an extruded sheet or a shaped extruded sheet, there is a problem that gas generated during processing adheres to the cooling roll, which deteriorates the sheet surface appearance, and there is a strong demand for improvement.

特開2009−108281号公報JP 2009-108281 A 特開2006−143949号公報JP 2006-143949 A 特許第3129374号公報Japanese Patent No. 3129374 特許第3163596号公報Japanese Patent No. 3163596 特開2007−31583号公報JP 2007-31583 A

本発明の目的は、高い光線透過率と拡散性を維持したままで、難燃特性に優れる難燃光拡散性ポリカーボネート樹脂組成物からなる押し出し成形品を提供することにある。   An object of the present invention is to provide an extruded product comprising a flame retardant light diffusing polycarbonate resin composition having excellent flame retardant properties while maintaining high light transmittance and diffusivity.

本発明者らは、上記目的を達成せんとして鋭意研究を重ねた結果、分岐率が限定された分岐構造を有するポリカーボネート樹脂、難燃剤および光拡散剤を特定量組み合わせることで目的とする高い光線透過率と拡散性を維持したまま、さらに難燃性、外観にも優れる難燃光拡散性ポリカーボネート樹脂組成物からなる押し出し成形品が得られることを見出し、本発明に到達した。   As a result of intensive research aimed at achieving the above object, the present inventors have achieved a desired high light transmission by combining a specific amount of a polycarbonate resin having a branched structure with a limited branching rate, a flame retardant, and a light diffusing agent. The inventors have found that an extruded product comprising a flame retardant light diffusing polycarbonate resin composition, which is excellent in flame retardancy and appearance, while maintaining the rate and diffusivity, has reached the present invention.

すなわち、本発明によれば、(1)(A)分岐率0.70〜1.50mol%の分岐構
造を有する芳香族ポリカーボネート樹脂(A成分)100重量部に対して、(B)芳香族
基を有するシリコーン化合物(B成分)0.05〜1.8重量部、(C)有機金属塩化合
物(C成分)0.005〜1.0重量部、および(D)平均粒径1〜30μmの光拡散剤
(D成分)0.005〜3.0重量部を含む難燃光拡散性ポリカーボネート樹脂組成物か
らなる押し出し成形品が提供される。
That is, according to the present invention, (1) (A) an aromatic group (B) with respect to 100 parts by weight of an aromatic polycarbonate resin (component A) having a branched structure with a branching ratio of 0.70 to 1.50 mol%. 0.05 to 1.8 parts by weight of a silicone compound (component B), (C) an organometallic salt compound (component C) 0.005 to 1.0 parts by weight, and (D) an average particle size of 1 to 30 μm An extruded product comprising a flame retardant light diffusing polycarbonate resin composition containing 0.005 to 3.0 parts by weight of a light diffusing agent (D component) is provided.

以下、本発明について具体的に説明する。
<A成分:芳香族ポリカーボネート樹脂>
本発明のA成分として使用される分岐率0.7〜1.5mol%の芳香族ポリカーボネート樹脂とは、分岐構造を有する芳香族ポリカーボネート樹脂(A−1成分)、または、A−1成分と直鎖状芳香族ポリカーボネート樹脂(A−2成分)との混合物であり、A成分全体としての分岐率が0.7〜1.5mol%を満たしていれば、分岐率が0.7〜1.5mol%の範囲を外れる分岐構造を有する芳香族ポリカーボネート樹脂を含んでいてもよい。
Hereinafter, the present invention will be specifically described.
<A component: aromatic polycarbonate resin>
The aromatic polycarbonate resin having a branching ratio of 0.7 to 1.5 mol% used as the A component of the present invention is an aromatic polycarbonate resin having a branched structure (A-1 component) or directly with the A-1 component. If it is a mixture with a chain aromatic polycarbonate resin (A-2 component) and the branching ratio as a whole of the A component satisfies 0.7 to 1.5 mol%, the branching ratio is 0.7 to 1.5 mol. An aromatic polycarbonate resin having a branched structure outside the range of% may be included.

より優れた難燃性を付与する観点からは、A成分がA−1成分を20重量%〜100重量%含むことが好ましく、70重量%〜100重量%含むことがより好ましく100重量%含むことがさらに好ましい。A成分全体としての分岐率は0.7〜1.5mol%であり、0.7〜1.3mol%が好ましく、0.85〜1.20mol%がより好ましい。なお、分岐率は樹脂全体に含まれる製造に用いた二価フェノール由来の構造単位の総モル数に対する分岐剤由来の構造単位のモル数(分岐剤由来の構造単位のモル数/二価フェノール由来の構造単位の総モル数×100(mol%で表す))を意味し、かかる分岐率はH−NMR測定により実測することができる。 From the viewpoint of imparting more excellent flame retardancy, the A component preferably contains 20% to 100% by weight of the A-1 component, more preferably 70% to 100% by weight, more preferably 100% by weight. Is more preferable. The branching ratio as the whole component A is 0.7 to 1.5 mol%, preferably 0.7 to 1.3 mol%, and more preferably 0.85 to 1.20 mol%. The branching rate is the number of moles of the structural unit derived from the branching agent to the total number of moles of the structural unit derived from the dihydric phenol used for the production included in the entire resin (the number of moles of the structural unit derived from the branching agent / derived from the dihydric phenol. The total number of moles of structural units × 100 (expressed in mol%)), and the branching ratio can be measured by 1 H-NMR measurement.

分岐率が低いと、満足な分岐特性が得られず溶融張力が低すぎて、組成物からなる押し出し成形品に関する難燃性、とくにドリップ防止性が発現しにくくなり、さらに、押出成形が困難になるので好ましくない。一方、分岐率が高いとポリマーが架橋し、ゲルが発生し、ポリマーの耐衝撃性が低下する。さらに分岐率が高すぎると成形品表面にくもりが生じやすくなり、それを解消するためにシリンダー温度を高くする等の押し出し成形条件をより細かく調整しなければならなくなるという問題がある。   If the branching ratio is low, satisfactory branching characteristics cannot be obtained, the melt tension is too low, flame retardancy related to the extrusion molded product made of the composition, in particular, anti-drip property is difficult to be exhibited, and extrusion molding becomes difficult. This is not preferable. On the other hand, if the branching ratio is high, the polymer is crosslinked, a gel is generated, and the impact resistance of the polymer is lowered. Furthermore, if the branching rate is too high, the surface of the molded product is likely to be clouded, and there is a problem that the extrusion molding conditions such as increasing the cylinder temperature must be adjusted more finely to eliminate this.

本発明のA成分の分岐率をZmol%とし、280℃における溶融張力をYとした場合、ZとYとの関係は3.8Z−2.4≦Y≦3.8Z+4.5であることが好ましく、より好ましくは3.8Z−1.8≦Y≦3.8Z+3.9である。Y<3.8Z−2.4であると、難燃性試験においてドリップが生じやすくなり十分な難燃性が得られなくなる問題があり好ましくない。また、Y>3.8Z+4.5であると、溶融張力が高すぎて流動性が悪く押し出し成形性に劣り、押し出し成形品の表面状態が悪くなり好ましくない。なお、溶融張力は温度280℃、押出温度10mm/min、引張速度157mm/s、オリフィスL/D=8/2.1で生じる張力として測定できる。   When the branching rate of the A component of the present invention is Z mol% and the melt tension at 280 ° C. is Y, the relationship between Z and Y is 3.8Z−2.4 ≦ Y ≦ 3.8Z + 4.5 More preferably, it is 3.8Z-1.8 <= Y <= 3.8Z + 3.9. If Y <3.8Z-2.4, there is a problem in that drip is likely to occur in the flame retardancy test and sufficient flame retardancy cannot be obtained, which is not preferable. On the other hand, if Y> 3.8Z + 4.5, the melt tension is too high, the fluidity is poor and the extrusion moldability is poor, and the surface condition of the extruded product is deteriorated. The melt tension can be measured as a tension generated at a temperature of 280 ° C., an extrusion temperature of 10 mm / min, a tensile speed of 157 mm / s, and an orifice L / D = 8 / 2.1.

本発明のA成分の粘度平均分子量は、1.0×10〜5.0×10の範囲が好ましく、1.6×10〜3.0×10の範囲がより好ましく、1.8×10〜2.8×10の範囲がさらにより好ましく、1.9×10〜2.6×10の範囲が最も好ましい。分子量が5.0×10を越えると溶融張力が高すぎて成形性に劣る場合があり、分子量が1.0×10未満であると押し出し成形品を燃焼した際のドリップ防止効果が不十分となり、すなわち本発明の優れた難燃性が発揮しにくくなることや溶融張力が低くすぎて押出成形が困難になることがある。また、本発明のA成分として使用される芳香族ポリカーボネート樹脂は、分子量が前述の好ましい分子量範囲を満たすように、分岐構造を有する芳香族ポリカーボネート樹脂1種あるいは2種以上を混合しても差し支えない。この場合、粘度平均分子量が前述の好ましい分子量範囲外である分岐構造を有するポリカーボネート樹脂を混合することも当然に可能である。 The viscosity average molecular weight of the A component of the present invention is preferably in the range of 1.0 × 10 4 to 5.0 × 10 4 , more preferably in the range of 1.6 × 10 4 to 3.0 × 10 4 . The range of 8 × 10 4 to 2.8 × 10 4 is even more preferable, and the range of 1.9 × 10 4 to 2.6 × 10 4 is most preferable. If the molecular weight exceeds 5.0 × 10 4 , the melt tension may be too high and the moldability may be inferior, and if the molecular weight is less than 1.0 × 10 4 , the drip prevention effect when burning the extruded product is inferior. In other words, the flame retardancy of the present invention may be difficult to exhibit, or the melt tension may be too low to make extrusion difficult. In addition, the aromatic polycarbonate resin used as the component A of the present invention may be mixed with one or more aromatic polycarbonate resins having a branched structure so that the molecular weight satisfies the aforementioned preferable molecular weight range. . In this case, it is naturally possible to mix a polycarbonate resin having a branched structure whose viscosity average molecular weight is outside the above preferred molecular weight range.

なお、本発明でいう粘度平均分子量はまず次式にて算出される比粘度を塩化メチレン100mlにポリカーボネート樹脂0.7gを20℃で溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度を次式にて挿入して粘度平均分子量Mを求める。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
In addition, the viscosity average molecular weight as used in the field of this invention calculates | requires first using the Ostwald viscometer from the solution which melt | dissolved 0.7 g of polycarbonate resins in 20 ml of methylene chloride with the specific viscosity computed by following Formula,
Specific viscosity (η SP ) = (t−t 0 ) / t 0
[T 0 is methylene chloride falling seconds, t is sample solution falling seconds]
The obtained specific viscosity is inserted by the following equation to determine the viscosity average molecular weight M.
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10 −4 M 0.83
c = 0.7

本発明のA成分は、樹脂中の全N(窒素)量が好ましくは0〜7ppm、より好ましくは0〜5ppmである。なお、樹脂中の全N(窒素)量の測定は三菱化学社製TN−10型微量窒素分析装置(化学発光法)を用いて測定することが出来る。   In the component A of the present invention, the total N (nitrogen) amount in the resin is preferably 0 to 7 ppm, more preferably 0 to 5 ppm. The total N (nitrogen) content in the resin can be measured using a TN-10 type trace nitrogen analyzer (chemiluminescence method) manufactured by Mitsubishi Chemical Corporation.

また、全Cl(塩素)量が好ましくは0〜200ppm、より好ましくは0〜150ppmである。分岐構造を有するポリカーボネート樹脂中の全N量が7ppmを越えるかまたは全Cl量が200ppmを越えると、熱安定性が悪くなるので好ましくない。   The total Cl (chlorine) amount is preferably 0 to 200 ppm, more preferably 0 to 150 ppm. If the total N amount in the polycarbonate resin having a branched structure exceeds 7 ppm or the total Cl amount exceeds 200 ppm, the thermal stability is deteriorated, which is not preferable.

本発明のA−1成分である分岐構造を有する芳香族ポリカーボネート樹脂は、二価フェノール、分岐剤、一価フェノール類およびホスゲンを用いて有機溶媒の存在下で行う界面重合反応法により得られる。   The aromatic polycarbonate resin having a branched structure which is the A-1 component of the present invention is obtained by an interfacial polymerization reaction method performed in the presence of an organic solvent using a dihydric phenol, a branching agent, a monohydric phenol and phosgene.

本発明の分岐構造を有するポリカーボネート樹脂を得るために使用される二価フェノールの代表的な例は、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド等が挙げられる。これらは単独で用いても、二種以上併用してもよい。なかでも2,2−ビス(4−ヒドロキシフェニル)プロパンすなわちビスフェノールAが好ましい。   Representative examples of the dihydric phenol used to obtain the polycarbonate resin having a branched structure of the present invention are 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A), hydroquinone, resorcinol, 4, 4′-biphenol, 1,1-bis (4hydroxyphenyl) ethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1 -Bis (4-hydroxyphenyl) -1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2, 2-bis (4-hydroxyphenyl) pentane, 4,4 ′-(p-phenylenediisopropylidene) diphe 4,4 ′-(m-phenylenediisopropylidene) diphenol, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxy Phenyl) sulfide, bis (4-hydroxyphenyl) sulfoxide and the like. These may be used alone or in combination of two or more. Of these, 2,2-bis (4-hydroxyphenyl) propane, that is, bisphenol A is preferable.

本発明で使用される三価以上のフェノール(分岐剤)の代表的な例は、1,1,1−トリス(4−ヒドロキシフェニル)エタン、4,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニル)ヘプテン−2、4,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリ(4−ヒドロキシフェニル)ベンゼン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノ−ル、テトラ(4−ヒドロキシフェニル)メタン、トリスフェノール、ビス(2,4−ジヒドロキシルフェニル)ケトン、フロログルシン、フロログルシド、イサンチンビスフェノール、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、トリメリト酸、ピロメリト酸、が挙げられる。これらは単独で用いても、二種以上併用してもよい。なかでも、1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。   Representative examples of tri- or higher-valent phenols (branching agents) used in the present invention include 1,1,1-tris (4-hydroxyphenyl) ethane, 4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) heptene-2,4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) heptane, 1,3,5-tri (4-hydroxyphenyl) benzene, 2,6- Bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, tetra (4-hydroxyphenyl) methane, trisphenol, bis (2,4-dihydroxylphenyl) ketone, phloroglucin, phloroglucid, isantine bisphenol, Examples include 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene, trimellitic acid, and pyromellitic acid. These may be used alone or in combination of two or more. Of these, 1,1,1-tris (4-hydroxyphenyl) ethane is preferable.

本発明のA−1成分である分岐構造を有するポリカーボネート樹脂の製造に使用される一価フェノール(末端停止剤)としてはどのような構造でもよく特に制限はない。例えば、p−tert−ブチルフェノール、p−tert−オクチルフェノール、p−クミルフェノール、4−ヒドロキシベンゾフェノン、フェノール等が挙げられる。これらは単独で用いても、二種以上併用してもよい。なかでも、p−tert−ブチルフェノールが好ましい。   The monohydric phenol (terminal terminator) used for the production of the polycarbonate resin having a branched structure which is the A-1 component of the present invention may have any structure and is not particularly limited. For example, p-tert-butylphenol, p-tert-octylphenol, p-cumylphenol, 4-hydroxybenzophenone, phenol and the like can be mentioned. These may be used alone or in combination of two or more. Of these, p-tert-butylphenol is preferable.

すなわち、本発明のA−1成分である分岐構造を有するポリカーボネートは、分岐構造部分が1,1,1−トリス(4−ヒドロキシフェニル)エタンから誘導されてなる構造であり、分岐構造部分を除いた直鎖構造部分がビスフェノールAから誘導されてなる構造であり、末端がp−tert−ブチルフェノールから誘導されて成る構造であることが好ましい。   That is, the polycarbonate having a branched structure which is the A-1 component of the present invention is a structure in which the branched structure portion is derived from 1,1,1-tris (4-hydroxyphenyl) ethane, and the branched structure portion is excluded. The straight chain structure portion is preferably a structure derived from bisphenol A and the terminal is preferably a structure derived from p-tert-butylphenol.

本発明の分岐状ポリカーボネート樹脂は、好適には下記の方法で製造される。
すなわち、二価フェノール化合物および分岐剤を溶解したアルカリ水溶液に有機溶媒の存在下でホスゲンを吹き込み反応させて、ポリカーボネートオリゴマーを得、これに一価フェノール類を投入し乳化させた後、無攪拌下で重合させることを特徴とする方法である。
The branched polycarbonate resin of the present invention is preferably produced by the following method.
That is, phosgene was blown into an alkaline aqueous solution in which a dihydric phenol compound and a branching agent were dissolved in the presence of an organic solvent to obtain a polycarbonate oligomer. It is the method characterized by making it superpose | polymerize.

また、反応促進のために反応触媒として、例えば、トリエチルアミン、トリブチルアミン、テトラ−n−ブチルアンモニウムブロマイド、テトラ−n−ブチルホスホニウムブロマイド等の第三級アミン、第四級アンモニウム化合物、第四級ホスホニウム化合物等の触媒を使用することも出来る。反応触媒は二価フェノール化合物に対して0.002モル%以下が好ましく、0.001モル%以下がより好ましい。特に無触媒で上記反応を行うことが好ましい。0.002モル%を越える場合は分岐剤量に対し溶融張力が高くなりすぎたり、ゲルが生成したりする。また触媒がクロロホーメート基と反応して熱的に不安定なウレタン結合が多くなると共に、触媒が残存することにより分岐状ポリカーボネート樹脂中の全N含有量が増大し、耐衝撃性、透明性、耐熱性が低下するので好ましくない。よって上記反応を無触媒で行うことが特に好ましい。その際、反応温度は通常0〜40℃好ましく、さらに15〜38℃が好ましい。反応時間は10分〜5時間程度、反応中のpHは9.0以上に保つのが好ましく、11.0〜13.8がさらに好ましい。   Further, as a reaction catalyst for promoting the reaction, for example, tertiary amine such as triethylamine, tributylamine, tetra-n-butylammonium bromide, tetra-n-butylphosphonium bromide, quaternary ammonium compound, quaternary phosphonium A catalyst such as a compound can also be used. The reaction catalyst is preferably 0.002 mol% or less, more preferably 0.001 mol% or less, based on the dihydric phenol compound. In particular, the above reaction is preferably carried out without a catalyst. When it exceeds 0.002 mol%, the melt tension becomes too high with respect to the amount of the branching agent, or a gel is formed. In addition, the catalyst reacts with the chloroformate group to increase the number of thermally unstable urethane bonds, and the remaining catalyst increases the total N content in the branched polycarbonate resin, resulting in impact resistance and transparency. This is not preferable because the heat resistance is lowered. Therefore, it is particularly preferable to carry out the above reaction without a catalyst. At that time, the reaction temperature is usually preferably 0 to 40 ° C, more preferably 15 to 38 ° C. The reaction time is about 10 minutes to 5 hours, and the pH during the reaction is preferably maintained at 9.0 or more, more preferably 11.0 to 13.8.

上記の界面重合反応する際に一価フェノール類を投入後に乳化させる方法としては特に制限はないが、撹拌装置で撹拌する方法、またはアルカリ水溶液を添加する方法等が挙げられ、撹拌装置としては、パドル、プロペラ、タービンまたはカイ型翼等の単純な撹拌装置、ホモジナイザー、ミキサー、ホモミキサー等の高速撹拌機、スタティックミキサー、コロイドミル、オリフィスミキサー、フロージェットミキサー、超音波乳化装置等がある。なかでも無触媒で重合する方法においてはホモミキサー、スタティックミキサー等が好ましく用いられる。   There is no particular limitation on the method of emulsifying the monohydric phenols after adding the above-mentioned interfacial polymerization reaction, but examples include a method of stirring with a stirrer or a method of adding an alkaline aqueous solution. There are simple stirring devices such as paddles, propellers, turbines or chi-type blades, high-speed stirrers such as homogenizers, mixers and homomixers, static mixers, colloid mills, orifice mixers, flow jet mixers, ultrasonic emulsifiers and the like. Of these, homomixers, static mixers and the like are preferably used in the polymerization without catalyst.

次いで、該分岐状ポリカーボネート樹脂有機溶媒溶液を洗浄、造粒、乾燥し、本発明の分岐状ポリカーボネート樹脂(パウダー)を得ることができる。さらに該パウダーを溶融押出してペレット化して本発明の分岐状ポリカーボネート樹脂(ペレット)が得られる。洗浄、造粒、乾燥などは特に制限はなく公知の方法が採用できる。   Next, the branched polycarbonate resin organic solvent solution is washed, granulated, and dried to obtain the branched polycarbonate resin (powder) of the present invention. Further, the powder is melt extruded and pelletized to obtain the branched polycarbonate resin (pellet) of the present invention. Cleaning, granulation, drying and the like are not particularly limited, and known methods can be employed.

また、分岐構造を有するポリカーボネート樹脂中の全Cl含有量を低下させるには、反応時溶媒として使用されるジクロロメタン(塩化メチレン)、ジクロロエタン、トリクロロエタン、テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、ジクロロエチレン、クロロベンゼン、ジクロロベンゼンなどの塩素化炭化水素溶媒を除去することが必要である。例えば、分岐構造を有するポリカーボネート樹脂パウダーやペレットの乾燥処理を十分に行なうことが挙げられる。   In order to reduce the total Cl content in the polycarbonate resin having a branched structure, dichloromethane (methylene chloride), dichloroethane, trichloroethane, tetrachloroethane, pentachloroethane, hexachloroethane, dichloroethylene, chlorobenzene, used as a solvent during the reaction, It is necessary to remove chlorinated hydrocarbon solvents such as dichlorobenzene. For example, it is possible to sufficiently dry the polycarbonate resin powder and pellets having a branched structure.

本発明の分岐構造を有する芳香族ポリカーボネートは実質的にハロゲン原子を含まないものであることが好ましい。実質的にハロゲン原子を含まないとは、分子中にハロゲン置換二価フェノールなどを含まないことを示し、上記芳香族ポリカーボネートの製造方法において残留する微量の溶媒(ハロゲン化炭化水素)や、カーボネート前駆体までも対象とするものではない。   The aromatic polycarbonate having a branched structure of the present invention is preferably substantially free of halogen atoms. The phrase “substantially free of halogen atoms” means that the molecule does not contain halogen-substituted dihydric phenols, etc., and a trace amount of solvent (halogenated hydrocarbon) remaining in the above aromatic polycarbonate production method or carbonate precursor Not even the body.

A−2成分である直鎖状芳香族ポリカーボネート樹脂は通常二価フェノールとカーボネート前駆体とを界面重縮合法、溶融エステル交換法で反応させて得られたものの他、カーボネートプレポリマーを固相エステル交換法により重合させたもの、または環状カーボネート化合物の開環重合法により重合させて得られるものである。   The linear aromatic polycarbonate resin that is component A-2 is usually obtained by reacting a dihydric phenol and a carbonate precursor by interfacial polycondensation or melt transesterification, as well as a carbonate prepolymer by solid-phase ester. It is obtained by polymerizing by an exchange method or polymerized by a ring-opening polymerization method of a cyclic carbonate compound.

ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ジヒドロキシジフェニル、ビス(4−ヒドロキシフェニル)メタン、ビス{(4−ヒドロキシ−3,5−ジメチル)フェニル}メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパン、2,2−ビス{(4−ヒドロキシ−3,5−ジメチル)フェニル}プロパン、2,2−ビス{(3−イソプロピル−4−ヒドロキシ)フェニル}プロパン、2,2−ビス{(4−ヒドロキシ−3−フェニル)フェニル}プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)−3−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)−3,3−ジメチルブタン、2,4−ビス(4−ヒドロキシフェニル)−2−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス{(4−ヒドロキシ−3−メチル)フェニル}フルオレン、α,α’−ビス(4−ヒドロキシフェニル)−o−ジイソプロピルベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−p−ジイソプロピルベンゼン、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシジフェニルケトン、4,4’−ジヒドロキシジフェニルエーテルおよび4,4’−ジヒドロキシジフェニルエステル等が挙げられ、これらは単独または2種以上を混合して使用できる。   Representative examples of the dihydric phenol used here include hydroquinone, resorcinol, 4,4′-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane, bis {(4-hydroxy-3,5-dimethyl). Phenyl} methane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane (commonly referred to as bisphenol A) ), 2,2-bis {(4-hydroxy-3-methyl) phenyl} propane, 2,2-bis {(4-hydroxy-3,5-dimethyl) phenyl} propane, 2,2-bis {(3 -Isopropyl-4-hydroxy) phenyl} propane, 2,2-bis {(4-hydroxy-3-phenyl) phenyl} propane, 2 2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) -3,3-dimethylbutane, 2,4- Bis (4-hydroxyphenyl) -2-methylbutane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4- Hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 9,9-bis (4 -Hydroxyphenyl) fluorene, 9,9-bis {(4-hydroxy-3-methyl) phenyl} fluorene, α, α'-bis ( -Hydroxyphenyl) -o-diisopropylbenzene, α, α'-bis (4-hydroxyphenyl) -m-diisopropylbenzene, α, α'-bis (4-hydroxyphenyl) -p-diisopropylbenzene, 1,3- Bis (4-hydroxyphenyl) -5,7-dimethyladamantane, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxydiphenyl sulfoxide, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenyl ketone 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl ester, etc., and these can be used alone or in admixture of two or more.

なかでもビスフェノールA、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)−3−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)−3,3−ジメチルブタン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンおよびα,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼンからなる群より選ばれた少なくとも1種のビスフェノールより得られる単独重合体または共重合体が好ましく、特に、ビスフェノールAの単独重合体および1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンとビスフェノールA、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパンまたはα,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼンとの共重合体が好ましく使用される。そのなかでもさらに2,2−ビス(4−ヒドロキシフェニル)プロパンすなわちビスフェノールAが好ましい。   Among them, bisphenol A, 2,2-bis {(4-hydroxy-3-methyl) phenyl} propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) -3 -Methylbutane, 2,2-bis (4-hydroxyphenyl) -3,3-dimethylbutane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4-hydroxyphenyl) A homopolymer or copolymer obtained from at least one bisphenol selected from the group consisting of 3,3,5-trimethylcyclohexane and α, α′-bis (4-hydroxyphenyl) -m-diisopropylbenzene In particular, a homopolymer of bisphenol A and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethyl Copolymers of rucyclohexane and bisphenol A, 2,2-bis {(4-hydroxy-3-methyl) phenyl} propane or α, α'-bis (4-hydroxyphenyl) -m-diisopropylbenzene are preferably used. Is done. Among these, 2,2-bis (4-hydroxyphenyl) propane, that is, bisphenol A is more preferable.

カーボネート前駆体としてはカルボニルハライド、カーボネートエステルまたはハロホルメート等が使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメート等が挙げられる。これらのうち、ホスゲンまたはジフェニルカーボネートが工業的に有利である。   As the carbonate precursor, carbonyl halide, carbonate ester, haloformate or the like is used, and specific examples include phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like. Of these, phosgene or diphenyl carbonate is industrially advantageous.

上記二価フェノールとカーボネート前駆体を界面重縮合法または溶融エステル交換法によって反応させてポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールの酸化防止剤等を使用してもよい。また、得られたポリカーボネート樹脂の2種以上を混合した混合物であってもよい。   In producing polycarbonate resin by reacting the above dihydric phenol and carbonate precursor by interfacial polycondensation method or melt transesterification method, catalyst, terminal terminator, dihydric phenol antioxidant, etc., as necessary May be used. Moreover, the mixture which mixed 2 or more types of the obtained polycarbonate resin may be sufficient.

界面重縮合法による反応は、通常二価フェノールとホスゲンとの反応であり、酸結合剤および有機溶媒の存在下に反応させる。酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物またはピリジン等のアミン化合物が用いられる。有機溶媒としては、例えば塩化メチレン、クロロベンゼン等のハロゲン化炭化水素が用いられる。また、反応促進のために例えばトリエチルアミン、テトラ−n−ブチルアンモニウムブロマイド、テトラ−n−ブチルホスホニウムブロマイド等の第三級アミン、第四級アンモニウム化合物、第四級ホスホニウム化合物等の触媒を用いることもできる。その際、反応温度は通常0〜40℃、反応時間は10分〜5時間程度、反応中のpHは9以上に保つのが好ましい。また、かかる重合反応において、通常末端停止剤(一価フェノール)が使用される。かかる末端停止剤として単官能フェノール類を使用することができる。単官能フェノール類は末端停止剤として分子量調節のために一般的に使用され、かかる単官能フェノール類としては、一般にはフェノールまたは低級アルキル置換フェノールであって、下記式(1)で表される単官能フェノール類を示すことができる。   The reaction by the interfacial polycondensation method is usually a reaction between a dihydric phenol and phosgene, and is reacted in the presence of an acid binder and an organic solvent. As the acid binder, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used. As the organic solvent, for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used. In order to accelerate the reaction, a catalyst such as a tertiary amine such as triethylamine, tetra-n-butylammonium bromide or tetra-n-butylphosphonium bromide, a quaternary ammonium compound or a quaternary phosphonium compound may be used. it can. At that time, the reaction temperature is usually 0 to 40 ° C., the reaction time is preferably about 10 minutes to 5 hours, and the pH during the reaction is preferably maintained at 9 or more. In this polymerization reaction, a terminal stopper (monohydric phenol) is usually used. Monofunctional phenols can be used as such end terminators. Monofunctional phenols are generally used as end terminators for molecular weight control. Such monofunctional phenols are generally phenols or lower alkyl-substituted phenols, which are represented by the following formula (1). Functional phenols can be indicated.

Figure 0006042593
(式中、Aは水素原子または炭素数1〜9の直鎖または分岐のアルキル基あるいはフェニル基置換アルキル基であり、rは1〜5、好ましくは1〜3の整数である。)
Figure 0006042593
(In the formula, A is a hydrogen atom, a linear or branched alkyl group having 1 to 9 carbon atoms or a phenyl group-substituted alkyl group, and r is an integer of 1 to 5, preferably 1 to 3.)

上記単官能フェノール類の具体例としては、例えばフェノール、p−tert−ブチルフェノール、p−クミルフェノールおよびイソオクチルフェノールが挙げられる。
また、他の単官能フェノール類としては、長鎖のアルキル基あるいは脂肪族ポリエステル基を置換基として有するフェノール類または安息香酸クロライド類、もしくは長鎖のアルキルカルボン酸クロライド類も示すことができる。これらのなかでは、下記式(2)および(3)で表される長鎖のアルキル基を置換基として有するフェノール類が好ましく使用される。
Specific examples of the monofunctional phenols include phenol, p-tert-butylphenol, p-cumylphenol and isooctylphenol.
In addition, as other monofunctional phenols, phenols or benzoic acid chlorides having a long chain alkyl group or an aliphatic polyester group as a substituent, or long chain alkyl carboxylic acid chlorides can also be shown. Of these, phenols having a long-chain alkyl group represented by the following formulas (2) and (3) as substituents are preferably used.

Figure 0006042593
Figure 0006042593
(式中、Xは−R−O−、−R−CO−O−または−R−O−CO−である、ここでRは単結合または炭素数1〜10、好ましくは1〜5の二価の脂肪族炭化水素基を示し、nは10〜50の整数を示す。)
Figure 0006042593
Figure 0006042593
Wherein X is —R—O—, —R—CO—O— or —R—O—CO—, wherein R is a single bond or a carbon number of 1 to 10, preferably 1 to 5; A valent aliphatic hydrocarbon group, and n represents an integer of 10 to 50.)

かかる式(2)の置換フェノール類としてはnが10〜30、特に10〜26のものが好ましく、その具体例としては例えばデシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノールおよびトリアコンチルフェノール等を挙げることができる。   As the substituted phenols of the formula (2), those having n of 10 to 30, particularly 10 to 26 are preferable. Specific examples thereof include decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol, octadecylphenol, eico. Examples include silphenol, docosylphenol, and triacontylphenol.

また、式(3)の置換フェノール類としてはXが−R−CO−O−であり、Rが単結合である化合物が適当であり、nが10〜30、特に10〜26のものが好適であって、その具体例としては例えばヒドロキシ安息香酸デシル、ヒドロキシ安息香酸ドデシル、ヒドロキシ安息香酸テトラデシル、ヒドロキシ安息香酸ヘキサデシル、ヒドロキシ安息香酸エイコシル、ヒドロキシ安息香酸ドコシルおよびヒドロキシ安息香酸トリアコンチルが挙げられる。また、末端停止剤は単独でまたは2種以上混合して使用してもよい。   Further, as the substituted phenols of the formula (3), those in which X is —R—CO—O— and R is a single bond are suitable, and those in which n is 10 to 30, particularly 10 to 26 are suitable. Specific examples thereof include decyl hydroxybenzoate, dodecyl hydroxybenzoate, tetradecyl hydroxybenzoate, hexadecyl hydroxybenzoate, eicosyl hydroxybenzoate, docosyl hydroxybenzoate and triacontyl hydroxybenzoate. Moreover, you may use a terminal terminator individually or in mixture of 2 or more types.

溶融エステル交換法による反応は、通常二価フェノールとカーボネートエステルとのエステル交換反応であり、不活性ガスの存在下に二価フェノールとカーボネートエステルとを加熱しながら混合して、生成するアルコールまたはフェノールを留出させる方法により行われる。反応温度は生成するアルコールまたはフェノールの沸点等により異なるが、通常120〜350℃の範囲である。反応後期には系を1.33×10〜13.3Pa程度に減圧して生成するアルコールまたはフェノールの留出を容易にさせる。反応時間は通常1〜4時間程度である。 The reaction by the melt transesterification method is usually a transesterification reaction between a dihydric phenol and a carbonate ester, and the alcohol or phenol produced by mixing the dihydric phenol and the carbonate ester with heating in the presence of an inert gas. Is carried out by distilling the water. The reaction temperature varies depending on the boiling point of the alcohol or phenol produced, but is usually in the range of 120 to 350 ° C. In the latter stage of the reaction, the system is evacuated to about 1.33 × 10 3 to 13.3 Pa to facilitate the distillation of the alcohol or phenol produced. The reaction time is usually about 1 to 4 hours.

カーボネートエステルとしては、置換されていてもよい炭素数6〜10のアリール基、アラルキル基あるいは炭素数1〜4のアルキル基などのエステルが挙げられる。具体的にはジフェニルカーボネート、ビス(クロロフェニル)カーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネートなどが挙げられ、なかでもジフェニルカーボネートが好ましい。   Examples of the carbonate ester include esters such as an optionally substituted aryl group having 6 to 10 carbon atoms, an aralkyl group, or an alkyl group having 1 to 4 carbon atoms. Specific examples include diphenyl carbonate, bis (chlorophenyl) carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, and dibutyl carbonate. Among them, diphenyl carbonate is preferable.

また、重合速度を速めるために重合触媒を用いることができ、かかる重合触媒としては、例えば水酸化ナトリウム、水酸化カリウム、二価フェノールのナトリウム塩、カリウム塩等のアルカリ金属化合物、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム等のアルカリ土類金属化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、トリメチルアミン、トリエチルアミン等の含窒素塩基性化合物、アルカリ金属やアルカリ土類金属のアルコキシド類、アルカリ金属やアルカリ土類金属の有機酸塩類、亜鉛化合物類、ホウ素化合物類、アルミニウム化合物類、珪素化合物類、ゲルマニウム化合物類、有機スズ化合物類、鉛化合物類、オスミウム化合物類、アンチモン化合物類マンガン化合物類、チタン化合物類、ジルコニウム化合物類などの通常エステル化反応、エステル交換反応に使用される触媒を用いることができる。触媒は単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの重合触媒の使用量は、原料の二価フェノール1molに対し、好ましくは1×10−8〜1×10−3当量、より好ましくは1×10−7〜5×10−4当量の範囲で選ばれる。 A polymerization catalyst can be used to increase the polymerization rate. Examples of such polymerization catalyst include sodium hydroxide, potassium hydroxide, sodium salt of dihydric phenol, alkali metal compounds such as potassium salt, calcium hydroxide, Alkaline earth metal compounds such as barium hydroxide and magnesium hydroxide, nitrogen-containing basic compounds such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, trimethylamine and triethylamine, alkoxides of alkali metals and alkaline earth metals, alkali metals And organic earth salts of alkaline earth metals, zinc compounds, boron compounds, aluminum compounds, silicon compounds, germanium compounds, organotin compounds, lead compounds, osmium compounds, antimony compounds, manganese compounds, H Emission compounds, usually the esterification reaction, such as zirconium compounds, there can be used a catalyst used in the transesterification reaction. A catalyst may be used independently and may be used in combination of 2 or more type. The amount of these polymerization catalysts used is preferably in the range of 1 × 10 −8 to 1 × 10 −3 equivalent, more preferably 1 × 10 −7 to 5 × 10 −4 equivalent, relative to 1 mol of dihydric phenol as a raw material. Chosen by

また、かかる重合反応において、フェノール性の末端基を減少するために、重縮反応の後期あるいは終了後に、例えばビス(クロロフェニル)カーボネート、ビス(ブロモフェニル)カーボネート、ビス(ニトロフェニル)カーボネート、ビス(フェニルフェニル)カーボネート、クロロフェニルフェニルカーボネート、ブロモフェニルフェニルカーボネート、ニトロフェニルフェニルカーボネート、フェニルフェニルカーボネート、メトキシカルボニルフェニルフェニルカーボネートおよびエトキシカルボニルフェニルフェニルカーボネート等の化合物を加えることができる。なかでも2−クロロフェニルフェニルカーボネート、2−メトキシカルボニルフェニルフェニルカーボネートおよび2−エトキシカルボニルフェニルフェニルカーボネートが好ましく、特に2−メトキシカルボニルフェニルフェニルカーボネートが好ましく使用される。   In the polymerization reaction, in order to reduce phenolic end groups, for example, bis (chlorophenyl) carbonate, bis (bromophenyl) carbonate, bis (nitrophenyl) carbonate, bis ( Compounds such as phenylphenyl) carbonate, chlorophenylphenyl carbonate, bromophenylphenyl carbonate, nitrophenylphenyl carbonate, phenylphenyl carbonate, methoxycarbonylphenylphenyl carbonate and ethoxycarbonylphenylphenyl carbonate can be added. Of these, 2-chlorophenyl phenyl carbonate, 2-methoxycarbonylphenyl phenyl carbonate and 2-ethoxycarbonylphenyl phenyl carbonate are preferable, and 2-methoxycarbonylphenyl phenyl carbonate is particularly preferably used.

さらにかかる重合反応において触媒の活性を中和する失活剤を用いることが好ましい。この失活剤の具体例としては、例えばベンゼンスルホン酸、p−トルエンスルホン酸、ベンゼンスルホン酸メチル、ベンゼンスルホン酸エチル、ベンゼンスルホン酸ブチル、ベンゼンスルホン酸オクチル、ベンゼンスルホン酸フェニル、p−トルエンスルホン酸メチル、p−トルエンスルホン酸エチル、p−トルエンスルホン酸ブチル、p−トルエンスルホン酸オクチル、p−トルエンスルホン酸フェニルなどのスルホン酸エステル;さらに、トリフルオロメタンスルホン酸、ナフタレンスルホン酸、スルホン化ポリスチレン、アクリル酸メチル‐スルホン化スチレン共重合体、ドデシルベンゼンスルホン酸−2−フェニル−2−プロピル、ドデシルベンゼンスルホン酸−2−フェニル−2−ブチル、オクチルスルホン酸テトラブチルホスホニウム塩、デシルスルホン酸テトラブチルホスホニウム塩、ベンゼンスルホン酸テトラブチルホスホニウム塩、ドデシルベンゼンスルホン酸テトラエチルホスホニウム塩、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩、ドデシルベンゼンスルホン酸テトラヘキシルホスホニウム塩、ドデシルベンゼンスルホン酸テトラオクチルホスホニウム塩、デシルアンモニウムブチルサルフェート、デシルアンモニウムデシルサルフェート、ドデシルアンモニウムメチルサルフェート、ドデシルアンモニウムエチルサルフェート、ドデシルメチルアンモニウムメチルサルフェート、ドデシルジメチルアンモニウムテトラデシルサルフェート、テトラデシルジメチルアンモニウムメチルサルフェート、テトラメチルアンモニウムヘキシルサルフェート、デシルトリメチルアンモニウムヘキサデシルサルフェート、テトラブチルアンモニウムドデシルベンジルサルフェート、テトラエチルアンモニウムドデシルベンジルサルフェート、テトラメチルアンモニウムドデシルベンジルサルフェート等の化合物を挙げることができるが、これらに限定されない。これらの化合物を二種以上併用することもできる。   Furthermore, it is preferable to use a deactivator that neutralizes the activity of the catalyst in such a polymerization reaction. Specific examples of the deactivator include, for example, benzene sulfonic acid, p-toluene sulfonic acid, methyl benzene sulfonate, ethyl benzene sulfonate, butyl benzene sulfonate, octyl benzene sulfonate, phenyl benzene sulfonate, p-toluene sulfone. Sulfonic acid esters such as methyl acid, ethyl p-toluenesulfonate, butyl p-toluenesulfonate, octyl p-toluenesulfonate, phenyl p-toluenesulfonate; trifluoromethanesulfonic acid, naphthalenesulfonic acid, sulfonated polystyrene , Methyl acrylate-sulfonated styrene copolymer, dodecylbenzenesulfonate-2-phenyl-2-propyl, dodecylbenzenesulfonate-2-phenyl-2-butyl, octylsulfonate tetrabutylphospho Salts, tetrabutylphosphonium decylsulfonate, tetrabutylphosphonium benzenesulfonate, tetraethylphosphonium dodecylbenzenesulfonate, tetrabutylphosphonium dodecylbenzenesulfonate, tetrahexylphosphonium dodecylbenzenesulfonate, tetradecylbenzenesulfonate tetra Octyl phosphonium salt, decyl ammonium butyl sulfate, decyl ammonium decyl sulfate, dodecyl ammonium methyl sulfate, dodecyl ammonium ethyl sulfate, dodecyl methyl ammonium methyl sulfate, dodecyl dimethyl ammonium tetradecyl sulfate, tetradecyl dimethyl ammonium methyl sulfate, tetramethyl ammonium hexyl sulfate Over DOO, decyl trimethyl ammonium hexadecyl sulfate, tetrabutylammonium dodecylbenzyl sulfate, tetraethylammonium dodecylbenzyl sulfate, there may be mentioned compounds such as tetramethylammonium dodecylbenzyl sulfate, and the like. Two or more of these compounds can be used in combination.

失活剤の中でもホスホニウム塩もしくはアンモニウム塩型のものが好ましい。かかる失活剤の量としては、残存する触媒1molに対して0.5〜50molの割合で用いるのが好ましく、また重合後のポリカーボネート樹脂に対し、0.01〜500ppmの割合、より好ましくは0.01〜300ppm、特に好ましくは0.01〜100ppmの割合で使用する。   Among the quenching agents, those of phosphonium salt or ammonium salt type are preferred. The amount of the deactivator is preferably 0.5 to 50 mol with respect to 1 mol of the remaining catalyst, and 0.01 to 500 ppm, more preferably 0 with respect to the polycarbonate resin after polymerization. 0.01 to 300 ppm, particularly preferably 0.01 to 100 ppm.

A−2成分の直鎖状芳香族ポリカーボネート樹脂の分子量は特定されないが、粘度平均分子量が1.0×10未満であると高温特性等が低下し、5.0×10を超えると成形加工性が低下するようになるので、粘度平均分子量が1.0×10〜5.0×10のものが好ましく、1.6×10〜3.0×10のものがより好ましく、さらに好ましくは1.8×10〜2.8×10、最も好ましくは1.9×10〜2.6×10である。また、直鎖状ポリカーボネート樹脂の2種以上を混合しても差し支えない。この場合2種以上を混合した混合物の粘度平均分子量が好ましい範囲であれば粘度平均分子量が上記範囲外であるポリカーボネート樹脂とを混合することも当然に可能である。 The molecular weight of the linear aromatic polycarbonate resin of component A-2 is not specified, but if the viscosity average molecular weight is less than 1.0 × 10 4 , the high temperature characteristics and the like deteriorate, and if it exceeds 5.0 × 10 4 , it is molded. Since the workability is lowered, the viscosity average molecular weight is preferably 1.0 × 10 4 to 5.0 × 10 4 , more preferably 1.6 × 10 4 to 3.0 × 10 4. , more preferably 1.8 × 10 4 ~2.8 × 10 4 , and most preferably 1.9 × 10 4 ~2.6 × 10 4 . Further, two or more kinds of linear polycarbonate resins may be mixed. In this case, as long as the viscosity average molecular weight of the mixture obtained by mixing two or more kinds is in a preferable range, it is naturally possible to mix with a polycarbonate resin having a viscosity average molecular weight outside the above range.

特に粘度平均分子量が5.0×10を超えるポリカーボネート樹脂との混合物はドリップ防止能が高く、本発明の効果をさらに効率的に発揮するため好ましいものである。より好ましくは粘度平均分子量が8.0×10以上のポリカーボネート樹脂との混合物であり、さらに好ましくは10.0×10以上の粘度平均分子量を有するポリカーボネート樹脂との混合物である。すなわちGPC(ゲルパーミエーションクロマトグラフィー)などの方法により明らかな2ピークの分布を有するものが好ましく使用できる。 Particularly, a mixture with a polycarbonate resin having a viscosity average molecular weight exceeding 5.0 × 10 4 is preferable because it has a high anti-drip ability and exhibits the effect of the present invention more efficiently. More preferably, it is a mixture with a polycarbonate resin having a viscosity average molecular weight of 8.0 × 10 4 or more, and further preferably a mixture with a polycarbonate resin having a viscosity average molecular weight of 10.0 × 10 4 or more. That is, those having a clear two-peak distribution by a method such as GPC (gel permeation chromatography) can be preferably used.

本発明のA−2成分である直鎖状芳香族ポリカーボネートは、上記芳香族ポリカーボネート樹脂であって、かつ実質的にハロゲン原子を含まないものであることが好ましい。実質的にハロゲン原子を含まないとは、分子中にハロゲン置換二価フェノールなどを含まないことを示し、上記芳香族ポリカーボネートの製造方法において残留する微量の塩素系溶媒、カーボネート前駆体他までも対象とするものではない。   The linear aromatic polycarbonate which is the component A-2 of the present invention is preferably the above aromatic polycarbonate resin and substantially free of halogen atoms. “Substantially free of halogen atoms” means that the molecule does not contain halogen-substituted dihydric phenols, etc., and includes trace amounts of chlorinated solvents, carbonate precursors, etc. remaining in the above aromatic polycarbonate production method. It is not something to do.

<B成分:シリコーン化合物>
本発明のB成分として使用されるシリコーン化合物は芳香族基を有するシリコーン化合物であり、25℃における粘度が300cSt以下であることが好ましい。粘度が高くなると成形品の透明性が低下する。さらにB成分のシリコーン化合物が効率的に難燃効果を発揮するためには、燃焼過程における分散状態が重要である。かかる分散状態を決定する重要な因子として粘度が挙げられる。これは、燃焼過程においてシリコーン化合物があまりにも揮発しやすい場合、すなわち、粘度が低すぎるシリコーン化合物の場合には、燃焼時に系内に残っているシリコーンが希薄であるため、燃焼時に均一なシリコーンのストラクチャーを形成することが困難となるためと考えられるかかる観点より、25℃における粘度は10〜300cStがより好ましく、さらに好ましくは15〜200cSt、最も好ましくは20〜170cStである。
<B component: silicone compound>
The silicone compound used as component B of the present invention is a silicone compound having an aromatic group, and preferably has a viscosity at 25 ° C. of 300 cSt or less. As the viscosity increases, the transparency of the molded product decreases. Further, in order for the B component silicone compound to effectively exhibit a flame retardant effect, the dispersed state in the combustion process is important. Viscosity is an important factor that determines the dispersion state. This is because if the silicone compound is too volatile during the combustion process, that is, if the viscosity of the silicone compound is too low, the silicone remaining in the system at the time of combustion is dilute. From this viewpoint considered to be difficult to form a structure, the viscosity at 25 ° C. is more preferably 10 to 300 cSt, still more preferably 15 to 200 cSt, and most preferably 20 to 170 cSt.

B成分が有する芳香族基はシリコーン原子に結合しているものであり、ポリカーボネート樹脂との相溶性を高めたり透明性維持に寄与しており、燃焼時の炭化皮膜形成にも有利であることから難燃効果の発現にも寄与している。芳香族基を有しない場合は成形品の透明性が得られにくく、高度な難燃性を得ることも困難となる。   The aromatic group of the B component is bonded to the silicone atom, which improves compatibility with the polycarbonate resin and contributes to maintaining transparency, and is advantageous for forming a carbonized film during combustion. It also contributes to the development of flame retardant effect. When it does not have an aromatic group, it is difficult to obtain transparency of the molded product, and it is difficult to obtain high flame retardancy.

本発明のシリコーン化合物は好ましくはSi−H基を含有するシリコーン化合物である。特に、分子中にSi−H基および芳香族基を含有するシリコーン化合物であって、
(1)Si−H基が含まれる量(Si−H量)が0.1〜1.2mol/100g
(2)下記式(4)で示される芳香族基が含まれる割合(芳香族基量)が10〜70重量%、かつ

Figure 0006042593
(式(4)中、Xはそれぞれ独立にOH基、ヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基を示す。nは0〜5の整数を表わす。さらに式(4)中においてnが2以上の場合はそれぞれ互いに異なる種類のXを取ることができる。)
(3)平均重合度が3〜150
であるシリコーン化合物の中から選択される少なくとも一種以上のシリコーン化合物である。 The silicone compound of the present invention is preferably a silicone compound containing a Si-H group. In particular, a silicone compound containing a Si—H group and an aromatic group in the molecule,
(1) The amount of Si—H group contained (Si—H amount) is 0.1 to 1.2 mol / 100 g.
(2) The ratio (aromatic group amount) in which the aromatic group represented by the following formula (4) is contained is 10 to 70% by weight, and
Figure 0006042593
(In formula (4), each X independently represents an OH group or a hydrocarbon group having 1 to 20 carbon atoms which may have a heteroatom-containing functional group. N represents an integer of 0 to 5. (4) In the case where n is 2 or more, different types of X can be taken.
(3) Average polymerization degree is 3 to 150
And at least one silicone compound selected from silicone compounds.

さらに好ましくは、Si−H基含有単位として、下記式(5)および(6)で示される構成単位のうち、少なくとも一種以上の式で示される構成単位を含むシリコーン化合物の中から選択される少なくとも一種以上のシリコーン化合物である。   More preferably, as the Si-H group-containing unit, at least selected from silicone compounds containing at least one constituent unit represented by the formula among the constituent units represented by the following formulas (5) and (6): One or more silicone compounds.

Figure 0006042593
Figure 0006042593
(式(5)および式(6)中、Z〜Zはそれぞれ独立に水素原子、ヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基、または下記式(7)で示される化合物を示す。α1〜α3はそれぞれ独立に0または1を表わす。m1は0もしくは1以上の整数を表わす。さらに式(7)中においてm1が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。)
Figure 0006042593
Figure 0006042593
(In formula (5) and formula (6), Z 1 to Z 3 are each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms which may have a hetero atom-containing functional group, or the following formula (7 Α1 to α3 each independently represents 0 or 1. m1 represents 0 or an integer of 1 or more, and each repeating unit in the case where m1 is 2 or more in formula (7) (You can take multiple repeating units that are different from each other.)

Figure 0006042593
(式(7)中、Z〜Zはそれぞれ独立に水素原子、ヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基を示す。α4〜α8はそれぞれ独立に0または1を表わす。m2は0もしくは1以上の整数を表わす。さらに式(7)中においてm2が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。)
Figure 0006042593
(In formula (7), Z 4 to Z 8 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms that may have a hetero atom-containing functional group. Α 4 to α 8 are each independently 0. Or represents 1. m2 represents 0 or an integer greater than or equal to 1. Further, in the formula (7), when m2 is 2 or more, the repeating unit may take a plurality of repeating units.

より好ましくは、Mを1官能性シロキサン単位、Dを2官能性シロキサン単位、Tを3官能性シロキサン単位とするとき、MD単位またはMDT単位からなるシリコーン化合物である。   More preferably, when M is a monofunctional siloxane unit, D is a bifunctional siloxane unit, and T is a trifunctional siloxane unit, the silicone compound is composed of MD units or MDT units.

上記式(5)、(6)および(7)で示される構成単位のZ〜Z、および式(4)のXにおけるヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、デシル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基およびアラルキル基を挙げることができ、さらにこれらの基はエポキシ基、カルボキシル基、無水カルボン酸基、アミノ基、およびメルカプト基などの各種官能基を含むものであってもよい。さらに好ましくは炭素数1〜8のアルキル基、アルケニル基またはアリール基であり、特にはメチル基、エチル基、プロピル基等の炭素数1〜4のアルキル基、ビニル基、またはフェニル基が好ましい。 Z 1 to Z 8 of the structural units represented by the above formulas (5), (6) and (7), and a C 1-20 carbon atom which may have a hetero atom-containing functional group in X of the formula (4) Hydrocarbon groups include methyl groups, ethyl groups, propyl groups, butyl groups, hexyl groups, decyl groups and other alkyl groups, cyclohexyl groups such as cycloalkyl groups, vinyl groups, allyl groups and other alkenyl groups, phenyl groups, and tolyl groups. An aryl group such as a group and an aralkyl group can be exemplified, and these groups may contain various functional groups such as an epoxy group, a carboxyl group, a carboxylic anhydride group, an amino group, and a mercapto group. More preferably, it is a C1-C8 alkyl group, an alkenyl group, or an aryl group, and especially a C1-C4 alkyl group, such as a methyl group, an ethyl group, and a propyl group, a vinyl group, or a phenyl group.

前記式(5)および(6)で示される構成単位のうち、少なくとも一種以上の式で示される構成単位を含むシリコーン化合物において、複数のシロキサン結合の繰返し単位を有する場合は、それらはランダム共重合、ブロック共重合、テーパード共重合のいずれの形態を取ることも可能である。   Among the structural units represented by the formulas (5) and (6), when the silicone compound includes at least one structural unit represented by the formula, when it has a plurality of repeating units of siloxane bonds, they are randomly copolymerized. Any of block copolymerization and tapered copolymerization can be employed.

本発明においては、B成分で好ましいSi−H基を含有するシリコーン化合物については、シリコーン化合物中のSi−H量を0.1〜1.2mol/100gの範囲とすることが好ましい。Si−H量が0.1〜1.2mol/100gの範囲にあることで、燃焼時にシリコーンのストラクチャーの形成が容易となる。さらに好ましくはSi−H量が0.1〜1.0mol/100gの範囲、最も好ましくは0.2〜0.6mol/100gの範囲にあるシリコーン化合物である。Si−H量が少ないとシリコーンのストラクチャー形成が困難となり、Si−H量が多いと組成物の熱安定性が低下する。なお、ここでシリコーンのストラクチャーとは、シリコーン化合物相互の反応、または樹脂とシリコーンとの反応により生成する網状構造をさす。   In the present invention, it is preferable that the amount of Si—H in the silicone compound is in the range of 0.1 to 1.2 mol / 100 g for the silicone compound containing the preferred Si—H group as the B component. When the Si—H amount is in the range of 0.1 to 1.2 mol / 100 g, formation of a silicone structure is facilitated during combustion. More preferred is a silicone compound having a Si-H amount in the range of 0.1 to 1.0 mol / 100 g, most preferably in the range of 0.2 to 0.6 mol / 100 g. When the amount of Si—H is small, it is difficult to form a silicone structure, and when the amount of Si—H is large, the thermal stability of the composition is lowered. Here, the silicone structure refers to a network structure formed by a reaction between silicone compounds or a reaction between a resin and silicone.

また、ここで言うSi−H基量とは、シリコーン化合物100gあたりに含まれるSi−H構造のモル数を言うが、これはアルカリ分解法により、シリコーン化合物の単位重量当たり発生した水素ガスの体積を測定することにより求めることができる。例えば、25℃においてシリコーン化合物1g当たり122mlの水素ガスが発生した場合、下記計算式により、Si−H量は0.5mol/100gとなる。   The Si—H group amount referred to here means the number of moles of the Si—H structure contained per 100 g of the silicone compound. This is the volume of hydrogen gas generated per unit weight of the silicone compound by the alkali decomposition method. Can be determined by measuring. For example, when 122 ml of hydrogen gas is generated per 1 g of the silicone compound at 25 ° C., the Si—H amount is 0.5 mol / 100 g according to the following formula.

122×273/(273+25)÷22400×100≒0.5
一方、芳香族ポリカーボネート樹脂(A成分)にシリコーン化合物を配合した樹脂組成物において、成形品の白濁、あるいは湿熱処理による透明性の低下を抑えるためには、前述したとおり、シリコーン化合物の分散状態が重要である。シリコーン化合物が偏在する場合には、樹脂組成物自体が白濁し、さらには成形品表面で剥離などが生じたり、あるいは湿熱処理時にシリコーン化合物が移行して偏在して透明性が低下するなど、透明性の良好な成形品を得ることが困難となるためである。かかる分散状態を決定する重要な因子としてシリコーン化合物中の芳香族基量、平均重合度が挙げられる。殊に透明性の樹脂組成物において平均重合度は重要である。
122 × 273 / (273 + 25) ÷ 22400 × 100≈0.5
On the other hand, in the resin composition in which the silicone compound is blended with the aromatic polycarbonate resin (component A), in order to suppress the white turbidity of the molded product or the decrease in transparency due to the wet heat treatment, as described above, the dispersion state of the silicone compound is is important. When the silicone compound is unevenly distributed, the resin composition itself becomes cloudy, and further, peeling occurs on the surface of the molded product, or the silicone compound migrates during the wet heat treatment and is unevenly distributed to reduce transparency. This is because it is difficult to obtain a molded article having good properties. Important factors that determine the dispersion state include the amount of aromatic groups in the silicone compound and the average degree of polymerization. In particular, the average degree of polymerization is important in a transparent resin composition.

かかる観点より、本発明のシリコーン化合物としては、シリコーン化合物中の芳香族基量は10〜70重量%であることが好ましい。さらに好ましくは芳香族基量が15〜60重量%の範囲、最も好ましくは25〜55重量%の範囲にあるシリコーン化合物である。シリコーン化合物中の芳香族基量が10重量%より少ないとシリコーン化合物が偏在して分散不良となり、透明性が良好な成形品を得ることが困難となる場合がある。芳香族基量が70重量%より多いとシリコーン化合物自体の分子の剛直性が高くなるためやはり偏在して分散不良となり、透明性が良好な成形品を得ることが困難となる場合がある。   From this viewpoint, the silicone compound of the present invention preferably has an aromatic group content of 10 to 70% by weight in the silicone compound. More preferred is a silicone compound having an aromatic group content in the range of 15 to 60% by weight, most preferably in the range of 25 to 55% by weight. If the amount of the aromatic group in the silicone compound is less than 10% by weight, the silicone compound is unevenly distributed, resulting in poor dispersion, and it may be difficult to obtain a molded article having good transparency. If the amount of the aromatic group is more than 70% by weight, the molecular rigidity of the silicone compound itself is increased, and therefore it is unevenly distributed and poorly dispersed, and it may be difficult to obtain a molded product with good transparency.

なお、ここで芳香族基量とは、シリコーン化合物において、前述した式(4)で示される芳香族基が含まれる割合のことを言い、下記計算式によって求めることができる。
芳香族基量=〔A/M〕×100(重量%)
ここで、上記式におけるA、Mはそれぞれ以下の数値を表す。
A=シリコーン化合物1分子中に含まれる、全ての式(4)で示される芳香族基部分の合計分子量
M=シリコーン化合物の分子量
Here, the amount of the aromatic group means the ratio of the aromatic group represented by the above-described formula (4) in the silicone compound, and can be obtained by the following calculation formula.
Aromatic group amount = [A / M] x 100 (wt%)
Here, A and M in the above formula represent the following numerical values, respectively.
A = total molecular weight of all aromatic group moieties represented by formula (4) contained in one molecule of the silicone compound M = molecular weight of the silicone compound

さらに本発明のB成分として使用されるシリコーン化合物は、25℃における屈折率が1.40〜1.60の範囲にあることが望ましい。さらに好ましくは屈折率が1.42〜1.59の範囲であり、最も好ましくは、1.44〜1.59の範囲にあるシリコーン化合物である。屈折率が上記範囲内にある場合、芳香族ポリカーボネート中にシリコーン化合物が微分散することで、より白濁の少ない染色性の良好な樹脂組成物が提供される。   Furthermore, the silicone compound used as the component B of the present invention preferably has a refractive index in the range of 1.40 to 1.60 at 25 ° C. More preferred is a silicone compound having a refractive index in the range of 1.42 to 1.59, and most preferred is a range of 1.44 to 1.59. When the refractive index is within the above range, the silicone compound is finely dispersed in the aromatic polycarbonate, thereby providing a resin composition with less white turbidity and good dyeability.

さらに本発明のB成分として使用されるシリコーン化合物は、105℃/3時間における加熱減量法による揮発量が18%以下であることが好適である。さらに好ましくは揮発量が10%以下であるシリコーン化合物である。揮発量が18%より大きいと本発明の樹脂組成物を押出してペレット化を行う際に、樹脂からの揮発物の量が多くなる問題が生じ、さらに、成形品中に生じる気泡が多くなりやすいという問題がある。   Further, the silicone compound used as the component B of the present invention preferably has a volatilization amount of 18% or less by a heat loss method at 105 ° C./3 hours. More preferably, the silicone compound has a volatilization amount of 10% or less. When the volatilization amount is larger than 18%, there is a problem that the amount of the volatile matter from the resin increases when the resin composition of the present invention is extruded and pelletized, and more bubbles are generated in the molded product. There is a problem.

B成分として使用されるシリコーン化合物としては、上記の条件を満たすものであれば直鎖状であっても分岐構造を持つものであっても良く、Si−H基を分子構造中の側鎖、末端、分岐点の何れか、または複数の部位に有する各種の化合物を用いることが可能である。   The silicone compound used as the component B may be linear or branched as long as the above conditions are satisfied, and the Si—H group is a side chain in the molecular structure, It is possible to use various compounds possessed at any of terminal, branching points, or plural sites.

一般的に分子中にSi−H基を含有するシリコーン化合物の構造は、以下に示す4種類のシロキサン単位を任意に組み合わせることによって構成される。
M単位:(CHSiO1/2、H(CHSiO1/2、H(CH)SiO1/2、(CH(CH=CH)SiO1/2、(CH(C)SiO1/2、(CH)(C)(CH=CH)SiO1/2等の1官能性シロキサン単位
D単位:(CHSiO、H(CH)SiO、HSiO、H(C)SiO、(CH)(CH=CH)SiO、(CSiO等の2官能性シロキサン単位
T単位:(CH)SiO3/2、(C)SiO3/2、HSiO3/2、(CH=CH)SiO3/2、(C)SiO3/2等の3官能性シロキサン単位
Q単位:SiOで示される4官能性シロキサン単位
In general, the structure of a silicone compound containing a Si—H group in the molecule is constituted by arbitrarily combining the following four types of siloxane units.
M units: (CH 3 ) 3 SiO 1/2 , H (CH 3 ) 2 SiO 1/2 , H 2 (CH 3 ) SiO 1/2 , (CH 3 ) 2 (CH 2 = CH) SiO 1/2 , (CH 3 ) 2 (C 6 H 5 ) SiO 1/2 , (CH 3 ) (C 6 H 5 ) (CH 2 ═CH) SiO 1/2 and other monofunctional siloxane units D unit: (CH 3 ) 2 SiO, H (CH 3 ) SiO, H 2 SiO, H (C 6 H 5 ) SiO, (CH 3 ) (CH 2 ═CH) SiO, (C 6 H 5 ) 2 SiO, etc. Unit T unit: (CH 3 ) SiO 3/2 , (C 3 H 7 ) SiO 3/2 , HSiO 3/2 , (CH 2 ═CH) SiO 3/2 , (C 6 H 5 ) SiO 3/2 trifunctional siloxane units Q units etc.: 4 represented by SiO 2 functional siloxane Unit

本発明において使用されるSi−H基を含有するシリコーン化合物の構造は、具体的には、示性式としてD、T、M、M、M、M、M、M、M、D、D、Dが挙げられる。この中で好ましいシリコーン化合物の構造は、M、M、M、Mであり、さらに好ましい構造は、MまたはMである。
(上記示性式中の係数m、n、p、qは各シロキサン単位の重合度を表す整数である。またm、n、p、qのいずれかが2以上の数値である場合、その係数の付いたシロキサン単位は、結合する水素原子やヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基が異なる2種以上のシロキサン単位とすることができる。)
Specifically, the structure of the silicone compound containing a Si—H group used in the present invention is expressed as D n , T p , M m D n , M m T p , M m Q q , M m D n T p, M m D n Q q, M m T p Q q, M m D n T p Q q, D n T p, D n Q q, include D n T p Q q. Among these, preferable structures of the silicone compound are M m D n , M m T p , M m D n T p , and M m D n Q q , and more preferable structures are M m D n or M m D n. T p .
(The coefficients m, n, p, q in the above formula are integers representing the degree of polymerization of each siloxane unit. Also, if any of m, n, p, q is a numerical value of 2 or more, the coefficient The siloxane units with can be two or more siloxane units having different hydrocarbon groups having 1 to 20 carbon atoms which may have a hydrogen atom or a hetero atom-containing functional group.

ここで、各示性式における係数の合計がシリコーン化合物の平均重合度となる。本発明においては、この平均重合度を3〜150の範囲とすることが好ましく、より好ましくは4〜80の範囲、さらに好ましくは5〜60の範囲である。重合度が3より小さい場合、シリコーン化合物自体の揮発性が高くなるため、このシリコーン化合物を配合した樹脂組成物の加工時において樹脂からの揮発分が多くなりやすいという問題がある。重合度が150より大きい場合、このシリコーン化合物を配合した樹脂組成物における難燃性や透明性が不十分となりやすい。
なお、上記のシリコーン化合物は、それぞれ単独で用いてもよく、2種以上を組合せて用いてもよい。
Here, the sum of the coefficients in each characteristic formula is the average degree of polymerization of the silicone compound. In this invention, it is preferable to make this average degree of polymerization into the range of 3-150, More preferably, it is the range of 4-80, More preferably, it is the range of 5-60. When the degree of polymerization is less than 3, the volatility of the silicone compound itself is increased, so that there is a problem that the volatile content from the resin tends to increase during processing of the resin composition containing the silicone compound. If the degree of polymerization is greater than 150, the flame retardancy and transparency of the resin composition containing this silicone compound tends to be insufficient.
In addition, said silicone compound may be used independently, respectively and may be used in combination of 2 or more type.

このようなSi−H結合を有するシリコーン化合物は、それ自体従来公知の方法によって製造することができる。例えば、目的とするシリコーン化合物の構造に従い、相当するオルガノクロロシラン類を共加水分解し、副生する塩酸や低沸分を除去することによって目的物を得ることができる。また、分子中にSi−H結合や式(4)で示される芳香族基、その他のヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基を有するシリコーンオイル、環状シロキサンやアルコキシシラン類を出発原料とする場合には、塩酸、硫酸、メタンスルホン酸等の酸触媒を使用し、場合によって加水分解のための水を添加して、重合反応を進行させた後、使用した酸触媒や低沸分を同様に除去することによって、目的とするシリコーン化合物を得ることができる。   Such a silicone compound having a Si—H bond can be produced by a method known per se. For example, the target product can be obtained by cohydrolyzing the corresponding organochlorosilanes according to the structure of the target silicone compound and removing by-product hydrochloric acid and low-boiling components. Further, a silicone oil having a C1-C20 hydrocarbon group that may have an Si-H bond, an aromatic group represented by the formula (4), or other heteroatom-containing functional group in the molecule, or a cyclic siloxane Or alkoxysilanes as starting materials, use an acid catalyst such as hydrochloric acid, sulfuric acid, methanesulfonic acid, etc., and optionally add water for hydrolysis to advance the polymerization reaction before use The target silicone compound can be obtained by removing the acid catalyst and the low boiling point in the same manner.

さらに、Si−H基を含有するシリコーン化合物が下記の構造式で示されるシロキサン単位M、M、D、D、Dφ2、T、Tφ(ただしM:(CHSiO1/2:H(CHSiO1/2D:(CHSiOD:H(CH)SiODφ2:(CSiT:(CH)SiO3/2φ:(C)SiO3/2)を有しており、1分子あたりに有する各シロキサン単位の平均数をそれぞれm、m、d、d、dp2、t、tとした場合、下記関係式のすべてを満足することが好ましい。
2 ≦ m+m ≦ 40
0.35 ≦ d+d+dp2 ≦ 148
0 ≦ t+t≦ 38
0.35 ≦ m+d≦ 110
Further, a silicone compound containing a Si—H group is a siloxane unit M, M H , D, D H , D φ2 , T, T φ (where M: (CH 3 ) 3 SiO 1 / 2 MH : H (CH 3 ) 2 SiO 1/2 D: (CH 3 ) 2 SiOD H : H (CH 3 ) SiOD φ 2 : (C 6 H 5 ) 2 SiT: (CH 3 ) SiO 3/2 T φ: (C 6 H 5) has a SiO 3/2), m the average number of the respective siloxane units having per molecule, respectively, m h, d, d h , d p2, t, and t p In this case, it is preferable to satisfy all of the following relational expressions.
2 ≦ m + m h ≦ 40
0.35 ≦ d + d h + d p2 ≦ 148
0 ≦ t + t p ≦ 38
0.35 ≦ m h + d h ≦ 110

この範囲を外れると本発明の樹脂組成物において良好な難燃性と優れた透明性を同時に達成することが困難となり、場合によってはSi−H基を含有するシリコーン化合物の製造が困難となる。   Outside this range, it becomes difficult to simultaneously achieve good flame retardancy and excellent transparency in the resin composition of the present invention, and in some cases, it becomes difficult to produce a silicone compound containing a Si—H group.

本発明のB成分として使用されるシリコーン化合物の含有量は芳香族ポリカーボネート樹脂(A成分)100重量部に対して、0.05〜2.0重量部であり、好ましくは0.08〜1.8重量部、さらに好ましくは0.1〜1.5重量部、最も好ましくは0.3〜1.2重量部である。含有量が多すぎると樹脂の耐熱性が低下したり、押し出し加工時に発生するガスにより押し出し成形品の外観が悪化するという問題があり、少なすぎると難燃性が発揮されないという問題がある。   Content of the silicone compound used as B component of this invention is 0.05-2.0 weight part with respect to 100 weight part of aromatic polycarbonate resin (A component), Preferably it is 0.08-1. 8 parts by weight, more preferably 0.1 to 1.5 parts by weight, and most preferably 0.3 to 1.2 parts by weight. If the content is too large, there is a problem that the heat resistance of the resin is lowered or the appearance of the extruded product is deteriorated by a gas generated during extrusion processing, and if it is too small, there is a problem that flame retardancy is not exhibited.

<C成分:有機金属塩化合物>
本発明のC成分として使用される有機金属塩化合物としては、従来ポリカーボネート樹脂を難燃化するのに使用されている各種の金属塩が使用可能であるが、特にパーフルオロアルキルスルホン酸アルカリ(土類)金属塩、芳香族スルホン酸アルカリ(土類)金属塩等の有機スルホン酸のアルカリ(土類)金属塩、芳香族系イミドのアルカリ(土類)金属塩、硫酸エステルのアルカリ(土類)金属塩、およびリン酸部分エステルのアルカリ(土類)金属塩を挙げることができる。(ここで、アルカリ(土類)金属塩の表記は、アルカリ金属塩、アルカリ土類金属塩のいずれも含む意味で使用する)これらは単独の使用だけでなく、2種以上を混合して使用することも可能である。なお、有機金属塩化合物を構成する金属は、アルカリ金属あるいはアルカリ土類金属であることが好ましく、より好適にはアルカリ金属である。アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムが挙げられ、アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが挙げられ、特に好ましくはリチウム、ナトリウム、カリウムである。
<C component: organometallic salt compound>
As the organometallic salt compound used as the component C of the present invention, various metal salts conventionally used for flame-retarding polycarbonate resins can be used, and in particular, alkali perfluoroalkyl sulfonate (soil) Alkali (earth) metal salt of organic sulfonic acid such as metal salt, alkali sulfonate alkali (earth) metal salt, alkali (earth) metal salt of aromatic imide, alkali of sulfate ester (earth) ) Metal salts and alkali (earth) metal salts of phosphoric acid partial esters. (Here, the notation of alkali (earth) metal salt is used to include both alkali metal salts and alkaline earth metal salts). These are not only used alone but also used in combination of two or more. It is also possible to do. The metal constituting the organometallic salt compound is preferably an alkali metal or an alkaline earth metal, and more preferably an alkali metal. Examples of the alkali metal include lithium, sodium, potassium, rubidium, and cesium, and examples of the alkaline earth metal include beryllium, magnesium, calcium, strontium, and barium, and lithium, sodium, and potassium are particularly preferable.

前記有機スルホン酸のアルカリ(土類)金属塩としては、脂肪族スルホン酸のアルカリ(土類)金属塩、芳香族スルホン酸のアルカリ(土類)金属塩等が挙げられる。
かかる脂肪族スルホン酸のアルカリ(土類)金属塩の好ましい例としては、アルキルスルホン酸アルカリ(土類)金属塩、かかるアルキルスルホン酸アルカリ(土類)金属塩のアルキル基の一部がフッ素原子で置換したスルホン酸アルカリ(土類)金属塩、およびパーフルオロアルキルスルホン酸アルカリ(土類)金属塩を挙げることができ、これらは1種もしくは2種以上を併用して使用することができる。
Examples of the alkali (earth) metal salt of the organic sulfonic acid include an alkali (earth) metal salt of an aliphatic sulfonic acid and an alkali (earth) metal salt of an aromatic sulfonic acid.
Preferred examples of the alkali (earth) metal salt of the aliphatic sulfonic acid include an alkali (earth) metal salt of an alkyl sulfonate, and a part of the alkyl group of the alkali (earth) metal salt of the alkyl sulfonate is a fluorine atom. And alkali (earth) metal salts of sulfonates substituted with, and alkali (earth) metal salts of perfluoroalkyl sulfonates, and these can be used alone or in combination of two or more.

アルキルスルホン酸アルカリ(土類)金属塩の好ましい例としては、メタンスルホン酸塩、エタンスルホン酸塩、プロパンスルホン酸塩、ブタンスルホン酸塩、メチルブタンスルホン酸塩、ヘキサンスルホン酸塩、へプタンスルホン酸塩、オクタンスルホン酸塩等が挙げられ、これらは1種もしくは2種以上を併用して使用することができる。またかかるアルキル基の一部がフッ素原子で置換した金属塩も挙げることができる。   Preferred examples of the alkali (earth) metal salt of alkyl sulfonate include methane sulfonate, ethane sulfonate, propane sulfonate, butane sulfonate, methyl butane sulfonate, hexane sulfonate, heptane sulfone. Examples thereof include acid salts and octane sulfonates, and these can be used alone or in combination of two or more. In addition, a metal salt in which a part of the alkyl group is substituted with a fluorine atom can also be mentioned.

一方、パーフルオロアルキルスルホン酸アルカリ(土類)金属塩の好ましい例としては、パーフルオロメタンスルホン酸塩、パーフルオロエタンスルホン酸塩、パーフルオロプロパンスルホン酸塩、パーフルオロブタンスルホン酸塩、パーフルオロメチルブタンスルホン酸塩、パーフルオロヘキサンスルホン酸塩、パーフルオロヘプタンスルホン酸塩、パーフルオロオクタンスルホン酸塩等が挙げられ、特に炭素数が1〜8のものが好ましい。これらは1種もしくは2種以上を併用して使用することができる。   On the other hand, preferred examples of alkali (earth) metal salts of perfluoroalkyl sulfonate include perfluoromethane sulfonate, perfluoroethane sulfonate, perfluoropropane sulfonate, perfluorobutane sulfonate, perfluoro Examples include methylbutane sulfonate, perfluorohexane sulfonate, perfluoroheptane sulfonate, and perfluorooctane sulfonate, and those having 1 to 8 carbon atoms are particularly preferable. These can be used alone or in combination of two or more.

この中で最も好ましいのはパーフルオロアルキルスルホン酸アルカリ金属塩である。かかるアルカリ金属の中でも、難燃性の要求がより高い場合にはルビジウムおよびセシウムが好適である一方、これらは汎用的でなくまた精製もし難いことから、結果的にコストの点で不利となる場合がある。一方、コストの点で有利であるがリチウムおよびナトリウムは逆に難燃性の点で不利な場合がある。これらを勘案してパーフルオロアルキルスルホン酸アルカリ金属塩中のアルカリ金属を使い分けることができるが、いずれの点においても特性のバランスに優れたパーフルオロアルキルスルホン酸カリウム塩が最も好適である。かかるカリウム塩と他のアルカリ金属からなるパーフルオロアルキルスルホン酸アルカリ金属塩とを併用することもできる。   Of these, the alkali metal salt of perfluoroalkylsulfonic acid is most preferable. Among these alkali metals, rubidium and cesium are suitable when the demand for flame retardancy is higher, but these are not versatile and difficult to purify, resulting in disadvantages in terms of cost. There is. On the other hand, although it is advantageous in terms of cost, lithium and sodium may be disadvantageous in terms of flame retardancy. In consideration of these, the alkali metal in the perfluoroalkylsulfonic acid alkali metal salt can be properly used, but perfluoroalkylsulfonic acid potassium salt having an excellent balance of properties is most suitable in any respect. Such potassium salts and alkali metal salts of perfluoroalkylsulfonic acid composed of other alkali metals can be used in combination.

パーフルオロアルキルスルホン酸アルカリ金属塩の具体例としては、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、トリフルオロメタンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸ルビジウム、およびパーフルオロヘキサンスルホン酸ルビジウム等が挙げられ、これらは1種もしくは2種以上を併用して使用することができる。これらの中で特にパーフルオロブタンスルホン酸カリウムが好ましい。   Specific examples of alkali metal perfluoroalkyl sulfonates include potassium trifluoromethane sulfonate, potassium perfluorobutane sulfonate, potassium perfluorohexane sulfonate, potassium perfluorooctane sulfonate, sodium pentafluoroethane sulfonate, perfluoro Sodium butanesulfonate, sodium perfluorooctanesulfonate, lithium trifluoromethanesulfonate, lithium perfluorobutanesulfonate, lithium perfluoroheptanesulfonate, cesium trifluoromethanesulfonate, cesium perfluorobutanesulfonate, perfluorooctanesulfonate Cesium, cesium perfluorohexane sulfonate, rubidium perfluorobutane sulfonate, and perf Oro hexane sulfonate rubidium, and these may be used in combination of at least one or two. Of these, potassium perfluorobutanesulfonate is particularly preferred.

芳香族スルホン酸アルカリ(土類)金属塩に使用する芳香族スルホン酸としては、モノマー状またはポリマー状の芳香族サルファイドのスルホン酸、芳香族カルボン酸およびエステルのスルホン酸、モノマー状またはポリマー状の芳香族エーテルのスルホン酸、芳香族スルホネートのスルホン酸、モノマー状またはポリマー状の芳香族スルホン酸、モノマー状またはポリマー状の芳香族スルホンスルホン酸、芳香族ケトンのスルホン酸、複素環式スルホン酸、芳香族スルホキサイドのスルホン酸、芳香族スルホン酸のメチレン型結合による縮合体からなる群から選ばれた少なくとも1種の酸を挙げることができ、これらは1種もしくは2種以上を併用して使用することができる。   The aromatic sulfonic acid used in the aromatic (earth) metal salt of aromatic sulfonate includes monomeric or polymeric aromatic sulfide sulfonic acid, aromatic carboxylic acid and ester sulfonic acid, monomeric or polymeric sulfonic acid. Aromatic ether sulfonic acid, aromatic sulfonate sulfonic acid, monomeric or polymeric aromatic sulfonic acid, monomeric or polymeric aromatic sulfonic acid, aromatic ketone sulfonic acid, heterocyclic sulfonic acid, Examples include at least one acid selected from the group consisting of sulfonic acids of aromatic sulfoxides and condensates of methylene type bonds of aromatic sulfonic acids, and these are used alone or in combination of two or more. be able to.

モノマー状またはポリマー状の芳香族サルファイドのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98539号公報に記載されており、例えば、ジフェニルサルファイド−4,4’−ジスルホン酸ジナトリウム、ジフェニルサルファイド−4,4’−ジスルホン酸ジカリウムなどを挙げることができる。   Monomer or polymer aromatic sulfite alkali (earth) metal salts of aromatic sulfides are described in JP-A-50-98539, for example, disodium diphenyl sulfide-4,4′-disulfonate. And dipotassium diphenyl sulfide-4,4′-disulfonate.

芳香族カルボン酸およびエステルのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98540号公報に記載されており、例えば5−スルホイソフタル酸カリウム、5−スルホイソフタル酸ナトリウム、ポリエチレンテレフタル酸ポリスルホン酸ポリナトリウムなどを挙げることができる。   Examples of sulfonic acid alkali (earth) metal salts of aromatic carboxylic acids and esters are described in JP-A No. 50-98540, for example, potassium 5-sulfoisophthalate, sodium 5-sulfoisophthalate, polyethylene terephthalate. And polysodium acid polysulfonate.

モノマー状またはポリマー状の芳香族エーテルのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98542号公報に記載されており、例えば1−メトキシナフタレン−4−スルホン酸カルシウム、4−ドデシルフェニルエーテルジスルホン酸ジナトリウム、ポリ(2,6−ジメチルフェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,3−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,4−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(2,6−ジフェニルフェニレンオキシド)ポリスルホン酸ポリカリウム、ポリ(2−フルオロ−6−ブチルフェニレンオキシド)ポリスルホン酸リチウムなどを挙げることができる。   Monomeric or polymeric aromatic ether sulfonate alkali (earth) metal salts are described in JP-A-50-98542, for example, 1-methoxynaphthalene-4-sulfonate calcium, 4- Disodium dodecylphenyl ether disulfonate, polysodium poly (2,6-dimethylphenylene oxide) polysulfonate, polysodium poly (1,3-phenylene oxide) polysulfonate, polysodium poly (1,4-phenylene oxide) polysulfonate And poly (2,6-diphenylphenylene oxide) polypotassium polysulfonate, poly (2-fluoro-6-butylphenylene oxide) lithium polysulfonate, and the like.

芳香族スルホネートのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98544号公報に記載されており、例えばベンゼンスルホネートのスルホン酸カリウムなどを挙げることができる。   Examples of alkali (earth) metal sulfonates of aromatic sulfonates are described in JP-A No. 50-98544, and examples thereof include potassium sulfonate of benzene sulfonate.

モノマー状またはポリマー状の芳香族スルホン酸アルカリ(土類)金属塩としては、特開昭50−98546号公報に記載されており、例えばベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸ストロンチウム、ベンゼンスルホン酸マグネシウム、p−ベンゼンジスルホン酸ジカリウム、ナフタレン−2,6−ジスルホン酸ジカリウム、ビフェニル−3,3’−ジスルホン酸カルシウムなどを挙げることができる。   Monomeric or polymeric aromatic (earth) metal sulfonates are described in JP-A No. 50-98546, for example, sodium benzenesulfonate, strontium benzenesulfonate, magnesium benzenesulfonate, Examples include dipotassium p-benzenedisulfonate, dipotassium naphthalene-2,6-disulfonate, and calcium biphenyl-3,3′-disulfonate.

モノマー状またはポリマー状の芳香族スルホンスルホン酸アルカリ(土類)金属塩としては、特開昭52−54746号公報に記載されており、例えばジフェニルスルホン−3−スルホン酸ナトリウム、ジフェニルスルホン−3−スルホン酸カリウム、ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3,4’−ジスルホン酸ジカリウムなどを挙げることができる。   Monomeric or polymeric aromatic sulfonesulfonic acid alkali (earth) metal salts are described in JP-A-52-54746, for example, sodium diphenylsulfone-3-sulfonate, diphenylsulfone-3- Examples include potassium sulfonate, dipotassium diphenyl-3,3′-disulfonate, dipotassium diphenylsulfone-3,4′-disulfonate, and the like.

芳香族ケトンのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98547号公報に記載されており、例えばα,α,α−トリフルオロアセトフェノン−4−スルホン酸ナトリウム、ベンゾフェノン−3,3’−ジスルホン酸ジカリウムなどを挙げることができる。   Examples of alkali sulfonate alkali (earth) metal salts of aromatic ketones are described in JP-A No. 50-98547, for example, α, α, α-trifluoroacetophenone-4-sulfonic acid sodium salt, benzophenone-3 , 3'-disulfonic acid dipotassium.

複素環式スルホン酸アルカリ(土類)金属塩としては、特開昭50−116542号公報に記載されており、例えばチオフェン−2,5−ジスルホン酸ジナトリウム、チオフェン−2,5−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸カルシウム、ベンゾチオフェンスルホン酸ナトリウムなどを挙げることができる。   Heterocyclic sulfonic acid alkali (earth) metal salts are described in JP-A-50-116542, for example, disodium thiophene-2,5-disulfonate, dipotassium thiophene-2,5-disulfonate. Thiophene-2,5-disulfonate calcium, sodium benzothiophenesulfonate, and the like.

芳香族スルホキサイドのスルホン酸アルカリ(土類)金属塩としては、特開昭52−54745号公報に記載されており、例えばジフェニルスルホキサイド−4−スルホン酸カリウムなどを挙げることができる。   Examples of the alkali (earth) metal sulfonate of aromatic sulfoxide are described in JP-A-52-54745, and examples thereof include potassium diphenyl sulfoxide-4-sulfonate.

芳香族スルホン酸アルカリ(土類)金属塩のメチレン型結合による縮合体としては、ナフタレンスルホン酸ナトリウムのホルマリン縮合物、アントラセンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。   Examples of the condensate obtained by methylene bond of alkali (earth) metal salt of aromatic sulfonate include formalin condensate of sodium naphthalene sulfonate and formalin condensate of sodium anthracene sulfonate.

前記、硫酸エステルのアルカリ(土類)金属塩としては、特に一価および/または多価アルコール類の硫酸エステルのアルカリ(土類)金属塩を挙げることができ、かかる一価および/または多価アルコール類の硫酸エステルとしては、メチル硫酸エステル、エチル硫酸エステル、ラウリル硫酸エステル、ヘキサデシル硫酸エステル、ポリオキシエチレンアルキルフェニルエーテルの硫酸エステル、ペンタエリスリトールのモノ、ジ、トリ、テトラ硫酸エステル、ラウリン酸モノグリセライドの硫酸エステル、パルミチン酸モノグリセライドの硫酸エステル、ステアリン酸モノグリセライドの硫酸エステルなどを挙げることができる。これらの硫酸エステルのアルカリ(土類)金属塩として好ましくはラウリル硫酸エステルのアルカリ(土類)金属塩を挙げることができる。   Examples of the alkali (earth) metal salt of the sulfate ester include, in particular, alkali (earth) metal salts of sulfate esters of monovalent and / or polyhydric alcohols. Alcohol sulfates include methyl sulfate, ethyl sulfate, lauryl sulfate, hexadecyl sulfate, polyoxyethylene alkylphenyl ether sulfate, pentaerythritol mono, di, tri, tetrasulfate, and lauric acid monoglyceride. And sulfuric acid ester of palmitic acid monoglyceride, stearic acid monoglyceride sulfate and the like. The alkali (earth) metal salts of these sulfates are preferably alkali (earth) metal salts of lauryl sulfate.

前記リン酸部分エステルのアルカリ(土類)金属塩としては、具体的にビス(2,6−ジブロモ−4−クミルフェニル)リン酸、ビス(4−クミルフェニル)リン酸、ビス(2,4,6−トリブロモフェニル)リン酸ビス(2,4−ジブロモフェニル)リン酸、ビス(4−ブロモフェニル)リン酸、ジフェニルリン酸、ビス(4−tert−ブチルフェニル)リン酸等のアルカリ(土類)金属塩を挙げることができる。   Specific examples of the alkali (earth) metal salt of the phosphoric acid partial ester include bis (2,6-dibromo-4-cumylphenyl) phosphoric acid, bis (4-cumylphenyl) phosphoric acid, and bis (2,4,6). Alkali (earth) such as bis (2,4-dibromophenyl) phosphoric acid, bis (4-bromophenyl) phosphoric acid, diphenylphosphoric acid, bis (4-tert-butylphenyl) phosphoric acid ) Metal salts can be mentioned.

前記芳香族系イミドのアルカリ(土類)金属塩としては、例えばサッカリン、N−(p−トリルスルホニル)−p−トルエンスルホンアミド(言い換えるとジ(p−トルエンスルホン)イミド)、N−(N’−ベンジルアミノカルボニル)スルファニルイミド、およびN−(フェニルカルボキシル)スルファニルイミド、ビス(ジフェニルリン酸)イミド等のアルカリ(土類)金属塩などが挙げられる。   Examples of the alkali (earth) metal salt of the aromatic imide include saccharin, N- (p-tolylsulfonyl) -p-toluenesulfonamide (in other words, di (p-toluenesulfone) imide), N- (N Examples include '-benzylaminocarbonyl) sulfanilimide, and alkali (earth) metal salts such as N- (phenylcarboxyl) sulfanilimide and bis (diphenylphosphoric acid) imide.

これらの中で好ましい成分としてパーフルオロアルキルスルホン酸アルカリ(土類)金属塩、芳香族スルホン酸アルカリ(土類)金属塩、および芳香族系イミドのアルカリ(土類)金属塩からなる群より選択される1種以上の化合物が挙げられ、その中でもパーフルオロブタンスルホン酸カリウム、パーフルオロブタンスルホン酸ナトリウム、式(8)で示されるジフェニルスルホンのスルホン酸塩、ジ(p−トルエンスルホン)イミドのカリウム塩、および、ジ(p−トルエンスルホン)イミドのナトリウム塩からなる群より選択される1種以上の化合物がより好ましい。さらに最も好ましくはパーフルオロブタンスルホン酸カリウムである。   Among these, preferable components are selected from the group consisting of alkali (earth) metal salts of perfluoroalkyl sulfonates, alkali (earth) metal aromatic sulfonates, and alkali (earth) metal salts of aromatic imides. One or more kinds of compounds are exemplified, among which potassium perfluorobutanesulfonate, sodium perfluorobutanesulfonate, disulfonate sulfonate of formula (8), di (p-toluenesulfone) imide One or more compounds selected from the group consisting of potassium salt and sodium salt of di (p-toluenesulfone) imide are more preferred. Most preferred is potassium perfluorobutane sulfonate.

Figure 0006042593
[式中、nは0〜3を表し、MはKあるいはNaを表す。]
Figure 0006042593
[Wherein n represents 0 to 3, and M represents K or Na. ]

本発明の樹脂組成物に含有されるC成分の量は芳香族ポリカーボネート樹脂(A成分)100重量部に対して、0.005〜1.0重量部が好ましく、より好ましくは0.006〜0.3重量部であり、さらに好ましくは0.007〜0.1重量部であり、さらにより好ましくは0.008〜0.08重量部、最も好ましくは0.01〜0.06重量部である。C成分の含有量が多すぎると本発明の特徴である透明性が損なわれるだけでなく、場合によっては押し出し成形時に樹脂が分解して逆に難燃性が低下する方向となる。添加量が少なすぎると難燃性が不十分となり本発明の目的である難燃性が発揮されない。   The amount of component C contained in the resin composition of the present invention is preferably 0.005 to 1.0 part by weight, more preferably 0.006 to 0, per 100 parts by weight of the aromatic polycarbonate resin (component A). 0.3 part by weight, more preferably 0.007 to 0.1 part by weight, still more preferably 0.008 to 0.08 part by weight, and most preferably 0.01 to 0.06 part by weight. . If the content of component C is too large, not only the transparency, which is a feature of the present invention, is impaired, but also in some cases, the resin is decomposed during extrusion and the flame retardancy is reduced. If the addition amount is too small, the flame retardancy becomes insufficient and the flame retardancy that is the object of the present invention is not exhibited.

<D成分:光拡散剤>
本発明のD成分として使用される光拡散剤は、高分子微粒子に代表される有機系微粒子、並びに無機系微粒子の何れであってもよい。高分子微粒子としては、非架橋性モノマーと架橋性モノマーとを重合して得られる有機架橋粒子が代表的に例示される。さらにかかるモノマー以外の他の共重合可能なモノマーを使用することもできる。また、他の有機架橋粒子としては、ポリオルガノシルセスキオキサンに代表されるシリコーン架橋粒子を挙げることができる。
<D component: Light diffusing agent>
The light diffusing agent used as the component D of the present invention may be any of organic fine particles typified by polymer fine particles and inorganic fine particles. The polymer fine particles are typically exemplified by organic crosslinked particles obtained by polymerizing a non-crosslinkable monomer and a crosslinkable monomer. Furthermore, other copolymerizable monomers other than such monomers can also be used. Examples of other organic crosslinked particles include silicone crosslinked particles typified by polyorganosilsesquioxane.

前記D成分のなかでも、高分子微粒子が好ましく、特に有機架橋粒子が好適に使用できる。かかる有機架橋粒子において、非架橋性モノマーとして使用されるモノマーとして、アクリル系モノマー、スチレン系モノマー、アクリロニトリル系モノマー等の非架橋性ビニル系モノマー及びオレフィン系モノマー等を挙げることができる。   Among the components D, polymer fine particles are preferable, and organic crosslinked particles can be preferably used. In such organic crosslinked particles, examples of monomers used as non-crosslinkable monomers include non-crosslinkable vinyl monomers such as acrylic monomers, styrene monomers, and acrylonitrile monomers, and olefin monomers.

アクリル系モノマーとしては、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、2−エチルヘキシルアクリレート、メチルメタクリート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、2−エチルヘキシルメタクリレート、およびフェニルメタクリレート等を単独でまたは混合して使用することが可能である。このなかでも特にメチルメタクリレートが好ましい。   Acrylic monomers include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, and phenyl methacrylate alone or in combination. Can be used. Of these, methyl methacrylate is particularly preferable.

また、スチレン系モノマーとしては、スチレン、α−メチルスチレン、メチルスチレン(ビニルトルエン)、およびエチルスチレン等のアルキルスチレン、並びにブロモ化スチレンの如きハロゲン化スチレンを使用することができ、特にスチレンが好ましい。   As the styrenic monomer, styrene, α-methyl styrene, methyl styrene (vinyl toluene), alkyl styrene such as ethyl styrene, and halogenated styrene such as brominated styrene can be used, and styrene is particularly preferable. .

アクリロニトリル系モノマーとしては、アクリロニトリル、およびメタクリロニトリルを使用することができる。また、オレフィン系モノマーとしては、エチレンおよび各種ノルボルネン型化合物等を使用することができる。   As the acrylonitrile monomer, acrylonitrile and methacrylonitrile can be used. As the olefin monomer, ethylene, various norbornene-type compounds, and the like can be used.

さらに、他の共重合可能な他のモノマーとして、グリシジルメタクリレート、N−メチルマレイミド、および無水マレイン酸等を例示することができる。本発明の有機架橋粒子は結果としてN−メチルグルタルイミドの如き単位を有することもできる。   Furthermore, glycidyl methacrylate, N-methylmaleimide, maleic anhydride, etc. can be illustrated as another copolymerizable monomer. As a result, the organic crosslinked particles of the present invention may have units such as N-methylglutarimide.

一方、かかる非架橋性ビニル系モノマーに対する架橋性モノマーとしては、例えば、ジビニルベンゼン、アリルメタクリレート、トリアリルシアヌレート、トリアリルイソシアネート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコール(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ジシクロペンテニルジ(メタ)アクリレート、およびN−メチロール(メタ)アクリルアミド等が挙げられる。   On the other hand, examples of the crosslinkable monomer for the non-crosslinkable vinyl monomer include divinylbenzene, allyl methacrylate, triallyl cyanurate, triallyl isocyanate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and propylene glycol. (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane (meth) acrylate, pentaerythritol tetra (meth) acrylate, bisphenol A di (meth) acrylate, dicyclopentanyl di (meth) acrylate , Dicyclopentenyl di (meth) acrylate, N-methylol (meth) acrylamide, and the like.

本発明のD成分として使用される光拡散剤の平均粒径は0.01〜50μmであることが好ましく、より好ましくは1〜30μm、さらに好ましく2〜30μmである。平均粒径が0.01μm未満あるいは50μmを超えると光拡散性が不足する場合がある。かかる平均粒径は、レーザー回折・散乱法で求められる粒度の積算分布の50%値(D50)で表されるものである。粒子径の分布は単一であっても複数であってもよい。即ち平均粒径の異なる2種以上の光拡散剤を組み合わせることが可能である。しかしながらより好ましい光拡散剤は、その粒径分布の狭いものである。平均粒径の前後2μmの範囲に、粒子の70重量%以上が含有される分布を有するものがより好ましい。光拡散剤の形状は、光拡散性の観点から球状に近いものが好ましく、真球状に近い形態であるほどより好ましい。かかる球状には楕円球を含む。   The average particle diameter of the light diffusing agent used as the D component of the present invention is preferably 0.01 to 50 μm, more preferably 1 to 30 μm, and further preferably 2 to 30 μm. If the average particle size is less than 0.01 μm or exceeds 50 μm, the light diffusibility may be insufficient. The average particle size is represented by a 50% value (D50) of the cumulative distribution of particle sizes obtained by the laser diffraction / scattering method. The particle size distribution may be single or plural. That is, it is possible to combine two or more light diffusing agents having different average particle diameters. However, a more preferred light diffusing agent has a narrow particle size distribution. It is more preferable to have a distribution containing 70% by weight or more of the particles in the range of 2 μm before and after the average particle diameter. The shape of the light diffusing agent is preferably close to a sphere from the viewpoint of light diffusibility, and more preferably a shape close to a true sphere. Such a sphere includes an elliptical sphere.

本発明のD成分として使用される光拡散剤の屈折率は、通常1.3〜1.8の範囲が好ましく、より好ましくは1.33〜1.70、さらに好ましくは1.35〜1.65の範囲である。これらは樹脂組成物に配合した状態において十分な光拡散機能を発揮する。   The refractive index of the light diffusing agent used as the D component of the present invention is usually preferably in the range of 1.3 to 1.8, more preferably 1.33 to 1.70, still more preferably 1.35 to 1. A range of 65. These exhibit a sufficient light diffusion function in a state where they are blended in the resin composition.

本発明におけるD成分の含有量は、芳香族ポリカーボネート樹脂(A成分)100重量部に対して、0.005〜3.0重量部であり、好ましくは0.05〜3重量部、より好ましくは0.05〜2重量部である。D成分が0.005重量部未満では光拡散性が不足であり、3.0重量部を超えると光線透過率が低下する。   Content of D component in this invention is 0.005-3.0 weight part with respect to 100 weight part of aromatic polycarbonate resin (A component), Preferably it is 0.05-3 weight part, More preferably 0.05 to 2 parts by weight. If the D component is less than 0.005 parts by weight, the light diffusibility is insufficient, and if it exceeds 3.0 parts by weight, the light transmittance decreases.

<E成分:紫外線吸収剤>
本発明のE成分は耐光性を付与することを目的として添加される紫外線吸収剤である。紫外線吸収剤としては、ベンゾフェノン系では、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシトリハイドライドレイトベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2−ヒドロキシ−4−n−ドデシルオキシベンソフェノン、および2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノンなどが例示される。
<E component: UV absorber>
The E component of the present invention is an ultraviolet absorber added for the purpose of imparting light resistance. As the ultraviolet absorber, in the benzophenone series, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2- Hydroxy-4-methoxy-5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydride benzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2 ′, 4,4 ′ -Tetrahydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5-benzoyl-4- Hydroxy-2-methoxyphenyl) Examples include methane, 2-hydroxy-4-n-dodecyloxybenzophenone, and 2-hydroxy-4-methoxy-2′-carboxybenzophenone.

ベンゾトリアゾール系では、例えば、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−アミルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾ−ル、2,2’−メチレンビス(4−クミル−6−ベンゾトリアゾールフェニル)、2,2’−p−フェニレンビス(1,3−ベンゾオキサジン−4−オン)、および2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾ−ル、並びに2−(2’−ヒドロキシ−5−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2−(2’―ヒドロキシ−5−アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2−ヒドロキシフェニル−2H−ベンゾトリアゾール骨格を有する重合体などが例示される。   In the benzotriazole series, for example, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-Dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′-methylenebis [4- (1,1,3 , 3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, 2- (2- Hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5 Di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole, 2- ( 2-hydroxy-4-octoxyphenyl) benzotriazole, 2,2'-methylenebis (4-cumyl-6-benzotriazolephenyl), 2,2'-p-phenylenebis (1,3-benzoxazine-4 -One), and 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimidomethyl) -5-methylphenyl] benzotriazole, and 2- (2'-hydroxy-5-methacryloxy) Copolymerization of ethylphenyl) -2H-benzotriazole with vinyl monomer copolymerizable with the monomer And 2- (2′-hydroxy-5-acryloxyethylphenyl) -2H-benzotriazole and a copolymer of vinyl monomer copolymerizable with the monomer, 2-hydroxyphenyl-2H-benzotriazole skeleton A polymer having

ヒドロキシフェニルトリアジン系では、例えば、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−メチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−エチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−プロピルオキシフェノール、および2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ブチルオキシフェノールなどが例示される。さらに2−(4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4−ジメチルフェニル基となった化合物が例示される。   In the hydroxyphenyl triazine series, for example, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-hexyloxyphenol, 2- (4,6-diphenyl-1,3,5) -Triazin-2-yl) -5-methyloxyphenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-ethyloxyphenol, 2- (4,6-diphenyl) -1,3,5-triazin-2-yl) -5-propyloxyphenol and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-butyloxyphenol Illustrated. Furthermore, the phenyl group of the above exemplary compounds such as 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-hexyloxyphenol is 2,4-dimethyl. Examples of the compound are phenyl groups.

環状イミノエステル系では、例えば2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−m−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、および2,2’−p,p’−ジフェニレンビス(3,1−ベンゾオキサジン−4−オン)などが例示される。   In the cyclic imino ester system, for example, 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2′-m-phenylenebis (3,1-benzoxazin-4-one) And 2,2′-p, p′-diphenylenebis (3,1-benzoxazin-4-one) and the like.

シアノアクリレート系では、例えば1,3−ビス−[(2’−シアノ−3’,3’−ジフェニルアクリロイル)オキシ]−2,2−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3−ビス−[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。   In the case of cyanoacrylate, for example, 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2-cyano-3,3-diphenylacryloyl) oxy ] Methyl) propane, 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene and the like.

さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/または光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。前記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。   Furthermore, the ultraviolet absorber has a structure of a monomer compound capable of radical polymerization, so that the ultraviolet absorbent monomer and / or the light stable monomer and a single amount of alkyl (meth) acrylate or the like can be obtained. It may be a polymer type ultraviolet absorber copolymerized with a body. Preferred examples of the ultraviolet absorbing monomer include compounds containing a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic imino ester skeleton, and a cyanoacrylate skeleton in the ester substituent of (meth) acrylic acid ester. The

前記の中でも紫外線吸収能の点においてはベンゾトリアゾール系およびヒドロキシフェニルトリアジン系が好ましく、耐熱性や色相の点では、環状イミノエステル系およびシアノアクリレート系が好ましい。前記紫外線吸収剤は単独であるいは2種以上の混合物で用いてもよい。   Among them, benzotriazole and hydroxyphenyltriazine are preferable in terms of ultraviolet absorption ability, and cyclic imino ester and cyanoacrylate are preferable in terms of heat resistance and hue. You may use the said ultraviolet absorber individually or in mixture of 2 or more types.

紫外線吸収剤の含有量は、A成分100重量部に対して0.01〜3重量部が好ましく、より好ましくは0.02〜2重量部、さらに好ましくは0.03〜1重量部、最も好ましくは0.05〜0.5重量部である。   The content of the ultraviolet absorber is preferably 0.01 to 3 parts by weight, more preferably 0.02 to 2 parts by weight, still more preferably 0.03 to 1 part by weight, most preferably 100 parts by weight of component A. Is 0.05 to 0.5 parts by weight.

<F成分:蛍光増白剤>
本発明のF成分である蛍光増白剤は、樹脂等の色調を白色あるいは青白色に改善するために用いられるものであれば特に制限はなく、例えばスチルベン系、ベンズイミダゾール系、ベンズオキサゾール系、ナフタルイミド系、ローダミン系、クマリン系、オキサジン系化合物等が挙げられる。具体的には例えばCI Fluorescent Brightener 219:1や、イーストマンケミカル社製EASTOBRITE OB−1などを挙げることができる。ここで蛍光増白剤は、光線の紫外部のエネルギーを吸収し、このエネルギーを可視部に放射する作用を有するものである。蛍光増白剤の含有量はA成分100重量部に対して、0.001〜0.1重量部が好ましく、より好ましくは0.001〜0.05重量部である。0.1重量部を超えても該組成物の色調の改良効果は小さい。
<F component: fluorescent whitening agent>
The fluorescent whitening agent that is the F component of the present invention is not particularly limited as long as it is used for improving the color tone of a resin or the like to white or bluish white. For example, stilbene, benzimidazole, benzoxazole, Naphthalimide type, rhodamine type, coumarin type, oxazine type compound and the like can be mentioned. Specifically, CI Fluorescent Brightener 219: 1, Eastman Chemical OB-1 manufactured by Eastman Chemical Co., etc. can be used. Here, the fluorescent whitening agent has an action of absorbing energy in the ultraviolet part of the light and radiating this energy to the visible part. The content of the fluorescent brightening agent is preferably 0.001 to 0.1 parts by weight, more preferably 0.001 to 0.05 parts by weight with respect to 100 parts by weight of the component A. Even if it exceeds 0.1 parts by weight, the effect of improving the color tone of the composition is small.

<その他の成分>
(I)リン系安定剤
本発明の難燃性ポリカーボネート樹脂組成物には、加水分解性を促進させない程度において、リン系安定剤が配合されることが好ましい。かかるリン系安定剤は製造時または成形加工時の熱安定性を向上させ、機械的特性、色相、および成形安定性を向上させる。リン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル、並びに第3級ホスフィンなどが例示される。
<Other ingredients>
(I) Phosphorus stabilizer It is preferable that the flame retardant polycarbonate resin composition of the present invention is blended with a phosphorus stabilizer to the extent that does not promote hydrolyzability. Such phosphorus stabilizers improve thermal stability during production or molding, and improve mechanical properties, hue, and molding stability. Examples of phosphorus stabilizers include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof, and tertiary phosphine.

ホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。   Examples of the phosphite compound include triphenyl phosphite, tris (nonylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl Monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, tris (diethylphenyl) phos Phyto, tris (di-iso-propylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite Ite, tris (2,6-di-tert-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6 -Di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-ethylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, Examples thereof include bis (nonylphenyl) pentaerythritol diphosphite, dicyclohexyl pentaerythritol diphosphite, and the like.

更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2’−エチリデンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイトなどを挙げることができる。   Further, as other phosphite compounds, those which react with dihydric phenols and have a cyclic structure can be used. For example, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert- Butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2′-methylenebis (4-methyl-6-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite 2,2′-ethylidenebis (4-methyl-6-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite.

ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができ、好ましくはトリフェニルホスフェート、トリメチルホスフェートである。   Examples of the phosphate compound include tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, Examples thereof include diisopropyl phosphate, and triphenyl phosphate and trimethyl phosphate are preferable.

ホスホナイト化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等があげられ、テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。   Examples of the phosphonite compound include tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenylenedi. Phosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite Tetrakis (2,6-di-tert-butylphenyl) -4,3′-biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3′-biphenylene diphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,4-di tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-n-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl)- 4-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, and the like, and tetrakis (di-tert-butylphenyl) -biphenylenediphosphonite, bis (Di-tert-butylphenyl) -phenyl-phenylphosphonite is preferred, tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl)- More preferred is phenyl-phenylphosphonite. Such a phosphonite compound is preferable because it can be used in combination with a phosphite compound having an aryl group in which two or more alkyl groups are substituted.

ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。   Examples of the phosphonate compound include dimethyl benzenephosphonate, diethyl benzenephosphonate, and dipropyl benzenephosphonate.

第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ−p−トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。   Tertiary phosphine includes triethylphosphine, tripropylphosphine, tributylphosphine, trioctylphosphine, triamylphosphine, dimethylphenylphosphine, dibutylphenylphosphine, diphenylmethylphosphine, diphenyloctylphosphine, triphenylphosphine, tri-p-tolyl. Examples include phosphine, trinaphthylphosphine, and diphenylbenzylphosphine. A particularly preferred tertiary phosphine is triphenylphosphine.

上記リン系安定剤は、1種のみならず2種以上を混合して用いることができる。上記リン系安定剤の中でもトリメチルホスフェートに代表されるアルキルホスフェート化合物が配合されることが好ましい。またかかるアルキルホスフェート化合物と、ホスファイト化合物および/またはホスホナイト化合物との併用も好ましい態様である。   The phosphorus stabilizers can be used alone or in combination of two or more. Among the phosphorus stabilizers, an alkyl phosphate compound typified by trimethyl phosphate is preferably blended. A combination of such an alkyl phosphate compound and a phosphite compound and / or phosphonite compound is also a preferred embodiment.

(II)ヒンダードフェノール系安定剤
本発明の難燃性ポリカーボネート樹脂組成物には、更にヒンダードフェノール系安定剤を配合することができる。かかる配合は例えば成形加工時の色相悪化や長期間の使用における色相の悪化などを抑制する効果が発揮される。ヒンダードフェノール系安定剤としては、例えば、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3’,5’−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、およびテトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンなどが例示される。これらはいずれも入手容易である。上記ヒンダードフェノール系安定剤は、単独でまたは2種以上を組合せて使用することができる。
(II) Hindered phenol stabilizer The flame retardant polycarbonate resin composition of the present invention may further contain a hindered phenol stabilizer. Such blending exhibits an effect of suppressing, for example, hue deterioration during molding and hue deterioration during long-term use. Examples of the hindered phenol-based stabilizer include α-tocopherol, butylhydroxytoluene, sinapir alcohol, vitamin E, n-octadecyl-β- (4′-hydroxy-3 ′, 5′-di-tert-butylfel). Propionate, 2-tert-butyl-6- (3′-tert-butyl-5′-methyl-2′-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N , N-dimethylaminomethyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′- Methylene bis (4-ethyl-6-tert-butylphenol), 4,4′-methylene bis (2,6- Di-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-cyclohexylphenol), 2,2′-dimethylene-bis (6-α-methyl-benzyl-p-cresol) 2,2′- Ethylidene-bis (4,6-di-tert-butylphenol), 2,2'-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert- Butylphenol), triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, 1,6-hexanediol bis [3- (3,5-di-tert -Butyl-4-hydroxyphenyl) propionate], bis [2-tert-butyl-4-methyl 6- (3-tert-butyl) -5-methyl-2-hydroxybenzyl) phenyl] terephthalate, 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1,- Dimethylethyl} -2,4,8,10-tetraoxaspiro [5,5] undecane, 4,4′-thiobis (6-tert-butyl-m-cresol), 4,4′-thiobis (3-methyl) -6-tert-butylphenol), 2,2'-thiobis (4-methyl-6-tert-butylphenol), bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 4,4'- Di-thiobis (2,6-di-tert-butylphenol), 4,4′-tri-thiobis (2,6-di-tert-butylphenol), 2,2-thiodiethyl Nbis- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4-hydroxy-3 ′, 5′-di- tert-butylanilino) -1,3,5-triazine, N, N′-hexamethylenebis- (3,5-di-tert-butyl-4-hydroxyhydrocinnamide), N, N′-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5 -Trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tris (3,5-di-tert-butyl-4-hydroxyphenyl) iso Anurate, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate, 1,3,5-tris 2 [3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl isocyanurate and tetrakis [methylene-3- (3 ′, 5′-di-tert -Butyl-4-hydroxyphenyl) propionate] methane and the like. All of these are readily available. The said hindered phenol type stabilizer can be used individually or in combination of 2 or more types.

リン系安定剤およびヒンダードフェノール系安定剤の含有量は、A成分100重量部に対し、0.005〜0.5重量部が好ましく、より好ましくは0.01〜0.5重量部、さらに好ましくは0.01〜0.3重量部である。   The content of the phosphorus stabilizer and the hindered phenol stabilizer is preferably 0.005 to 0.5 parts by weight, more preferably 0.01 to 0.5 parts by weight, more preferably 100 parts by weight of component A. Preferably it is 0.01-0.3 weight part.

(III)前記以外の熱安定剤
本発明の難燃性ポリカーボネート樹脂組成物には、前記リン系安定剤およびヒンダードフェノール系安定剤以外の他の熱安定剤を配合することもできる。かかる他の熱安定剤としては、例えば3−ヒドロキシ−5,7−ジ−tert−ブチル−フラン−2−オンとo−キシレンとの反応生成物に代表されるラクトン系安定剤が好適に例示される。かかる安定剤の詳細は特開平7−233160号公報に記載されている。かかる化合物はIrganox HP−136(商標、CIBA SPECIALTY CHEMICALS社製)として市販され、該化合物を利用できる。更に該化合物と各種のホスファイト化合物およびヒンダードフェノール化合物を混合した安定剤が市販されている。例えば前記社製のIrganox HP−2921が好適に例示される。ラクトン系安定剤の配合量は、A成分100重量部に対して好ましくは0.0005〜0.05重量部、より好ましくは0.001〜0.03重量部である。
(III) Thermal stabilizer other than the above The flame retardant polycarbonate resin composition of the present invention may contain a thermal stabilizer other than the phosphorus stabilizer and the hindered phenol stabilizer. Preferable examples of such other heat stabilizers include lactone stabilizers represented by a reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene. Is done. Details of such a stabilizer are described in JP-A-7-233160. Such a compound is commercially available as Irganox HP-136 (trademark, manufactured by CIBA SPECIALTY CHEMICALS) and can be used. Furthermore, a stabilizer obtained by mixing the compound with various phosphite compounds and hindered phenol compounds is commercially available. For example, Irganox HP-2921 manufactured by the above company is preferably exemplified. The blending amount of the lactone stabilizer is preferably 0.0005 to 0.05 parts by weight, more preferably 0.001 to 0.03 parts by weight with respect to 100 parts by weight of the component A.

またその他の安定剤としては、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、およびグリセロール−3−ステアリルチオプロピオネートなどのイオウ含有安定剤が例示される。かかるイオウ含有安定剤の配合量は、A成分100重量部に対して好ましくは0.001〜0.1重量部、より好ましくは0.01〜0.08重量部である。   Other stabilizers include sulfur-containing stabilizers such as pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), and glycerol-3-stearylthiopropionate. Illustrated. The amount of the sulfur-containing stabilizer is preferably 0.001 to 0.1 parts by weight, more preferably 0.01 to 0.08 parts by weight, per 100 parts by weight of component A.

(IV)ドリップ防止剤
本発明の樹脂組成物はドリップ防止性に優れるが、かかる性能をさらに補強するため通常のドリップ防止剤を併用することができる。その配合量はA成分100重量部に対し0.3重量部以下が好ましく、0.1重量部以下がより好ましく、0.08重量部以下がさらに好ましく、0.05重量部以下が最も好ましい。かかるドリップ防止剤としてはフィブリル形成能を有する含フッ素ポリマーを挙げることができる。特にポリテトラフルオロエチレン(以下PTFEと称することがある)が好ましい。ここでいう透明性を損なわないとは、例えば2mm厚みのプレートのHazeが5%を超えない量のPTFEを使用するということである。フィブリル形成能を有するPTFEの分子量は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その分子量は、標準比重から求められる数平均分子量において100万〜1,000万が好ましく、より好ましくは200万〜900万である。かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、さらに良好な難燃性および透明性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。混合形態のPTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3000」(商品名)、「メタブレン A3700」(商品名)、「メタブレン A3750」(商品名)、Shine Polymer 製の「SN3307」(商品名)、Shine Polymer 製の「SN3305」(商品名)などを挙げることができる。
(IV) Anti-drip agent The resin composition of the present invention is excellent in anti-drip property, but a normal anti-drip agent can be used in combination to further reinforce such performance. The amount is preferably 0.3 parts by weight or less, more preferably 0.1 parts by weight or less, still more preferably 0.08 parts by weight or less, and most preferably 0.05 parts by weight or less with respect to 100 parts by weight of component A. Examples of such an anti-drip agent include a fluorine-containing polymer having a fibril forming ability. Polytetrafluoroethylene (hereinafter sometimes referred to as PTFE) is particularly preferable. The term “transparency” does not impair transparency, for example, to use PTFE in an amount that does not exceed 5% of the haze of a 2 mm thick plate. PTFE having a fibril forming ability has a very high molecular weight, and tends to be bonded to each other by an external action such as shearing force to form a fiber. The molecular weight is preferably 1 million to 10 million, and more preferably 2 million to 9 million, in the number average molecular weight determined from the standard specific gravity. Such PTFE can be used in solid form or in the form of an aqueous dispersion. In addition, PTFE having such fibril-forming ability can improve the dispersibility in the resin, and it is also possible to use a PTFE mixture in a mixed form with other resins in order to obtain better flame retardancy and transparency. . As commercial products of PTFE in a mixed form, “METABRENE A3000” (trade name), “METABBRENE A3700” (trade name), “METABBRENE A3750” (trade name) manufactured by Mitsubishi Rayon Co., Ltd., “SN3307” manufactured by Shine Polymer (Trade name), “SN3305” (trade name) manufactured by Shine Polymer, and the like.

(V)その他
上記以外にも本発明の難燃性ポリカーボネート樹脂組成物には、成形品に種々の機能の付与や特性改善のために、他の熱可塑性樹脂やそれ自体知られた添加物を少割合配合することができる。これら添加物は本発明の目的を損なわない限り、通常の配合量である。
かかる添加剤としては、着色剤(例えばカーボンブラック、酸化チタンなどの顔料、染料)、蛍光染料、光安定剤(ヒンダードアミン化合物に代表される)、無機系蛍光体(例えばアルミン酸塩を母結晶とする蛍光体)、帯電防止剤、結晶核剤、無機および有機の抗菌剤、光触媒系防汚剤(例えば微粒子酸化チタン、微粒子酸化亜鉛)、離型剤、流動改質剤、ラジカル発生剤、赤外線吸収剤(熱線吸収剤)、並びにフォトクロミック剤などが挙げられる。
(V) Others In addition to the above, the flame-retardant polycarbonate resin composition of the present invention contains other thermoplastic resins and additives known per se for imparting various functions to the molded product and improving properties. A small proportion can be blended. These additives are used in usual amounts as long as the object of the present invention is not impaired.
Examples of such additives include colorants (for example, pigments and dyes such as carbon black and titanium oxide), fluorescent dyes, light stabilizers (typified by hindered amine compounds), and inorganic phosphors (for example, aluminate as a base crystal). Phosphors), antistatic agents, crystal nucleating agents, inorganic and organic antibacterial agents, photocatalytic antifouling agents (eg fine particle titanium oxide, fine particle zinc oxide), mold release agents, flow modifiers, radical generators, infrared rays Examples include absorbents (heat ray absorbents) and photochromic agents.

他の熱可塑性樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアルキルメタクリレート樹脂などに代表される汎用プラスチックス、ポリフェニレンエーテル樹脂、ポリアセタール樹脂、ポリアミド樹脂、環状ポリオレフィン樹脂、ポリアリレート樹脂(非晶性ポリアリレート、液晶性ポリアリレート)等に代表されるエンジニアリングプラスチックス、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイドなどのいわゆるスーパーエンジニアリングプラスチックスと呼ばれるものを挙げることができる。さらにオレフィン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなどの熱可塑性エラストマーも使用することができる。   Other thermoplastic resins include, for example, general-purpose plastics represented by polyethylene resin, polypropylene resin, polyalkyl methacrylate resin, polyphenylene ether resin, polyacetal resin, polyamide resin, cyclic polyolefin resin, polyarylate resin (non-crystalline) And so-called super engineering plastics such as engineering plastics typified by polyarylate and liquid crystalline polyarylate), polyetheretherketone, polyetherimide, polysulfone, polyethersulfone, and polyphenylene sulfide. . Furthermore, thermoplastic elastomers such as olefin-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, and polyurethane-based thermoplastic elastomers can also be used.

<樹脂組成物からなる押し出し成形品の製造について>
本発明の樹脂組成物からなる押し出し成形品を製造するには、任意の方法が採用される。例えばA成分、B成分、C成分、D成分および任意にE成分、F成分、他の成分をそれぞれV型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などの予備混合手段を用いて充分に混合した後、必要に応じて押出造粒器やブリケッティングマシーンなどにより造粒を行い、その後溶融押し出ししてシート(異型シートを含む)を製造することができる。別法として、A成分、B成分、C成分、D成分および任意にE成分、F成分、他の成分をそれぞれ独立にベント式二軸ルーダーに代表される溶融混練機に供給する方法、A成分および他の成分の一部を予備混合した後、残りの成分と独立に溶融混練機に供給する方法、B成分を水または有機溶剤で希釈混合した後、溶融混練機に供給、またはかかる希釈混合物を他の成分と予備混合した後、溶融混練機に供給する方法なども挙げられる。なお、配合する成分に液状のものがある場合には、溶融混練機への供給にいわゆる液注装置、または液添装置を使用することができる。
<About the manufacture of an extrusion molded product comprising a resin composition>
In order to produce an extrusion-molded article comprising the resin composition of the present invention, any method is adopted. For example, A component, B component, C component, D component and optionally E component, F component, and other components can be sufficiently obtained using premixing means such as V-type blender, Henschel mixer, mechanochemical device, extrusion mixer, etc. After mixing, if necessary, granulation can be performed by an extrusion granulator or a briquetting machine, and then melt extrusion is performed to produce a sheet (including atypical sheet). As another method, A component, B component, C component, D component and optionally E component, F component, and other components are each independently fed to a melt kneader represented by a vent type twin screw rudder, A component And a method in which a part of other components is premixed and then supplied to the melt-kneader independently of the remaining components, the component B is diluted and mixed with water or an organic solvent, and then supplied to the melt-kneader, or such a diluted mixture There is also a method of premixing with other components and then feeding to a melt-kneader. In addition, when there exists a liquid thing in the component to mix | blend, what is called a liquid injection apparatus or a liquid addition apparatus can be used for supply to a melt kneader.

また賦型シートは、例えば凸形状やV字形状を有する賦型ロールを用いて、溶融押し出ししたシートを製造する方法であり、賦型の形状については特に制限するものではない。さらに樹脂組成物から形成された押し出し成形品には、各種の表面処理を行うことが可能である。表面処理としては、加飾塗装、ハードコート、撥水・撥油コート、親水コート、紫外線吸収コート、赤外線吸収コート、電磁波吸収コート、発熱コート、帯電防止コート、制電コート、導電コート、並びにメタライジング(メッキ、化学蒸着(CVD)、物理蒸着(PVD)、溶射など)などの各種の表面処理を行うことができる。殊にシートや賦型シートは必要に応じて、片面または/および両面に、例えばUVカット機能、帯電防止性能、IRカット性能、電磁波カット性能を有する層(透明導電層)を積層させた積層体であってもよい。積層体を得る方法としては、共押出による方法あるいは溶融押出した後に、ラミネートフィルムや転写箔を熱圧着させる方法がある。   The shaping sheet is a method for producing a melt-extruded sheet using, for example, a shaping roll having a convex shape or a V-shape, and the shaping shape is not particularly limited. Furthermore, various surface treatments can be performed on the extrusion-molded product formed from the resin composition. Surface treatment includes decorative coating, hard coat, water / oil repellent coat, hydrophilic coat, UV absorbing coat, infrared absorbing coat, electromagnetic wave absorbing coat, heat generating coat, antistatic coat, antistatic coating, conductive coating, and meta coating. Various surface treatments such as rising (plating, chemical vapor deposition (CVD), physical vapor deposition (PVD), thermal spraying, etc.) can be performed. In particular, a sheet or a molded sheet is a laminate in which a layer (transparent conductive layer) having, for example, a UV cut function, an antistatic performance, an IR cut performance, and an electromagnetic wave cut performance is laminated on one side and / or both sides as required. It may be. As a method for obtaining a laminate, there are a method by coextrusion or a method in which a laminate film or a transfer foil is thermocompression bonded after melt extrusion.

これらの押し出し成形品は、真空成形、圧空成形等の熱成形に利用することができる。
またこれらの押し出し成形品は、照明用カバーまたは透過型ティスプレイ用カバー用途等に好適に使用される。
These extruded products can be used for thermoforming such as vacuum forming and pressure forming.
Further, these extruded products are suitably used for illumination covers or transmission-type display covers.

本発明のポリカーボネート樹脂組成物からなる押し出し成形品は、分岐率が限定された分岐構造を有する芳香族ポリカーボネート樹脂に、芳香族基を有するシリコーン化合物、有機金属塩化合物および光拡散剤を配合させた樹脂組成物において、これまでにないまでに有機アルカリ(土類)金属塩とシリコーン化合物の配合量を狭い範囲に限定することにより、高い光線透過率と拡散性を維持したままで、難燃性、表面外観が改善された難燃光拡散性ポリカーボネート樹脂組成物からなる押し出し成形品である。   The extrusion molded product comprising the polycarbonate resin composition of the present invention is obtained by blending an aromatic polycarbonate resin having a branched structure with a limited branching rate with a silicone compound having an aromatic group, an organometallic salt compound, and a light diffusing agent. In the resin composition, by limiting the blending amount of the organic alkali (earth) metal salt and the silicone compound to a narrow range so far, flame retardancy is maintained while maintaining high light transmittance and diffusibility. An extruded product comprising a flame retardant light diffusing polycarbonate resin composition having an improved surface appearance.

本発明のポリカーボネート樹脂組成物からなる押し出し成形品は、環境負荷が高いとされる臭素系難燃剤やリン系難燃剤を使用せずに高度な難燃性を付与することが可能であり、また高い光線透過率を有しており、導光板、面発光構造体、拡散板および照明用カバー等の各種工業用途に極めて有用であり、その奏する工業的効果は極めて大である。   The extrusion molded product comprising the polycarbonate resin composition of the present invention can impart a high level of flame retardancy without using a brominated flame retardant or a phosphorus flame retardant, which is considered to have a high environmental load. It has a high light transmittance and is extremely useful for various industrial applications such as a light guide plate, a surface light emitting structure, a diffuser plate, and a lighting cover, and the industrial effects exerted thereby are extremely great.

本発明における分散度の測定方法を示す概略図である。It is the schematic which shows the measuring method of the dispersion degree in this invention.

本発明者らが現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。   The form of the present invention considered to be the best by the present inventors is a collection of the preferable ranges of the above requirements. For example, typical examples are described in the following examples. Of course, the present invention is not limited to these forms.

以下に実施例を挙げてさらに説明するが、本発明はそれに限定されるものではない。
尚、評価としては以下の項目について実施した。
The present invention will be further described below with reference to examples, but the present invention is not limited thereto.
The following items were evaluated.

(i)難燃性
実施例の各組成から得られたシートから難燃性評価用の試験片を作成した。UL規格94の垂直燃焼試験を、厚み2.2mm、1.5mmで行いその等級を評価した。なお、判定がV−0、V−1、V−2のいずれの基準も満たすことが出来なかった場合「notV」と示すこととする。
(I) Flame retardancy A test piece for flame retardancy evaluation was prepared from a sheet obtained from each composition of the examples. The vertical combustion test of UL standard 94 was conducted at thicknesses of 2.2 mm and 1.5 mm, and the grade was evaluated. When the determination fails to satisfy any of the criteria of V-0, V-1, and V-2, “notV” is indicated.

(ii)光学特性
(1)全光線透過率:実施例の各組成から得られたシートから試験片を作成した。厚み2mmのシートを試験片として、村上色彩技術研究所(株)製のヘーズメーターHR−100を使用して、その厚み方向の透過率をJIS−K 7136に従い測定した。
(Ii) Optical characteristics (1) Total light transmittance: A test piece was prepared from a sheet obtained from each composition of the examples. The transmittance in the thickness direction was measured in accordance with JIS-K 7136 using a haze meter HR-100 manufactured by Murakami Color Research Laboratory Co., Ltd. using a sheet having a thickness of 2 mm as a test piece.

(2)拡散光線透過率:実施例の各組成から得られたシートから試験片を作成した。村上色彩技術研究所(株)製のヘーズメーターHR−100を使用して、一辺150mm、厚み2mmの平板状試験片厚み方向の拡散光線透過率をJIS−K 7136に従い測定した。   (2) Diffuse light transmittance: A test piece was prepared from a sheet obtained from each composition of the examples. Using a haze meter HR-100 manufactured by Murakami Color Research Laboratory Co., Ltd., the diffuse light transmittance in the thickness direction of a flat test piece having a side of 150 mm and a thickness of 2 mm was measured according to JIS-K 7136.

(3)拡散度:実施例の各組成から得られたシートから試験片を作成した。一辺150mm、厚み2mmの平板状試験片の拡散度を日本色彩技術研究所(株)製の変角光度計を使用して測定した。その際の測定方法を図1に示す。尚、拡散度とは図1において光線を上方から垂直に試験片面に当てたときγ=0度のときの透過光量を100とした場合、その透過光量が50になるときのγの角度をいう。   (3) Diffusivity: A test piece was prepared from a sheet obtained from each composition of the example. The diffusivity of a flat test piece having a side of 150 mm and a thickness of 2 mm was measured using a variable angle photometer manufactured by Nippon Color Technology Laboratory Co., Ltd. The measurement method in that case is shown in FIG. Note that the diffusivity is the angle of γ when the amount of transmitted light is 50 when the amount of transmitted light is 100 when γ = 0 degrees when a light beam is vertically applied to the specimen surface in FIG. .

(4)面発光性:実施例の各組成から得られたシートから試験片を作成した。一辺150mm、厚み2mmの白色板射板の上部に、一辺150mm、厚み4mmの平板状試験片を重ね合わせ、試験片の側面に直径3mm、長さ170mmの冷陰極管を設置し試験片の発光性を目視確認した。判定は発光面が明るい物を○、やや暗い物を△、暗い物を×で示した。   (4) Surface luminous property: A test piece was prepared from a sheet obtained from each composition of the examples. A flat plate test piece with a side of 150 mm and a thickness of 4 mm is superimposed on the top of a white plate with a side of 150 mm and a thickness of 2 mm, and a cold cathode tube with a diameter of 3 mm and a length of 170 mm is placed on the side of the test piece to emit light from the test piece. The property was confirmed visually. Judgment is indicated by ◯ for a light emitting surface, Δ for a slightly darker object, and × for a darker object.

(iii)シート外観:実施例の各組成から得られた幅約1000mmのシートにおいて目視による評価を行った。外観が良好なものを○、押出成形時におけるガスにより外観が悪化したものを×とした。   (Iii) Sheet appearance: Visual evaluation was performed on a sheet having a width of about 1000 mm obtained from each composition of the examples. A sample having a good appearance was marked with ◯, and a sample with a deteriorated appearance due to gas during extrusion molding was marked with ×.

[実施例1〜27および比較例1〜9]
表1〜表3記載の配合割合からなる樹脂組成物を以下の要領で作成した。尚、説明は以下の表中の記号にしたがって説明する。表の割合の各成分を計量して、タンブラーを用いて均一に混合し、かかる混合物をベント付きTダイ押出機により、押出機温度270〜320℃、ダイス温度290〜320℃で幅約1000mm、厚み2.2mm、1.5mm、4mm、2mmのシートをそれぞれ溶融押し出しした。得られたシートを上記の方法を用い、難燃性評価用および光学特性評価用の試験片を成形した。なお、表1〜表3に記載の使用した原料等は以下の通りである。
[Examples 1 to 27 and Comparative Examples 1 to 9]
The resin composition which consists of a mixture ratio of Table 1-Table 3 was created in the following ways. The description will be made according to the symbols in the following table. Each component in the ratio in the table is weighed and uniformly mixed using a tumbler, and the mixture is subjected to a T-die extruder with a vent at an extruder temperature of 270 to 320 ° C., a die temperature of 290 to 320 ° C., a width of about 1000 mm, Sheets having a thickness of 2.2 mm, 1.5 mm, 4 mm, and 2 mm were respectively melt extruded. A test piece for flame retardancy evaluation and optical property evaluation was molded from the obtained sheet using the above method. The raw materials used in Tables 1 to 3 are as follows.

(A成分)
(A−1成分)
PC−B15H:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率1.52mol%、分子量24,800)
(PC−B15Hの製造方法)
温度計、攪拌機、還流冷却器付き反応器にイオン交換水2340部、25%水酸化ナトリウム水溶液947部、ハイドロサルファイト0.7部を仕込み、攪拌下にビスフェノールA710部を溶解した(ビスフェノールA溶液)後、塩化メチレン2299部と48.5%水酸化ナトリウム水溶液112部、14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液61.0部(1.60mol%)を加えて、15〜25℃でホスゲン357部を約90分かけて吹き込みホスゲン化反応を行った。ホスゲン化終了後、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液245部と48.5%水酸化ナトリウム水溶液88部を加えて、攪拌を停止し、10分間静置分離後、攪拌を行い乳化させ5分後、ホモミキサー(特殊機化工業(株))で回転数1200rpm、バス回数35回で処理し高乳化ドープを得た。該高乳化ドープを重合槽(攪拌機付き)で、無攪拌条件下、温度35℃で3時間反応し重合を終了した。反応終了後、塩化メチレン5728部を加えて希釈した後、反応混合液から塩化メチレン相を分離し、分離した塩化メチレン相にイオン交換水5000部を加え攪拌混合した後、攪拌を停止し、水相と有機相を分離した。次に水相の導電率がイオン交換水と殆ど同じになるまで水洗浄を繰返し精製ポリカーボネート樹脂溶液を得た。次に、該精製ポリカーボネート樹脂溶液をイオン交換水100Lを投入した1000Lニーダーで、液温75℃にて塩化メチレンを蒸発させて粉粒体を得た。該粉粒体25部と水75部を攪拌機付熱水処理槽に投入し、水温95℃で30分間攪拌混合した。次いで、該粉粒体と水の混合物を遠心分離機で分離して、塩化メチレン0.5重量%、水45重量%を含む粉粒体を得た。次に、この粉粒体を140℃にコントロールされているSUS316L製伝導受熱式溝型2軸攪拌連続乾燥機に50kg/hr(ポリカーボネート樹脂換算)で連続供給して、平均乾燥時間3時間の条件で乾燥して、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量24,800、分岐率1.52mol%であった。
(Component A)
(A-1 component)
PC-B15H: Aromatic polycarbonate resin having a branched structure (branch rate 1.52 mol%, molecular weight 24,800)
(Manufacturing method of PC-B15H)
A reactor equipped with a thermometer, a stirrer, and a reflux condenser was charged with 2340 parts of ion-exchanged water, 947 parts of a 25% aqueous sodium hydroxide solution, and 0.7 parts of hydrosulfite, and 710 parts of bisphenol A was dissolved with stirring (bisphenol A solution). ) After that, 2299 parts of methylene chloride, 112 parts of 48.5% sodium hydroxide aqueous solution, aqueous solution of 1,1,1-tris (4-hydroxyphenyl) ethane dissolved in 25% concentration in 14% sodium hydroxide aqueous solution 61.0 parts (1.60 mol%) was added, and phosgene was reacted by blowing 357 parts of phosgene over 15 minutes at 15 to 25 ° C. After completion of phosgenation, 245 parts of 11% strength p-tert-butylphenol in methylene chloride and 88 parts of 48.5% aqueous sodium hydroxide solution were added, stirring was stopped, and after standing for 10 minutes, stirring was performed. After 5 minutes of emulsification, the mixture was processed with a homomixer (Special Machine Industries Co., Ltd.) at a rotation speed of 1200 rpm and a bath frequency of 35 times to obtain a highly emulsified dope. The highly emulsified dope was reacted in a polymerization tank (with a stirrer) at a temperature of 35 ° C. for 3 hours under non-stirring conditions to complete the polymerization. After completion of the reaction, 5728 parts of methylene chloride was added for dilution, the methylene chloride phase was separated from the reaction mixture, 5000 parts of ion-exchanged water was added to the separated methylene chloride phase and mixed with stirring, and the stirring was stopped. The phase and the organic phase were separated. Next, water washing was repeated until the conductivity of the aqueous phase was almost the same as that of ion-exchanged water to obtain a purified polycarbonate resin solution. Next, methylene chloride was evaporated at a liquid temperature of 75 ° C. with a 1000 L kneader in which 100 L of ion-exchanged water was added to the purified polycarbonate resin solution to obtain a granular material. 25 parts of the granular material and 75 parts of water were put into a hot water treatment tank equipped with a stirrer and stirred and mixed at a water temperature of 95 ° C. for 30 minutes. Subsequently, the mixture of the granular material and water was separated by a centrifugal separator to obtain a granular material containing 0.5% by weight of methylene chloride and 45% by weight of water. Next, this granular material was continuously supplied at 50 kg / hr (in terms of polycarbonate resin) to a SUS316L conductive heat receiving groove type biaxial stirring continuous dryer controlled at 140 ° C., and the condition of an average drying time of 3 hours And dried to obtain a polycarbonate resin particle having a branched structure. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 24,800 and a branching ratio of 1.52 mol%.

PC−B14H:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率1.46mol%、分子量24,900)
(PC−B14Hの製造方法)
ホスゲンを357部、14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液59.5部(1.56mol%)、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液243部に変更した以外は、PC−B15Hの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量24,900、分岐率1.46mol%であった。
PC-B14H: Aromatic polycarbonate resin having a branched structure (branch rate 1.46 mol%, molecular weight 24,900)
(Manufacturing method of PC-B14H)
357 parts of phosgene, 59.5 parts (1.56 mol%) of an aqueous solution in which 1,1,1-tris (4-hydroxyphenyl) ethane is dissolved at a concentration of 25% in a 14% aqueous sodium hydroxide solution, an 11% concentration A polycarbonate resin powder having a branched structure was obtained in the same manner as in the method for producing PC-B15H, except that 243 parts of p-tert-butylphenol in methylene chloride was used. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 24,900 and a branching ratio of 1.46 mol%.

PC−B14L:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率1.46mol%、分子量20,100)
(PC−B14Lの製造方法)
ホスゲンを359部、14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液59.8部(1.57mol%)、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液280部に変更した以外は、PC−B15Hの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量20,100、分岐率1.46mol%であった。
PC-B14L: Aromatic polycarbonate resin having a branched structure (branch ratio 1.46 mol%, molecular weight 20,100)
(Manufacturing method of PC-B14L)
359 parts of phosgene, 59.8 parts (1.57 mol%) of an aqueous solution prepared by dissolving 1,1,1-tris (4-hydroxyphenyl) ethane in a 14% strength aqueous sodium hydroxide solution at a 25% concentration, 11% strength A polycarbonate resin powder having a branched structure was obtained in the same manner as in the production method of PC-B15H, except that 280 parts of p-tert-butylphenol in methylene chloride was used. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 20,100 and a branching ratio of 1.46 mol%.

PC−B12L:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率1.27mol%、分子量20,200)
(PC−B12Lの製造方法)
ホスゲンを358部、14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液53.3部(1.40mol%)、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液276部に変更した以外は、PC−B15Hの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量20,200、分岐率1.27mol%であった。
PC-B12L: Aromatic polycarbonate resin having a branched structure (branching rate: 1.27 mol%, molecular weight: 20,200)
(Manufacturing method of PC-B12L)
358 parts of phosgene, 53.3 parts (1.40 mol%) of an aqueous solution in which 1,1,1-tris (4-hydroxyphenyl) ethane is dissolved at a concentration of 25% in a 14% aqueous sodium hydroxide solution, an 11% concentration A polycarbonate resin powder having a branched structure was obtained in the same manner as in the method for producing PC-B15H, except that 276 parts of p-tert-butylphenol in methylene chloride was used. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 20,200 and a branching rate of 1.27 mol%.

PC−B9H:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.96mol%、分子量25,100)
(PC−B9Hの製造方法)
ホスゲンを354部、14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液38.1部(1.00mol%)、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液219部に変更した以外は、PC−B15Hの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量25,100、分岐率0.96mol%であった。
PC-B9H: Aromatic polycarbonate resin having a branched structure (branching rate 0.96 mol%, molecular weight 25,100)
(Manufacturing method of PC-B9H)
354 parts of phosgene, 38.1 parts (1.00 mol%) of an aqueous solution in which 1,1,1-tris (4-hydroxyphenyl) ethane is dissolved at a concentration of 25% in a 14% aqueous sodium hydroxide solution, an 11% concentration A polycarbonate resin powder having a branched structure was obtained in the same manner as in the method for producing PC-B15H, except that 219 parts of p-tert-butylphenol in methylene chloride was used. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 25,100 and a branching ratio of 0.96 mol%.

PC−B9L:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.91mol%、分子量20,100)
(PC−B9Lの製造方法)
ホスゲンを355部、14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液38.1部(1.00mol%)、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液262部に変更した以外は、PC−B15Hの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量20,100、分岐率0.91mol%であった。
PC-B9L: Aromatic polycarbonate resin having a branched structure (branching rate 0.91 mol%, molecular weight 20,100)
(Manufacturing method of PC-B9L)
355 parts of phosgene, 38.1 parts (1.00 mol%) of an aqueous solution prepared by dissolving 1,1,1-tris (4-hydroxyphenyl) ethane in a 14% strength aqueous sodium hydroxide solution at a 25% concentration, 11% strength A polycarbonate resin powder having a branched structure was obtained in the same manner as in the method for producing PC-B15H, except that 262 parts of p-tert-butylphenol in methylene chloride was changed. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 20,100 and a branching ratio of 0.91 mol%.

PC−B7H:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.72mol%、分子量25,000)
(PC−B7Hの製造方法)
ホスゲンを352部、14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液29.0部(0.76mol%)、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液207部に変更した以外は、PC−B15Hの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量25,000、分岐率0.72mol%であった。
PC-B7H: Aromatic polycarbonate resin having a branched structure (branch rate 0.72 mol%, molecular weight 25,000)
(Manufacturing method of PC-B7H)
352 parts of phosgene, 29.0 parts (0.76 mol%) of an aqueous solution prepared by dissolving 1,1,1-tris (4-hydroxyphenyl) ethane at a 25% concentration in an aqueous 14% sodium hydroxide solution, an 11% concentration A polycarbonate resin powder having a branched structure was obtained in the same manner as in the production method of PC-B15H, except that 207 parts of p-tert-butylphenol in methylene chloride was used. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 25,000 and a branching rate of 0.72 mol%.

PC−B7L:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.74mol%、分子量20,100)
(PC−B7Lの製造方法)
ホスゲンを354部、14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液30.5部(0.80mol%)、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液253部に変更した以外は、PC−B15Hの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量20,100、分岐率0.74mol%であった。
PC-B7L: Aromatic polycarbonate resin having a branched structure (branch rate 0.74 mol%, molecular weight 20,100)
(Manufacturing method of PC-B7L)
354 parts of phosgene, 30.5 parts (0.80 mol%) of an aqueous solution prepared by dissolving 1,1,1-tris (4-hydroxyphenyl) ethane in a 14% strength aqueous sodium hydroxide solution at a 25% concentration, 11% concentration A polycarbonate resin powder having a branched structure was obtained in the same manner as in the method for producing PC-B15H, except that 253 parts of p-tert-butylphenol in methylene chloride was used. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 20,100 and a branching ratio of 0.74 mol%.

PC−B6H:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.67mol%、分子量25,100)
(PC−B6Hの製造方法)
ホスゲンを352部、14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液27.1部(0.71mol%)、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液205部に変更した以外は、PC−B15Hの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量25,100、分岐率0.67mol%であった。
PC-B6H: Aromatic polycarbonate resin having a branched structure (branch rate 0.67 mol%, molecular weight 25,100)
(Manufacturing method of PC-B6H)
352 parts of phosgene, 27.1 parts (0.71 mol%) of an aqueous solution in which 1,1,1-tris (4-hydroxyphenyl) ethane is dissolved at a concentration of 25% in an aqueous 14% sodium hydroxide solution, an 11% concentration A polycarbonate resin powder having a branched structure was obtained in the same manner as in the production method of PC-B15H except for changing to 205 parts of a methylene chloride solution of p-tert-butylphenol. The polycarbonate resin having a branched structure thus obtained had a viscosity average molecular weight of 25,100 and a branching rate of 0.67 mol%.

(A−2成分)
PC−L1:直鎖状ポリカーボネート樹脂(ホスゲン法で作成されたビスフェノールAおよび末端停止剤としてp−tert−ブチルフェノールからなるポリカーボネート樹脂。かかるポリカーボネート樹脂はアミン系触媒を使用せず製造され芳香族ポリカーボネート樹脂末端中、末端水酸基の割合は10mol%であり、粘度平均分子量は25,500であった。)
(A-2 component)
PC-L1: Linear polycarbonate resin (polycarbonate resin comprising bisphenol A prepared by the phosgene method and p-tert-butylphenol as a terminal stopper. This polycarbonate resin is produced without using an amine catalyst and is an aromatic polycarbonate resin. The ratio of the terminal hydroxyl group in the terminal was 10 mol%, and the viscosity average molecular weight was 25,500.)

(B成分)
B−1:Si−H基および芳香族基を含有するシリコーン化合物
(B−1の製造)
攪拌機、冷却装置、温度計を取り付けた1Lフラスコに水301.9gとトルエン150gを仕込み、内温5℃まで冷却した。滴下ロートにトリメチルクロロシラン21.7g、メチルジクロロシラン23.0g、ジメチルジクロロシラン12.9gおよびジフェニルジクロロシラン76.0gの混合物を仕込み、フラスコ内へ攪拌しながら2時間かけて滴下した。この間、内温を20℃以下に維持するよう、冷却を続けた。滴下終了後、さらに内温20℃で攪拌を4時間続けて熟成した後、静置して分離した塩酸水層を除去し、10%炭酸ナトリウム水溶液を添加して5分間攪拌後、静置して分離した水層を除去した。その後、さらにイオン交換水で3回洗浄し、トルエン層が中性になったことを確認した。このトルエン溶液を減圧下内温120℃まで加熱してトルエンと低沸点物を除去した後、濾過により不溶物を取り除いてシリコーン化合物B−1を得た。このシリコーン化合物B−1はSi−H基量が0.21mol/100g、芳香族基量が49重量%、平均重合度が8.0であった。
(B component)
B-1: Silicone compound containing Si—H group and aromatic group (production of B-1)
A 1 L flask equipped with a stirrer, a cooling device, and a thermometer was charged with 301.9 g of water and 150 g of toluene, and cooled to an internal temperature of 5 ° C. A mixture of 21.7 g of trimethylchlorosilane, 23.0 g of methyldichlorosilane, 12.9 g of dimethyldichlorosilane, and 76.0 g of diphenyldichlorosilane was charged into the dropping funnel and dropped into the flask over 2 hours while stirring. During this time, cooling was continued to maintain the internal temperature at 20 ° C. or lower. After completion of the dropwise addition, the mixture was further aged for 4 hours with stirring at an internal temperature of 20 ° C., then left to stand to remove the separated hydrochloric acid aqueous layer, added with 10% aqueous sodium carbonate solution, stirred for 5 minutes and then left to stand. The separated aqueous layer was removed. Then, it wash | cleaned 3 times with ion-exchange water, and it confirmed that the toluene layer became neutral. The toluene solution was heated to an internal temperature of 120 ° C. under reduced pressure to remove toluene and low-boiling substances, and then insoluble materials were removed by filtration to obtain a silicone compound B-1. This silicone compound B-1 had an Si—H group content of 0.21 mol / 100 g, an aromatic group content of 49% by weight, and an average degree of polymerization of 8.0.

B−2:Si−H基および芳香族基を含有するシリコーン化合物
(B−2の製造)
撹拌装置、冷却装置、温度計を取り付けた1Lフラスコに1,1,3,3−テトラメチルジシロキサン100.7g、1,3,5,7−テトラメチルシクロテトラシロキサン60.1g、オクタメチルシクロテトラシロキサン129.8g、オクタフェニルシクロテトラシロキサン143.8gおよびフェニルトリメトキシシラン99.1gを仕込み、さらに撹拌しながら濃硫酸25.0gを添加した。内温10℃まで冷却した後、水13.8gをフラスコ内へ撹拌しながら30分間かけて滴下した。この間、内温を20℃以下に維持するよう、冷却を続けた。滴下終了後、さらに内温10〜20℃で撹拌を5時間続けて熟成した後、水8.5gとトルエン300gを添加して30分間撹拌後、静置して分離した水層を除去した。その後、さらに5%硫酸ナトリウム水溶液で4回洗浄し、トルエン層が中性になったことを確認した。このトルエン溶液を減圧下内温120℃まで加熱してトルエンと低沸分を除去した後、濾過により不溶物を取り除いてシリコーン化合物B−2を得た。このシリコーン化合物B−2はSi−H基量が0.50mol/100g、芳香族基量が30重量%、平均重合度が10.95のシリコーン化合物であった。
B-2: Silicone compound containing Si—H group and aromatic group (production of B-2)
In a 1 L flask equipped with a stirrer, a cooling device and a thermometer, 100.7 g of 1,1,3,3-tetramethyldisiloxane, 60.1 g of 1,3,5,7-tetramethylcyclotetrasiloxane, octamethylcyclo 129.8 g of tetrasiloxane, 143.8 g of octaphenylcyclotetrasiloxane, and 99.1 g of phenyltrimethoxysilane were charged, and 25.0 g of concentrated sulfuric acid was added with further stirring. After cooling to an internal temperature of 10 ° C., 13.8 g of water was dropped into the flask over 30 minutes while stirring. During this time, cooling was continued to maintain the internal temperature at 20 ° C. or lower. After completion of the dropwise addition, the mixture was further aged at an internal temperature of 10 to 20 ° C. for 5 hours. Then, 8.5 g of water and 300 g of toluene were added, stirred for 30 minutes, and allowed to stand to remove the separated aqueous layer. Thereafter, it was further washed four times with a 5% aqueous sodium sulfate solution, and it was confirmed that the toluene layer became neutral. This toluene solution was heated to an internal temperature of 120 ° C. under reduced pressure to remove toluene and low-boiling components, and then insoluble materials were removed by filtration to obtain a silicone compound B-2. This silicone compound B-2 was a silicone compound having a Si—H group content of 0.50 mol / 100 g, an aromatic group content of 30 wt%, and an average degree of polymerization of 10.95.

B−3:Si−H基および芳香族基を含有するシリコーン化合物
(B−3の製造)
撹拌装置、冷却装置、温度計を取り付けた1Lフラスコにヘキサメチルジシロキサン16.2g、1,3,5,7−テトラメチルシクロテトラシロキサン61.0g、オクタメチルシクロテトラシロキサン103.8g、およびジフェニルジメトキシシラン391.0gを仕込み、さらに撹拌しながら濃硫酸25.0gを添加した。内温10℃まで冷却した後、水29.4gをフラスコ内へ撹拌しながら30分間かけて滴下した。この間、内温を20℃以下に維持するよう、冷却を続けた。滴下終了後、さらに内温10〜20℃で撹拌を5時間続けて熟成した後、水8.5gとトルエン300gを添加して30分間撹拌後、静置して分離した水層を除去した。その後、さらに5%硫酸ナトリウム水溶液で4回洗浄し、トルエン層が中性になったことを確認した。このトルエン溶液を減圧下内温120℃まで加熱してトルエンと低沸分を除去した後、濾過により不溶物を取り除いてシリコーン化合物B−3を得た。このシリコーン化合物B−3は、Si−H基量が0.20mol/100g、芳香族基量が50重量%、平均重合度が42.0のシリコーン化合物であった。
<各シリコーン化合物の示性式>
B−1: M φ2
B−2: M 3.5φ2 1.45φ
B−3: M 1014φ2 16
なお、上記示性式における各記号は以下のシロキサン単位を表し、各記号の係数(下付文字)は1分子中における各シロキサン単位の数(重合度)を示す。
M :(CHSiO1/2
: H(CHSiO1/2
D :(CHSiO
: H(CH)SiO
φ2 :(CSiO
φ :(C)SiO3/2
B-3: Silicone compound containing Si—H group and aromatic group (production of B-3)
In a 1 L flask equipped with a stirrer, a cooling device, and a thermometer, 16.2 g of hexamethyldisiloxane, 61.0 g of 1,3,5,7-tetramethylcyclotetrasiloxane, 103.8 g of octamethylcyclotetrasiloxane, and diphenyl 391.0 g of dimethoxysilane was charged, and 25.0 g of concentrated sulfuric acid was added with further stirring. After cooling to an internal temperature of 10 ° C., 29.4 g of water was dropped into the flask over 30 minutes while stirring. During this time, cooling was continued to maintain the internal temperature at 20 ° C. or lower. After completion of the dropwise addition, the mixture was further aged at an internal temperature of 10 to 20 ° C. for 5 hours. Then, 8.5 g of water and 300 g of toluene were added, stirred for 30 minutes, and allowed to stand to remove the separated aqueous layer. Thereafter, it was further washed four times with a 5% aqueous sodium sulfate solution, and it was confirmed that the toluene layer became neutral. This toluene solution was heated to an internal temperature of 120 ° C. under reduced pressure to remove toluene and low-boiling components, and then insoluble materials were removed by filtration to obtain a silicone compound B-3. This silicone compound B-3 was a silicone compound having an Si—H group amount of 0.20 mol / 100 g, an aromatic group amount of 50 wt%, and an average degree of polymerization of 42.0.
<Indication formula of each silicone compound>
B-1: M 2 DH 2 D 1 D φ2 3
B-2: M H 3 D H 2 D 3.5 D φ2 1.45 T φ 1
B-3: M 2 DH 10 D 14 D φ2 16
Each symbol in the above formula represents the following siloxane units, and the coefficient (subscript) of each symbol represents the number of siloxane units (degree of polymerization) in one molecule.
M: (CH 3 ) 3 SiO 1/2
M H : H (CH 3 ) 2 SiO 1/2
D: (CH 3 ) 2 SiO
D H: H (CH 3) SiO
D φ2 : (C 6 H 5 ) 2 SiO
: (C 6 H 5 ) SiO 3/2

(C成分)
C−1:パーフルオロブタンスルホン酸カリウム塩(大日本インキ(株)製メガファックF−114P)
C−2:パーフルオロブタンスルホン酸ナトリウム塩(大日本インキ(株)製メガファックF−114S)
(D成分)
D−1:ビーズ状架橋シリコン(東芝シリコーン(株)製:トスパール120(商品名)、平均粒子径2μm)
D−2:ビーズ状架橋シリコン(東芝シリコーン(株)製:トスパール145(商品名)、平均粒子径5μm)
D−3:ビーズ状架橋アクリル粒子(積水化成品工業(株)製:MBX−5(商品名)、平均粒子径5μm)
D−4:ビーズ状架橋アクリル粒子(積水化成品工業(株)製:MBX−30(商品名)、平均粒子径30μm)
(E成分)
E−1:ベンゾトリアゾール系紫外線吸収剤(ケミプロ化成工業(株)製:ケミソーブ79)
(F成分)
F−1:蛍光増白剤(ハッコールケミカル(株)製:ハッコールPSR)
(その他の成分)
PEPQ:テトラキス(ジ−t−ブチルフェニル)−ビフェニレンジホスホナイト(クラリアントジャパン製:Sandstab P−EPQ(商品名))
IRX:ヒンダードフェノール系酸化防止剤(チバ・スペシャルティ・ケミカルズ社製:Irganox1076)
L1:製飽和脂肪酸エステル系離型剤(理研ビタミン(株)製:リケマールSL900)
SN−3305:ドリップ防止剤(Shine Polymer 製:SN3305)
(C component)
C-1: Perfluorobutanesulfonic acid potassium salt (Megafac F-114P, manufactured by Dainippon Ink, Inc.)
C-2: Sodium perfluorobutanesulfonate (Megafac F-114S, manufactured by Dainippon Ink, Inc.)
(D component)
D-1: Bead-like crosslinked silicon (manufactured by Toshiba Silicone Co., Ltd .: Tospearl 120 (trade name), average particle diameter 2 μm)
D-2: Bead-like crosslinked silicon (manufactured by Toshiba Silicone Co., Ltd .: Tospearl 145 (trade name), average particle size 5 μm)
D-3: Bead-like crosslinked acrylic particles (manufactured by Sekisui Plastics Co., Ltd .: MBX-5 (trade name), average particle diameter 5 μm)
D-4: Beaded crosslinked acrylic particles (manufactured by Sekisui Plastics Co., Ltd .: MBX-30 (trade name), average particle size 30 μm)
(E component)
E-1: Benzotriazole ultraviolet absorber (Kemipro Kasei Kogyo Co., Ltd .: Chemisorb 79)
(F component)
F-1: Fluorescent whitening agent (manufactured by Hakkol Chemical Co., Ltd .: Hakkol PSR)
(Other ingredients)
PEPQ: Tetrakis (di-t-butylphenyl) -biphenylenediphosphonite (manufactured by Clariant Japan: Sandstab P-EPQ (trade name))
IRX: Hindered phenol antioxidant (Ciba Specialty Chemicals: Irganox 1076)
L1: Saturated fatty acid ester release agent (Riken Vitamin Co., Ltd .: Riquemar SL900)
SN-3305: Anti-drip agent (manufactured by Shine Polymer: SN3305)

Figure 0006042593
Figure 0006042593

Figure 0006042593
Figure 0006042593

Figure 0006042593
Figure 0006042593

本発明のポリカーボネート樹脂組成物からなる押し出し成形品は、導光板、面発光構造体、拡散板および照明用カバーとして有用である。   The extrusion-molded article comprising the polycarbonate resin composition of the present invention is useful as a light guide plate, a surface light emitting structure, a diffusion plate and a lighting cover.

A.試験片
B.光源
γ.拡散度
A. Test piece B. Light source γ. Diffusion degree

Claims (9)

(A)分岐率0.70〜1.50mol%の分岐構造を有する芳香族ポリカーボネート樹脂(A成分)100重量部に対して、(B)芳香族基を有するシリコーン化合物(B成分)0.05〜1.8重量部、(C)有機金属塩化合物(C成分)0.005〜1.0重量部、および(D)平均粒径1〜30μmの光拡散剤(D成分)0.005〜3.0重量部を含む難燃光拡散性ポリカーボネート樹脂組成物からなる押し出し成形品。 (A) 100 parts by weight of an aromatic polycarbonate resin (component A) having a branched structure with a branching rate of 0.70 to 1.50 mol%, (B) a silicone compound having an aromatic group (component B) 0.05 ~ 1.8 parts by weight, (C) organometallic salt compound (C component) 0.005 to 1.0 part by weight, and (D) light diffusing agent (D component) 0.005 having an average particle diameter of 1 to 30 µm. An extruded product comprising a flame retardant light diffusing polycarbonate resin composition containing 3.0 parts by weight. B成分が分子中にSi−H基を含有するシリコーン化合物であることを特徴とする請求項1記載の難燃光拡散性ポリカーボネート樹脂組成物からなる押し出し成形品。   The extrusion molded article comprising the flame retardant light diffusing polycarbonate resin composition according to claim 1, wherein the B component is a silicone compound containing a Si-H group in the molecule. C成分がパーフルオロアルキルスルホン酸アルカリ(土類)金属塩、芳香族スルホン酸アルカリ(土類)金属塩、および芳香族系イミドのアルカリ(土類)金属塩からなる群より選択される1種以上の有機アルカリ(土類)金属塩であることを特徴とする請求項1または2に記載の難燃光拡散性ポリカーボネート樹脂組成物からなる押し出し成形品。   1 type in which C component is selected from the group consisting of alkali (earth) metal salts of perfluoroalkyl sulfonates, alkali (earth) metal aromatic sulfonates, and alkali (earth) metal salts of aromatic imides 3. An extruded product comprising the flame retardant light diffusing polycarbonate resin composition according to claim 1 or 2, which is an organic alkali (earth) metal salt as described above. D成分が、高分子微粒子である請求項1〜3のいずれか1項に記載の難燃光拡散性ポリカーボネート樹脂組成物からなる押し出し成形品。   The extruded component comprising the flame retardant light diffusing polycarbonate resin composition according to any one of claims 1 to 3, wherein the D component is polymer fine particles. A成分100重量部に対して、(E)紫外線吸収剤(E成分)0.01〜3重量部を含むことを特徴とする請求項1〜4のいずれか1項に記載の難燃光拡散性ポリカーボネート
樹脂組成物からなる押し出し成形品。
The flame retardant light diffusion according to any one of claims 1 to 4, comprising 0.01 to 3 parts by weight of (E) ultraviolet absorber (E component) with respect to 100 parts by weight of component A. Extruded molded product made of a conductive polycarbonate resin composition.
A成分100重量部に対して、(F)蛍光増白剤(F成分)0.001〜0.1重量部を含むことを特徴とする請求項1〜5のいずれか1項に記載の難燃光拡散性ポリカーボネート樹脂組成物からなる押し出し成形品。   The difficulty according to any one of claims 1 to 5, comprising 0.001 to 0.1 parts by weight of (F) a fluorescent whitening agent (F component) with respect to 100 parts by weight of the A component. Extruded molded product made of a flame diffusing polycarbonate resin composition. 厚さ1.5mmの成形品において、UL94規格の難燃レベルV−0を達成する請求項1〜6のいずれか1項に記載の難燃光拡散性ポリカーボネート樹脂組成物からなる押し出し成形品。   An extruded product comprising the flame retardant light diffusing polycarbonate resin composition according to any one of claims 1 to 6, wherein a flame retardant level V-0 of UL94 standard is achieved in a molded product having a thickness of 1.5 mm. 押し出し成形品が、押し出しシート、押し出し賦型シート、または異型押し出し品である請求項1〜7のいずれか1項に記載の難燃光拡散性ポリカーボネート樹脂組成物からなる押し出し成形品。   The extrusion-molded product comprising the flame-retardant light diffusing polycarbonate resin composition according to any one of claims 1 to 7, wherein the extrusion-molded product is an extruded sheet, an extrusion-molded sheet, or a modified extrusion-molded product. 押し出し成形品が、照明用カバーである請求項1〜7のいずれか1項に記載の難燃光拡散性ポリカーボネート樹脂組成物からなる押し出し成形品。   The extruded product is a cover for lighting. The extruded product comprising the flame-retardant light diffusing polycarbonate resin composition according to any one of claims 1 to 7.
JP2010089423A 2009-11-05 2010-04-08 Extruded molded product made of flame retardant light diffusing polycarbonate resin composition Active JP6042593B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010089423A JP6042593B2 (en) 2010-04-08 2010-04-08 Extruded molded product made of flame retardant light diffusing polycarbonate resin composition
EP10828412.6A EP2497800A4 (en) 2009-11-05 2010-11-05 Extrusion-molded article comprising aromatic polycarbonate resin composition
US13/505,794 US20120217439A1 (en) 2009-11-05 2010-11-05 Extrusion-molded product from aromatic polycarbonate resin composition
KR1020127011509A KR20120114220A (en) 2009-11-05 2010-11-05 Extrusion-molded article comprising aromatic polycarbonate resin composition
CN2010800501630A CN102597111A (en) 2009-11-05 2010-11-05 Extrusion-molded article comprising aromatic polycarbonate resin composition
TW099138073A TW201129605A (en) 2009-11-05 2010-11-05 Extrusion-molded article comprising aromatic polycarbonate resin composition
PCT/JP2010/070156 WO2011055854A1 (en) 2009-11-05 2010-11-05 Extrusion-molded article comprising aromatic polycarbonate resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089423A JP6042593B2 (en) 2010-04-08 2010-04-08 Extruded molded product made of flame retardant light diffusing polycarbonate resin composition

Publications (2)

Publication Number Publication Date
JP2011219595A JP2011219595A (en) 2011-11-04
JP6042593B2 true JP6042593B2 (en) 2016-12-14

Family

ID=45036988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089423A Active JP6042593B2 (en) 2009-11-05 2010-04-08 Extruded molded product made of flame retardant light diffusing polycarbonate resin composition

Country Status (1)

Country Link
JP (1) JP6042593B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5840832B2 (en) * 2010-08-10 2016-01-06 帝人株式会社 Lighting cover
JP5725535B2 (en) * 2010-11-04 2015-05-27 住化スタイロンポリカーボネート株式会社 Flame retardant polycarbonate resin composition with excellent transparency
JP5843603B2 (en) * 2011-12-22 2016-01-13 住化スタイロンポリカーボネート株式会社 Lighting cover made of polycarbonate resin
JP6133644B2 (en) * 2013-03-25 2017-05-24 帝人株式会社 Flame retardant light diffusing polycarbonate resin composition
JP6483340B2 (en) * 2014-02-24 2019-03-13 帝人株式会社 Polycarbonate resin composition having light guide performance and light guide comprising the same
JP7067480B2 (en) * 2016-10-06 2022-05-16 ソニーグループ株式会社 Transmissive resin composition and transmissive resin molded product
JP7194610B2 (en) 2019-02-13 2022-12-22 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition molding

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3779624B2 (en) * 2001-08-30 2006-05-31 帝人化成株式会社 Transparent flame retardant aromatic polycarbonate resin composition
JP4515778B2 (en) * 2004-01-15 2010-08-04 帝人化成株式会社 Flame retardant aromatic polycarbonate resin composition
JP2006249292A (en) * 2005-03-11 2006-09-21 Teijin Chem Ltd Polycarbonate resin composition
JP5032008B2 (en) * 2005-07-27 2012-09-26 帝人化成株式会社 Aromatic polycarbonate resin composition

Also Published As

Publication number Publication date
JP2011219595A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
WO2011055854A1 (en) Extrusion-molded article comprising aromatic polycarbonate resin composition
WO2011049228A1 (en) Aromatic polycarbonate resin composition
JP5571279B2 (en) Flame retardant light diffusing polycarbonate resin composition
JP5032008B2 (en) Aromatic polycarbonate resin composition
JP5808425B2 (en) RESIN COMPOSITION HAVING LIGHT GUIDE PERFORMANCE, LIGHT GUIDE MOLDED PRODUCT COMPRISING THE SAME
JP5847292B2 (en) Light diffusing resin composition
JP6042593B2 (en) Extruded molded product made of flame retardant light diffusing polycarbonate resin composition
JP2006249288A (en) Light-diffusing aromatic polycarbonate resin composition
JP2011099030A (en) Extrusion molded product made of aromatic polycarbonate resin composition
JP5809358B2 (en) RESIN COMPOSITION HAVING LIGHT GUIDE PERFORMANCE, LIGHT GUIDE PLATE AND SURFACE LIGHT SOURCE BODY COMPRISING THE SAME
JP2011116839A (en) Flame-retardant light-diffusive polycarbonate resin composition
JP5947117B2 (en) Fluorescent light emitting resin composition
JP4243497B2 (en) Flame retardant aromatic polycarbonate resin composition
JP2010168463A (en) Flame-retardant, light-diffusing polycarbonate resin composition
JP2011105862A (en) Aromatic polycarbonate resin composition
JP2012162610A (en) Light-emitting, flame-retardant and high-light transmission resin composition
JP2016108389A (en) Light diffusing polycarbonate resin composition
JP2013221046A (en) Resin composition having light guide performance, and light guide plate and planar light source body obtained from the resin composition
JP2011084692A (en) Aromatic polycarbonate resin composition
JP4515778B2 (en) Flame retardant aromatic polycarbonate resin composition
JP2011088951A (en) Aromatic polycarbonate resin composition
JP2012214660A (en) Emission flame retardant light-diffusing resin composition and resin plate
JP2011084671A (en) Extrusion molded article formed from aromatic polycarbonate resin composition
JP2012162609A (en) Light-emitting, flame-retardant and high-light transmission resin board
JP2011194733A (en) Transparent flame retardant laminated plate made of polycarbonate resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150324

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161110

R150 Certificate of patent or registration of utility model

Ref document number: 6042593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150