JP5571279B2 - Flame retardant light diffusing polycarbonate resin composition - Google Patents

Flame retardant light diffusing polycarbonate resin composition Download PDF

Info

Publication number
JP5571279B2
JP5571279B2 JP2007284822A JP2007284822A JP5571279B2 JP 5571279 B2 JP5571279 B2 JP 5571279B2 JP 2007284822 A JP2007284822 A JP 2007284822A JP 2007284822 A JP2007284822 A JP 2007284822A JP 5571279 B2 JP5571279 B2 JP 5571279B2
Authority
JP
Japan
Prior art keywords
polycarbonate resin
flame retardant
weight
component
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007284822A
Other languages
Japanese (ja)
Other versions
JP2009108281A (en
Inventor
龍介 池松
麻衣子 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2007284822A priority Critical patent/JP5571279B2/en
Priority to CNA2008101738402A priority patent/CN101423655A/en
Publication of JP2009108281A publication Critical patent/JP2009108281A/en
Application granted granted Critical
Publication of JP5571279B2 publication Critical patent/JP5571279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、難燃光拡散性ポリカーボネート樹脂組成物に関する。更に詳しくは、光拡散性ポリカーボネートの優れた光学特性と、高い難燃特性の両立を達成する難燃光拡散性ポリカーボネート樹脂組成物に関する。   The present invention relates to a flame retardant light diffusing polycarbonate resin composition. More specifically, the present invention relates to a flame retardant light diffusing polycarbonate resin composition that achieves both excellent optical properties of light diffusing polycarbonate and high flame retardant properties.

従来から各種照明カバー、ディスプレイカバー、自動車メーター、各種銘板などの光拡散性が要求される用途に、芳香族ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂といった透明性樹脂に有機物や無機物の光拡散剤を分散させた材料が広く用いられている。この様な透明性樹脂の中で特に芳香族ポリカーボネート樹脂は機械的特性、耐熱性、耐候性に優れている上、高い光線透過率を備えた樹脂として幅広く使用されている。また光拡散剤としては、架橋構造を有する有機系粒子があり、さらに詳しくは架橋アクリル系粒子、架橋シリコン系粒子や架橋スチレン系粒子などが挙げられる。さらに炭酸カルシウム、硫酸バリウム、水酸化アルミニウム、二酸化ケイ素、酸化チタン、弗化カルシウムなどの無機系粒子あるいはガラス短繊維などの無機系繊維がある。特に有機系粒子は無機系粒子に比べて成形品の表面平滑性に優れており高度な成形品外観を達成できるため、幅広い用途に適用可能である。   Disperse organic and inorganic light diffusing agents in transparent resins such as aromatic polycarbonate resin, acrylic resin, and styrene resin for applications that require light diffusibility such as various lighting covers, display covers, automobile meters, and various nameplates. The material used is widely used. Among such transparent resins, aromatic polycarbonate resins are particularly widely used as resins having excellent mechanical properties, heat resistance, weather resistance, and high light transmittance. Examples of the light diffusing agent include organic particles having a crosslinked structure, and more specifically, crosslinked acrylic particles, crosslinked silicon particles, and crosslinked styrene particles. Further, there are inorganic particles such as calcium carbonate, barium sulfate, aluminum hydroxide, silicon dioxide, titanium oxide, calcium fluoride, and inorganic fibers such as short glass fibers. In particular, organic particles are excellent in surface smoothness of molded products as compared with inorganic particles and can achieve a high appearance of molded products, and thus can be applied to a wide range of applications.

しかしながら、近年では樹脂製照明カバーにおいて火災時のもらい火が延焼を促進するとして、光拡散性ポリカーボネート樹脂にもUL規格(米国アンダーライターズラボラトリー規格)−94においてV−0という高度な難燃性が要求され始めている。芳香族ポリカーボネート樹脂はアクリル樹脂、スチレン樹脂などの透明性樹脂難燃性に比べて優れた難燃特性を有しているが、高度な難燃特性(V−0)を得るためには燃焼時の樹脂の滴下(ドリップ)を防止する必要がある。   However, in recent years, flaming fires at the time of fire in resin lighting covers promote the spread of fire, and light diffusing polycarbonate resin also has a high flame retardancy of V-0 in the UL standard (US Underwriters Laboratory Standard) -94. Is starting to be requested. Aromatic polycarbonate resin has excellent flame retardant properties compared to the flame retardant properties of transparent resins such as acrylic resin and styrene resin, but in order to obtain advanced flame retardant properties (V-0) It is necessary to prevent dripping of the resin.

一般的にドリップ抑制にはポリテトラフルオロエチレンの添加が知られているが、静電気などの影響により二次凝集しやすく、ポリカーボネート樹脂に配合し押出機シリンダーへのフィード性不良および該樹脂の分散性悪化に伴う外観不良の問題がある。この分散性向上の目的としては、ポリテトラフルオロエチレンと有機重合体を混合する方法が各種提案されている。(例えば特許文献1〜4参照)   Addition of polytetrafluoroethylene is generally known for drip suppression, but secondary aggregation tends to occur due to the effects of static electricity, etc., blended with polycarbonate resin, poor feedability to extruder cylinder, and dispersibility of the resin There is a problem of poor appearance due to deterioration. For the purpose of improving the dispersibility, various methods of mixing polytetrafluoroethylene and an organic polymer have been proposed. (For example, see Patent Documents 1 to 4)

また、これらのポリテトラフルオロエチレンを単純に添加するだけでは全光線透過率が低下し、光拡散性ポリカーボネート樹脂組成物の優れた光学特性を損なう結果となる。
そのため、光学特性を維持したまま難燃特性を付与することが技術的な課題となる。
In addition, simply adding these polytetrafluoroethylenes reduces the total light transmittance, resulting in a loss of the excellent optical properties of the light diffusing polycarbonate resin composition.
Therefore, it becomes a technical problem to impart flame retardancy while maintaining optical properties.

特許文献5では、有機酸金属塩とポリテトラフルオロエチレンにより難燃特性を付与するとの記述はあるが十分な難燃特性と光学特性を満足できるものとは言えず、かかる技術的課題の解決に有効な知見を開示するものではなかった。   In Patent Document 5, although it is described that flame retardancy is imparted by organic acid metal salt and polytetrafluoroethylene, it cannot be said that sufficient flame retardancy and optical properties can be satisfied. It did not disclose effective findings.

特許第3469391号公報Japanese Patent No. 3469391 特開2000−297220号公報JP 2000-297220 A 特許第3066012号公報Japanese Patent No. 3066012 特開2005−263908号公報Japanese Patent Laying-Open No. 2005-263908 特開2006−143949号公報JP 2006-143949 A

本発明の目的は、光学特性と難燃特性に優れた難燃光拡散性ポリカーボネート樹脂組成物を提供することにある。   An object of the present invention is to provide a flame retardant light diffusing polycarbonate resin composition excellent in optical properties and flame retardant properties.

本発明者らは、かかる課題を解決するため鋭意検討した結果、光拡散剤とポリテトラフルオロエチレンを併用する場合に、ポリテトラフルオロエチレンが光拡散効果を発現することを見出し、更に検討を進めて本発明を完成した。   As a result of intensive studies to solve such problems, the present inventors have found that polytetrafluoroethylene exhibits a light diffusing effect when a light diffusing agent and polytetrafluoroethylene are used in combination, and further studies are carried out. The present invention has been completed.

具体的には、芳香族ポリカーボネート樹脂組成物にポリテトラフルオロエチレンを添加することでドリップ抑制効果を付与するとともに、光拡散剤とポリテトラフルオロエチレンが発現する光拡散効果を利用して光学特性を設計するものである。また、ポリテトラフルオロエチレンが光拡散効果を発現することにより、難燃特性低下の要因となる光拡散剤量を減らすことができるため、難燃特性の向上も期待できる。   Specifically, by adding polytetrafluoroethylene to the aromatic polycarbonate resin composition, a drip-suppressing effect is imparted, and the optical properties are utilized by utilizing the light diffusing effect expressed by the light diffusing agent and polytetrafluoroethylene. It is something to design. In addition, since polytetrafluoroethylene exhibits a light diffusing effect, the amount of light diffusing agent that causes a decrease in flame retardant properties can be reduced, so that an improvement in flame retardant properties can also be expected.

本発明によれば、芳香族ポリカーボネート樹脂(A成分)100重量部に対して、光拡散剤(B成分)、好ましくは高分子粒子を0.005重量部以上、難燃剤(C成分)、好ましくは有機リン系難燃剤および/または有機金属塩系難燃剤0.001〜20重量部、およびフィブリル形成能を有するポリテトラフルオロエチレン(D成分)、好ましくはポリテトラフルオロエチレン系混合体0.01〜5重量部を含有し、かつB成分とD成分の合計が0.03〜8重量部である難燃光拡散性ポリカーボネート樹脂組成物が提供される。   According to the present invention, with respect to 100 parts by weight of the aromatic polycarbonate resin (component A), the light diffusing agent (component B), preferably 0.005 parts by weight or more of the polymer particles, the flame retardant (component C), preferably Is an organic phosphorus flame retardant and / or organometallic salt flame retardant 0.001 to 20 parts by weight, and polytetrafluoroethylene (component D) having a fibril forming ability, preferably a polytetrafluoroethylene mixture 0.01 A flame retardant light diffusing polycarbonate resin composition containing ˜5 parts by weight and having a total of B and D components of 0.03 to 8 parts by weight is provided.

かかる構成の難燃光拡散性ポリカーボネート樹脂組成物は、高度な難燃特性、光学特性および外観に優れた従来技術にない特性を有する。
以下、更に本発明の詳細について説明する。
The flame retardant light diffusing polycarbonate resin composition having such a configuration has characteristics not found in the prior art that are excellent in advanced flame retardant characteristics, optical characteristics, and appearance.
Hereinafter, the details of the present invention will be described.

(A成分:芳香族ポリカーボネート樹脂)
本発明でA成分として使用される芳香族ポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
(Component A: aromatic polycarbonate resin)
The aromatic polycarbonate resin used as the component A in the present invention is obtained by reacting a dihydric phenol and a carbonate precursor. Examples of the reaction method include an interfacial polymerization method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.

ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)エステル、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、9,9−ビス(4−ヒドロキシフェニル)フルオレンおよび9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4−ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく、汎用されている。   Representative examples of the dihydric phenol used here include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis (4-hydroxyphenyl) ethane, and 2,2-bis (4-hydroxyphenyl). ) Propane (commonly called bisphenol A), 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl)- 1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) Pentane, 4,4 ′-(p-phenylenediisopropylidene) diphenol, 4,4 ′-(m-phenylenediisopropyl Pyridene) diphenol, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) ester, bis (4-hydroxy-3-methylphenyl) sulfide, 9,9-bis (4-hydroxyphenyl) Examples include fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene. A preferred dihydric phenol is bis (4-hydroxyphenyl) alkane, and bisphenol A is particularly preferred from the viewpoint of impact resistance, and is widely used.

本発明では、汎用のポリカーボネートであるビスフェノールA系のポリカーボネート以外にも、他の2価フェノール類を用いて製造した特殊なポリカーボネ−トをA成分として使用することが可能である。   In the present invention, in addition to bisphenol A-based polycarbonate, which is a general-purpose polycarbonate, it is possible to use a special polycarbonate produced using other dihydric phenols as the A component.

例えば、2価フェノール成分の一部又は全部として、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン(以下“Bis−TMC”と略称することがある)、9,9−ビス(4−ヒドロキシフェニル)フルオレン及び9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ−ト(単独重合体又は共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の2価フェノールは、該ポリカーボネートを構成する2価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。   For example, as part or all of the dihydric phenol component, 4,4 ′-(m-phenylenediisopropylidene) diphenol (hereinafter sometimes abbreviated as “BPM”), 1,1-bis (4-hydroxy) Phenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (hereinafter sometimes abbreviated as “Bis-TMC”), 9,9-bis (4-hydroxyphenyl) Polycarbonate (homopolymer or copolymer) using fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (hereinafter sometimes abbreviated as “BCF”) has dimensions due to water absorption. It is suitable for applications where the demands for change and shape stability are particularly severe. These dihydric phenols other than BPA are preferably used in an amount of 5 mol% or more, particularly 10 mol% or more of the entire dihydric phenol component constituting the polycarbonate.

殊に、高剛性かつより良好な耐加水分解性が要求される場合には、樹脂組成物を構成するA成分が次の(1)〜(3)の共重合ポリカーボネートであるのが特に好適である。
(1)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBCFが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPAが10〜95モル%(より好適には50〜90モル%、さらに好適には60〜85モル%)であり、かつBCFが5〜90モル%(より好適には10〜50モル%、さらに好適には15〜40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBis−TMCが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
In particular, when high rigidity and better hydrolysis resistance are required, it is particularly preferable that the component A constituting the resin composition is a copolymerized polycarbonate of the following (1) to (3). is there.
(1) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Of 20 to 80 mol% (more preferably 25 to 60 mol%, more preferably 35 to 55 mol%).
(2) BPA is 10 to 95 mol% (more preferably 50 to 90 mol%, more preferably 60 to 85 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Is 5 to 90 mol% (more preferably 10 to 50 mol%, more preferably 15 to 40 mol%).
(3) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and Bis -Copolymer polycarbonate in which TMC is 20 to 80 mol% (more preferably 25 to 60 mol%, still more preferably 35 to 55 mol%).

これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。   These special polycarbonates may be used alone or in combination of two or more. Moreover, these can also be mixed and used for the bisphenol A type polycarbonate generally used.

これらの特殊なポリカーボネートの製法及び特性については、例えば、特開平6−172508号公報、特開平8−27370号公報、特開2001−55435号公報及び特開2002−117580号公報等に詳しく記載されている。   The production method and characteristics of these special polycarbonates are described in detail in, for example, JP-A-6-172508, JP-A-8-27370, JP-A-2001-55435, and JP-A-2002-117580. ing.

なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率及びTg(ガラス転移温度)を下記の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
(i)吸水率が0.05〜0.15%、好ましくは0.06〜0.13%であり、かつTgが120〜180℃であるポリカーボネート、あるいは
(ii)Tgが160〜250℃、好ましくは170〜230℃であり、かつ吸水率が0.10〜0.30%、好ましくは0.13〜0.30%、より好ましくは0.14〜0.27%であるポリカーボネート。
Of the various polycarbonates described above, those having a water absorption and Tg (glass transition temperature) adjusted within the following ranges by adjusting the copolymer composition, etc. have good hydrolysis resistance of the polymer itself, and Since it is remarkably excellent in low warpage after molding, it is particularly suitable in a field where form stability is required.
(I) polycarbonate having a water absorption of 0.05 to 0.15%, preferably 0.06 to 0.13% and Tg of 120 to 180 ° C, or (ii) Tg of 160 to 250 ° C, Polycarbonate which is preferably 170 to 230 ° C. and has a water absorption of 0.10 to 0.30%, preferably 0.13 to 0.30%, more preferably 0.14 to 0.27%.

ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62−1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。   Here, the water absorption of the polycarbonate is a value obtained by measuring the moisture content after being immersed in water at 23 ° C. for 24 hours in accordance with ISO 62-1980 using a disc-shaped test piece having a diameter of 45 mm and a thickness of 3.0 mm. is there. Moreover, Tg (glass transition temperature) is a value calculated | required by the differential scanning calorimeter (DSC) measurement based on JISK7121.

カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。   As the carbonate precursor, carbonyl halide, carbonic acid diester, haloformate or the like is used, and specific examples include phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like.

前記二価フェノールとカーボネート前駆体を界面重合法によって芳香族ポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明の芳香族ポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られた芳香族ポリカーボネート樹脂の2種以上を混合した混合物であってもよい。   In producing the aromatic polycarbonate resin by the interfacial polymerization method using the dihydric phenol and the carbonate precursor, a catalyst, a terminal terminator, and an antioxidant for preventing the dihydric phenol from being oxidized as necessary. Etc. may be used. The aromatic polycarbonate resin of the present invention is a branched polycarbonate resin copolymerized with a trifunctional or higher polyfunctional aromatic compound, a polyester copolymerized with an aromatic or aliphatic (including alicyclic) difunctional carboxylic acid. Carbonate resin, copolymer polycarbonate resin copolymerized with bifunctional alcohol (including alicyclic), and polyester carbonate resin copolymerized with such bifunctional carboxylic acid and bifunctional alcohol are included. Moreover, the mixture which mixed 2 or more types of the obtained aromatic polycarbonate resin may be sufficient.

分岐ポリカーボネート樹脂は、本発明の強化芳香族ポリカーボネート樹脂組成物に、ドリップ防止性能などを付与できる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。   The branched polycarbonate resin can impart anti-drip performance and the like to the reinforced aromatic polycarbonate resin composition of the present invention. Examples of the trifunctional or higher polyfunctional aromatic compound used in the branched polycarbonate resin include phloroglucin, phloroglucid, or 4,6-dimethyl-2,4,6-tris (4-hydroxydiphenyl) heptene-2, 2 , 4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) Ethane, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [ Trisphenol such as 1,1-bis (4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol, tetra (4-hydride) Loxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and their acids Among them, 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable. 1-Tris (4-hydroxyphenyl) ethane is preferred.

分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、2価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、0.01〜1モル%、好ましくは0.05〜0.9モル%、特に好ましくは0.05〜0.8モル%である。   The structural unit derived from the polyfunctional aromatic compound in the branched polycarbonate is 0.1% in a total of 100 mol% of the structural unit derived from the dihydric phenol and the structural unit derived from the polyfunctional aromatic compound. It is 01 to 1 mol%, preferably 0.05 to 0.9 mol%, particularly preferably 0.05 to 0.8 mol%.

また、特に溶融エステル交換法の場合、副反応として分岐構造単位が生ずる場合があるが、かかる分岐構造単位量についても、2価フェノールから誘導される構成単位との合計100モル%中、0.001〜1モル%、好ましくは0.005〜0.9モル%、特に好ましくは0.01〜0.8モル%であるものが好ましい。なお、かかる分岐構造の割合についてはH−NMR測定により算出することが可能である。 In particular, in the case of the melt transesterification method, a branched structural unit may be generated as a side reaction. However, the amount of the branched structural unit is also 0.1% in a total of 100 mol% with a structural unit derived from a dihydric phenol. Those having a ratio of 001 to 1 mol%, preferably 0.005 to 0.9 mol%, particularly preferably 0.01 to 0.8 mol% are preferred. The ratio of the branched structure can be calculated by 1 H-NMR measurement.

脂肪族の二官能性のカルボン酸は、α,ω−ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。
さらにポリオルガノシロキサン単位を共重合した、ポリカーボネート−ポリオルガノシロキサン共重合体の使用も可能である。
The aliphatic bifunctional carboxylic acid is preferably α, ω-dicarboxylic acid. Examples of aliphatic difunctional carboxylic acids include sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, icosanedioic acid, and other straight-chain saturated aliphatic dicarboxylic acids, and cyclohexanedicarboxylic acid. Preferred are alicyclic dicarboxylic acids such as As the bifunctional alcohol, an alicyclic diol is more preferable, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecane dimethanol.
Further, a polycarbonate-polyorganosiloxane copolymer obtained by copolymerizing polyorganosiloxane units can also be used.

本発明のポリカーボネート樹脂の製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマー固相エステル交換法、および環状カーボネート化合物の開環重合法などの反応形式は、各種の文献及び特許公報などで良く知られている方法である。   Reaction methods such as interfacial polymerization, melt transesterification, carbonate prepolymer solid phase transesterification, and ring-opening polymerization of cyclic carbonate compounds, which are methods for producing the polycarbonate resin of the present invention, include various documents and patent publications. This is a well-known method.

本発明の難燃性ポリカーボネート樹脂組成物を製造するにあたり、芳香族ポリカーボネート樹脂の粘度平均分子量(M)は、特に限定されないが、好ましくは1×10〜5×10であり、より好ましくは1.4×10〜3×10であり、さらに好ましくは1.4×10〜2.4×10である。 In producing the flame retardant polycarbonate resin composition of the present invention, the viscosity average molecular weight (M) of the aromatic polycarbonate resin is not particularly limited, but is preferably 1 × 10 4 to 5 × 10 4 , more preferably. a 1.4 × 10 4 ~3 × 10 4 , more preferably from 1.4 × 10 4 ~2.4 × 10 4 .

粘度平均分子量が1.0×10未満の芳香族ポリカーボネート樹脂では、良好な機械的特性が得られない。一方、粘度平均分子量が5×10を超える芳香族ポリカーボネート樹脂から得られる樹脂組成物は、射出成形時の流動性に劣る点で汎用性に劣る。 With an aromatic polycarbonate resin having a viscosity average molecular weight of less than 1.0 × 10 4 , good mechanical properties cannot be obtained. On the other hand, a resin composition obtained from an aromatic polycarbonate resin having a viscosity average molecular weight exceeding 5 × 10 4 is inferior in versatility in that it is inferior in fluidity during injection molding.

なお、前記芳香族ポリカーボネート樹脂は、その粘度平均分子量が前記範囲外のものを混合して得られたものであってもよい。殊に、前記範囲(5×10)を超える粘度平均分子量を有する芳香族ポリカーボネート樹脂は、樹脂のエントロピー弾性が向上する。その結果、強化樹脂材料を構造部材に成形する際に使用されることのあるガスアシスト成形、および発泡成形において、良好な成形加工性を発現する。かかる成形加工性の改善は前記分岐ポリカーボネートよりもさらに良好である。より好適な態様としては、A成分が粘度平均分子量7×10〜3×10の芳香族ポリカーボネート樹脂(A−1−1成分)、および粘度平均分子量1×10〜3×10の芳香族ポリカーボネート樹脂(A−1−2成分)からなり、その粘度平均分子量が1.6×10〜3.5×10である芳香族ポリカーボネート樹脂(A−1成分)(以下、“高分子量成分含有芳香族ポリカーボネート樹脂”と称することがある)も使用できる。 The aromatic polycarbonate resin may be obtained by mixing those having a viscosity average molecular weight outside the above range. In particular, an aromatic polycarbonate resin having a viscosity average molecular weight exceeding the above range (5 × 10 4 ) improves the entropy elasticity of the resin. As a result, good moldability is exhibited in gas assist molding and foam molding which may be used when molding a reinforced resin material into a structural member. Such improvement in moldability is even better than that of the branched polycarbonate. As a more suitable aspect, the A component is an aromatic polycarbonate resin (A-1-1 component) having a viscosity average molecular weight of 7 × 10 4 to 3 × 10 5 , and a viscosity average molecular weight of 1 × 10 4 to 3 × 10 4 . An aromatic polycarbonate resin (A-1 component) consisting of an aromatic polycarbonate resin (A-1-2 component) and having a viscosity average molecular weight of 1.6 × 10 4 to 3.5 × 10 4 (hereinafter referred to as “high” A molecular weight component-containing aromatic polycarbonate resin "may also be used).

かかる高分子量成分含有芳香族ポリカーボネート樹脂(A−1成分)において、A−1−1成分の分子量は7×10〜2×10が好ましく、より好ましくは8×10〜2×10、さらに好ましくは1×10〜2×10、特に好ましくは1×10〜1.6×10である。またA−1−2成分の分子量は1.0×10〜2.5×10が好ましく、より好ましくは1.1×10〜2.4×10、さらに好ましくは1.2×10〜2.4×10、特に好ましくは1.2×10〜2.3×10である。 In the high molecular weight component-containing aromatic polycarbonate resin (A-1 component), the molecular weight of the A-1-1 component is preferably 7 × 10 4 to 2 × 10 5 , more preferably 8 × 10 4 to 2 × 10 5. More preferably, it is 1 × 10 5 to 2 × 10 5 , and particularly preferably 1 × 10 5 to 1.6 × 10 5 . The molecular weight of the A-1-2 component is preferably 1.0 × 10 4 to 2.5 × 10 4 , more preferably 1.1 × 10 4 to 2.4 × 10 4 , and even more preferably 1.2 ×. 10 4 to 2.4 × 10 4 , particularly preferably 1.2 × 10 4 to 2.3 × 10 4 .

高分子量成分含有芳香族ポリカーボネート樹脂(A−1成分)は前記A−1−1成分とA−1−2成分を種々の割合で混合し、所定の分子量範囲を満足するよう調整して得ることができる。好ましくは、A−1成分100重量%中、A−1−1成分が2〜40重量%の場合であり、より好ましくはA−1−1成分が3〜30重量%であり、さらに好ましくはA−1−1成分が4〜20重量%であり、特に好ましくはA−1−1成分が5〜20重量%である。   The high molecular weight component-containing aromatic polycarbonate resin (component A-1) is obtained by mixing the components A-1-1 and A-1-2 at various ratios and adjusting them so as to satisfy a predetermined molecular weight range. Can do. Preferably, in 100% by weight of the A-1 component, the A-1-1 component is 2 to 40% by weight, more preferably the A-1-1 component is 3 to 30% by weight, and still more preferably The A-1-1 component is 4 to 20% by weight, and particularly preferably the A-1-1 component is 5 to 20% by weight.

また、A−1成分の調製方法としては、(1)A−1−1成分とA−1−2成分とを、それぞれ独立に重合しこれらを混合する方法、(2)特開平5−306336号公報に示される方法に代表される、GPC法による分子量分布チャートにおいて複数のポリマーピークを示す芳香族ポリカーボネート樹脂を同一系内において製造する方法を用い、かかる芳香族ポリカーボネート樹脂を本発明のA−1成分の条件を満足するよう製造する方法、および(3)かかる製造方法((2)の製造法)により得られた芳香族ポリカーボネート樹脂と、別途製造されたA−1−1成分および/またはA−1−2成分とを混合する方法などを挙げることができる。   As the preparation method of the component A-1, (1) a method in which the components A-1-1 and A-1-2 are independently polymerized and mixed, and (2) JP-A-5-306336. The method of producing an aromatic polycarbonate resin showing a plurality of polymer peaks in a molecular weight distribution chart by GPC method, represented by the method shown in Japanese Patent Publication No. Gazette, in the same system, the aromatic polycarbonate resin of the present invention A- A method of producing so as to satisfy the conditions of one component, and (3) an aromatic polycarbonate resin obtained by the production method (production method of (2)), a separately produced A-1-1 component and / or Examples thereof include a method of mixing the A-1-2 component.

本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlに芳香族ポリカーボネート0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
The viscosity average molecular weight referred to in the present invention is first determined by using an Ostwald viscometer from a solution obtained by dissolving 0.7 g of aromatic polycarbonate in 100 ml of methylene chloride at 20 ° C. with a specific viscosity (η SP ) calculated by the following formula. ,
Specific viscosity (η SP ) = (t−t 0 ) / t 0
[T 0 is methylene chloride falling seconds, t is sample solution falling seconds]
The viscosity average molecular weight M is calculated from the determined specific viscosity (η SP ) by the following formula.
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10 −4 M 0.83
c = 0.7

尚、本発明の難燃性ポリカーボネート樹脂組成物における芳香族ポリカーボネート樹脂の粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20〜30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。   The calculation of the viscosity average molecular weight of the aromatic polycarbonate resin in the flame retardant polycarbonate resin composition of the present invention is performed as follows. That is, the composition is mixed with 20 to 30 times its weight of methylene chloride to dissolve the soluble component in the composition. Such soluble matter is collected by Celite filtration. Thereafter, the solvent in the obtained solution is removed. The solid after removal of the solvent is sufficiently dried to obtain a solid component that dissolves in methylene chloride. A specific viscosity at 20 ° C. is determined from a solution obtained by dissolving 0.7 g of the solid in 100 ml of methylene chloride in the same manner as described above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as described above.

(B成分:光拡散剤)
本発明のB成分である光拡散剤は微粒子状であり、例えばガラス微粒子に代表される無機微粒子、ポリスチレン樹脂、(メタ)アクリル樹脂、シリコーン樹脂等からの有機微粒子があげられ、なかでも有機微粒子が好ましい。かかる有機微粒子としては、架橋した有機微粒子が好ましく、その製造過程において少なくとも部分的に架橋されており、熱可塑性樹脂の加工過程において実用的に変形せず、微粒子状態を維持しているものである。即ち、熱可塑性樹脂の成形温度(例えばポリカーボネート樹脂の成形温度は約350℃)まで加熱しても熱可塑性樹脂中に溶融しない微粒子がより好ましく、具体的には架橋した(メタ)アクリル樹脂、シリコーン樹脂の有機微粒子である。特に好適な具体例として、部分架橋したメタクリル酸メチルをベースとしたポリマー微粒子、ポリ(ブチルアクリレート)のコア/ポリ(メチルメタクリレート)のシェルを有するポリマー、ゴム状ビニルポリマーのコアとシェルを含んだコア/シェルモノホルジーを有するポリマー[例えばローム・アンド・ハーズ・カンパニー製商品名パラロイドEXL−5136]、架橋シロキサン結合を有するシリコーン樹脂[例えば東芝シリコーン(株)製トスパール120]が挙げられる。上記微粒子状の光拡散剤の平均粒径は好ましくは0.1〜50μmであり、より好ましくは0.5〜30μmであり、さらに好ましくは0.7〜20μmのものである。かかる光拡散剤の粒径は、コールカウンター法で測定した重量平均粒径であり、その測定機は株式会社日科機製の粒子数・粒度分布アナライザーMODEL Zmである。重量平均粒子径が0.1μm未満、また50μmを越えると十分な光拡散性が得られず、十分な光拡散効果を得るためには配合量が多くなり、光透過性が損なわれる欠点がある。
(B component: light diffusing agent)
The light diffusing agent which is the component B of the present invention is in the form of fine particles, and examples thereof include inorganic fine particles typified by glass fine particles, organic fine particles from polystyrene resin, (meth) acrylic resin, silicone resin, etc. Among them, organic fine particles Is preferred. Such organic fine particles are preferably cross-linked organic fine particles, which are at least partially cross-linked in the production process, and are not practically deformed in the process of processing the thermoplastic resin and maintain the fine particle state. . That is, fine particles that do not melt in the thermoplastic resin even when heated to the molding temperature of the thermoplastic resin (for example, the molding temperature of the polycarbonate resin is about 350 ° C.) are more preferable. Specifically, a crosslinked (meth) acrylic resin, silicone Organic fine particles of resin. Particularly preferred embodiments include polymer particles based on partially crosslinked methyl methacrylate, poly (butyl acrylate) core / poly (methyl methacrylate) shell polymer, rubbery vinyl polymer core and shell. Examples thereof include a polymer having a core / shell monoholgy [for example, trade name Paraloid EXL-5136 manufactured by Rohm and Hers Company] and a silicone resin having a crosslinked siloxane bond [for example, Tospearl 120 manufactured by Toshiba Silicone Co., Ltd.]. The average particle size of the particulate light diffusing agent is preferably 0.1 to 50 μm, more preferably 0.5 to 30 μm, and still more preferably 0.7 to 20 μm. The particle size of the light diffusing agent is a weight average particle size measured by a coal counter method, and the measuring device is a particle number / particle size distribution analyzer MODEL Zm manufactured by Nikki Co., Ltd. If the weight average particle diameter is less than 0.1 μm or more than 50 μm, sufficient light diffusibility cannot be obtained, and there is a disadvantage that the amount of compounding is increased to obtain a sufficient light diffusion effect, and the light transmittance is impaired. .

B成分の含有量は、B成分のみの含有量がA成分100重量部に対して0.005重量部以上、好ましくは0.01重量部以上、より好ましくは0.02重量部以上であり、D成分との合計量が、0.03〜8.0重量部、好ましくは0.05〜6.0重量部、特に好ましくは0.1〜5.0重量部である。B成分の含有量が0.005重量部未満である場合、またはD成分との合計量が0.03重量部未満である場合には十分な光拡散性が得られず、D成分との合計量が8.0重量部を超えると光線透過率が不十分となるので好ましくない。   The content of the B component is such that the content of only the B component is 0.005 parts by weight or more, preferably 0.01 parts by weight or more, more preferably 0.02 parts by weight or more with respect to 100 parts by weight of the A component. The total amount with D component is 0.03-8.0 weight part, Preferably it is 0.05-6.0 weight part, Most preferably, it is 0.1-5.0 weight part. When the content of the B component is less than 0.005 parts by weight, or when the total amount with the D component is less than 0.03 parts by weight, sufficient light diffusibility cannot be obtained, and the total with the D component If the amount exceeds 8.0 parts by weight, the light transmittance becomes insufficient, such being undesirable.

(C成分:難燃剤)
C成分の難燃剤としては、難燃性ポリカーボネート樹脂の難燃剤として知られる各種の化合物が挙げられる。かかる化合物の配合は難燃性の向上をもたらすが、それ以外にも各化合物の性質に基づき、例えば帯電防止性、流動性、剛性、および熱安定性の向上などがもたらされる。かかる難燃剤としては、(i)有機リン化合物系難燃剤(例えば、有機基含有のモノホスフェート化合物、ホスフェートオリゴマー化合物、ホスホネートオリゴマー化合物、ホスホニトリルオリゴマー化合物、およびホスホン酸アミド化合物など)(ii)有機金属塩系難燃剤(例えば有機スルホン酸アルカリ(土類)金属塩、有機ホウ酸金属塩系難燃剤、および有機錫酸金属塩系難燃剤など)、(iii)シリコーン化合物からなるシリコーン系難燃剤が挙げられ、その中でも有機リン系難燃剤、有機金属塩系難燃剤が好ましい。
(C component: flame retardant)
Examples of the flame retardant for component C include various compounds known as flame retardants for flame retardant polycarbonate resins. The compounding of such a compound brings about an improvement in flame retardancy, but besides that, based on the properties of each compound, for example, an improvement in antistatic property, fluidity, rigidity and thermal stability is brought about. Examples of such flame retardants include (i) organophosphorus compound-based flame retardants (eg, organic group-containing monophosphate compounds, phosphate oligomer compounds, phosphonate oligomer compounds, phosphonitrile oligomer compounds, and phosphonic acid amide compounds) (ii) organic Metal salt flame retardants (for example, alkali (earth) organic sulfonate metal salts, organic borate metal salt flame retardants, organic stannate metal salt flame retardants, etc.), (iii) silicone flame retardants comprising silicone compounds Among them, organic phosphorus flame retardants and organic metal salt flame retardants are preferable.

(i)有機リン化合物系難燃剤
本発明の有機リン化合物系難燃剤としては、アリールホスフェート化合物が好適である。かかるホスフェート化合物は概して色相に優れるためである。またホスフェート化合物は可塑化効果があるため本発明の樹脂組成物の成形加工性を高められる点で有利である。かかるホスフェート化合物は、従来難燃剤として公知の各種ホスフェート化合物が使用できるが、より好適には特に下記一般式(i)で表される1種または2種以上のホスフェート化合物を挙げることができる。
(I) Organophosphorus compound-based flame retardant As the organophosphorus compound-based flame retardant of the present invention, an aryl phosphate compound is suitable. This is because such phosphate compounds are generally excellent in hue. Moreover, since the phosphate compound has a plasticizing effect, it is advantageous in that the moldability of the resin composition of the present invention can be improved. As such phosphate compounds, various known phosphate compounds as conventional flame retardants can be used, and more preferably, one or more phosphate compounds represented by the following general formula (i) can be mentioned.

Figure 0005571279
(但し前記式中のXは、二価フェノールから誘導される二価の有機基を表し、R、R、R、およびRはそれぞれ一価フェノールから誘導される一価の有機基を表す。j、k、l及びmはそれぞれ独立して0または1であり、nは0〜5の整数であり、重合度nの異なるリン酸エステルの混合物の場合はnはその平均値を表し、0〜5の値である。)
Figure 0005571279
(However, X 1 in the above formula represents a divalent organic group derived from a dihydric phenol, and R 1 , R 2 , R 3 and R 4 are each a monovalent organic group derived from a monohydric phenol. J, k, l and m are each independently 0 or 1, n is an integer of 0 to 5, and n is an average value in the case of a mixture of phosphate esters having different degrees of polymerization n. Represents a value of 0 to 5.)

前記式のホスフェート化合物は、異なるn数を有する化合物の混合物であってもよく、かかる混合物の場合、平均のn数は好ましくは0.5〜1.5、より好ましくは0.8〜1.2、更に好ましくは0.95〜1.15、特に好ましくは1〜1.14の範囲である。   The phosphate compound of the above formula may be a mixture of compounds having different n numbers, in which case the average n number is preferably 0.5 to 1.5, more preferably 0.8 to 1. 2, More preferably, it is 0.95-1.15, Most preferably, it is the range of 1-1.14.

上記Xを誘導する二価フェノールの好適な具体例としては、ハイドロキノン、レゾルシノール、ビス(4−ヒドロキシジフェニル)メタン、ビスフェノールA、ジヒドロキシジフェニル、ジヒドロキシナフタレン、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン及びビス(4−ヒドロキシフェニル)サルファイドからなる群から選ばれたジヒドロキシ化合物の2個の水酸基を除去して得られる二価の基が挙げられる。R、R、R、およびRの具体例としては、それぞれ独立して1個以上のハロゲン原子で置換されていてもよいフェノール、クレゾール、キシレノール、イソプロピルフェノール、ブチルフェノール及びp−クミルフェノールからなる群から選ばれたモノヒドロキシ化合物の1個の水酸基を除去して得られる一価の基が挙げられる。 Preferable specific examples of the dihydric phenol for deriving X 1 include hydroquinone, resorcinol, bis (4-hydroxydiphenyl) methane, bisphenol A, dihydroxydiphenyl, dihydroxynaphthalene, bis (4-hydroxyphenyl) sulfone, bis ( And a divalent group obtained by removing two hydroxyl groups of a dihydroxy compound selected from the group consisting of 4-hydroxyphenyl) ketone and bis (4-hydroxyphenyl) sulfide. Specific examples of R 1 , R 2 , R 3 and R 4 are each independently phenol, cresol, xylenol, isopropylphenol, butylphenol and p-cumyl which may be substituted with one or more halogen atoms. Examples thereof include monovalent groups obtained by removing one hydroxyl group of a monohydroxy compound selected from the group consisting of phenol.

上記R、R、R、およびRを誘導する一価フェノールの好適な具体例としては、フェノール、クレゾール、キシレノール、イソプロピルフェノール、ブチルフェノール、およびp−クミルフェノールが例示され、中でも好ましくはフェノール、および2,6−ジメチルフェノールである。 Preferable specific examples of the monohydric phenol for deriving R 1 , R 2 , R 3 , and R 4 include phenol, cresol, xylenol, isopropylphenol, butylphenol, and p-cumylphenol. Are phenol and 2,6-dimethylphenol.

尚、かかる一価フェノールはハロゲン原子で置換されてもよく、該一価フェノールから誘導される基を有するホスフェート化合物の具体例としては、トリス(2,4,6−トリブロモフェニル)ホスフェートおよびトリス(2,4−ジブロモフェニル)ホスフェート、トリス(4−ブロモフェニル)ホスフェートなどが例示される。   The monohydric phenol may be substituted with a halogen atom. Specific examples of the phosphate compound having a group derived from the monohydric phenol include tris (2,4,6-tribromophenyl) phosphate and tris. Examples include (2,4-dibromophenyl) phosphate, tris (4-bromophenyl) phosphate, and the like.

一方、ハロゲン原子で置換されていないホスフェート化合物の具体例としては、トリフェニルホスフェートおよびトリ(2,6−キシリル)ホスフェートなどのモノホスフェート化合物、並びにレゾルシノールビスジ(2,6−キシリル)ホスフェート)を主体とするホスフェートオリゴマー、4,4−ジヒドロキシジフェニルビス(ジフェニルホスフェート)を主体とするホスフェートオリゴマー、およびビスフェノールAビス(ジフェニルホスフェート)を主体とするリン酸エステルオリゴマーが好適である(ここで主体とするとは、重合度の異なる他の成分を少量含んでよいことを示し、より好適には前記式(i)におけるn=1の成分が80重量%以上、より好ましくは85重量%以上、更に好ましくは90重量%以上含有されることを示す。)。
有機リン化合物系難燃剤の含有量は、A成分100重量部に対し、0.01〜20重量部、好ましくは0.1〜10重量部、より好ましくは1〜7重量部である。
On the other hand, specific examples of the phosphate compound not substituted with a halogen atom include monophosphate compounds such as triphenyl phosphate and tri (2,6-xylyl) phosphate, and resorcinol bisdi (2,6-xylyl) phosphate). Preferred are phosphate oligomers mainly composed of phosphate oligomers, phosphate oligomers mainly composed of 4,4-dihydroxydiphenyl bis (diphenyl phosphate), and phosphate oligomers mainly composed of bisphenol A bis (diphenyl phosphate). Indicates that it may contain a small amount of other components having different degrees of polymerization, more preferably the component of n = 1 in the formula (i) is 80% by weight or more, more preferably 85% by weight or more, and still more preferably Contains over 90% by weight Are shown.).
The content of the organophosphorus compound-based flame retardant is 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight, and more preferably 1 to 7 parts by weight with respect to 100 parts by weight of the component A.

(ii)有機金属塩系難燃剤
本発明における有機金属塩化合物は炭素原子数1〜50、好ましくは1〜40の有機スルホン酸アルカリ(土類)金属塩であることが好ましい。この有機スルホン酸アルカリ(土類)金属塩には、炭素原子数1〜10、好ましくは2〜8のパーフルオロアルキルスルホン酸とアルカリ金属またはアルカリ土類金属との金属塩の如きフッ素置換アルキルスルホン酸の金属塩、並びに炭素原子数7〜50、好ましくは7〜40の芳香族スルホン酸とアルカリ金属またはアルカリ土類金属塩との金属塩が含まれる。
(Ii) Organometallic Salt Flame Retardant The organometallic salt compound in the present invention is preferably an alkali (earth) metal sulfonate having 1 to 50 carbon atoms, preferably 1 to 40 carbon atoms. The alkali (earth) metal salt of the organic sulfonate includes a fluorine-substituted alkyl sulfone such as a metal salt of a perfluoroalkyl sulfonic acid having 1 to 10, preferably 2 to 8 carbon atoms and an alkali metal or an alkaline earth metal. Metal salts of acids and metal salts of aromatic sulfonic acids having 7 to 50 carbon atoms, preferably 7 to 40 carbon atoms, and alkali metal or alkaline earth metal salts are included.

本発明の金属塩を構成するアルカリ金属としてはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムが挙げられ、アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウムおよびバリウムが挙げられる。より好適にはアルカリ金属である。かかるアルカリ金属の中でも、透明性の要求がより高い場合にはイオン半径のより大きいルビジウムおよびセシウムが好適である一方、これらは汎用的でなくまた精製もし難いことから、結果的にコストの点で不利となる場合がある。一方、リチウムおよびナトリウムなどのより小さいイオン半径の金属は逆に難燃性の点で不利な場合がある。これらを勘案してスルホン酸アルカリ金属塩中のアルカリ金属を使い分けることができるが、いずれの点においても特性のバランスに優れたスルホン酸カリウム塩が最も好適である。かかるカリウム塩と他のアルカリ金属からなるスルホン酸アルカリ金属塩とを併用することもできる。   Examples of the alkali metal constituting the metal salt of the present invention include lithium, sodium, potassium, rubidium and cesium, and examples of the alkaline earth metal include beryllium, magnesium, calcium, strontium and barium. More preferred is an alkali metal. Among such alkali metals, rubidium and cesium having larger ionic radii are suitable when the requirement for transparency is higher, but these are not general-purpose and difficult to purify, resulting in cost. It may be disadvantageous. On the other hand, metals with smaller ionic radii such as lithium and sodium may be disadvantageous in terms of flame retardancy. Considering these, the alkali metal in the sulfonic acid alkali metal salt can be properly used. In any respect, the sulfonic acid potassium salt having an excellent balance of properties is most preferable. Such potassium salts and sulfonic acid alkali metal salts comprising other alkali metals can be used in combination.

パーフルオロアルキルスルホン酸アルカリ金属塩の具体例としては、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、トリフルオロメタンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸ルビジウム、およびパーフルオロヘキサンスルホン酸ルビジウム等が挙げられ、これらは1種もしくは2種以上を併用して使用することができる。ここでパーフルオロアルキル基の炭素数は、1〜18の範囲が好ましく、1〜10の範囲がより好ましく、更に好ましくは1〜8の範囲である。これらの中で特にパーフルオロブタンスルホン酸カリウムが好ましい。   Specific examples of alkali metal perfluoroalkyl sulfonates include potassium trifluoromethane sulfonate, potassium perfluorobutane sulfonate, potassium perfluorohexane sulfonate, potassium perfluorooctane sulfonate, sodium pentafluoroethane sulfonate, perfluoro Sodium butanesulfonate, sodium perfluorooctanesulfonate, lithium trifluoromethanesulfonate, lithium perfluorobutanesulfonate, lithium perfluoroheptanesulfonate, cesium trifluoromethanesulfonate, cesium perfluorobutanesulfonate, perfluorooctanesulfonate Cesium, cesium perfluorohexane sulfonate, rubidium perfluorobutane sulfonate, and perf Oro hexane sulfonate rubidium, and these may be used in combination of at least one or two. Here, the carbon number of the perfluoroalkyl group is preferably in the range of 1-18, more preferably in the range of 1-10, and still more preferably in the range of 1-8. Of these, potassium perfluorobutanesulfonate is particularly preferred.

アルカリ金属からなるパーフルオロアルキルスルホン酸アルカリ(土類)金属塩中には、通常少なからず弗化物イオン(F)が混入する。かかる弗化物イオンの存在は難燃性を低下させる要因となり得るので、できる限り低減されることが好ましい。かかる弗化物イオンの割合はイオンクロマトグラフィー法により測定できる。弗化物イオンの含有量は、100ppm以下が好ましく、40ppm以下が更に好ましく、10ppm以下が特に好ましい。また製造効率的に0.2ppm以上であることが好適である。かかる弗化物イオン量の低減されたパーフルオロアルキルスルホン酸アルカリ(土類)金属塩は、製造方法は公知の製造方法を用い、かつ含フッ素有機金属塩を製造する際の原料中に含有される弗化物イオンの量を低減する方法、反応により得られた弗化水素などを反応時に発生するガスや加熱によって除去する方法、並びに含フッ素有機金属塩を製造に再結晶および再沈殿等の精製方法を用いて弗化物イオンの量を低減する方法などによって製造することができる。特にC成分は比較的水に溶けやすいこことから、イオン交換水、特に電気抵抗値が18MΩ・cm以上、すなわち電気伝導度が約0.55μS/cm以下を満足する水を用い、かつ常温よりも高い温度で溶解させて洗浄を行い、その後冷却させて再結晶化させる工程により製造することが好ましい。 The alkali (earth) metal salt of perfluoroalkylsulfonic acid composed of an alkali metal is usually mixed with not less than fluoride ions (F ). The presence of such fluoride ions can be a factor that lowers the flame retardancy, so it is preferably reduced as much as possible. The ratio of such fluoride ions can be measured by ion chromatography. The content of fluoride ions is preferably 100 ppm or less, more preferably 40 ppm or less, and particularly preferably 10 ppm or less. Moreover, it is suitable that it is 0.2 ppm or more in terms of production efficiency. Such alkali (earth) metal salt of perfluoroalkylsulfonic acid having a reduced amount of fluoride ion is contained in a raw material when producing a fluorine-containing organometallic salt using a known production method. A method for reducing the amount of fluoride ions, a method for removing hydrogen fluoride and the like obtained by the reaction by a gas generated during the reaction or heating, and a purification method such as recrystallization and reprecipitation for producing a fluorine-containing organometallic salt Can be produced by a method of reducing the amount of fluoride ions using, for example. In particular, since the C component is relatively soluble in water, ion-exchanged water, particularly water having an electric resistance value of 18 MΩ · cm or more, that is, an electric conductivity of about 0.55 μS / cm or less, and from room temperature is used. It is preferable to produce by a process of dissolving at high temperature and washing, then cooling and recrystallization.

芳香族スルホン酸アルカリ(土類)金属塩の具体例としては、例えばジフェニルサルファイド−4,4’−ジスルホン酸ジナトリウム、ジフェニルサルファイド−4,4’−ジスルホン酸ジカリウム、5−スルホイソフタル酸カリウム、5−スルホイソフタル酸ナトリウム、ポリエチレンテレフタル酸ポリスルホン酸ポリナトリウム、1−メトキシナフタレン−4−スルホン酸カルシウム、4−ドデシルフェニルエーテルジスルホン酸ジナトリウム、ポリ(2,6−ジメチルフェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,3−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,4−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(2,6−ジフェニルフェニレンオキシド)ポリスルホン酸ポリカリウム、ポリ(2−フルオロ−6−ブチルフェニレンオキシド)ポリスルホン酸リチウム、ベンゼンスルホネートのスルホン酸カリウム、ベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸ストロンチウム、ベンゼンスルホン酸マグネシウム、p−ベンゼンジスルホン酸ジカリウム、ナフタレン−2,6−ジスルホン酸ジカリウム、ビフェニル−3,3’−ジスルホン酸カルシウム、ジフェニルスルホン−3−スルホン酸ナトリウム、ジフェニルスルホン−3−スルホン酸カリウム、ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3,4’−ジスルホン酸ジカリウム、α,α,α−トリフルオロアセトフェノン−4−スルホン酸ナトリウム、ベンゾフェノン−3,3’−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸ジナトリウム、チオフェン−2,5−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸カルシウム、ベンゾチオフェンスルホン酸ナトリウム、ジフェニルスルホキサイド−4−スルホン酸カリウム、ナフタレンスルホン酸ナトリウムのホルマリン縮合物、およびアントラセンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。これら芳香族スルホン酸アルカリ(土類)金属塩では、特にカリウム塩が好適である。これらの芳香族スルホン酸アルカリ(土類)金属塩の中でも、ジフェニルスルホン−3−スルホン酸カリウム、およびジフェニルスルホン−3,3’−ジスルホン酸ジカリウムが好適であり、特にこれらの混合物(前者と後者の重量比が15/85〜30/70)が好適である。   Specific examples of the aromatic (earth) metal salt of an aromatic sulfonate include, for example, disodium diphenyl sulfide-4,4′-disulfonate, dipotassium diphenyl sulfide-4,4′-disulfonate, potassium 5-sulfoisophthalate, Sodium 5-sulfoisophthalate, polysodium polyethylene terephthalate polysulfonate, calcium 1-methoxynaphthalene-4-sulfonate, disodium 4-dodecylphenyl ether disulfonate, polysodium poly (2,6-dimethylphenylene oxide) polysulfonate Poly (1,3-phenylene oxide) polysulfonic acid polysodium, poly (1,4-phenylene oxide) polysulfonic acid polysodium, poly (2,6-diphenylphenylene oxide) polysulfonic acid poly Lithium, poly (2-fluoro-6-butylphenylene oxide) polysulfonate, potassium sulfonate of benzenesulfonate, sodium benzenesulfonate, strontium benzenesulfonate, magnesium benzenesulfonate, dipotassium p-benzenedisulfonate, naphthalene-2 , 6-disulfonic acid dipotassium, biphenyl-3,3'-disulfonic acid calcium, diphenylsulfone-3-sulfonic acid sodium, diphenylsulfone-3-sulfonic acid potassium, diphenylsulfone-3,3'-disulfonic acid dipotassium, diphenylsulfone -3,4'-dipotassium disulfonate, α, α, α-trifluoroacetophenone-4-sodium sulfonate, dipotassium benzophenone-3,3'-disulfonate, thiof 2,5-disulfonic acid disodium, thiophene-2,5-disulfonic acid dipotassium, thiophene-2,5-disulfonic acid calcium, benzothiophene sodium sulfonate, diphenyl sulfoxide-4- potassium sulfonate, naphthalene sulfone Examples thereof include a formalin condensate of sodium acid and a formalin condensate of sodium anthracene sulfonate. Among these aromatic sulfonate alkali (earth) metal salts, potassium salts are particularly preferable. Among these aromatic sulfonate alkali (earth) metal salts, potassium diphenylsulfone-3-sulfonate and dipotassium diphenylsulfone-3,3′-disulfonate are preferable, and particularly a mixture thereof (the former and the latter). Is preferably 15/85 to 30/70).

スルホン酸アルカリ(土類)金属塩以外の有機金属塩としては、硫酸エステルのアルカリ(土類)金属塩および芳香族スルホンアミドのアルカリ(土類)金属塩などが好適に例示される。硫酸エステルのアルカリ(土類)金属塩としては、特に一価および/または多価アルコール類の硫酸エステルのアルカリ(土類)金属塩を挙げることができ、かかる一価および/または多価アルコール類の硫酸エステルとしては、メチル硫酸エステル、エチル硫酸エステル、ラウリル硫酸エステル、ヘキサデシル硫酸エステル、ポリオキシエチレンアルキルフェニルエーテルの硫酸エステル、ペンタエリスリトールのモノ、ジ、トリ、テトラ硫酸エステル、ラウリン酸モノグリセライドの硫酸エステル、パルミチン酸モノグリセライドの硫酸エステル、およびステアリン酸モノグリセライドの硫酸エステルなどを挙げることができる。これらの硫酸エステルのアルカリ(土類)金属塩として好ましくはラウリル硫酸エステルのアルカリ(土類)金属塩が挙げられる。   Preferable examples of the organic metal salt other than the alkali (earth) metal sulfonate include an alkali (earth) metal salt of a sulfate ester and an alkali (earth) metal salt of an aromatic sulfonamide. Examples of alkali (earth) metal salts of sulfates include alkali (earth) metal salts of sulfates of monovalent and / or polyhydric alcohols, and such monovalent and / or polyhydric alcohols. Examples of sulfuric acid esters include methyl sulfate, ethyl sulfate, lauryl sulfate, hexadecyl sulfate, polyoxyethylene alkylphenyl ether sulfate, pentaerythritol mono-, di-, tri-, tetra-sulfate, and lauric acid monoglyceride sulfate. Examples include esters, sulfates of palmitic acid monoglyceride, and sulfates of stearic acid monoglyceride. The alkali (earth) metal salts of these sulfates are preferably alkali (earth) metal salts of lauryl sulfate.

芳香族スルホンアミドのアルカリ(土類)金属塩としては、例えばサッカリン、N−(p−トリルスルホニル)−p−トルエンスルホイミド、N−(N’−ベンジルアミノカルボニル)スルファニルイミド、およびN−(フェニルカルボキシル)スルファニルイミドのアルカリ(土類)金属塩などが挙げられる。   Alkali (earth) metal salts of aromatic sulfonamides include, for example, saccharin, N- (p-tolylsulfonyl) -p-toluenesulfonimide, N- (N′-benzylaminocarbonyl) sulfanilimide, and N- ( And an alkali (earth) metal salt of phenylcarboxyl) sulfanilimide.

有機金属塩系難燃剤の含有量は、A成分100重量部に対し、0.001〜1重量部、好ましくは0.005〜0.5重量部、より好ましくは0.01〜0.3重量部、さらにより好ましくは0.03〜0.15重量部である。   The content of the organometallic salt flame retardant is 0.001 to 1 part by weight, preferably 0.005 to 0.5 part by weight, and more preferably 0.01 to 0.3 part by weight per 100 parts by weight of the component A. Parts, more preferably 0.03 to 0.15 parts by weight.

(iii)シリコーン系難燃剤
本発明のシリコーン系難燃剤として使用されるシリコーン化合物は、燃焼時の化学反応によって難燃性を向上させるものである。該化合物としては従来芳香族ポリカーボート樹脂の難燃剤として提案された各種の化合物を使用することができる。シリコーン化合物はその燃焼時にそれ自体が結合してまたは樹脂に由来する成分と結合してストラクチャーを形成することにより、または該ストラクチャー形成時の還元反応により、ポリカーボネート樹脂に難燃効果を付与するものと考えられている。したがってかかる反応における活性の高い基を含んでいることが好ましく、より具体的にはアルコキシ基およびハイドロジェン(即ちSi−H基)から選択された少なくとも1種の基を所定量含んでいることが好ましい。かかる基(アルコキシ基、Si−H基)の含有割合としては、0.1〜1.2mol/100gの範囲が好ましく、0.12〜1mol/100gの範囲がより好ましく、0.15〜0.6mol/100gの範囲が更に好ましい。かかる割合はアルカリ分解法より、シリコーン化合物の単位重量当たりに発生した水素またはアルコールの量を測定することにより求められる。尚、アルコキシ基は炭素数1〜4のアルコキシ基が好ましく、特にメトキシ基が好適である。
(Iii) Silicone Flame Retardant The silicone compound used as the silicone flame retardant of the present invention improves flame retardancy by a chemical reaction during combustion. As the compound, various compounds conventionally proposed as a flame retardant for aromatic polycarbonate resin can be used. The silicone compound binds itself during combustion or binds to a component derived from the resin to form a structure, or gives a flame retardant effect to the polycarbonate resin by a reduction reaction during the structure formation. It is considered. Therefore, it is preferable that a group having high activity in such a reaction is contained, and more specifically, a predetermined amount of at least one group selected from an alkoxy group and a hydrogen (ie, Si—H group) is contained. preferable. As a content rate of this group (alkoxy group, Si-H group), the range of 0.1-1.2 mol / 100g is preferable, the range of 0.12-1 mol / 100g is more preferable, 0.15-0. The range of 6 mol / 100 g is more preferable. Such a ratio can be determined by measuring the amount of hydrogen or alcohol generated per unit weight of the silicone compound by the alkali decomposition method. The alkoxy group is preferably an alkoxy group having 1 to 4 carbon atoms, and particularly preferably a methoxy group.

一般的にシリコーン化合物の構造は、以下に示す4種類のシロキサン単位を任意に組み合わせることによって構成される。すなわち、
M単位:(CHSiO1/2、H(CHSiO1/2、H(CH)SiO1/2、(CH(CH=CH)SiO1/2、(CH(C)SiO1/2、(CH)(C)(CH=CH)SiO1/2等の1官能性シロキサン単位、
D単位:(CHSiO、H(CH)SiO、HSiO、H(C)SiO、(CH)(CH=CH)SiO、(CSiO等の2官能性シロキサン単位、
T単位:(CH)SiO3/2、(C)SiO3/2、HSiO3/2、(CH=CH)SiO3/2、(C)SiO3/2等の3官能性シロキサン単位、
Q単位:SiOで示される4官能性シロキサン単位である。
Generally, the structure of a silicone compound is constituted by arbitrarily combining the following four types of siloxane units. That is,
M units: (CH 3 ) 3 SiO 1/2 , H (CH 3 ) 2 SiO 1/2 , H 2 (CH 3 ) SiO 1/2 , (CH 3 ) 2 (CH 2 = CH) SiO 1/2 Monofunctional siloxane units such as (CH 3 ) 2 (C 6 H 5 ) SiO 1/2 , (CH 3 ) (C 6 H 5 ) (CH 2 ═CH) SiO 1/2 ,
D unit: (CH 3 ) 2 SiO, H (CH 3 ) SiO, H 2 SiO, H (C 6 H 5 ) SiO, (CH 3 ) (CH 2 ═CH) SiO, (C 6 H 5 ) 2 SiO Bifunctional siloxane units such as
T unit: (CH 3 ) SiO 3/2 , (C 3 H 7 ) SiO 3/2 , HSiO 3/2 , (CH 2 ═CH) SiO 3/2 , (C 6 H 5 ) SiO 3/2 etc. A trifunctional siloxane unit of
Q unit: a tetrafunctional siloxane unit represented by SiO 2 .

シリコーン系難燃剤に使用されるシリコーン化合物の構造は、具体的には、示性式としてD、T、M、M、M、M、M、M、M、D、D、Dが挙げられる。この中で好ましいシリコーン化合物の構造は、M、M、M、Mであり、さらに好ましい構造は、MまたはMである。 Specifically, the structure of the silicone compound used in the silicone-based flame retardant is represented by the following formulas: D n , T p , M m D n , M m T p , M m Q q , M m D n T p , M m D n Q q, M m T p Q q, M m D n T p Q q, D n T p, D n Q q, include D n T p Q q. Among these, preferable structures of the silicone compound are M m D n , M m T p , M m D n T p , and M m D n Q q , and more preferable structures are M m D n or M m D n. T p .

ここで、前記示性式中の係数m、n、p、qは各シロキサン単位の重合度を表す1以上の整数であり、各示性式における係数の合計がシリコーン化合物の平均重合度となる。この平均重合度は好ましくは3〜150の範囲、より好ましくは3〜80の範囲、更に好ましくは3〜60の範囲、特に好ましくは4〜40の範囲である。かかる好適な範囲であるほど難燃性において優れるようになる。更に後述するように芳香族基を所定量含むシリコーン化合物においては透明性や色相にも優れる。その結果良好な反射光が得られる。   Here, the coefficients m, n, p, and q in the above formula are integers of 1 or more that indicate the degree of polymerization of each siloxane unit, and the sum of the coefficients in each formula is the average degree of polymerization of the silicone compound. . This average degree of polymerization is preferably in the range of 3 to 150, more preferably in the range of 3 to 80, still more preferably in the range of 3 to 60, and particularly preferably in the range of 4 to 40. The better the range, the better the flame retardancy. Further, as described later, a silicone compound containing a predetermined amount of an aromatic group is excellent in transparency and hue. As a result, good reflected light can be obtained.

またm、n、p、qのいずれかが2以上の数値である場合、その係数の付いたシロキサン単位は、結合する水素原子や有機残基が異なる2種以上のシロキサン単位とすることができる。   When any of m, n, p, and q is a numerical value of 2 or more, the siloxane unit with the coefficient can be two or more types of siloxane units having different hydrogen atoms or organic residues to be bonded. .

シリコーン化合物は、直鎖状であっても分岐構造を持つものであってもよい。またシリコン原子に結合する有機残基は炭素数1〜30、より好ましくは1〜20の有機残基であることが好ましい。かかる有機残基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、およびデシル基などのアルキル基、シクロヘキシル基の如きシクロアルキル基、フェニル基の如きアリール基、並びにトリル基の如きアラルキル基を挙げることがでる。さらに好ましくは炭素数1〜8のアルキル基、アルケニル基またはアリール基である。アルキル基としては、特にはメチル基、エチル基、およびプロピル基等の炭素数1〜4のアルキル基が好ましい。   The silicone compound may be linear or have a branched structure. The organic residue bonded to the silicon atom is preferably an organic residue having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms. Specific examples of such an organic residue include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a decyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, And aralkyl groups such as tolyl groups. More preferably, they are a C1-C8 alkyl group, an alkenyl group, or an aryl group. As the alkyl group, an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, and a propyl group is particularly preferable.

さらにシリコーン系難燃剤として使用されるシリコーン化合物はアリール基を含有することが好ましい。一方、二酸化チタン顔料の有機表面処理剤としてのシラン化合物およびシロキサン化合物は、アリール基を含有しない方が好ましい効果が得られる点で、シリコーン系難燃剤とはその好適な態様において明確に区別される。より好適なシリコーン系難燃剤は、下記一般式(ii)で示される芳香族基が含まれる割合(芳香族基量)が10〜70重量%(より好適には15〜60重量%)のシリコーン化合物である。   Further, the silicone compound used as the silicone flame retardant preferably contains an aryl group. On the other hand, silane compounds and siloxane compounds as organic surface treatment agents for titanium dioxide pigments are clearly distinguished from silicone-based flame retardants in their preferred embodiments in that it is preferable to contain no aryl group. . A more preferable silicone-based flame retardant is a silicone having a ratio (aromatic group amount) of 10 to 70% by weight (more preferably 15 to 60% by weight) including an aromatic group represented by the following general formula (ii). A compound.

Figure 0005571279
(式(ii)中、Xはそれぞれ独立にOH基、炭素数1〜20の一価の有機残基を示す。nは0〜5の整数を表わす。さらに式(ii)中においてnが2以上の場合はそれぞれ互いに異なる種類のXを取ることができる。)
Figure 0005571279
(In formula (ii), each X independently represents an OH group or a monovalent organic residue having 1 to 20 carbon atoms. N represents an integer of 0 to 5. Further, in formula (ii), n is 2). In these cases, different types of X can be taken.)

シリコーン系難燃剤として使用されるシリコーン化合物は、前記Si−H基およびアルコキシ基以外にも反応基を含有していてもよく、かかる反応基としては例えば、アミノ基、カルボキシル基、エポキシ基、ビニル基、メルカプト基、およびメタクリロキシ基などが例示される。   The silicone compound used as the silicone-based flame retardant may contain a reactive group in addition to the Si-H group and the alkoxy group. Examples of the reactive group include an amino group, a carboxyl group, an epoxy group, and a vinyl group. Examples thereof include a group, a mercapto group, and a methacryloxy group.

Si−H基を有するシリコーン化合物としては、下記一般式(iii)および(iv)で示される構成単位の少なくとも一種以上を含むシリコーン化合物が好適に例示される。   Preferred examples of the silicone compound having a Si—H group include silicone compounds containing at least one of the structural units represented by the following general formulas (iii) and (iv).

Figure 0005571279
Figure 0005571279
(式(iii)および式(iv)中、Z〜Zはそれぞれ独立に水素原子、炭素数1〜20の一価の有機残基、または下記一般式(v)で示される化合物を示す。α1〜α3はそれぞれ独立に0または1を表わす。m1は0もしくは1以上の整数を表わす。さらに式(iii)中においてm1が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。)
Figure 0005571279
Figure 0005571279
(In formula (iii) and formula (iv), Z 1 to Z 3 each independently represent a hydrogen atom, a monovalent organic residue having 1 to 20 carbon atoms, or a compound represented by the following general formula (v): Α1 to α3 each independently represents 0 or 1. m1 represents 0 or an integer of 1 or more, and the repeating unit in the case where m1 is 2 or more in formula (iii) represents a plurality of different repeating units. Can be taken.)

Figure 0005571279
(式(v)中、Z〜Zはそれぞれ独立に水素原子、炭素数1〜20の一価の有機残基を示す。α4〜α8はそれぞれ独立に0または1を表わす。m2は0もしくは1以上の整数を表わす。さらに式(v)中においてm2が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。)
Figure 0005571279
(In formula (v), Z 4 to Z 8 each independently represents a hydrogen atom or a monovalent organic residue having 1 to 20 carbon atoms. Α 4 to α 8 each independently represents 0 or 1. m 2 represents 0. Alternatively, it represents an integer of 1 or more, and the repeating unit in the case where m2 is 2 or more in formula (v) can take a plurality of different repeating units.

シリコーン系難燃剤に使用されるシリコーン化合物において、アルコキシ基を有するシリコーン化合物としては、例えば一般式(vi)および一般式(vii)に示される化合物から選択される少なくとも1種の化合物があげられる。   Examples of the silicone compound having an alkoxy group in the silicone compound used for the silicone-based flame retardant include at least one compound selected from compounds represented by the general formula (vi) and the general formula (vii).

Figure 0005571279
(式(vi)中、βはビニル基、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示す。γ、γ、γ、γ、γ、およびγは炭素数1〜6のアルキル基およびシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示し、少なくとも1つの基がアリール基またはアラルキル基である。δ、δ、およびδは炭素数1〜4のアルコキシ基を示す。)
Figure 0005571279
(In the formula (vi), β 1 represents a vinyl group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group or aralkyl group having 6 to 12 carbon atoms. Γ 1 , γ 2 , γ 3 , γ 4 , γ 5 , and γ 6 represent an alkyl group and a cycloalkyl group having 1 to 6 carbon atoms, and an aryl group and an aralkyl group having 6 to 12 carbon atoms, and at least one group is aryl. And δ 1 , δ 2 , and δ 3 are each an alkoxy group having 1 to 4 carbon atoms.)

Figure 0005571279
(式(vii)中、βおよびβはビニル基、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示す。γ、γ、γ、γ10、γ11、γ12、γ13およびγ14は炭素数1〜6のアルキル基、、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示し、少なくとも1つの基がアリール基またはアラルキルである。δ、δ、δ、およびδは炭素数1〜4のアルコキシ基を示す。)
Figure 0005571279
(In formula (vii), β 2 and β 3 represent a vinyl group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group and an aralkyl group having 6 to 12 carbon atoms. γ 7 , γ 8 , γ 9 , γ 10 , γ 11 , γ 12 , γ 13, and γ 14 are each an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and 6 to 12 carbon atoms. And at least one group is an aryl group or an aralkyl group, and δ 4 , δ 5 , δ 6 , and δ 7 represent an alkoxy group having 1 to 4 carbon atoms.)

シリコーン系難燃剤の含有量は、A成分100重量部に対し、0.01〜20重量部、好ましくは0.5〜10重量部、より好ましくは1〜5重量部である。   Content of a silicone type flame retardant is 0.01-20 weight part with respect to 100 weight part of A component, Preferably it is 0.5-10 weight part, More preferably, it is 1-5 weight part.

(D成分:フィブリル形成能を有するポリテトラフルオロエチレン)
本発明のD成分に使用されるフィブリル形成能を有するポリテトラフルオロエチレン(以下フィブリル化PTFEと略称することがある)は、フィブリル化PTFE単独であっても、混合形態のフィブリル化PTFEすなわちフィブリル化PTFE粒子と有機系重合体からなるポリテトラフルオロエチレン系混合体であってもよい。
(D component: polytetrafluoroethylene having fibril-forming ability)
The fibril forming ability polytetrafluoroethylene used in the D component of the present invention (hereinafter sometimes abbreviated as fibrillated PTFE) may be fibrillated PTFE or fibrillated PTFE in a mixed form. It may be a polytetrafluoroethylene mixture comprising PTFE particles and an organic polymer.

フィブリル化PTFEは極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その数平均分子量は、150万〜数千万の範囲である。かかる下限はより好ましくは300万である。かかる数平均分子量は、特開平6−145520号公報に開示されているとおり、380℃でのポリテトラフルオロエチレンの溶融粘度に基づき算出される。即ち、B成分のフィブリル化PTFEは、かかる公報に記載された方法で測定される380℃における溶融粘度が10〜1013poiseの範囲であり、好ましくは10〜1012poiseの範囲である。 Fibrilized PTFE has an extremely high molecular weight and tends to be bonded to each other by an external action such as shearing force to form a fiber. Its number average molecular weight ranges from 1.5 million to tens of millions. The lower limit is more preferably 3 million. The number average molecular weight is calculated based on the melt viscosity of polytetrafluoroethylene at 380 ° C. as disclosed in JP-A-6-145520. That is, the fibrillated PTFE of the component B has a melt viscosity at 380 ° C. measured by the method described in this publication in the range of 10 7 to 10 13 poise, preferably in the range of 10 8 to 10 12 poise. .

かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル化PTFEは樹脂中での分散性を向上させ、更に良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。また、特開平6−145520号公報に開示されているとおり、かかるフィブリル化PTFEを芯とし、低分子量のポリテトラフルオロエチレンを殻とした構造を有するものも好ましく利用される。   Such PTFE can be used in solid form or in the form of an aqueous dispersion. Such fibrillated PTFE can also be used in the form of a PTFE mixture with other resins in order to improve dispersibility in the resin and to obtain better flame retardancy and mechanical properties. Further, as disclosed in JP-A-6-145520, those having a structure having such a fibrillated PTFE as a core and a low molecular weight polytetrafluoroethylene as a shell are also preferably used.

かかるフィブリル化PTFEの市販品としては例えば三井・デュポンフロロケミカル(株)のテフロン(登録商標)6J、ダイキン化学工業(株)のポリフロンMPA FA500、F−201Lなどを挙げることができる。フィブリル化PTFEの水性分散液の市販品としては、旭アイシーアイフロロポリマーズ(株)製のフルオンAD−1、AD−936、ダイキン工業(株)製のフルオンD−1、D−2、三井・デュポンフロロケミカル(株)製のテフロン(登録商標)30Jなどを代表として挙げることができる。   Examples of such commercially available fibrillated PTFE include Teflon (registered trademark) 6J from Mitsui DuPont Fluorochemical Co., Ltd., Polyflon MPA FA500, F-201L from Daikin Chemical Industries, Ltd., and the like. Commercially available aqueous dispersions of fibrillated PTFE include: Fluon AD-1, AD-936 manufactured by Asahi IC Fluoropolymers, Fluon D-1, D-2 manufactured by Daikin Industries, Ltd., Mitsui A representative example is Teflon (registered trademark) 30J manufactured by DuPont Fluorochemical Co., Ltd.

ポリテトラフルオロエチレン系混合体は以下に示す、乳化重合、懸濁重合等の方法により得ることができる。その中でも懸濁重合により製造されたポリテトラフルオロエチレン系混合体が好ましい。   The polytetrafluoroethylene-based mixture can be obtained by the following methods such as emulsion polymerization and suspension polymerization. Among these, a polytetrafluoroethylene-based mixture produced by suspension polymerization is preferable.

乳化重合による重合方法は、ポリテトラフルオロエチレン系粒子分散液(D1)と、有機物重合体粒子分散液(D2)とを攪拌混合した分散液中でビニル単量体(d2)を重合することによりポリテトラフルオロエチレン系混合体を製造する方法である。なお、上記有機物重合体粒子分散液(D2)はビニル系単量体(d1)を乳化重合等の公知の方法で重合することにより得られるものである。   The polymerization method by emulsion polymerization involves polymerizing the vinyl monomer (d2) in a dispersion obtained by stirring and mixing the polytetrafluoroethylene-based particle dispersion (D1) and the organic polymer particle dispersion (D2). This is a method for producing a polytetrafluoroethylene-based mixture. The organic polymer particle dispersion (D2) is obtained by polymerizing the vinyl monomer (d1) by a known method such as emulsion polymerization.

また、上記ポリテトラフルオロエチレン粒子水性分散液(D1)に含まれるポリテトラフルオロエチレン粒子は、粒子径が10μm以下、具体的には粒子径が10μmを超える凝集体となっていないポリテトラフルオロエチレン粒子が好ましい。さらに、芳香族ポリカーボネート樹脂に配合した際の分散性の観点から、粒子径が0.05〜1.0μmのポリテトラフルオロエチレン粒子がより好ましい。ポリテトラフルオロエチレン粒子水性分散液(D1)は、含フッ素界面活性剤を用いる乳化重合でテトラフルオロエチレンモノマーを重合させることにより得られる。   The polytetrafluoroethylene particles contained in the aqueous polytetrafluoroethylene particle dispersion (D1) have a particle diameter of 10 μm or less, specifically, a polytetrafluoroethylene that is not an aggregate having a particle diameter exceeding 10 μm. Particles are preferred. Furthermore, from the viewpoint of dispersibility when blended in an aromatic polycarbonate resin, polytetrafluoroethylene particles having a particle diameter of 0.05 to 1.0 μm are more preferable. The aqueous polytetrafluoroethylene particle dispersion (D1) is obtained by polymerizing tetrafluoroethylene monomer by emulsion polymerization using a fluorine-containing surfactant.

ポリテトラフルオロエチレン粒子の乳化重合の際、ポリテトラフルオロエチレンの特性を損なわない範囲で、共重合成分としてヘキサフルオロプロピレン、クロロトリフルオロエチレン、フルオロアルキルエチレン、パーフルオロアルキルビニルエーテル等の含フッ素オレフィンや、パーフルオロアルキル(メタ)アクリレート等の含フッ素アルキル(メタ)アクリレートを用いることができる。共重合成分の含有量は、テトラフルオロエチレンに対して10重量%以下であることが好ましい。  Fluorine-containing olefins such as hexafluoropropylene, chlorotrifluoroethylene, fluoroalkylethylene, and perfluoroalkyl vinyl ether as copolymerization components in the emulsion polymerization of polytetrafluoroethylene particles as long as the properties of polytetrafluoroethylene are not impaired. Fluorine-containing alkyl (meth) acrylates such as perfluoroalkyl (meth) acrylate can be used. The content of the copolymer component is preferably 10% by weight or less with respect to tetrafluoroethylene.

ポリテトラフルオロエチレン粒子分散液(D1)の市販原料としては、旭硝子フロロポリマー社製のフルオンAD−1、AD−936、ダイキン工業社製のポリフロンD−1、D−2、三井デュポンフロロケミカル社製のテフロン(登録商標)30J等を代表例として挙げることができる。   Commercially available raw materials for the polytetrafluoroethylene particle dispersion (D1) include Fluoron AD-1 and AD-936 manufactured by Asahi Glass Fluoropolymer, Polyflon D-1 and D-2 manufactured by Daikin Industries, Ltd., and Mitsui DuPont Fluorochemicals. A typical example is Teflon (registered trademark) 30J.

乳化重合においては、攪拌混合の際の凝集速度を低下させるために、混合する前にノニオン性乳化剤をポリテトラフルオロエチレン系粒子および/または有機物重合体粒子の表面上に吸着させておく必要がある。   In emulsion polymerization, it is necessary to adsorb a nonionic emulsifier on the surface of polytetrafluoroethylene-based particles and / or organic polymer particles before mixing in order to reduce the aggregation rate during stirring and mixing. .

ノニオン性乳化剤としては特に制限はなく、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ジアルキルフェノキシポリ(エチレンオキシ)エタノール、ポリビニルアルコール、ポリアクリル酸、アルキルセルロース等を具体例として挙げることができる。   There is no restriction | limiting in particular as a nonionic emulsifier, A polyoxyethylene alkyl ether, a polyoxyethylene alkyl allyl ether, a dialkyl phenoxy poly (ethyleneoxy) ethanol, polyvinyl alcohol, polyacrylic acid, an alkyl cellulose etc. can be mentioned as a specific example. .

上記のビニル単量体(d1)およびビニル単量体(d2)は同一でも異なっていても良く、特に制限されるものではないが、芳香族ポリカーボネート樹脂に配合する際の分散性の観点から芳香族ポリカーボネート樹脂との親和性が高いものであることが好ましい。  The vinyl monomer (d1) and the vinyl monomer (d2) may be the same or different, and are not particularly limited. However, the vinyl monomer (d1) and the vinyl monomer (d2) are aromatic from the viewpoint of dispersibility when blended with the aromatic polycarbonate resin. It is preferable that it has a high affinity with the group polycarbonate resin.

ビニル単量体(d1)および(d2)の具体例としては、スチレン、α−メチルスチレン、p−メチルスチレン、o−メチルスチレン、t−ブチルスチレン、o−エチルスチレン、p−クロロスチレン、o−クロロスチレン、2,4−ジクロロスチレン、p−メトキシスチレン、o−メトキシスチレン、2,4−ジメチルスチレン等の芳香族ビニル単量体;アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸−2−エチルヘキシル、メタクリル酸−2−エチルヘキシル、アクリル酸ドデシル、メタクリル酸ドデシル、アクリル酸トリデシル、メタクリル酸トリデシル、アクリル酸オクタデシル、メタクリル酸オクタデシル、アクリル酸シクロヘキシル、メタクリル酸シクロヘキシル等の(メタ)アクリル酸エステル単量体;アクリロニトリル、メタアクリロニトリル等のシアン化ビニル単量体;無水マレイン酸等のα,β−不飽和カルボン酸;N−フェニルマレイミド、N−メチルマレイミド、N−シクロヒキシルマレイミド等のマレイミド単量体;グリシジルメタクリレート等のエポキシ基含有単量体;ビニルメチルエーテル、ビニルエチルエーテル等のビニルエーテル単量体;酢酸ビニル、酪酸ビニル等のカルボン酸ビニル単量体;エチレン、プロピレン、イソブチレン等のα−オレフィン単量体;ブタジエン、イソプレン、ジメチルブタジエン等のジエン単量体等を挙げることができる。これらの単量体は、単独であるいは2種以上混合して用いることができる。  Specific examples of the vinyl monomers (d1) and (d2) include styrene, α-methylstyrene, p-methylstyrene, o-methylstyrene, t-butylstyrene, o-ethylstyrene, p-chlorostyrene, o -Aromatic vinyl monomers such as chlorostyrene, 2,4-dichlorostyrene, p-methoxystyrene, o-methoxystyrene, 2,4-dimethylstyrene; methyl acrylate, methyl methacrylate, ethyl acrylate, methacrylic acid Ethyl, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, dodecyl acrylate, dodecyl methacrylate, tridecyl acrylate, tridecyl methacrylate, octadecyl acrylate, octadecyl methacrylate, acrylic acid Cyclohexyl, me (Meth) acrylic acid ester monomers such as cyclohexyl acrylate; vinyl cyanide monomers such as acrylonitrile and methacrylonitrile; α, β-unsaturated carboxylic acids such as maleic anhydride; N-phenylmaleimide, N-methyl Maleimide monomers such as maleimide and N-cyclohexylmaleimide; Epoxy group-containing monomers such as glycidyl methacrylate; Vinyl ether monomers such as vinyl methyl ether and vinyl ethyl ether; Vinyl carboxylates such as vinyl acetate and vinyl butyrate Monomers; α-olefin monomers such as ethylene, propylene, and isobutylene; and diene monomers such as butadiene, isoprene, and dimethylbutadiene. These monomers can be used alone or in admixture of two or more.

これらの単量体の中で芳香族ポリカーボネート樹脂との親和性の観点から好ましいものとして、芳香族ビニル系単量体、シアン化ビニル系単量体からなる群より選ばれる1種以上の単量体を30重量%以上含有する単量体を挙げることができる。特に好ましいものとして、スチレン、アクリロニトリルからなる群より選ばれる1種以上の単量体、さらにより好ましいものとしてアクリロニトリルを30重量%以上含有する単量体を挙げることができる。  Among these monomers, from the viewpoint of the affinity with the aromatic polycarbonate resin, one or more single monomers selected from the group consisting of aromatic vinyl monomers and vinyl cyanide monomers are preferred. Mention may be made of monomers containing 30% by weight or more of body. Particularly preferred are one or more monomers selected from the group consisting of styrene and acrylonitrile, and even more preferred are monomers containing 30% by weight or more of acrylonitrile.

乳化重合により製造されるポリテトラフルオロエチレン系混合体は、その水性分散液を、塩化カルシウム、硫酸マグネシウム等の金属塩を溶解した熱水中に投入し、塩析、凝固した後に乾燥することにより粉体化することもできる。   The polytetrafluoroethylene-based mixture produced by emulsion polymerization is poured into hot water in which a metal salt such as calcium chloride or magnesium sulfate is dissolved, salted out, solidified and then dried. It can also be pulverized.

懸濁重合による重合方法はポリテトラフルオロエチレン系粒子分散液(D1)に上記ビニル単量体(d1)および水溶性開始剤を添加し、反応させることによりポリテトラフルオロエチレン系混合体を製造する方法である。   The polymerization method by suspension polymerization is to produce a polytetrafluoroethylene mixture by adding the vinyl monomer (d1) and the water-soluble initiator to the polytetrafluoroethylene particle dispersion (D1) and reacting them. Is the method.

使用される開始剤は、ビニル単量体の重合反応に使用されるものであれば制限なく使用され得る。前記開始剤としては、クミルハイドロパーオキサイド、ジ−tert−ブチルパーオキサイド、ベンゾイルパーオキサイド、ハイドロゲンパーオキサイド、およびポタシウムパーオキサイドが例示されるが、これらに制限されず、反応条件に応じて1種以上使用することができる。前記開始剤の量は、ポリテトラフルオロエチレンの量及び単量体の種類/量を考慮して使用される範囲内で自由に選択され、全組成物の量を基準として0.15〜0.25重量部使用することが好ましい。   The initiator used can be used without limitation as long as it is used for the polymerization reaction of vinyl monomers. Examples of the initiator include cumyl hydroperoxide, di-tert-butyl peroxide, benzoyl peroxide, hydrogen peroxide, and potassium peroxide. However, the initiator is not limited to these, and 1 depending on the reaction conditions. More than seeds can be used. The amount of the initiator is freely selected within the range used in consideration of the amount of polytetrafluoroethylene and the type / amount of monomer, and is 0.15 to 0.00 based on the amount of the total composition. It is preferable to use 25 parts by weight.

具体的な製造の手順としては下記の方法が挙げられる。すなわちまず、反応器中に水およびポリテトラフルオロエチレン系粒子分散液(固形濃度:60%、ポリテトラフルオロエチレン粒子径:0.15〜0.3μm)を入れた後、攪拌しながらアクリル単量体、スチレン単量体および水溶性開始剤としてクメンハイドロパーオキサイドを添加し80〜90℃にて9時間反応を行う。反応終了後、遠心分離機にて30分間遠心分離を行うことにより水分を除去し、ペースト状の生成物を得る。その後、生成物のペーストを熱風乾燥機にて80〜100℃にて8時間乾燥する。その後、かかる乾燥した生成物の粉砕を行い本発明のポリテトラフルオロエチレン系混合体を得る。   Specific manufacturing procedures include the following methods. That is, first, water and a polytetrafluoroethylene-based particle dispersion (solid concentration: 60%, polytetrafluoroethylene particle diameter: 0.15 to 0.3 μm) were placed in a reactor, and then the acrylic monomer was stirred. Cumene hydroperoxide is added as a body, a styrene monomer, and a water-soluble initiator, and it reacts at 80-90 degreeC for 9 hours. After completion of the reaction, water is removed by centrifuging in a centrifuge for 30 minutes to obtain a pasty product. Thereafter, the product paste is dried in a hot air dryer at 80 to 100 ° C. for 8 hours. Thereafter, the dried product is pulverized to obtain the polytetrafluoroethylene-based mixture of the present invention.

かかる懸濁重合法は、乳化重合法における乳化分散による重合工程を必要としないため、乳化剤および重合後のラテックスを凝固沈殿するための電解質塩類を必要としない。また乳化重合法で製造されたポリテトラフルオロエチレン混合体では、混合体中の乳化剤および電解質塩類が混在しやすく取り除きにくくなるため、かかる乳化剤、電解質塩類由来のナトリウム金属イオン、カリウム金属イオンを低減することは難しい。懸濁重合法で製造されているポリテトラフルオロエチレン系混合体は、かかる乳化剤、電解質塩類を使用しないことから混合体中のナトリウム金属イオン、カリウム金属イオンを低減することができ、熱安定性および耐加水分解性を向上することができる。   Such a suspension polymerization method does not require a polymerization step by emulsion dispersion in the emulsion polymerization method, and therefore does not require an emulsifier and an electrolyte salt for coagulating and precipitating the latex after polymerization. In addition, in the polytetrafluoroethylene mixture produced by the emulsion polymerization method, the emulsifier and the electrolyte salt in the mixture are easily mixed and difficult to remove. Therefore, the emulsifier, the sodium metal ion derived from the electrolyte salt, and the potassium metal ion are reduced. It ’s difficult. Since the polytetrafluoroethylene-based mixture produced by the suspension polymerization method does not use such an emulsifier and electrolyte salt, sodium metal ions and potassium metal ions in the mixture can be reduced, thermal stability and Hydrolysis resistance can be improved.

本発明に用いられるポリテトラフルオロエチレン系混合体に含まれるカリウム金属イオン(ただし、ポリテトラフルオロエチレン中のカリウム金属イオンは除く)の量は15ppm以下が好ましく、より好ましくは10ppm以下、さらに好ましくは5ppm以下である。また、ポリテトラフルオロエチレン系混合体に含まれるナトリウム金属イオン(ただし、ポリテトラフルオロエチレン中のナトリウム金属イオンは除く)の量は10ppm以下が好ましく、より好ましくは8ppm以下、さらに好ましくは5ppm以下である。これら金属元素の含有量が規定値よりも多くなると、押出時、成形時などに発生する熱および/又は水分などにより、ポリカーボネート樹脂の分解を促進する触媒効果が発現するため、ポリテトラフルオロエチレン系混合体を配合したポリカーボネート樹脂組成物の熱安定性及び加水分解性が悪化する。なお、上記のナトリウム金属イオンおよびカリウム金属イオン含有量は下記の方法により測定を行った。   The amount of potassium metal ions contained in the polytetrafluoroethylene-based mixture used in the present invention (excluding potassium metal ions in polytetrafluoroethylene) is preferably 15 ppm or less, more preferably 10 ppm or less, still more preferably 5 ppm or less. Further, the amount of sodium metal ions (excluding sodium metal ions in polytetrafluoroethylene) contained in the polytetrafluoroethylene-based mixture is preferably 10 ppm or less, more preferably 8 ppm or less, still more preferably 5 ppm or less. is there. If the content of these metal elements exceeds the specified value, the catalytic effect of promoting the decomposition of the polycarbonate resin is manifested by heat and / or moisture generated during extrusion, molding, etc. The heat stability and hydrolyzability of the polycarbonate resin composition containing the mixture are deteriorated. In addition, said sodium metal ion and potassium metal ion content measured by the following method.

まず、ポリテトラフルオロエチレン系混合体を約0.1g石英製容器に量りとり硝酸5mlを入れて密閉し、マイクロ波照射(Anton Paar製MULTIWAVE型)による分解を行った。なお、その際ポリテトラフルオロエチレンは分解されなかった。分解後、ポリテトラフルオロエチレンを取り出して超純水で水洗し、水洗した液に分解液を加え、超純水にて50mlに定溶した。その定溶した溶液を適宜希釈して検液とした。そして、誘導結合プラズマ質量分析法(ICP−MS法)(横河アナリティシステムズ製 Agilent7500cs型)により検液中のナトリウム金属イオン、カリウム金属イオンについて定量分析を行い、試料重量当たりの濃度に換算した。   First, about 0.1 g of a polytetrafluoroethylene mixture was weighed into a quartz container, sealed with 5 ml of nitric acid, and decomposed by microwave irradiation (MULTIWAVE type manufactured by Anton Paar). At that time, polytetrafluoroethylene was not decomposed. After decomposition, the polytetrafluoroethylene was taken out and washed with ultrapure water. The decomposition solution was added to the water-washed solution, and the resulting solution was dissolved in 50 ml with ultrapure water. The solubilized solution was appropriately diluted to prepare a test solution. Then, quantitative analysis was performed on sodium metal ion and potassium metal ion in the test solution by inductively coupled plasma mass spectrometry (ICP-MS method) (Agilent 7500cs type, manufactured by Yokogawa Analytical Systems), and converted to a concentration per sample weight. .

本発明に用いるポリテトラフルオロエチレン系混合体中に占めるポリテトラフルオロエチレンの含有割合は、0.1重量%〜90%重量であることが好ましく、1.0重量%〜 80重量%であるのがより好ましく、10重量%〜70重量%が最も好ましい。0.1重量%未満であると難燃性の改良効果が不十分となり、90重量%を超えると表面外観に悪影響を及ぼす可能性があるので好ましくない。   The content ratio of polytetrafluoroethylene in the polytetrafluoroethylene-based mixture used in the present invention is preferably 0.1% by weight to 90% by weight, and 1.0% by weight to 80% by weight. Is more preferable, and 10% by weight to 70% by weight is most preferable. If it is less than 0.1% by weight, the flame retardancy improving effect becomes insufficient, and if it exceeds 90% by weight, the surface appearance may be adversely affected.

本発明に用いるポリテトラフルオロエチレン系混合体のコーティング層に含まれるアクリル系単量体由来単位の量は、スチレン系単量体由来単位100重量部に対して好ましくは8〜11重量部、より好ましくは8〜10重量部、さらに好ましくは8〜9重量部である。アクリル系単量体由来単位が8重量部より少ないとコーティング強度が低下することがあり、11重量部より多いと成形品の表面外観が悪くなり得る。   The amount of the acrylic monomer-derived unit contained in the coating layer of the polytetrafluoroethylene-based mixture used in the present invention is preferably 8 to 11 parts by weight with respect to 100 parts by weight of the styrene monomer-derived unit. Preferably it is 8-10 weight part, More preferably, it is 8-9 weight part. If the acrylic monomer-derived unit is less than 8 parts by weight, the coating strength may be reduced, and if it is more than 11 parts by weight, the surface appearance of the molded product may be deteriorated.

また、本発明に用いるポリテトラフルオロエチレン系混合体の残存水分含量は0.5重量%以下であることが好ましく、より好ましくは0.2〜0.4重量%、さらに好ましくは0.1〜0.3重量%である。残存水分量が0.5重量%より多いと難燃性に悪影響を与えることがある。   The residual water content of the polytetrafluoroethylene-based mixture used in the present invention is preferably 0.5% by weight or less, more preferably 0.2 to 0.4% by weight, still more preferably 0.1 to 0.1% by weight. 0.3% by weight. If the residual water content is more than 0.5% by weight, the flame retardancy may be adversely affected.

D成分の含有量は、A成分100重量部に対して、0.01〜5重量部、好ましくは0.03〜3重量部、特に好ましくは0.05〜2重量部である。0.01重量部未満ではドリップ抑制効果が不十分であり、5重量部を超えると全光線透過率が低下するので好ましくない。   Content of D component is 0.01-5 weight part with respect to 100 weight part of A component, Preferably it is 0.03-3 weight part, Most preferably, it is 0.05-2 weight part. If it is less than 0.01 part by weight, the drip suppression effect is insufficient, and if it exceeds 5 parts by weight, the total light transmittance is lowered, which is not preferable.

(E成分:リン系安定剤および/またはヒンダードフェノール系安定剤)
(I)リン系安定剤
本発明の難燃性ポリカーボネート樹脂組成物には、加水分解性を促進させない程度において、リン系安定剤が配合されることが好ましい。かかるリン系安定剤は製造時または成形加工時の熱安定性を向上させ、機械的特性、色相、および成形安定性を向上させる。リン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル、並びに第3級ホスフィンなどが例示される。
(E component: phosphorus stabilizer and / or hindered phenol stabilizer)
(I) Phosphorus stabilizer It is preferable that the flame retardant polycarbonate resin composition of the present invention is blended with a phosphorus stabilizer to the extent that does not promote hydrolyzability. Such phosphorus stabilizers improve thermal stability during production or molding, and improve mechanical properties, hue, and molding stability. Examples of phosphorus stabilizers include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof, and tertiary phosphine.

具体的にはホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。   Specifically, as the phosphite compound, for example, triphenyl phosphite, tris (nonylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl Phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, tris ( Diethylphenyl) phosphite, tris (di-iso-propylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-di-tert-butylpheny) ) Phosphite, tris (2,6-di-tert-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2 , 6-Di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-ethylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite Phyto, bis (nonylphenyl) pentaerythritol diphosphite, dicyclohexyl pentaerythritol diphosphite, and the like.

更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2’−エチリデンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイトなどを挙げることができる。   Further, as other phosphite compounds, those which react with dihydric phenols and have a cyclic structure can be used. For example, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert- Butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2′-methylenebis (4-methyl-6-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite 2,2′-ethylidenebis (4-methyl-6-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite.

ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができ、好ましくはトリフェニルホスフェート、トリメチルホスフェートである。   Examples of the phosphate compound include tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, Examples thereof include diisopropyl phosphate, and triphenyl phosphate and trimethyl phosphate are preferable.

ホスホナイト化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等があげられ、テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。   Examples of the phosphonite compound include tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenylenedi. Phosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite Tetrakis (2,6-di-tert-butylphenyl) -4,3′-biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3′-biphenylene diphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,4-di tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-n-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl)- 4-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, and the like, and tetrakis (di-tert-butylphenyl) -biphenylenediphosphonite, bis (Di-tert-butylphenyl) -phenyl-phenylphosphonite is preferred, tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl)- More preferred is phenyl-phenylphosphonite. Such a phosphonite compound is preferable because it can be used in combination with a phosphite compound having an aryl group in which two or more alkyl groups are substituted.

ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。   Examples of the phosphonate compound include dimethyl benzenephosphonate, diethyl benzenephosphonate, and dipropyl benzenephosphonate.

第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ−p−トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。   The tertiary phosphine includes triethylphosphine, tripropylphosphine, tributylphosphine, trioctylphosphine, triamylphosphine, dimethylphenylphosphine, dibutylphenylphosphine, diphenylmethylphosphine, diphenyloctylphosphine, triphenylphosphine, tri-p-tolyl. Examples include phosphine, trinaphthylphosphine, and diphenylbenzylphosphine. A particularly preferred tertiary phosphine is triphenylphosphine.

上記リン系安定剤は、1種のみならず2種以上を混合して用いることができる。上記リン系安定剤の中でもトリメチルホスフェートに代表されるアルキルホスフェート化合物が配合されることが好ましい。またかかるアルキルホスフェート化合物と、ホスファイト化合物および/またはホスホナイト化合物との併用も好ましい態様である。   The phosphorus stabilizers can be used alone or in combination of two or more. Among the phosphorus stabilizers, an alkyl phosphate compound typified by trimethyl phosphate is preferably blended. A combination of such an alkyl phosphate compound and a phosphite compound and / or phosphonite compound is also a preferred embodiment.

(II)ヒンダードフェノール系安定剤
本発明の難燃性ポリカーボネート樹脂組成物には、更にヒンダードフェノール系安定剤を配合することができる。かかる配合は例えば成形加工時の色相悪化や長期間の使用における色相の悪化などを抑制する効果が発揮される。ヒンダードフェノール系安定剤としては、例えば、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3’,5’−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、およびテトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンなどが例示される。これらはいずれも入手容易である。上記ヒンダードフェノール系安定剤は、単独でまたは2種以上を組合せて使用することができる。
(II) Hindered phenol stabilizer The flame retardant polycarbonate resin composition of the present invention may further contain a hindered phenol stabilizer. Such blending exhibits an effect of suppressing, for example, hue deterioration during molding and hue deterioration during long-term use. Examples of the hindered phenol-based stabilizer include α-tocopherol, butylhydroxytoluene, sinapir alcohol, vitamin E, n-octadecyl-β- (4′-hydroxy-3 ′, 5′-di-tert-butylfel). Propionate, 2-tert-butyl-6- (3′-tert-butyl-5′-methyl-2′-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N , N-dimethylaminomethyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′- Methylene bis (4-ethyl-6-tert-butylphenol), 4,4′-methylene bis (2,6- Di-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-cyclohexylphenol), 2,2′-dimethylene-bis (6-α-methyl-benzyl-p-cresol) 2,2′- Ethylidene-bis (4,6-di-tert-butylphenol), 2,2'-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert- Butylphenol), triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, 1,6-hexanediol bis [3- (3,5-di-tert -Butyl-4-hydroxyphenyl) propionate], bis [2-tert-butyl-4-methyl 6- (3-tert-butyl) -5-methyl-2-hydroxybenzyl) phenyl] terephthalate, 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1,- Dimethylethyl} -2,4,8,10-tetraoxaspiro [5,5] undecane, 4,4′-thiobis (6-tert-butyl-m-cresol), 4,4′-thiobis (3-methyl) -6-tert-butylphenol), 2,2'-thiobis (4-methyl-6-tert-butylphenol), bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 4,4'- Di-thiobis (2,6-di-tert-butylphenol), 4,4′-tri-thiobis (2,6-di-tert-butylphenol), 2,2-thiodiethyl Nbis- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4-hydroxy-3 ′, 5′-di- tert-butylanilino) -1,3,5-triazine, N, N′-hexamethylenebis- (3,5-di-tert-butyl-4-hydroxyhydrocinnamide), N, N′-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5 -Trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tris (3,5-di-tert-butyl-4-hydroxyphenyl) iso Anurate, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate, 1,3,5-tris 2 [3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl isocyanurate and tetrakis [methylene-3- (3 ′, 5′-di-tert -Butyl-4-hydroxyphenyl) propionate] methane and the like. All of these are readily available. The said hindered phenol type stabilizer can be used individually or in combination of 2 or more types.

リン系安定剤および/またはヒンダードフェノール系安定剤の含有量は、A成分100重量部に対し、0.005〜0.5重量部、好ましくは0.01〜0.5重量部、より好ましくは0.01〜0.3重量部である。   The content of the phosphorus stabilizer and / or hindered phenol stabilizer is 0.005 to 0.5 parts by weight, preferably 0.01 to 0.5 parts by weight, more preferably 100 parts by weight of component A. Is 0.01 to 0.3 parts by weight.

(III)前記以外の熱安定剤
本発明の難燃性ポリカーボネート樹脂組成物には、前記リン系安定剤および/またはヒンダードフェノール系安定剤以外の他の熱安定剤を配合することもできる。かかる他の熱安定剤としては、例えば3−ヒドロキシ−5,7−ジ−tert−ブチル−フラン−2−オンとo−キシレンとの反応生成物に代表されるラクトン系安定剤が好適に例示される。かかる安定剤の詳細は特開平7−233160号公報に記載されている。かかる化合物はIrganox HP−136(商標、CIBA SPECIALTY CHEMICALS社製)として市販され、該化合物を利用できる。更に該化合物と各種のホスファイト化合物およびヒンダードフェノール化合物を混合した安定剤が市販されている。例えば前記社製のIrganox HP−2921が好適に例示される。ラクトン系安定剤の配合量は、A成分100重量部に対して好ましくは0.0005〜0.05重量部、より好ましくは0.001〜0.03重量部である。
(III) Heat stabilizer other than the above The flame retardant polycarbonate resin composition of the present invention may contain other heat stabilizers other than the phosphorus stabilizer and / or the hindered phenol stabilizer. Preferable examples of such other heat stabilizers include lactone stabilizers represented by a reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene. Is done. Details of such a stabilizer are described in JP-A-7-233160. Such a compound is commercially available as Irganox HP-136 (trademark, manufactured by CIBA SPECIALTY CHEMICALS) and can be used. Furthermore, a stabilizer obtained by mixing the compound with various phosphite compounds and hindered phenol compounds is commercially available. For example, Irganox HP-2921 manufactured by the above company is preferably exemplified. The blending amount of the lactone stabilizer is preferably 0.0005 to 0.05 parts by weight, more preferably 0.001 to 0.03 parts by weight with respect to 100 parts by weight of the component A.

またその他の安定剤としては、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、およびグリセロール−3−ステアリルチオプロピオネートなどのイオウ含有安定剤が例示される。かかるイオウ含有安定剤の配合量は、A成分100重量部に対して好ましくは0.001〜0.1重量部、より好ましくは0.01〜0.08重量部である。   Other stabilizers include sulfur-containing stabilizers such as pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), and glycerol-3-stearylthiopropionate. Illustrated. The amount of the sulfur-containing stabilizer is preferably 0.001 to 0.1 parts by weight, more preferably 0.01 to 0.08 parts by weight, per 100 parts by weight of component A.

(F成分:蛍光増白剤)
本発明のF成分である蛍光増白剤は、樹脂等の色調を白色あるいは青白色に改善するために用いられるものであれば特に制限はなく、例えばスチルベン系、ベンズイミダゾール系、ベンズオキサゾール系、ナフタルイミド系、ローダミン系、クマリン系、オキサジン系化合物等が挙げられる。具体的には例えばCI Fluorescent Brightener 219:1や、イーストマンケミカル社製EASTOBRITE OB−1などを挙げることができる。ここで蛍光増白剤は、光線の紫外部のエネルギーを吸収し、このエネルギーを可視部に放射する作用を有するものである。蛍光増白剤の含有量はA成分100重量部に対して0.0005〜0.1重量部であり、より好ましくは0.001〜1重量部である。0.1重量部を超えても該組成物の色調の改良効果は小さい。
(F component: fluorescent whitening agent)
The fluorescent whitening agent that is the F component of the present invention is not particularly limited as long as it is used for improving the color tone of a resin or the like to white or bluish white. For example, stilbene, benzimidazole, benzoxazole, Naphthalimide type, rhodamine type, coumarin type, oxazine type compound and the like can be mentioned. Specifically, CI Fluorescent Brightener 219: 1, Eastman Chemical OB-1 manufactured by Eastman Chemical Co., etc. can be used. Here, the fluorescent whitening agent has an action of absorbing energy in the ultraviolet part of the light and radiating this energy to the visible part. The content of the optical brightener is 0.0005 to 0.1 part by weight, more preferably 0.001 to 1 part by weight, based on 100 parts by weight of component A. Even if it exceeds 0.1 parts by weight, the effect of improving the color tone of the composition is small.

(紫外線吸収剤)
本発明の難燃性ポリカーボネート樹脂組成物においては、耐光性を付与することを目的として紫外線吸収剤の配合も可能である。
(UV absorber)
In the flame-retardant polycarbonate resin composition of the present invention, an ultraviolet absorber can be blended for the purpose of imparting light resistance.

紫外線吸収剤としては、具体的にはベンゾフェノン系では、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシトリハイドライドレイトベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2−ヒドロキシ−4−n−ドデシルオキシベンソフェノン、および2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノンなどが例示される。   Specific examples of the ultraviolet absorber include benzophenone-based compounds such as 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 2-hydroxy-4-benzyloxy. Benzophenone, 2-hydroxy-4-methoxy-5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydride benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2 ', 4,4′-tetrahydroxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5- Benzoyl-4-hydroxy-2 Methoxyphenyl) methane, 2-hydroxy -4-n-dodecyloxy benzoin phenone, and 2-hydroxy-4-methoxy-2'-carboxy benzophenone may be exemplified.

紫外線吸収剤としては、具体的に、ベンゾトリアゾール系では、例えば、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−アミルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾ−ル、2,2’−メチレンビス(4−クミル−6−ベンゾトリアゾールフェニル)、2,2’−p−フェニレンビス(1,3−ベンゾオキサジン−4−オン)、および2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾ−ル、並びに2−(2’−ヒドロキシ−5−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2−(2’―ヒドロキシ−5−アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2−ヒドロキシフェニル−2H−ベンゾトリアゾール骨格を有する重合体などが例示される。   Specific examples of the ultraviolet absorber include, for example, 2- (2-hydroxy-5-methylphenyl) benzotriazole and 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole in the benzotriazole series. 2- (2-hydroxy-3,5-dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′- Methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) ) Benzotriazole, 2- (2-hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazol 2- (2-hydroxy-3,5-di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-5- tert-butylphenyl) benzotriazole, 2- (2-hydroxy-4-octoxyphenyl) benzotriazole, 2,2'-methylenebis (4-cumyl-6-benzotriazolephenyl), 2,2'-p -Phenylenebis (1,3-benzoxazin-4-one), and 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimidomethyl) -5-methylphenyl] benzotriazole, and 2- (2'-Hydroxy-5-methacryloxyethylphenyl) -2H-benzotriazole and co-polymerized with the monomer 2 such as a copolymer with a possible vinyl monomer and a copolymer of 2- (2′-hydroxy-5-acryloxyethylphenyl) -2H-benzotriazole with a vinyl monomer copolymerizable with the monomer Examples include polymers having a -hydroxyphenyl-2H-benzotriazole skeleton.

紫外線吸収剤は、具体的に、ヒドロキシフェニルトリアジン系では、例えば、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−メチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−エチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−プロピルオキシフェノール、および2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ブチルオキシフェノールなどが例示される。さらに2−(4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4−ジメチルフェニル基となった化合物が例示される。   Specifically, the ultraviolet absorber is, for example, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-hexyloxyphenol, 2- (4, 4-hydroxyphenyltriazine). 6-diphenyl-1,3,5-triazin-2-yl) -5-methyloxyphenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-ethyloxyphenol 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-propyloxyphenol, and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) ) -5-butyloxyphenol and the like. Furthermore, the phenyl group of the above exemplary compounds such as 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-hexyloxyphenol is 2,4-dimethyl. Examples of the compound are phenyl groups.

紫外線吸収剤は、具体的に環状イミノエステル系では、例えば2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−m−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、および2,2’−p,p’−ジフェニレンビス(3,1−ベンゾオキサジン−4−オン)などが例示される。   Specifically, in the case of the cyclic imino ester, the ultraviolet absorber is, for example, 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2′-m-phenylenebis (3,1). -Benzoxazin-4-one), 2,2'-p, p'-diphenylenebis (3,1-benzoxazin-4-one) and the like.

また紫外線吸収剤としては、具体的にシアノアクリレート系では、例えば1,3−ビス−[(2’−シアノ−3’,3’−ジフェニルアクリロイル)オキシ]−2,2−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3−ビス−[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。   Further, as the ultraviolet absorber, specifically, for cyanoacrylate, for example, 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2- Examples include cyano-3,3-diphenylacryloyl) oxy] methyl) propane and 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene.

さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/または光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。前記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。   Furthermore, the ultraviolet absorber has a structure of a monomer compound capable of radical polymerization, so that the ultraviolet absorbent monomer and / or the light stable monomer and a single amount of alkyl (meth) acrylate or the like can be obtained. It may be a polymer type ultraviolet absorber copolymerized with a body. Preferred examples of the ultraviolet absorbing monomer include compounds containing a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic imino ester skeleton, and a cyanoacrylate skeleton in the ester substituent of (meth) acrylic acid ester. The

前記の中でも紫外線吸収能の点においてはベンゾトリアゾール系およびヒドロキシフェニルトリアジン系が好ましく、耐熱性や色相の点では、環状イミノエステル系およびシアノアクリレート系が好ましい。前記紫外線吸収剤は単独であるいは2種以上の混合物で用いてもよい。   Among them, benzotriazole and hydroxyphenyltriazine are preferable in terms of ultraviolet absorption ability, and cyclic imino ester and cyanoacrylate are preferable in terms of heat resistance and hue. You may use the said ultraviolet absorber individually or in mixture of 2 or more types.

紫外線吸収剤の含有量は、A成分100重量部に対して0.01〜2重量部、好ましくは0.03〜2重量部、より好ましくは0.02〜1重量部、更に好ましくは0.05〜0.5重量部である。   Content of a ultraviolet absorber is 0.01-2 weight part with respect to 100 weight part of A component, Preferably it is 0.03-2 weight part, More preferably, it is 0.02-1 weight part, More preferably, it is 0.00. It is 05-0.5 weight part.

(上記以外の他の成分)
上記以外にも本発明の難燃性ポリカーボネート樹脂組成物には、成形品に種々の機能の付与や特性改善のために、それ自体知られた添加物を少割合配合することができる。これら添加物は本発明の目的を損なわない限り、通常の配合量である。
(Other ingredients other than the above)
In addition to the above, the flame retardant polycarbonate resin composition of the present invention may contain a small amount of additives known per se for imparting various functions to the molded article and improving the properties. These additives are used in usual amounts as long as the object of the present invention is not impaired.

かかる添加剤としては、着色剤(例えばカーボンブラック、酸化チタンなどの顔料、染料)、蛍光染料、光安定剤(ヒンダードアミン化合物に代表される)、無機系蛍光体(例えばアルミン酸塩を母結晶とする蛍光体)、帯電防止剤、結晶核剤、無機および有機の抗菌剤、光触媒系防汚剤(例えば微粒子酸化チタン、微粒子酸化亜鉛)、離型剤、流動改質剤、ラジカル発生剤、赤外線吸収剤(熱線吸収剤)、並びにフォトクロミック剤などが挙げられる。   Examples of such additives include colorants (for example, pigments and dyes such as carbon black and titanium oxide), fluorescent dyes, light stabilizers (typified by hindered amine compounds), and inorganic phosphors (for example, aluminate as a base crystal). Phosphors), antistatic agents, crystal nucleating agents, inorganic and organic antibacterial agents, photocatalytic antifouling agents (eg fine particle titanium oxide, fine particle zinc oxide), mold release agents, flow modifiers, radical generators, infrared rays Examples include absorbents (heat ray absorbents) and photochromic agents.

<樹脂組成物の製造方法について>
本発明のポリカーボネート樹脂組成物の製造に当たっては、その製造方法は特に限定されるものではないが、本発明の樹脂組成物の好ましい製造方法は、二軸押出機の如き多軸押出機を用いて各成分を溶融混練する方法である。
<About the manufacturing method of a resin composition>
In the production of the polycarbonate resin composition of the present invention, the production method is not particularly limited, but a preferred production method of the resin composition of the present invention is to use a multi-screw extruder such as a twin-screw extruder. This is a method of melt-kneading each component.

二軸押出機の代表的な例としては、ZSK(Werner & Pfleiderer社製、商品名)を挙げることができる。同様のタイプの具体例としてはTEX((株)日本製鋼所製、商品名)、TEM(東芝機械(株)製、商品名)、KTX((株)神戸製鋼所製、商品名)などを挙げることができる。その他、FCM(Farrel社製、商品名)、Ko−Kneader(Buss社製、商品名)、およびDSM(Krauss−Maffei社製、商品名)などの溶融混練機も具体例として挙げることができる。上記の中でもZSKに代表されるタイプがより好ましい。かかるZSKタイプの二軸押出機においてそのスクリューは、完全噛合い型であり、スクリューは長さとピッチの異なる各種のスクリューセグメント、および幅の異なる各種のニーディングディスク(またそれに相当する混練用セグメント)からなるものである。   A typical example of the twin screw extruder is ZSK (trade name, manufactured by Werner & Pfleiderer). Specific examples of similar types include TEX (trade name, manufactured by Nippon Steel Works, Ltd.), TEM (trade name, manufactured by Toshiba Machine Co., Ltd.), KTX (product name, manufactured by Kobe Steel, Ltd.), and the like. Can be mentioned. In addition, melt kneaders such as FCM (manufactured by Farrel, trade name), Ko-Kneader (manufactured by Buss, trade name), and DSM (manufactured by Krauss-Maffei, trade name) can also be given as specific examples. Among the above, the type represented by ZSK is more preferable. In such a ZSK type twin screw extruder, the screw is a fully meshed type, and the screw includes various screw segments having different lengths and pitches, and various kneading disks having different widths (and corresponding kneading segments). It consists of

二軸押出機においてより好ましい態様は次の通りである。スクリュー形状は1条、2条、および3条のネジスクリューを使用することができ、特に溶融樹脂の搬送能力やせん断混練能力の両方の適用範囲が広い2条ネジスクリューが好ましく使用できる。二軸押出機におけるスクリューの長さ(L)と直径(D)との比(L/D)は、20〜45が好ましく、更に28〜42が好ましい。L/Dが大きい方が均質な分散が達成されやすい一方、大きすぎる場合には熱劣化により樹脂の分解が起こりやすい。スクリューには混練性を上げるためのニーディングディスクセグメント(またはそれに相当する混練セグメント)から構成された混練ゾーンを1個所以上有することが必要であり、1〜3箇所有することが好ましい。   A more preferable embodiment in the twin screw extruder is as follows. As the screw shape, one, two, and three screw screws can be used, and in particular, a two-thread screw having a wide range of application in both the ability to convey the molten resin and the shear kneading ability can be preferably used. The ratio (L / D) of the screw length (L) to the diameter (D) in the twin-screw extruder is preferably 20 to 45, more preferably 28 to 42. When L / D is large, uniform dispersion is likely to be achieved, whereas when it is too large, decomposition of the resin is likely to occur due to thermal degradation. The screw needs to have one or more kneading zones composed of kneading disk segments (or kneading segments corresponding thereto) for improving kneadability, and preferably 1 to 3 kneading zones.

更に押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。   Furthermore, as an extruder, what has a vent which can deaerate the water | moisture content in a raw material and the volatile gas which generate | occur | produces from melt-kneading resin can be used preferably. From the vent, a vacuum pump is preferably installed for efficiently discharging generated moisture and volatile gas to the outside of the extruder. It is also possible to remove a foreign substance from the resin composition by installing a screen for removing the foreign substance mixed in the extrusion raw material in the zone in front of the extruder die. Examples of such a screen include a wire mesh, a screen changer, a sintered metal plate (such as a disk filter), and the like.

更にB〜D成分およびその他添加剤(以下の例示において単に“添加剤”と称する)の押出機への供給方法は特に限定されないが、以下の方法が代表的に例示される。(i)添加剤をポリカーボネート樹脂とは独立して押出機中に供給する方法。(ii)添加剤とポリカーボネート樹脂粉末とをスーパーミキサーなどの混合機を用いて予備混合した後、押出機に供給する方法。(iii)添加剤とポリカーボネート樹脂とを予め溶融混練してマスターペレット化する方法。   Furthermore, the supply method of the components B to D and other additives (simply referred to as “additives” in the following examples) to the extruder is not particularly limited, but the following methods are typically exemplified. (I) A method of supplying the additive into the extruder independently of the polycarbonate resin. (Ii) A method in which the additive and the polycarbonate resin powder are premixed using a mixer such as a super mixer and then supplied to the extruder. (Iii) A method of melt-kneading an additive and a polycarbonate resin in advance to form a master pellet.

上記方法(ii)の1つは、必要な原材料を全て予備混合して押出機に供給する方法である。また他の方法は、添加剤が高濃度に配合されたマスター剤を作成し、該マスター剤を独立にまたは残りのポリカーボネート樹脂と更に予備混合した後、押出機に供給する方法である。尚、該マスター剤は、粉末形態および該粉末を圧縮造粒などした形態のいずれも選択できる。また他の予備混合の手段は、例えばナウターミキサー、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、および押出混合機などがあるが、スーパーミキサーのような高速撹拌型の混合機が好ましい。更に他の予備混合の方法は、例えばポリカーボネート樹脂と添加剤を溶媒中に均一分散させた溶液とした後、該溶媒を除去する方法である。   One of the methods (ii) is a method in which all necessary raw materials are premixed and supplied to the extruder. In another method, a master agent containing a high concentration of additives is prepared, and the master agent is independently or further premixed with the remaining polycarbonate resin and then supplied to the extruder. The master agent can be selected from either a powder form or a form obtained by compressing and granulating the powder. Other premixing means include, for example, a Nauter mixer, a V-type blender, a Henschel mixer, a mechanochemical apparatus, and an extrusion mixer. A high-speed stirring type mixer such as a super mixer is preferable. Yet another premixing method is, for example, a method in which a polycarbonate resin and an additive are uniformly dispersed in a solvent and then the solvent is removed.

押出機より押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。更に外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。更にかかるペレットの製造においては、光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を用いて、ペレットの形状分布の狭小化、ミスカット物の低減、運送または輸送時に発生する微小粉の低減、並びにストランドやペレット内部に発生する気泡(真空気泡)の低減を適宜を行うことができる。これらの処方により成形のハイサイクル化、およびシルバーの如き不良発生割合の低減を行うことができる。またペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1〜5mm、より好ましくは1.5〜4mm、さらに好ましくは2〜3.3mmである。一方、円柱の長さは好ましくは1〜30mm、より好ましくは2〜5mm、さらに好ましくは2.5〜3.5mmである。   The resin extruded from the extruder is directly cut into pellets, or after forming strands, the strands are cut with a pelletizer and pelletized. Furthermore, when it is necessary to reduce the influence of external dust or the like, it is preferable to clean the atmosphere around the extruder. Furthermore, in the manufacture of such pellets, various methods already proposed for polycarbonate resin for optical discs are used to narrow the shape distribution of pellets, reduce miscuts, and reduce fine powder generated during transportation or transportation. In addition, it is possible to appropriately reduce bubbles (vacuum bubbles) generated inside the strands and pellets. By these prescriptions, it is possible to increase the molding cycle and reduce the occurrence rate of defects such as silver. Moreover, although the shape of a pellet can take common shapes, such as a cylinder, a prism, and a spherical shape, it is a cylinder more suitably. The diameter of such a cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, and still more preferably 2 to 3.3 mm. On the other hand, the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 mm, and still more preferably 2.5 to 3.5 mm.

<本発明の樹脂組成物からなる成形品について>
上記の如く得られた本発明の難燃光拡散性ポリカーボネート樹脂組成物は通常前記の如く製造されたペレットを射出成形して各種製品を製造することができる。更にペレットを経由することなく、押出機で溶融混練された樹脂を直接シート、フィルム、異型押出成形品、ダイレクトブロー成形品、および射出成形品にすることも可能である。
<About a molded product comprising the resin composition of the present invention>
The flame-retardant light diffusing polycarbonate resin composition of the present invention obtained as described above can be usually produced by injection molding the pellets produced as described above to produce various products. Furthermore, the resin melt-kneaded by an extruder can be directly made into a sheet, a film, a profile extrusion molded product, a direct blow molded product, and an injection molded product without going through pellets.

かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などの射出成形法を用いて成形品を得ることができる。これら各種成形法の利点は既に広く知られるところである。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。   In such injection molding, not only a normal molding method but also an injection compression molding, an injection press molding, a gas assist injection molding, a foam molding (including those by injection of a supercritical fluid), an insert molding, depending on the purpose as appropriate. A molded product can be obtained using an injection molding method such as in-mold coating molding, heat insulating mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultrahigh-speed injection molding. The advantages of these various molding methods are already widely known. In addition, either a cold runner method or a hot runner method can be selected for molding.

また本発明の樹脂組成物は、押出成形により各種異形押出成形品、シート、およびフィルムなどの形で利用することもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。さらに特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形などにより成形品とすることも可能である。
これにより優れた光学特性および難燃性を有するポリカーボネート樹脂組成物の成形品が提供される。
Moreover, the resin composition of this invention can also be utilized in the form of various profile extrusion-molded articles, sheets, films, etc. by extrusion molding. For forming sheets and films, an inflation method, a calendar method, a casting method, or the like can also be used. It is also possible to form a heat-shrinkable tube by applying a specific stretching operation. The resin composition of the present invention can be formed into a molded product by rotational molding, blow molding or the like.
Thereby, a molded article of a polycarbonate resin composition having excellent optical properties and flame retardancy is provided.

更に本発明の難燃光拡散性性ポリカーボネート樹脂組成物からなる成形品には、各種の表面処理を行うことが可能である。ここでいう表面処理とは、蒸着(物理蒸着、化学蒸着など)、メッキ(電気メッキ、無電解メッキ、溶融メッキなど)、塗装、コーティング、印刷などの樹脂成形品の表層上に新たな層を形成させるものであり、通常のポリカーボネート樹脂に用いられる方法が適用できる。表面処理としては、具体的には、ハードコート、撥水・撥油コート、紫外線吸収コート、赤外線吸収コート、並びにメタライジング(蒸着など)などの各種の表面処理が例示される。   Furthermore, various surface treatments can be performed on the molded article made of the flame retardant light diffusing polycarbonate resin composition of the present invention. Surface treatment here refers to a new layer on the surface of resin molded products such as vapor deposition (physical vapor deposition, chemical vapor deposition, etc.), plating (electroplating, electroless plating, hot dipping, etc.), painting, coating, printing, etc. A method used for ordinary polycarbonate resin is applicable. Specific examples of the surface treatment include various surface treatments such as hard coat, water / oil repellent coat, ultraviolet absorption coat, infrared absorption coat, and metalizing (evaporation).

本発明の難燃光拡散性ポリカーボネート樹脂組成物は、光学特性、難燃特性、および外観に優れることから、各種電子・電気機器、OA機器、車両部品、機械部品、特に各種照明カバー、ディスプレイカバー、自動車メーター、各種銘板などの光拡散性が要求される用途に有用であり、その奏する産業上の効果は格別である。   Since the flame retardant light diffusing polycarbonate resin composition of the present invention is excellent in optical characteristics, flame retardant characteristics, and appearance, various electronic / electric equipment, OA equipment, vehicle parts, mechanical parts, particularly various lighting covers and display covers. It is useful for applications that require light diffusibility, such as automobile meters, various nameplates, etc., and its industrial effects are exceptional.

本発明者が現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。   The form of the present invention considered to be the best by the present inventor is a collection of the preferable ranges of the above requirements. For example, typical examples are described in the following examples. Of course, the present invention is not limited to these forms.

以下に実施例を挙げて本発明をさらに説明する。なお、評価は下記の方法によった。
表1に記載の樹脂組成物を以下の要領で作成した。表1の割合の各成分を計量して、タンブラーを用いて均一に混合し、かかる混合物を押出機に投入して樹脂組成物の作成を行った。押出機としては径30mmφのベント式二軸押出機((株)神戸製鋼所KTX−30)を使用した。シリンダ−温度およびダイス温度が280℃、およびベント吸引度が3000Paの条件でストランドを押出し、水浴において冷却した後ペレタイザーでストランドカットを行い、ペレット化した。得られたペレットは120℃で6時間、熱風循環式乾燥機にて乾燥し、射出成形機[東芝機械(株)IS150EN−5Y]によりシリンダー温度280℃、金型温度80℃で試験片を成形し、下記の方法で評価を行った。
The following examples further illustrate the present invention. The evaluation was based on the following method.
The resin composition described in Table 1 was prepared as follows. Each component of the ratio of Table 1 was measured, it mixed uniformly using the tumbler, and this mixture was thrown into the extruder and preparation of the resin composition was performed. As the extruder, a vent type twin screw extruder (Kobe Steel Works KTX-30) having a diameter of 30 mmφ was used. Strands were extruded under conditions of cylinder temperature and die temperature of 280 ° C. and vent suction of 3000 Pa, cooled in a water bath, then cut into strands with a pelletizer, and pelletized. The obtained pellets were dried at 120 ° C. for 6 hours in a hot air circulation dryer, and a test piece was molded at an injection molding machine [Toshiba Machine Co., Ltd. IS150EN-5Y] at a cylinder temperature of 280 ° C. and a mold temperature of 80 ° C. Then, evaluation was performed by the following method.

(1)全光線透過率:一辺150mm、厚み2mmの平板状試験片を上記条件で成形し、村上色彩技術研究所(株)製のヘーズメーターHR−100を使用して、その厚み方向の透過率をASTM D1003に従い測定した。
(2)光拡散度:一辺150mm、厚み2mmの平板状試験片を(1)と同条件で成形し、日本電色工業(株)製の分散度測定計を使用して測定した。その際の測定方法を図1に示す。尚、光拡散度とは図1において光線を上方から垂直に試験片面に当てたときγ=0度のときの透過光量を100とした場合、その透過光量が50になるときのγの角度をいう。
(3)難燃特性:UL規格94の垂直燃焼試験を、厚み2.0mmで行いその等級を評価した。
(1) Total light transmittance: A flat plate test piece having a side of 150 mm and a thickness of 2 mm is molded under the above conditions, and transmission in the thickness direction is performed using a haze meter HR-100 manufactured by Murakami Color Research Laboratory Co., Ltd. The rate was measured according to ASTM D1003.
(2) Light diffusivity: A flat plate test piece having a side of 150 mm and a thickness of 2 mm was molded under the same conditions as in (1), and measured using a dispersity meter manufactured by Nippon Denshoku Industries Co., Ltd. The measurement method in that case is shown in FIG. The light diffusivity is the angle of γ when the amount of transmitted light is 50 when the amount of transmitted light is 100 when γ = 0 degrees when a light beam is vertically applied to the specimen surface in FIG. Say.
(3) Flame retardance characteristics: A vertical combustion test of UL standard 94 was performed at a thickness of 2.0 mm, and the grade was evaluated.

[実施例1〜16、および比較例1〜8]
なお、表1中記号表記の各成分の内容は下記の通りである。
(A成分)
PC−1:ビスフェノールAおよび末端停止剤としてp−tert−ブチルフェノール、並びにホスゲンから界面重縮合法で合成した直鎖状芳香族ポリカーボネート樹脂パウダー(帝人化成(株)製:パンライトL−1225WP(商品名)、粘度平均分子量22,400)
PC−2:ビスフェノールAおよび末端停止剤としてp−tert−ブチルフェノール、並びにホスゲンから界面重縮合法で合成した直鎖状芳香族ポリカーボネート樹脂パウダー(帝人化成(株)製:L−1225WX(商品名)、粘度平均分子量19,700)
(B成分)
B−1:ビーズ状架橋シリコン(東芝シリコーン(株)製:トスパール120(商品名)、平均粒子径2μm)
B−2:ビーズ状架橋アクリル粒子(積水化成品工業(株)製:MBX−5(商品名)、平均粒子径5μm)
(C成分)
C−1:レゾルノールビス[ジ(2,6−ジメチルフェニル)ホスフェート]を主成分とするリン酸エステル(大八化学工業(株):PX−200)(商品名))
C−2:ビスフェノールAビス(ジフェニルホスフェート)を主成分とするリン酸エステル(大八化学工業(株):CR−741(商品名))
C−3:パーフルオロブタンスルホン酸カリウム塩(大日本インキ化学(株)製:メガファックF−114P(商品名))
(D成分)
D−1:該ポリテトラフルオロエチレン系混合体は、懸濁重合法で製造されたスチレン−アクリロニトリル共重合体粒子からなる混合物(ポリテトラフルオロエチレン含有量50重量%、カリウム金属イオン0.1ppm以下)(PIC社製:POLY TS AD001(商品名))
D−2:該ポリテトラフルオロエチレン系混合体は、乳化重合方で製造されたポリテトラフルオロエチレンアクリル系共重合体からなる混合物(ポリテトラフルオロエチレン含有量50重量%、カリウム金属イオン16ppm以上))
(商品名)(三菱レイヨン(株)製:A3700(商品名))
[Examples 1 to 16 and Comparative Examples 1 to 8]
In addition, the content of each component indicated by symbols in Table 1 is as follows.
(A component)
PC-1: Linear aromatic polycarbonate resin powder synthesized by interfacial polycondensation from bisphenol A, p-tert-butylphenol as a terminal terminator, and phosgene (manufactured by Teijin Chemicals Ltd .: Panlite L-1225WP (product) Name), viscosity average molecular weight 22,400)
PC-2: Linear aromatic polycarbonate resin powder synthesized by an interfacial polycondensation method from bisphenol A, p-tert-butylphenol as a terminal terminator, and phosgene (manufactured by Teijin Chemicals Ltd .: L-1225WX (trade name)) , Viscosity average molecular weight 19,700)
(B component)
B-1: Bead-like crosslinked silicon (Toshiba Silicone Co., Ltd .: Tospearl 120 (trade name), average particle size 2 μm)
B-2: Beaded crosslinked acrylic particles (manufactured by Sekisui Plastics Co., Ltd .: MBX-5 (trade name), average particle size 5 μm)
(C component)
C-1: Phosphoric acid ester mainly composed of resornol bis [di (2,6-dimethylphenyl) phosphate] (Daihachi Chemical Industry Co., Ltd .: PX-200) (trade name)
C-2: Phosphate ester mainly composed of bisphenol A bis (diphenyl phosphate) (Daihachi Chemical Industry Co., Ltd .: CR-741 (trade name))
C-3: potassium perfluorobutane sulfonate (manufactured by Dainippon Ink and Chemicals, Inc .: Megafax F-114P (trade name))
(D component)
D-1: The polytetrafluoroethylene-based mixture is a mixture of styrene-acrylonitrile copolymer particles produced by a suspension polymerization method (polytetrafluoroethylene content 50 wt%, potassium metal ion 0.1 ppm or less) ) (Product made by PIC: POLY TS AD001 (trade name))
D-2: The polytetrafluoroethylene-based mixture is a mixture composed of a polytetrafluoroethylene acrylic copolymer produced by emulsion polymerization (polytetrafluoroethylene content 50 wt%, potassium metal ions 16 ppm or more). )
(Product Name) (Mitsubishi Rayon Co., Ltd .: A3700 (Product Name))

Figure 0005571279
Figure 0005571279

Figure 0005571279
Figure 0005571279

本発明における分散度の測定方法を示す概略図である。It is the schematic which shows the measuring method of the dispersion degree in this invention.

符号の説明Explanation of symbols

A 平板状試験片
B 光源
γ 拡散光角度
A Flat specimen B Light source γ Diffuse light angle

Claims (9)

芳香族ポリカーボネート樹脂(A成分)100重量部に対して、高分子微粒子(ただし、ゴム成分またはエラストマーを含有する高分子微粒子を除く)(B成分)を0.005重量部以上、難燃剤(C成分)を0.001〜20重量部、および含まれるカリウム金属イオン(ただし、ポリテトラフルオロエチレン中のカリウム金属イオンは除く)が15ppm以下であるポリテトラフルオロエチレン系混合体(D成分)を0.01〜5重量部含有し、かつB成分とD成分の合計が0.03〜8重量部である難燃光拡散性ポリカーボネート樹脂組成物。 0.005 parts by weight or more of flame retardant (C), with respect to 100 parts by weight of aromatic polycarbonate resin (component A), polymer fine particles (excluding polymer fine particles containing rubber component or elastomer) (component B) Component) is 0.001 to 20 parts by weight, and a polytetrafluoroethylene-based mixture (component D) containing 15 ppm or less of potassium metal ions (excluding potassium metal ions in polytetrafluoroethylene) is 0 A flame-retardant light diffusing polycarbonate resin composition containing 0.01 to 5 parts by weight and the total of B and D components being 0.03 to 8 parts by weight. 難燃剤(C成分)が、有機リン化合物系難燃剤、または有機金属塩系難燃剤である請求項1に記載の難燃光拡散性ポリカーボネート樹脂組成物。 The flame retardant light diffusing polycarbonate resin composition according to claim 1, wherein the flame retardant (component C) is an organophosphorus compound flame retardant or an organometallic salt flame retardant. 有機リン化合物系難燃剤が下記式(i)で表されるリン酸エステルである請求項記載の難燃光拡散性ポリカーボネート樹脂組成物。
Figure 0005571279
(式中のXは、ハイドロキノン、レゾルシノール、ビス(4−ヒドロキシジフェニル)メタン、ビスフェノールA、ジヒドロキシジフェニル、ジヒドロキシナフタレン、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、およびビス(4−ヒドロキシフェニル)サルファイドからなる群より選ばれるジヒドロキシ化合物より誘導される二価フェノール残基であり、j、k、l及びmはそれぞれ独立して0または1であり、nは0〜5の整数であり、または重合度nの異なるリン酸エステルの混合物の場合はnはその平均値を表し、0〜5の値であり、R、R、R、およびRはそれぞれ独立してハロゲン原子で置換されてもよいフェノール、クレゾール、キシレノール、イソプロピルフェノール、ブチルフェノール、およびp−クミルフェノールからなる群より選ばれるアリール基より誘導される一価のフェノール残基である。)
The flame retardant light diffusing polycarbonate resin composition according to claim 2, wherein the organic phosphorus compound-based flame retardant is a phosphoric acid ester represented by the following formula (i).
Figure 0005571279
(Wherein X 1 is hydroquinone, resorcinol, bis (4-hydroxydiphenyl) methane, bisphenol A, dihydroxydiphenyl, dihydroxynaphthalene, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone, and bis A dihydric phenol residue derived from a dihydroxy compound selected from the group consisting of (4-hydroxyphenyl) sulfide, j, k, l and m are each independently 0 or 1, and n is 0 to 5; In the case of a mixture of phosphate esters having different degrees of polymerization n, n represents an average value of 0 to 5, and R 1 , R 2 , R 3 , and R 4 are each independently Phenol, cresol, xylenol, isopropylphenol, which may be substituted with halogen atoms Le is a phenolic residue of a monovalent derived from an aryl group selected from the group consisting of phenol, and p- cumylphenol.)
有機金属塩系難燃剤が有機スルホン酸アルカリ(土類)金属塩である請求項記載の難燃光拡散性ポリカーボネート樹脂組成物。 The flame retardant light diffusing polycarbonate resin composition according to claim 2, wherein the organic metal salt flame retardant is an alkali (earth) metal sulfonate. 芳香族ポリカーボネート樹脂(A成分)100重量部に対して、有機リン系安定剤および/またはヒンダードフェノール系安定剤(E成分)0.005〜0.5重量部を含有することを特徴とする請求項1〜のいずれかに記載の難燃光拡散性ポリカーボネート樹脂組成物。 It is characterized by containing 0.005 to 0.5 parts by weight of an organic phosphorus stabilizer and / or a hindered phenol stabilizer (E component) with respect to 100 parts by weight of the aromatic polycarbonate resin (component A). The flame-retardant light diffusing polycarbonate resin composition according to any one of claims 1 to 4 . 芳香族ポリカーボネート樹脂(A成分)100重量部に対して、蛍光増白剤(F成分)0.0005〜0.1重量部を含有することを特徴とする請求項1〜のいずれかに記載の難燃光拡散性ポリカーボネート樹脂組成物。 The aromatic polycarbonate resin (A component) 100 parts by weight, according to any one of claims 1 to 5, characterized in that it contains a fluorescent whitening agent (F component) 0.0005 parts by weight Flame retardant light diffusing polycarbonate resin composition. ポリテトラフルオロエチレン系混合体に含まれるポリテトラフルオロエチレンの割合が0.1重量%〜90重量%であることを特徴とする請求項1〜のいずれかに記載の難燃光拡散性ポリカーボネート樹脂組成物。 The flame retardant light diffusing polycarbonate according to any one of claims 1 to 6 , wherein the ratio of polytetrafluoroethylene contained in the polytetrafluoroethylene-based mixture is 0.1 wt% to 90 wt%. Resin composition. ポリテトラフルオロエチレン系混合体が懸濁重合により製造されるポリテトラフルオロエチレン系混合体であることを特徴とする請求項1〜のいずれかに記載の難燃光拡散性ポリカーボネート樹脂組成物。 The flame retardant light diffusing polycarbonate resin composition according to any one of claims 1 to 7 , wherein the polytetrafluoroethylene mixture is a polytetrafluoroethylene mixture produced by suspension polymerization. 請求項1〜のいずれかに記載の難燃光拡散性ポリカーボネート樹脂組成物からなる成形体。 Molded article comprising the flame retardant optical diffusing polycarbonate resin composition according to any one of claims 1-8.
JP2007284822A 2007-11-01 2007-11-01 Flame retardant light diffusing polycarbonate resin composition Active JP5571279B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007284822A JP5571279B2 (en) 2007-11-01 2007-11-01 Flame retardant light diffusing polycarbonate resin composition
CNA2008101738402A CN101423655A (en) 2007-11-01 2008-10-29 Antiflaming optical diffusion polycarbonate resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007284822A JP5571279B2 (en) 2007-11-01 2007-11-01 Flame retardant light diffusing polycarbonate resin composition

Publications (2)

Publication Number Publication Date
JP2009108281A JP2009108281A (en) 2009-05-21
JP5571279B2 true JP5571279B2 (en) 2014-08-13

Family

ID=40614549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007284822A Active JP5571279B2 (en) 2007-11-01 2007-11-01 Flame retardant light diffusing polycarbonate resin composition

Country Status (2)

Country Link
JP (1) JP5571279B2 (en)
CN (1) CN101423655A (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168463A (en) * 2009-01-22 2010-08-05 Teijin Chem Ltd Flame-retardant, light-diffusing polycarbonate resin composition
JP5370999B2 (en) * 2009-05-26 2013-12-18 住化スタイロンポリカーボネート株式会社 Lighting cover
JP2010280846A (en) * 2009-06-05 2010-12-16 Teijin Chem Ltd Flame retarding and light-diffusing polycarbonate resin composition
KR101113616B1 (en) * 2009-09-14 2012-03-13 미쓰비시 엔지니어링-플라스틱스 코포레이션 Polycarbonate resin composition and molded article
JP5723090B2 (en) * 2009-09-15 2015-05-27 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and molded article comprising the same
JP2011116839A (en) * 2009-12-02 2011-06-16 Teijin Chem Ltd Flame-retardant light-diffusive polycarbonate resin composition
DE102009052042A1 (en) * 2009-11-05 2011-05-12 Bayer Materialscience Ag Polycarbonate composition with improved flame retardancy for extrusion applications
JP5398022B2 (en) * 2009-12-14 2014-01-29 住化スタイロンポリカーボネート株式会社 Flame retardant polycarbonate resin composition for slats of flameproof blinds
CN101812226A (en) * 2010-04-24 2010-08-25 广州金园聚合物挤出成型科技有限公司 Anti-dazzle fire-resistance polycarbonate and preparation method thereof
EP2578636B2 (en) * 2010-05-27 2022-06-22 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded polycarbonate resin
CN101880450B (en) * 2010-07-02 2012-09-26 深圳市科聚新材料有限公司 High-fog-degree and high-transparency LED lamp tube material and preparation method thereof
JP5637952B2 (en) * 2011-03-28 2014-12-10 積水化成品工業株式会社 Light diffusing resin composition, light diffusing member and lighting cover using the same
JP6002490B2 (en) * 2011-09-27 2016-10-05 三菱化学株式会社 Polycarbonate resin composition
CN103059535B (en) * 2011-09-28 2015-05-13 比亚迪股份有限公司 Photodiffusion resin composition, and photodiffusion plate prepared from composition and preparation method thereof
CN102532844B (en) * 2011-12-09 2013-06-12 上海锦湖日丽塑料有限公司 Light transmission color selecting type photodiffusion polycarbonate composition and preparation method thereof
CN102731985B (en) * 2012-03-12 2014-04-02 东莞市信诺橡塑工业有限公司 Light-diffusion environment-friendly and inflaming retarding polycarbonate based composition for LED (Light-Emitting Diode) illumination and preparation method thereof
CN103044887B (en) * 2012-12-27 2015-04-15 安徽科聚新材料有限公司 PC composite material, as well as preparation method and application thereof
CN103694662B (en) * 2013-12-18 2015-07-15 上海日之升新技术发展有限公司 High-CTI (comparative tracking index) halogen-free flame-retardant light diffusion modified PC (polycarbonate) and preparation method thereof
WO2017075775A1 (en) * 2015-11-04 2017-05-11 Sabic Global Technologies, B.V. Diffusive polycarbonate composites with enhanced flame retardant properties, luminous efficiency and beam angle of optical components
CN108912526B (en) * 2018-06-23 2021-07-23 深圳市宝聚合新材料技术应用有限公司 AS frosted resin and preparation method thereof
CN113352536B (en) * 2021-06-16 2022-08-16 宁波浙铁大风化工有限公司 Foaming light diffusion material and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581777B2 (en) * 1988-10-06 1997-02-12 帝人化成株式会社 Flame retardant polycarbonate resin composition
JP3759303B2 (en) * 1997-12-25 2006-03-22 出光興産株式会社 Flame retardant polycarbonate resin composition and light reflector using the same
JP5279164B2 (en) * 2004-11-24 2013-09-04 旭化成イーマテリアルズ株式会社 Aromatic polycarbonate resin composition and molded article
JP2006249288A (en) * 2005-03-11 2006-09-21 Teijin Chem Ltd Light-diffusing aromatic polycarbonate resin composition
JP5021928B2 (en) * 2005-10-18 2012-09-12 帝人化成株式会社 A lens barrel made of a glass fiber reinforced flame retardant resin composition
WO2007055305A1 (en) * 2005-11-11 2007-05-18 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition for thin-walled molded article, thin-walled molded article, and process for producing the same
JP5030541B2 (en) * 2005-11-11 2012-09-19 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition for thin-walled molded article, thin-walled molded article and method for producing the same
JP2007211157A (en) * 2006-02-10 2007-08-23 Teijin Chem Ltd Glass fiber-reinforced flame-retardant polycarbonate resin composition

Also Published As

Publication number Publication date
JP2009108281A (en) 2009-05-21
CN101423655A (en) 2009-05-06

Similar Documents

Publication Publication Date Title
JP5571279B2 (en) Flame retardant light diffusing polycarbonate resin composition
JP5150494B2 (en) Resin composition
JP5602997B2 (en) Glass fiber reinforced aromatic polycarbonate resin composition
JP5524463B2 (en) A lens barrel made of a glass fiber reinforced flame retardant resin composition
JP5684470B2 (en) Thermoplastic resin composition
JP4817680B2 (en) Glass-reinforced polycarbonate resin composition
JP5371973B2 (en) Flame retardant polycarbonate resin composition
JP2006249292A (en) Polycarbonate resin composition
JP5808425B2 (en) RESIN COMPOSITION HAVING LIGHT GUIDE PERFORMANCE, LIGHT GUIDE MOLDED PRODUCT COMPRISING THE SAME
JP5635239B2 (en) Flame retardant polycarbonate resin composition
JP2007154093A (en) Resin composition for frame for fixing flat panel display and frame for fixing flat panel display
JP2010222480A (en) Polycarbonate resin composition
JP5319047B2 (en) Polycarbonate resin composition
JP5583883B2 (en) Flame retardant polycarbonate resin composition
JP6224331B2 (en) Thermoplastic resin composition and molded article thereof
JP6181394B2 (en) Thermoplastic resin composition and molded article thereof
JP5612242B2 (en) Flame retardant polycarbonate resin composition
WO2013183521A1 (en) Resin composition having light-guiding ability, and light guide plate and surface light source body comprising same
JP2010275413A (en) Glass-reinforced resin composition
JP5480676B2 (en) Flame retardant polycarbonate resin composition
JP2010168463A (en) Flame-retardant, light-diffusing polycarbonate resin composition
JP4649103B2 (en) Aromatic polycarbonate resin composition
JP2011140545A (en) Fiber-reinforced resin composition and resin molded article produced by molding the same
JP2008208317A (en) Flame retardant polycarbonate resin composition
JP2010280846A (en) Flame retarding and light-diffusing polycarbonate resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100915

RD02 Notification of acceptance of power of attorney

Effective date: 20110707

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20110707

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130425

A131 Notification of reasons for refusal

Effective date: 20130723

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20130919

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140626

R150 Certificate of patent (=grant) or registration of utility model

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5571279