JP5021928B2 - A lens barrel made of a glass fiber reinforced flame retardant resin composition - Google Patents

A lens barrel made of a glass fiber reinforced flame retardant resin composition Download PDF

Info

Publication number
JP5021928B2
JP5021928B2 JP2005302814A JP2005302814A JP5021928B2 JP 5021928 B2 JP5021928 B2 JP 5021928B2 JP 2005302814 A JP2005302814 A JP 2005302814A JP 2005302814 A JP2005302814 A JP 2005302814A JP 5021928 B2 JP5021928 B2 JP 5021928B2
Authority
JP
Japan
Prior art keywords
component
weight
resin
group
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005302814A
Other languages
Japanese (ja)
Other versions
JP2007114264A (en
Inventor
充浩 竹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Chemicals Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2005302814A priority Critical patent/JP5021928B2/en
Publication of JP2007114264A publication Critical patent/JP2007114264A/en
Application granted granted Critical
Publication of JP5021928B2 publication Critical patent/JP5021928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lens Barrels (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、寸法精度の改善されたガラス繊維強化難燃性樹脂組成物からなる鏡筒に関する。更に詳しくは、扁平断面ガラス繊維で強化された機械的強度、低異方性、流動性に優れ、さらに良好な難燃性を併せ持ち、レンズ、プリズム及びミラー等の光学素子を保持する光学系に組み込まれるガラス繊維強化難燃性樹脂組成物からなる鏡筒に関する。   The present invention relates to a lens barrel made of a glass fiber reinforced flame retardant resin composition with improved dimensional accuracy. More specifically, it is an optical system that retains optical elements such as lenses, prisms, and mirrors, and has excellent mechanical strength, low anisotropy, and fluidity reinforced with flat cross-section glass fibers, as well as excellent flame retardancy. The present invention relates to a lens barrel made of a glass fiber reinforced flame retardant resin composition to be incorporated.

ガラス繊維で強化された熱可塑性樹脂は機械的強度、加工性に優れているため広く利用されている。特に、ポリカーボネート樹脂は、機械的強度、寸法安定性や難燃性といったその優れた特性から機械部品、自動車部品、電気・電子部品、事務機器部品などの多くの用途に用いられている。   Thermoplastic resins reinforced with glass fibers are widely used because of their excellent mechanical strength and processability. In particular, polycarbonate resins are used in many applications such as mechanical parts, automobile parts, electrical / electronic parts, and office equipment parts because of their excellent properties such as mechanical strength, dimensional stability and flame retardancy.

従来、鏡筒用の樹脂組成物としては、ポリカーボネート樹脂にガラス繊維を配合した樹脂組成物が提案されている(特許文献1参照)。しかし、この組成物は機械的強度、剛性は優れるものの繊維の配向による成形収縮率の異方性が生じてしまう欠点を有している。近年のカメラ部品や事務機器部品などの精密機械部品などの成形品に用いる場合には、機械的強度、低異方性、流動性、難燃性の良好なガラス繊維強化難燃性熱可塑性樹脂が求められており、この組成物では上記特性を満足することができない。   Conventionally, as a resin composition for a lens barrel, a resin composition in which glass fibers are blended with a polycarbonate resin has been proposed (see Patent Document 1). However, although this composition is excellent in mechanical strength and rigidity, it has a defect that anisotropy of molding shrinkage ratio is caused by fiber orientation. Glass fiber reinforced flame retardant thermoplastic resin with good mechanical strength, low anisotropy, fluidity, and flame resistance when used for molded parts such as recent precision machine parts such as camera parts and office equipment parts Therefore, this composition cannot satisfy the above characteristics.

例えば、芳香族ポリカーボネート樹脂と繊維充填剤および有機リン酸エステルからなる流動性の改善された芳香ポリカーボネート樹脂組成物は公知である(特許文献2参照)。しかしながら、かかる樹脂組成物においては、成形収縮率の異方性が大きくそりやすい問題がある。芳香族ポリカーボネート樹脂と特定の非円形繊維と板状充填材とからなるソリ性の改善されたポリカーボネート樹脂組成物は公知である(特許文献3参照)。しかしながら、かかる樹脂組成物においては流動性、難燃性が不十分である。   For example, an aromatic polycarbonate resin composition with improved fluidity comprising an aromatic polycarbonate resin, a fiber filler, and an organic phosphate is known (see Patent Document 2). However, such a resin composition has a problem that the anisotropy of the molding shrinkage ratio is large and tends to warp. A polycarbonate resin composition having an improved warping property comprising an aromatic polycarbonate resin, a specific non-circular fiber, and a plate-like filler is known (see Patent Document 3). However, such resin compositions have insufficient fluidity and flame retardancy.

ポリカーボネート樹脂、スチレン系樹脂、まゆ形断面形状ガラス繊維からなる樹脂組成物は公知である(特許文献4参照)。また、ポリアミド樹脂、まゆ形断面形状ガラス繊維および臭素系難燃剤からなる樹脂組成物からなる樹脂組成物は公知である(特許文献5参照)。   A resin composition comprising a polycarbonate resin, a styrene resin, and a glass fiber having a cross-sectional shape is known (see Patent Document 4). Moreover, the resin composition which consists of a resin composition which consists of a polyamide resin, an eyebrows-shaped cross-section glass fiber, and a brominated flame retardant is well-known (refer patent document 5).

しかしながらかかる公報は、カメラにおける鏡筒、液晶プロジェクターにおける鏡筒及びプロジョクションテレビにおける鏡筒に必要とされる特性、すなわち良好な機械的強度、難燃性、流動性を有し、低異方性を満足するポリカーボネート樹脂組成物に有効な知見を開示するものではなかった。   However, this publication has characteristics required for a lens barrel in a camera, a lens barrel in a liquid crystal projector, and a lens barrel in a projection television, that is, good mechanical strength, flame retardancy, fluidity, and low anisotropy. However, it did not disclose effective knowledge for a polycarbonate resin composition satisfying the properties.

特開2004−256581号公報JP 2004-256581 A 特開平7−3140号公報Japanese Patent Laid-Open No. 7-3140 特開平6−207089号公報JP-A-6-207089 特開平8−20694号公報JP-A-8-20694 特開2003−82228号公報JP 2003-82228 A

上記に鑑み本発明の目的は、扁平断面ガラス繊維で強化されたポリカーボネート樹脂を基体として、機械的強度、低異方性、流動性に優れ、良好な難燃性とを有する鏡筒を提供することにある。本発明者は、上記目的を達成せんとして鋭意検討を重ねた結果、特定の断面形状を有するガラス繊維を利用することにより、かかる目的を達成できることを見出し、更に鋭意検討を進め本発明を完成するに至った。   In view of the above, an object of the present invention is to provide a lens barrel having excellent flame resistance and excellent mechanical strength, low anisotropy and fluidity, using a polycarbonate resin reinforced with flat cross-section glass fibers as a base. There is. The present inventor has intensively studied to achieve the above object, and as a result, has found that such an object can be achieved by using glass fibers having a specific cross-sectional shape. It came to.

本発明によれば、上記課題は、芳香族ポリカーボネート樹脂(A−1成分)よりなる熱可塑性樹脂、好ましくは芳香族ポリカーボネート樹脂(A−1成分)及びスチレン系樹脂(A−2成分)よりなる熱可塑性樹脂(A成分)40〜99重量%および繊維断面の長径の平均値が10〜50μm、長径と短径の比(長径/短径)の平均値が1.5〜8である扁平断面ガラス繊維(B−1成分)からなる強化充填材、好ましくは該充填材(B−1成分)及び板状無機充填材(B−2成分)よりなる強化充填材(B成分)1〜60重量%の合計100重量部に対し、有機リン酸エステル系難燃剤(C成分)1〜30重量部および/または有機スルホン酸アルカリ(土類)金属塩(D成分)0.005〜1重量部からなるガラス繊維強化難燃性樹脂樹脂組成物を射出成形してなることを特徴とする鏡筒により達成される。
前記A〜D成分に対し、更に含フッ素滴下防止剤(E成分)0.01〜3重量部を含有しても良い。
According to the present invention, the above problem is a thermoplastic resin comprising an aromatic polycarbonate resin (component A-1), preferably an aromatic polycarbonate resin (component A-1) and a styrene resin (component A-2). A flat cross section in which the thermoplastic resin (component A) is 40 to 99% by weight, the average value of the major axis of the fiber cross section is 10 to 50 μm, and the ratio of the major axis to the minor axis (major axis / minor axis) is 1.5 to 8 Reinforcing filler made of glass fiber (component B-1), preferably reinforcing filler made of the filler (component B-1) and plate-like inorganic filler (component B-2) 1 to 60 weights % From 1 to 30 parts by weight of an organic phosphate ester-based flame retardant (C component) and / or an alkali (earth) metal salt (component D) of 0.005 to 1 part by weight. Glass fiber reinforced flame retardant resin tree The composition is accomplished by the barrel, characterized in that formed by injection molding.
You may contain 0.01-3 weight part of fluorine-containing anti-dripping agents (E component) further with respect to said AD component.

以下、更に本発明の詳細について説明する。
(A成分:熱可塑性樹脂)
(芳香族ポリカーボネート樹脂)
本発明でA成分の熱可塑性樹脂において使用される芳香族ポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
Hereinafter, the details of the present invention will be described.
(Component A: thermoplastic resin)
(Aromatic polycarbonate resin)
The aromatic polycarbonate resin used in the thermoplastic resin of component A in the present invention is obtained by reacting a dihydric phenol and a carbonate precursor. Examples of the reaction method include an interfacial polymerization method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.

ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)エステル、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、9,9−ビス(4−ヒドロキシフェニル)フルオレンおよび9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4−ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく、汎用されている。   Representative examples of the dihydric phenol used here include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis (4-hydroxyphenyl) ethane, and 2,2-bis (4-hydroxyphenyl). ) Propane (commonly called bisphenol A), 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl)- 1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) Pentane, 4,4 ′-(p-phenylenediisopropylidene) diphenol, 4,4 ′-(m-phenylenediisopropyl Pyridene) diphenol, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) ester, bis (4-hydroxy-3-methylphenyl) sulfide, 9,9-bis (4-hydroxyphenyl) Examples include fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene. A preferred dihydric phenol is bis (4-hydroxyphenyl) alkane, and bisphenol A is particularly preferred from the viewpoint of impact resistance, and is widely used.

本発明では、汎用のポリカーボネートであるビスフェノールA系のポリカーボネート以外にも、他の2価フェノール類を用いて製造した特殊なポリカーボネ−トをA成分として使用することが可能である。
例えば、2価フェノール成分の一部又は全部として、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン(以下“Bis−TMC”と略称することがある)、9,9−ビス(4−ヒドロキシフェニル)フルオレン及び9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ−ト(単独重合体又は共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の2価フェノールは、該ポリカーボネートを構成する2価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。
In the present invention, in addition to bisphenol A-based polycarbonate, which is a general-purpose polycarbonate, it is possible to use a special polycarbonate produced using other dihydric phenols as the A component.
For example, as part or all of the dihydric phenol component, 4,4 ′-(m-phenylenediisopropylidene) diphenol (hereinafter sometimes abbreviated as “BPM”), 1,1-bis (4-hydroxy) Phenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (hereinafter sometimes abbreviated as “Bis-TMC”), 9,9-bis (4-hydroxyphenyl) Polycarbonate (homopolymer or copolymer) using fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (hereinafter sometimes abbreviated as “BCF”) has dimensions due to water absorption. It is suitable for applications where the demands for change and shape stability are particularly severe. These dihydric phenols other than BPA are preferably used in an amount of 5 mol% or more, particularly 10 mol% or more of the entire dihydric phenol component constituting the polycarbonate.

殊に、高剛性かつより良好な耐加水分解性が要求される場合には、樹脂組成物を構成するA成分が次の(1)〜(3)の共重合ポリカーボネートであるのが特に好適である。
(1)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBCFが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPAが10〜95モル%(より好適には50〜90モル%、さらに好適には60〜85モル%)であり、かつBCFが5〜90モル%(より好適には10〜50モル%、さらに好適には15〜40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBis−TMCが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
In particular, when high rigidity and better hydrolysis resistance are required, it is particularly preferable that the component A constituting the resin composition is a copolymerized polycarbonate of the following (1) to (3). is there.
(1) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Of 20 to 80 mol% (more preferably 25 to 60 mol%, more preferably 35 to 55 mol%).
(2) BPA is 10 to 95 mol% (more preferably 50 to 90 mol%, more preferably 60 to 85 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Is 5 to 90 mol% (more preferably 10 to 50 mol%, more preferably 15 to 40 mol%).
(3) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and Bis -Copolymer polycarbonate in which TMC is 20 to 80 mol% (more preferably 25 to 60 mol%, still more preferably 35 to 55 mol%).

これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。
これらの特殊なポリカーボネートの製法及び特性については、例えば、特開平6−172508号公報、特開平8−27370号公報、特開2001−55435号公報及び特開2002−117580号公報等に詳しく記載されている。
These special polycarbonates may be used alone or in combination of two or more. Moreover, these can also be mixed and used for the bisphenol A type polycarbonate generally used.
The production method and characteristics of these special polycarbonates are described in detail in, for example, JP-A-6-172508, JP-A-8-27370, JP-A-2001-55435, and JP-A-2002-117580. ing.

なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率及びTg(ガラス転移温度)を下記の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
(i)吸水率が0.05〜0.15%、好ましくは0.06〜0.13%であり、かつTgが120〜180℃であるポリカーボネート、あるいは
(ii)Tgが160〜250℃、好ましくは170〜230℃であり、かつ吸水率が0.10〜0.30%、好ましくは0.13〜0.30%、より好ましくは0.14〜0.27%であるポリカーボネート。
Of the various polycarbonates described above, those having a water absorption and Tg (glass transition temperature) adjusted within the following ranges by adjusting the copolymer composition, etc. have good hydrolysis resistance of the polymer itself, and Since it is remarkably excellent in low warpage after molding, it is particularly suitable in a field where form stability is required.
(I) polycarbonate having a water absorption of 0.05 to 0.15%, preferably 0.06 to 0.13% and Tg of 120 to 180 ° C, or (ii) Tg of 160 to 250 ° C, Polycarbonate which is preferably 170 to 230 ° C. and has a water absorption of 0.10 to 0.30%, preferably 0.13 to 0.30%, more preferably 0.14 to 0.27%.

ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62−1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。   Here, the water absorption of the polycarbonate is a value obtained by measuring the moisture content after being immersed in water at 23 ° C. for 24 hours in accordance with ISO 62-1980 using a disc-shaped test piece having a diameter of 45 mm and a thickness of 3.0 mm. is there. Moreover, Tg (glass transition temperature) is a value calculated | required by the differential scanning calorimeter (DSC) measurement based on JISK7121.

カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。   As the carbonate precursor, carbonyl halide, carbonic acid diester, haloformate or the like is used, and specific examples include phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like.

前記二価フェノールとカーボネート前駆体を界面重合法によって芳香族ポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明の芳香族ポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られた芳香族ポリカーボネート樹脂の2種以上を混合した混合物であってもよい。   In producing the aromatic polycarbonate resin by the interfacial polymerization method using the dihydric phenol and the carbonate precursor, a catalyst, a terminal terminator, and an antioxidant for preventing the dihydric phenol from being oxidized as necessary. Etc. may be used. The aromatic polycarbonate resin of the present invention is a branched polycarbonate resin copolymerized with a trifunctional or higher polyfunctional aromatic compound, a polyester copolymerized with an aromatic or aliphatic (including alicyclic) difunctional carboxylic acid. Carbonate resin, copolymer polycarbonate resin copolymerized with bifunctional alcohol (including alicyclic), and polyester carbonate resin copolymerized with such bifunctional carboxylic acid and bifunctional alcohol are included. Moreover, the mixture which mixed 2 or more types of the obtained aromatic polycarbonate resin may be sufficient.

分岐ポリカーボネート樹脂は、本発明の強化芳香族ポリカーボネート樹脂組成物に、ドリップ防止性能などを付与できる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。   The branched polycarbonate resin can impart anti-drip performance and the like to the reinforced aromatic polycarbonate resin composition of the present invention. Examples of the trifunctional or higher polyfunctional aromatic compound used in the branched polycarbonate resin include phloroglucin, phloroglucid, or 4,6-dimethyl-2,4,6-tris (4-hydroxydiphenyl) heptene-2, 2 , 4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) Ethane, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [ Trisphenol such as 1,1-bis (4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol, tetra (4-hydride) Loxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and their acids Among them, 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable. 1-Tris (4-hydroxyphenyl) ethane is preferred.

分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、2価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、0.01〜1モル%、好ましくは0.05〜0.9モル%、特に好ましくは0.05〜0.8モル%である。   The structural unit derived from the polyfunctional aromatic compound in the branched polycarbonate is 0.1% in a total of 100 mol% of the structural unit derived from the dihydric phenol and the structural unit derived from the polyfunctional aromatic compound. It is 01 to 1 mol%, preferably 0.05 to 0.9 mol%, particularly preferably 0.05 to 0.8 mol%.

また、特に溶融エステル交換法の場合、副反応として分岐構造単位が生ずる場合があるが、かかる分岐構造単位量についても、2価フェノールから誘導される構成単位との合計100モル%中、0.001〜1モル%、好ましくは0.005〜0.9モル%、特に好ましくは0.01〜0.8モル%であるものが好ましい。なお、かかる分岐構造の割合についてはH−NMR測定により算出することが可能である。 In particular, in the case of the melt transesterification method, a branched structural unit may be generated as a side reaction. However, the amount of the branched structural unit is also 0.1% in a total of 100 mol% with a structural unit derived from a dihydric phenol. Those having a ratio of 001 to 1 mol%, preferably 0.005 to 0.9 mol%, particularly preferably 0.01 to 0.8 mol% are preferred. The ratio of the branched structure can be calculated by 1 H-NMR measurement.

脂肪族の二官能性のカルボン酸は、α,ω−ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。   The aliphatic bifunctional carboxylic acid is preferably α, ω-dicarboxylic acid. Examples of aliphatic difunctional carboxylic acids include sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, icosanedioic acid, and other straight-chain saturated aliphatic dicarboxylic acids, and cyclohexanedicarboxylic acid. Preferred are alicyclic dicarboxylic acids such as As the bifunctional alcohol, an alicyclic diol is more preferable, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecane dimethanol.

さらにポリオルガノシロキサン単位を共重合した、ポリカーボネート−ポリオルガノシロキサン共重合体の使用も可能である。
界面重合法による反応は、通常二価フェノールとホスゲンとの反応であり、酸結合剤および有機溶媒の存在下に反応させる。酸結合剤としては例えば水酸化ナトリウムや水酸化カリウムなどのアルカリ金属水酸化物、ピリジンなどが用いられる。
有機溶媒としては例えば塩化メチレン、クロロベンゼンなどのハロゲン化炭化水素が用いられる。
Further, a polycarbonate-polyorganosiloxane copolymer obtained by copolymerizing polyorganosiloxane units can also be used.
The reaction by the interfacial polymerization method is usually a reaction between a dihydric phenol and phosgene, and is reacted in the presence of an acid binder and an organic solvent. As the acid binder, for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, pyridine and the like are used.
As the organic solvent, for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used.

また、反応促進のために例えば第三級アミンや第四級アンモニウム塩などの触媒を用いることができ、分子量調節剤として例えばフェノール、p−tert−ブチルフェノール、p−クミルフェノールなどの単官能フェノール類を用いるのが好ましい。さらに単官能フェノール類としては、デシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノールおよびトリアコンチルフェノールなどを挙げることができる。これらの比較的長鎖のアルキル基を有する単官能フェノール類は、流動性や耐加水分解性の向上が求められる場合に有効である。
反応温度は通常0〜40℃、反応時間は数分〜5時間、反応中のpHは通常10以上に保つのが好ましい。
In addition, catalysts such as tertiary amines and quaternary ammonium salts can be used for promoting the reaction, and monofunctional phenols such as phenol, p-tert-butylphenol, p-cumylphenol, etc. as molecular weight regulators. Are preferably used. Furthermore, examples of monofunctional phenols include decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol, octadecylphenol, eicosylphenol, docosylphenol, and triacontylphenol. These monofunctional phenols having a relatively long chain alkyl group are effective when improvement in fluidity and hydrolysis resistance is required.
The reaction temperature is usually 0 to 40 ° C., the reaction time is several minutes to 5 hours, and the pH during the reaction is usually preferably maintained at 10 or higher.

溶融エステル交換法による反応は、通常二価フェノールと炭酸ジエステルとのエステル交換反応であり、不活性ガスの存在下に二価フェノールと炭酸ジエステルを混合し、減圧下通常120〜350℃で反応させる。減圧度は段階的に変化させ、最終的には133Pa以下にして生成したフェノール類を系外に除去させる。反応時間は通常1〜4時間程度である。   The reaction by the melt transesterification method is usually a transesterification reaction between a dihydric phenol and a carbonic acid diester. The dihydric phenol and the carbonic acid diester are mixed in the presence of an inert gas and reacted at 120 to 350 ° C. under reduced pressure. . The degree of vacuum is changed stepwise, and finally the phenols produced at 133 Pa or less are removed from the system. The reaction time is usually about 1 to 4 hours.

炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネートおよびジブチルカーボネートなどが挙げられ、なかでもジフェニルカーボネートが好ましい。   Examples of the carbonic acid diester include diphenyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, and dibutyl carbonate. Among them, diphenyl carbonate is preferable.

重合速度を速めるために重合触媒を使用することができ、重合触媒としては、例えば水酸化ナトリウムや水酸化カリウムなどのアルカリ金属やアルカリ土類金属の水酸化物、ホウ素やアルミニウムの水酸化物、アルカリ金属塩、アルカリ土類金属塩、第4級アンモニウム塩、アルカリ金属やアルカリ土類金属のアルコキシド、アルカリ金属やアルカリ土類金属の有機酸塩、亜鉛化合物、ホウ素化合物、ケイ素化合物、ゲルマニウム化合物、有機錫化合物、鉛化合物、アンチモン化合物、マンガン化合物、チタン化合物、ジルコニウム化合物などの通常エステル化反応やエステル交換反応に使用される触媒があげられる。触媒は単独で使用してもよいし、二種類以上を併用して使用してもよい。これらの重合触媒の使用量は、原料の二価フェノール1モルに対し、好ましくは1×10−9〜1×10−5当量、より好ましくは1×10−8〜5×10−6当量の範囲で選ばれる。 A polymerization catalyst can be used to accelerate the polymerization rate. Examples of the polymerization catalyst include alkali metal and alkaline earth metal hydroxides such as sodium hydroxide and potassium hydroxide, boron and aluminum hydroxides, Alkali metal salt, alkaline earth metal salt, quaternary ammonium salt, alkoxide of alkali metal or alkaline earth metal, organic acid salt of alkali metal or alkaline earth metal, zinc compound, boron compound, silicon compound, germanium compound, Examples thereof include catalysts usually used for esterification and transesterification of organic tin compounds, lead compounds, antimony compounds, manganese compounds, titanium compounds, zirconium compounds and the like. A catalyst may be used independently and may be used in combination of 2 or more types. The amount of these polymerization catalysts used is preferably 1 × 10 −9 to 1 × 10 −5 equivalents, more preferably 1 × 10 −8 to 5 × 10 −6 equivalents, per 1 mol of the raw material dihydric phenol. Selected by range.

また、重合反応において、フェノール性の末端基を減少するために、重縮反応の後期あるいは終了後に、例えば2−クロロフェニルフェニルカーボネート、2−メトキシカルボニルフェニルフェニルカーボネートおよび2−エトキシカルボニルフェニルフェニルカーボネートなどの化合物を加えることができる。   In the polymerization reaction, in order to reduce phenolic end groups, for example, 2-chlorophenyl phenyl carbonate, 2-methoxycarbonylphenyl phenyl carbonate, 2-ethoxycarbonylphenyl phenyl carbonate, etc. Compounds can be added.

さらに溶融エステル交換法では触媒の活性を中和する失活剤を用いることが好ましい。かかる失活剤の量としては、残存する触媒1モルに対して0.5〜50モルの割合で用いるのが好ましい。また重合後の芳香族ポリカーボネート樹脂に対し、0.01〜500ppmの割合、より好ましくは0.01〜300ppm、特に好ましくは0.01〜100ppmの割合で使用する。失活剤としては、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩などのホスホニウム塩、テトラエチルアンモニウムドデシルベンジルサルフェートなどのアンモニウム塩などが好ましく挙げられる。
前記以外の反応形式の詳細についても、各種の文献および特許公報などで良く知られている。
Further, in the melt transesterification method, it is preferable to use a deactivator that neutralizes the activity of the catalyst. The amount of the deactivator is preferably 0.5 to 50 mol with respect to 1 mol of the remaining catalyst. Further, it is used in a proportion of 0.01 to 500 ppm, more preferably 0.01 to 300 ppm, particularly preferably 0.01 to 100 ppm with respect to the aromatic polycarbonate resin after polymerization. Preferred examples of the deactivator include phosphonium salts such as tetrabutylphosphonium dodecylbenzenesulfonate and ammonium salts such as tetraethylammonium dodecylbenzyl sulfate.
Details of other reaction formats are well known in various documents and patent publications.

本発明で用いるガラス繊維強化難燃性樹脂組成物を製造するにあたり、芳香族ポリカーボネート樹脂の粘度平均分子量(M)は、特に限定されないが、好ましくは10,000〜50,000であり、より好ましくは14,000〜30,000であり、さらに好ましくは14,000〜24,000である。
粘度平均分子量が10,000未満の芳香族ポリカーボネート樹脂では、良好な機械的特性が得られない。一方、粘度平均分子量が50,000を超える芳香族ポリカーボネート樹脂から得られる樹脂組成物は、射出成形時の流動性に劣る点で汎用性に劣る。
In producing the glass fiber reinforced flame retardant resin composition used in the present invention, the viscosity average molecular weight (M) of the aromatic polycarbonate resin is not particularly limited, but is preferably 10,000 to 50,000, more preferably. Is 14,000 to 30,000, more preferably 14,000 to 24,000.
With an aromatic polycarbonate resin having a viscosity average molecular weight of less than 10,000, good mechanical properties cannot be obtained. On the other hand, a resin composition obtained from an aromatic polycarbonate resin having a viscosity average molecular weight exceeding 50,000 is inferior in versatility in that it is inferior in fluidity during injection molding.

なお、前記芳香族ポリカーボネート樹脂は、その粘度平均分子量が前記範囲外のものを混合して得られたものであってもよい。殊に、前記範囲(50,000)を超える粘度平均分子量を有する芳香族ポリカーボネート樹脂は、樹脂のエントロピー弾性が向上する。その結果、強化樹脂材料を構造部材に成形する際に使用されることのあるガスアシスト成形、および発泡成形において、良好な成形加工性を発現する。かかる成形加工性の改善は前記分岐ポリカーボネートよりもさらに良好である。より好適な態様としては、A成分が粘度平均分子量70,000〜300,000の芳香族ポリカーボネート樹脂(A−1−1成分)、および粘度平均分子量10,000〜30,000の芳香族ポリカーボネート樹脂(A−1−2成分)からなり、その粘度平均分子量が16,000〜35,000である芳香族ポリカーボネート樹脂(A−1成分)(以下、“高分子量成分含有芳香族ポリカーボネート樹脂”と称することがある)も使用できる。   The aromatic polycarbonate resin may be obtained by mixing those having a viscosity average molecular weight outside the above range. In particular, an aromatic polycarbonate resin having a viscosity average molecular weight exceeding the range (50,000) improves the entropy elasticity of the resin. As a result, good moldability is exhibited in gas assist molding and foam molding which may be used when molding a reinforced resin material into a structural member. Such improvement in moldability is even better than that of the branched polycarbonate. As a more preferred embodiment, the A component is an aromatic polycarbonate resin having a viscosity average molecular weight of 70,000 to 300,000 (component A-1-1), and an aromatic polycarbonate resin having a viscosity average molecular weight of 10,000 to 30,000. An aromatic polycarbonate resin (A-1 component) (hereinafter referred to as “high molecular weight component-containing aromatic polycarbonate resin”) having a viscosity average molecular weight of 16,000 to 35,000. May also be used.

かかる高分子量成分含有芳香族ポリカーボネート樹脂(A−1成分)において、A−1−1成分の分子量は70,000〜200,000が好ましく、より好ましくは80,000〜200,000、さらに好ましくは100,000〜200,000、特に好ましくは100,000〜160,000である。またA−1−2成分の分子量は10,000〜25,000が好ましく、より好ましくは11,000〜24,000、さらに好ましくは12,000〜24,000、特に好ましくは12,000〜23,000である。   In such a high molecular weight component-containing aromatic polycarbonate resin (A-1 component), the molecular weight of the A-1-1 component is preferably 70,000 to 200,000, more preferably 80,000 to 200,000, still more preferably. 100,000 to 200,000, particularly preferably 100,000 to 160,000. The molecular weight of the A-1-2 component is preferably 10,000 to 25,000, more preferably 11,000 to 24,000, still more preferably 12,000 to 24,000, and particularly preferably 12,000 to 23. , 000.

高分子量成分含有芳香族ポリカーボネート樹脂(A−1成分)は前記A−1−1成分とA−1−2成分を種々の割合で混合し、所定の分子量範囲を満足するよう調整して得ることができる。好ましくは、A−1成分100重量%中、A−1−1成分が2〜40重量%の場合であり、より好ましくはA−1−1成分が3〜30重量%であり、さらに好ましくはA−1−1成分が4〜20重量%であり、特に好ましくはA−1−1成分が5〜20重量%である。   The high molecular weight component-containing aromatic polycarbonate resin (component A-1) is obtained by mixing the components A-1-1 and A-1-2 at various ratios and adjusting them so as to satisfy a predetermined molecular weight range. Can do. Preferably, in 100% by weight of the A-1 component, the A-1-1 component is 2 to 40% by weight, more preferably the A-1-1 component is 3 to 30% by weight, and still more preferably The A-1-1 component is 4 to 20% by weight, and particularly preferably the A-1-1 component is 5 to 20% by weight.

また、A−1成分の調製方法としては、(1)A−1−1成分とA−1−2成分とを、それぞれ独立に重合しこれらを混合する方法、(2)特開平5−306336号公報に示される方法に代表される、GPC法による分子量分布チャートにおいて複数のポリマーピークを示す芳香族ポリカーボネート樹脂を同一系内において製造する方法を用い、かかる芳香族ポリカーボネート樹脂を本発明のA−1成分の条件を満足するよう製造する方法、および(3)かかる製造方法((2)の製造法)により得られた芳香族ポリカーボネート樹脂と、別途製造されたA−1−1成分および/またはA−1−2成分とを混合する方法などを挙げることができる。   As the preparation method of the component A-1, (1) a method in which the components A-1-1 and A-1-2 are independently polymerized and mixed, and (2) JP-A-5-306336. The method of producing an aromatic polycarbonate resin showing a plurality of polymer peaks in a molecular weight distribution chart by GPC method, represented by the method shown in Japanese Patent Publication No. Gazette, in the same system, the aromatic polycarbonate resin of the present invention A- A method of producing so as to satisfy the conditions of one component, and (3) an aromatic polycarbonate resin obtained by the production method (production method of (2)), a separately produced A-1-1 component and / or Examples thereof include a method of mixing the A-1-2 component.

本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlに芳香族ポリカーボネート0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
The viscosity average molecular weight referred to in the present invention is first determined by using an Ostwald viscometer from a solution obtained by dissolving 0.7 g of aromatic polycarbonate in 100 ml of methylene chloride at 20 ° C. with a specific viscosity (η SP ) calculated by the following formula. ,
Specific viscosity (η SP ) = (t−t 0 ) / t 0
[T 0 is methylene chloride falling seconds, t is sample solution falling seconds]
The viscosity average molecular weight M is calculated from the determined specific viscosity (η SP ) by the following formula.
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10 −4 M 0.83
c = 0.7

尚、本発明で用いるガラス繊維強化難燃性樹脂組成物における芳香族ポリカーボネート樹脂の粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20〜30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。   In addition, calculation of the viscosity average molecular weight of the aromatic polycarbonate resin in the glass fiber reinforced flame retardant resin composition used in the present invention is performed as follows. That is, the composition is mixed with 20 to 30 times its weight of methylene chloride to dissolve the soluble component in the composition. Such soluble matter is collected by Celite filtration. Thereafter, the solvent in the obtained solution is removed. The solid after removal of the solvent is sufficiently dried to obtain a solid component that dissolves in methylene chloride. A specific viscosity at 20 ° C. is determined from a solution obtained by dissolving 0.7 g of the solid in 100 ml of methylene chloride in the same manner as described above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as described above.

(スチレン系樹脂)
本発明のA成分の熱可塑性樹脂において使用されるスチレン系樹脂は良好な成形加工性と、適度な耐熱性および難燃性を有しているため、これら特性のバランスを保つために好ましい熱可塑性樹脂である。
かかるスチレン系樹脂は、芳香族ビニル化合物の重合体または共重合体、またこれと必要に応じてこれらと共重合可能な他のビニル単量体およびゴム質重合体より選ばれる1種以上を共重合して得られる重合体である。
(Styrene resin)
The styrenic resin used in the thermoplastic resin of component A of the present invention has good molding processability, moderate heat resistance and flame retardancy, and is therefore preferable for maintaining a balance between these properties. Resin.
Such a styrenic resin is a copolymer or copolymer of an aromatic vinyl compound, and, if necessary, at least one selected from other vinyl monomers and rubbery polymers copolymerizable therewith. It is a polymer obtained by polymerization.

芳香族ビニル化合物としては、特にスチレンが好ましい。芳香族ビニル化合物と共重合可能な他のビニル単量体としては、シアン化ビニル化合物および(メタ)アクリル酸エステル化合物を好ましく挙げることができる。特に好適なシアン化ビニル化合物としてはアクリロニトリルが挙げられ、特に好適な(メタ)アクリル酸エステル化合物としてはメチルメタクリレートを挙げることができる。   As the aromatic vinyl compound, styrene is particularly preferable. Preferable examples of the other vinyl monomer copolymerizable with the aromatic vinyl compound include a vinyl cyanide compound and a (meth) acrylic acid ester compound. A particularly preferred vinyl cyanide compound is acrylonitrile, and a particularly preferred (meth) acrylic acid ester compound is methyl methacrylate.

シアン化ビニル化合物および(メタ)アクリル酸エステル化合物以外の芳香族ビニル化合物と共重合可能な他のビニル単量体としては、グリシジルメタクリレートなどのエポキシ基含有メタクリル酸エステル、マレイミド、N−メチルマレイミド、N−フェニルマレイミドなどのマレイミド系単量体、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フタル酸、イタコン酸などのα,β−不飽和カルボン酸およびその無水物があげられる。   Other vinyl monomers copolymerizable with aromatic vinyl compounds other than vinyl cyanide compounds and (meth) acrylic acid ester compounds include epoxy group-containing methacrylic acid esters such as glycidyl methacrylate, maleimide, N-methylmaleimide, Examples thereof include maleimide monomers such as N-phenylmaleimide, α, β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, phthalic acid and itaconic acid, and anhydrides thereof.

上記芳香族ビニル化合物と共重合可能なゴム質重合体としては、ポリブタジエン、ポリイソプレン、ジエン系共重合体(例えば、スチレン・ブタジエンのランダム共重合体およびブロック共重合体、アクリロニトリル・ブタジエン共重合体、並びに(メタ)アクリル酸アルキルエステルおよびブタジエンの共重合体など)、エチレンとα−オレフィンとの共重合体(例えば、エチレン・プロピレンランダム共重合体およびブロック共重合体、エチレン・ブテンのランダム共重合体およびブロック共重合体など)、エチレンと不飽和カルボン酸エステルとの共重合体(例えばエチレン・メタクリレート共重合体、およびエチレン・ブチルアクリレート共重合体など)、エチレンと脂肪族ビニルとの共重合体(例えば、エチレン・酢酸ビニル共重合体など)、エチレンとプロピレンと非共役ジエンターポリマー(例えば、エチレン・プロピレン・ヘキサジエン共重合体など)、アクリル系ゴム(例えば、ポリブチルアクリレート、ポリ(2−エチルヘキシルアクリレート)、およびブチルアクリレートと2−エチルヘキシルアクリレートとの共重合体など)、並びにシリコーン系ゴム(例えば、ポリオルガノシロキサンゴム、ポリオルガノシロキサンゴム成分とポリアルキル(メタ)アクリレートゴム成分とからなるIPN型ゴム;すなわち2つのゴム成分が分離できないように相互に絡み合った構造を有しているゴム、およびポリオルガノシロキサンゴム成分とポリイソブチレンゴム成分からなるIPN型ゴムなど)が挙げられる。   Examples of the rubbery polymer copolymerizable with the aromatic vinyl compound include polybutadiene, polyisoprene, and diene copolymers (eg, styrene / butadiene random copolymers and block copolymers, acrylonitrile / butadiene copolymers). , And (meth) acrylic acid alkyl ester and butadiene copolymers), ethylene and α-olefin copolymers (eg, ethylene / propylene random copolymers and block copolymers, ethylene / butene random copolymers). Polymers and block copolymers), copolymers of ethylene and unsaturated carboxylic acid esters (for example, ethylene / methacrylate copolymers and ethylene / butyl acrylate copolymers), copolymers of ethylene and aliphatic vinyl. Polymer (for example, ethylene / vinyl acetate copolymer) ), Ethylene, propylene and non-conjugated diene terpolymers (eg, ethylene / propylene / hexadiene copolymer), acrylic rubbers (eg, polybutyl acrylate, poly (2-ethylhexyl acrylate), and butyl acrylate 2 A copolymer with ethylhexyl acrylate, etc.), and a silicone rubber (for example, polyorganosiloxane rubber, IPN type rubber comprising a polyorganosiloxane rubber component and a polyalkyl (meth) acrylate rubber component; that is, two rubber components And rubbers having a structure in which they are entangled with each other so that they cannot be separated, and an IPN type rubber composed of a polyorganosiloxane rubber component and a polyisobutylene rubber component.

上記スチレン系樹脂として具体的には、例えば、ポリスチレン樹脂、HIPS樹脂、MS樹脂、ABS樹脂、AS樹脂、AES樹脂、ASA樹脂、MBS樹脂、MABS樹脂、MAS樹脂、およびSMA樹脂などのスチレン系樹脂、並びに(水添)スチレン−ブタジエン−スチレン共重合体樹脂、(水添)スチレン−イソプレン−スチレン共重合体樹脂などを挙げることができる。尚、(水添)の表記は水添していない樹脂および水添した樹脂のいずれをも含むことを意味する。ここでMS樹脂はメチルメタクリートとスチレンから主としてなる共重合体樹脂、AES樹脂はアクリロニトリル、エチレン−プロピレンゴム、およびスチレンから主としてなる共重合体樹脂、ASA樹脂はアクリロニトリル、スチレン、およびアクリルゴムから主としてなる共重合体樹脂、MABS樹脂はメチルメタクリレート、アクリロニトリル、ブタジエン、およびスチレンから主としてなる共重合体樹脂、MAS樹脂はメチルメタクリレート、アクリルゴム、およびスチレンから主としてなる共重合体樹脂、SMA樹脂はスチレンと無水マレイン酸(MA)から主としてなる共重合体樹脂を示す。   Specific examples of the styrene resin include styrene resins such as polystyrene resin, HIPS resin, MS resin, ABS resin, AS resin, AES resin, ASA resin, MBS resin, MABS resin, MAS resin, and SMA resin. And (hydrogenated) styrene-butadiene-styrene copolymer resin, (hydrogenated) styrene-isoprene-styrene copolymer resin, and the like. In addition, the notation of (hydrogenated) means that both non-hydrogenated resin and hydrogenated resin are included. Here, the MS resin is a copolymer resin mainly composed of methyl methacrylate and styrene, the AES resin is a copolymer resin mainly composed of acrylonitrile, ethylene-propylene rubber, and styrene, and the ASA resin is mainly composed of acrylonitrile, styrene, and acrylic rubber. MABS resin is a copolymer resin mainly composed of methyl methacrylate, acrylonitrile, butadiene and styrene, MAS resin is a copolymer resin mainly composed of methyl methacrylate, acrylic rubber and styrene, and SMA resin is styrene and A copolymer resin mainly composed of maleic anhydride (MA) is shown.

尚、かかるスチレン系樹脂はその製造時にメタロセン触媒等の触媒使用により、シンジオタクチックポリスチレン等の高い立体規則性を有するものであってもよい。更に場合によっては、アニオンリビング重合、ラジカルリビング重合等の方法により得られる、分子量分布の狭い重合体及び共重合体、ブロック共重合体、及び立体規則性の高い重合体、共重合体を使用することも可能である。
これらの中でも、アクリロニトリル・スチレン共重合体樹脂(AS樹脂)、アクリロニトリル・ブタジエン・スチレン共重合体樹脂(ABS樹脂)が好ましい。また、スチレン系重合体を2種以上混合して使用することも可能である。
Such a styrenic resin may have a high stereoregularity such as syndiotactic polystyrene by using a catalyst such as a metallocene catalyst during the production thereof. Further, in some cases, polymers and copolymers having a narrow molecular weight distribution, block copolymers, and polymers and copolymers having high stereoregularity obtained by methods such as anion living polymerization and radical living polymerization are used. It is also possible.
Among these, acrylonitrile / styrene copolymer resin (AS resin) and acrylonitrile / butadiene / styrene copolymer resin (ABS resin) are preferable. It is also possible to use a mixture of two or more styrenic polymers.

本発明で使用するAS樹脂とは、シアン化ビニル化合物と芳香族ビニル化合物を共重合した熱可塑性共重合体である。かかるシアン化ビニル化合物としては、特にアクリロニトリルが好ましく使用できる。また芳香族ビニル化合物としては、スチレン及びα−メチルスチレンが好ましく使用できる。AS樹脂中における各成分の割合としては、全体を100重量%とした場合、シアン化ビニル化合物が5〜50重量%、好ましくは15〜35重量%、芳香族ビニル化合物が95〜50重量%、好ましくは85〜65重量%である。更にこれらのビニル化合物に、上記記載の共重合可能な他のビニル系化合物を混合使用することもでき、これらの含有割合は、AS樹脂成分中15重量%以下であるものが好ましい。また反応で使用する開始剤、連鎖移動剤等は必要に応じて、従来公知の各種のものが使用可能である。   The AS resin used in the present invention is a thermoplastic copolymer obtained by copolymerizing a vinyl cyanide compound and an aromatic vinyl compound. As such a vinyl cyanide compound, acrylonitrile can be particularly preferably used. As the aromatic vinyl compound, styrene and α-methylstyrene can be preferably used. The proportion of each component in the AS resin is 5 to 50% by weight, preferably 15 to 35% by weight of vinyl cyanide compound, 95 to 50% by weight of aromatic vinyl compound, when the total is 100% by weight. Preferably it is 85 to 65% by weight. Further, these vinyl compounds may be used in combination with other copolymerizable vinyl compounds described above, and the content ratio thereof is preferably 15% by weight or less in the AS resin component. Moreover, conventionally well-known various things can be used for the initiator, chain transfer agent, etc. which are used by reaction as needed.

かかるAS樹脂は塊状重合、懸濁重合、乳化重合のいずれの方法で製造されたものでもよいが、好ましくは塊状重合によるものである。また共重合の方法も一段での共重合、または多段での共重合のいずれであってもよい。またかかるAS樹脂の還元粘度としては、0.2〜1.0dl/gであり、好ましくは0.3〜0.5dl/gである。還元粘度は、AS樹脂0.25gを精秤し、ジメチルホルムアミド50mlに2時間かけて溶解させた溶液を、ウベローデ粘度計を用いて30℃の環境で測定したものである。なお、粘度計は溶媒の流下時間が20〜100秒のものを用いる。還元粘度は溶媒の流下秒数(t)と溶液の流下秒数(t)から次式によって求める。
還元粘度(ηsp/C)={(t/t)−1}/0.5
還元粘度が0.2dl/gより小さいと衝撃が低下し、1.0dl/gを越えると流動性が悪くなる。
Such an AS resin may be produced by any of bulk polymerization, suspension polymerization, and emulsion polymerization, but is preferably bulk polymerization. The copolymerization method may be either one-stage copolymerization or multistage copolymerization. The AS resin has a reduced viscosity of 0.2 to 1.0 dl / g, preferably 0.3 to 0.5 dl / g. The reduced viscosity is a value obtained by precisely weighing 0.25 g of AS resin and measuring a solution obtained by dissolving in 50 ml of dimethylformamide over 2 hours in an environment of 30 ° C. using an Ubbelohde viscometer. A viscometer having a solvent flow time of 20 to 100 seconds is used. The reduced viscosity is determined from the following formula from the solvent flow down seconds (t 0 ) and the solution flow down seconds (t).
Reduced viscosity (η sp / C) = {(t / t 0 ) −1} /0.5
When the reduced viscosity is less than 0.2 dl / g, the impact is lowered, and when it exceeds 1.0 dl / g, the fluidity is deteriorated.

本発明で使用するABS樹脂とは、ジエン系ゴム成分にシアン化ビニル化合物と芳香族ビニル化合物をグラフト重合した熱可塑性グラフト共重合体とシアン化ビニル化合物と芳香族ビニル化合物の共重合体の混合物である。このABS樹脂を形成するジエン系ゴム成分としては、例えばポリブタジエン、ポリイソプレン及びスチレン−ブタジエン共重合体等のガラス転位温度が−30℃以下のゴムが用いられ、その割合はABS樹脂成分100重量%中5〜80重量%であるのが好ましく、より好ましくは8〜50重量%、特に好ましくは10〜30重量%である。ジエン系ゴム成分にグラフトされるシアン化ビニル化合物としては、特にアクリロニトリルが好ましく使用できる。またジエン系ゴム成分にグラフトされる芳香族ビニル化合物としては、特にスチレン及びα−メチルスチレンが好ましく使用できる。かかるジエン系ゴム成分にグラフトされる成分の割合は、ABS樹脂成分100重量%中95〜20重量%が好ましく、特に好ましくは50〜90重量%である。更にかかるシアン化ビニル化合物及び芳香族ビニル化合物の合計量100重量%に対して、シアン化ビニル化合物が5〜50重量%、芳香族ビニル化合物が95〜50重量%であることが好ましい。更に上記のジエン系ゴム成分にグラフトされる成分の一部についてメチル(メタ)アクリレート、エチルアクリレート、無水マレイン酸、N置換マレイミド等を混合使用することもでき、これらの含有割合はABS樹脂成分中15重量%以下であるものが好ましい。更に反応で使用する開始剤、連鎖移動剤、乳化剤等は必要に応じて、従来公知の各種のものが使用可能である。   The ABS resin used in the present invention is a mixture of a thermoplastic graft copolymer obtained by graft polymerization of a vinyl cyanide compound and an aromatic vinyl compound to a diene rubber component, and a copolymer of a vinyl cyanide compound and an aromatic vinyl compound. It is. As the diene rubber component forming this ABS resin, for example, rubber having a glass transition temperature of −30 ° C. or lower such as polybutadiene, polyisoprene and styrene-butadiene copolymer is used, and the proportion thereof is 100% by weight of the ABS resin component. The content is preferably 5 to 80% by weight, more preferably 8 to 50% by weight, and particularly preferably 10 to 30% by weight. As the vinyl cyanide compound grafted on the diene rubber component, acrylonitrile is particularly preferably used. As the aromatic vinyl compound grafted on the diene rubber component, styrene and α-methylstyrene are particularly preferably used. The ratio of the component grafted to the diene rubber component is preferably 95 to 20% by weight, particularly preferably 50 to 90% by weight, based on 100% by weight of the ABS resin component. Furthermore, it is preferable that the vinyl cyanide compound is 5 to 50% by weight and the aromatic vinyl compound is 95 to 50% by weight with respect to 100% by weight of the total amount of the vinyl cyanide compound and the aromatic vinyl compound. Further, methyl (meth) acrylate, ethyl acrylate, maleic anhydride, N-substituted maleimide and the like can be mixed and used for a part of the components grafted to the diene rubber component, and the content ratio thereof is in the ABS resin component. What is 15 weight% or less is preferable. Furthermore, conventionally known various initiators, chain transfer agents, emulsifiers and the like can be used as necessary.

本発明のABS樹脂においては、ゴム粒子径は0.1〜5.0μmが好ましく、より好ましくは0.15〜1.5μm、特に好ましくは0.2〜0.8μmである。かかるゴム粒子径の分布は単一の分布であるもの及び2山以上の複数の山を有するもののいずれもが使用可能であり、更にそのモルフォロジーにおいてもゴム粒子が単一の相をなすものであっても、ゴム粒子の周りにオクルード相を含有することによりサラミ構造を有するものであってもよい。   In the ABS resin of the present invention, the rubber particle diameter is preferably 0.1 to 5.0 μm, more preferably 0.15 to 1.5 μm, and particularly preferably 0.2 to 0.8 μm. As the distribution of the rubber particle diameter, either a single distribution or a rubber particle having two or more peaks can be used, and the rubber particles form a single phase in the morphology. Alternatively, it may have a salami structure by containing an occluded phase around the rubber particles.

またABS樹脂がジエン系ゴム成分にグラフトされないシアン化ビニル化合物及び芳香族ビニル化合物を含有することは従来からよく知られているところであり、本発明のABS樹脂においてもかかる重合の際に発生するフリーの重合体成分を含有するものであってもよい。かかるフリーのシアン化ビニル化合物及び芳香族ビニル化合物からなる共重合体の還元粘度は、先に記載の方法で求めた還元粘度(30℃)が0.2〜1.0dl/g、より好ましくは0.3〜0.7dl/gであるものである。
またグラフトされたシアン化ビニル化合物及び芳香族ビニル化合物の割合はジエン系ゴム成分に対して、グラフト率(重量%)で表して20〜200%が好ましく、より好ましくは20〜70%のものである。
In addition, it is well known that the ABS resin contains a vinyl cyanide compound and an aromatic vinyl compound that are not grafted to the diene rubber component, and the ABS resin of the present invention is free of the occurrence of such polymerization. The polymer component may be contained. The reduced viscosity of the copolymer comprising such free vinyl cyanide compound and aromatic vinyl compound is preferably 0.2 to 1.0 dl / g, more preferably reduced viscosity (30 ° C.) determined by the method described above. 0.3 to 0.7 dl / g.
The ratio of the grafted vinyl cyanide compound and aromatic vinyl compound is preferably 20 to 200%, more preferably 20 to 70% in terms of graft ratio (% by weight) with respect to the diene rubber component. is there.

かかるABS樹脂は塊状重合、懸濁重合、乳化重合のいずれの方法で製造されたものでもよいが、特に塊状重合によるものが好ましい。更にかかる塊状重合法としては代表的に、化学工学 48巻第6号415頁(1984)に記載された連続塊状重合法(いわゆる東レ法)、並びに化学工学 第53巻第6号423頁(1989)に記載された連続塊状重合法(いわゆる三井東圧法)が例示される。本発明のABS樹脂としてはいずれのABS樹脂も好適に使用される。また共重合の方法も一段で共重合しても、多段で共重合してもよい。また、かかる製造法により得られたABS樹脂に芳香族ビニル化合物とシアン化ビニル成分とを別途共重合して得られるビニル化合物重合体をブレンドしたものも好ましく使用できる。   Such an ABS resin may be produced by any of bulk polymerization, suspension polymerization, and emulsion polymerization, but is preferably bulk polymerization. Further, as such bulk polymerization method, typically, the continuous bulk polymerization method (so-called Toray method) described in Chemical Engineering, Vol. 48, No. 6, page 415 (1984), and Chemical Engineering, Vol. 53, No. 6, page 423 (1989). ) Is a continuous bulk polymerization method (so-called Mitsui Toatsu method). Any ABS resin is preferably used as the ABS resin of the present invention. Further, the copolymerization may be carried out in one step or in multiple steps. Moreover, what blended the vinyl compound polymer obtained by copolymerizing an aromatic vinyl compound and a vinyl cyanide component separately to the ABS resin obtained by this manufacturing method can also be used preferably.

前記AS樹脂およびABS樹脂は、アルカリ(土類)金属量が低減されたものが良好な熱安定性や耐加水分解性などの点からより好適である。スチレン系樹脂中のアルカリ(土類)金属量は、好ましくは100ppm未満であり、より好ましくは80ppm未満であり、更に好ましくは50ppm未満であり、特に好ましくは10ppm未満である。かかる点からも塊状重合法によるAS樹脂およびABS樹脂が好適に使用される。更にかかる良好な熱安定性や耐加水分解性に関連して、AS樹脂およびABS樹脂において乳化剤を使用する場合には、該乳化剤は好適にはスルホン酸塩類であり、より好適にはアルキルスルホン酸塩類である。また凝固剤を使用する場合には、該凝固剤は硫酸または硫酸のアルカリ土類金属塩が好適である。   As the AS resin and the ABS resin, those having a reduced amount of alkali (earth) metal are more preferable from the viewpoint of good thermal stability and hydrolysis resistance. The amount of alkali (earth) metal in the styrenic resin is preferably less than 100 ppm, more preferably less than 80 ppm, still more preferably less than 50 ppm, and particularly preferably less than 10 ppm. Also from this point, AS resin and ABS resin by a bulk polymerization method are preferably used. Furthermore, in relation to such good thermal stability and hydrolysis resistance, when an emulsifier is used in the AS resin and ABS resin, the emulsifier is preferably a sulfonate salt, more preferably an alkyl sulfonic acid. It is salt. When a coagulant is used, the coagulant is preferably sulfuric acid or an alkaline earth metal salt of sulfuric acid.

(B成分:強化充填材)
(扁平断面ガラス繊維)
本発明のB成分として使用されるガラス繊維は、扁平断面ガラス繊維である。本発明の扁平断面ガラス繊維としては、繊維断面の長径の平均値が10〜50μm、好ましくは15〜40μm、より好ましくは20〜35μmで、長径と短径の比(長径/短径)の平均値が1.5〜8、好ましくは2〜6、更に好ましくは2.5〜5であるガラス繊維である。長径と短径の比の平均値がこの範囲の扁平断面ガラス繊維を使用した場合、1.5未満の非円形断面繊維を使用した場合に比べ、異方性が大きく改良され、また、難燃性を大きく向上させることができる。この難燃性の向上は成形品表面において、扁平断面ガラス繊維の長辺面が成形品表面と平行に配向することにより、燃焼時の樹脂炭化皮膜による酸素遮断効果に加え扁平断面ガラス繊維による酸素遮断効果が円形断面繊維に比べ、より有効に作用するためと考えられる。また扁平断面形状には扁平の他、楕円状、まゆ状、および三つ葉状、あるいはこれに類する形状の非円形断面形状が含まれる。なかでも機械的強度、低異方性の改良の点から扁平形状が好ましい。また、扁平断面ガラス繊維の平均繊維長と平均繊維径の比(アスペクト比)は2〜120、好ましくは2.5〜70、更に好ましくは3〜50であり、繊維長と平均繊維径の比が2未満であると機械的強度の向上効果が小さく、繊維長と平均繊維径の比が120を超えると異方性が大きくなる他、成形品外観も悪化するようになる。かかる扁平断面ガラス繊維の平均繊維径とは、扁平断面形状を同一面積の真円形に換算したときの数平均繊維径をいう。また平均繊維長とは、本発明で用いるガラス繊維強化難燃性樹脂組成物中における数平均繊維長をいう。尚、かかる数平均繊維長は、成形品の高温灰化、溶剤による溶解、並びに薬品による分解等の処理で採取される充填材の残さを光学顕微鏡観察した画像から画像解析装置により算出される値である。また、かかる値の算出に際しては繊維径を目安にそれ以下の長さのものはカウントしない方法による値である。
(B component: reinforcing filler)
(Flat cross-section glass fiber)
The glass fiber used as B component of this invention is a flat cross-section glass fiber. The flat cross-section glass fiber of the present invention has an average value of the major axis of the fiber cross section of 10 to 50 μm, preferably 15 to 40 μm, more preferably 20 to 35 μm, and an average ratio of major axis to minor axis (major axis / minor axis). The glass fiber has a value of 1.5 to 8, preferably 2 to 6, more preferably 2.5 to 5. When using flat cross-section glass fibers with an average ratio of major axis to minor axis within this range, anisotropy is greatly improved compared to using non-circular cross-section fibers of less than 1.5, and flame retardancy is also achieved. Can be greatly improved. This improvement in flame retardancy is achieved by aligning the long side surface of the flat cross-section glass fiber parallel to the surface of the molded product on the surface of the molded product. It is considered that the blocking effect works more effectively than the circular cross-section fiber. In addition to the flat shape, the flat cross-sectional shape includes an elliptical shape, an eyebrow shape, a trefoil shape, or a similar non-circular cross-sectional shape. Of these, a flat shape is preferable from the viewpoint of improving mechanical strength and low anisotropy. The ratio of the average fiber length to the average fiber diameter (aspect ratio) of the flat cross-section glass fiber is 2 to 120, preferably 2.5 to 70, more preferably 3 to 50, and the ratio of the fiber length to the average fiber diameter. If the ratio is less than 2, the effect of improving the mechanical strength is small, and if the ratio of the fiber length to the average fiber diameter exceeds 120, the anisotropy increases and the appearance of the molded product also deteriorates. The average fiber diameter of such flat cross-section glass fibers refers to the number average fiber diameter when the flat cross-sectional shape is converted to a true circle of the same area. The average fiber length refers to the number average fiber length in the glass fiber reinforced flame retardant resin composition used in the present invention. The number-average fiber length is a value calculated by an image analyzer from an image obtained by observing the residue of the filler collected by processing such as high-temperature ashing of a molded product, dissolution with a solvent, and decomposition with a chemical, using an optical microscope. It is. Further, when calculating such a value, the fiber diameter is used as a guide and the length is less than that.

上記の扁平断面ガラス繊維のガラス組成は、Aガラス、Cガラス、およびEガラス等に代表される各種のガラス組成が適用され、特に限定されない。かかるガラス充填材は、必要に応じてTiO、SO、およびP等の成分を含有するものであってもよい。これらの中でもEガラス(無アルカリガラス)がより好ましい。かかる扁平断面ガラス繊維は、周知の表面処理剤、例えばシランカップリング剤、チタネートカップリング剤、またはアルミネートカップリング剤等で表面処理が施されたものが機械的強度の向上の点から好ましい。また、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂等で集束処理されたものが好ましく、エポキシ系樹脂、ウレタン系樹脂が機械的強度の点から特に好ましい。集束処理された扁平断面ガラス繊維の集束剤付着量は、扁平断面ガラス繊維100重量%中好ましくは0.1〜3重量%、より好ましくは0.2〜1重量%である。 Various glass compositions represented by A glass, C glass, E glass, etc. are applied to the glass composition of said flat cross-section glass fiber, and it is not specifically limited. Such a glass filler may contain components such as TiO 2 , SO 3 , and P 2 O 5 as necessary. Among these, E glass (non-alkali glass) is more preferable. Such flat cross-section glass fibers are preferably subjected to a surface treatment with a known surface treatment agent such as a silane coupling agent, a titanate coupling agent, or an aluminate coupling agent from the viewpoint of improving mechanical strength. In addition, those that have been subjected to bundling treatment with olefin resin, styrene resin, acrylic resin, polyester resin, epoxy resin, urethane resin, etc. are preferable. From the viewpoint of mechanical strength, epoxy resin and urethane resin are preferred. Particularly preferred. The amount of the sizing agent attached to the flat cross-section glass fibers subjected to the bundling treatment is preferably 0.1 to 3 wt%, more preferably 0.2 to 1 wt%, in 100 wt% of the flat cross-section glass fibers.

(板状無機充填材)
本発明で使用する板状無機充填材(B−2成分)としては、マイカ、タルク、クレー、グラファイト、ガラスフレーク、およびモンモリロナイトなどのスメクタイト系鉱物などが例示される。またかかる板状無機充填材は、金属コートまたは金属酸化物コートされたものを含む。本発明のB−2成分としてはマイカおよびタルク、ガラスフレークから選択された少なくとも1種の板状無機充填材であることが好ましく、特にマイカが好ましい。これらはガラスフレークなどに比較して高充填におけるフィラーの破壊が少なく、より優れた剛性が得られる。また比較的純度の高い良品が容易かつ安価に入手できる点も好ましい。
(Plate-like inorganic filler)
Examples of the plate-like inorganic filler (B-2 component) used in the present invention include mica, talc, clay, graphite, glass flake, and smectite minerals such as montmorillonite. Such plate-like inorganic fillers include those coated with metal or metal oxide. The B-2 component of the present invention is preferably at least one plate-like inorganic filler selected from mica, talc, and glass flakes, and mica is particularly preferable. These have less filler breakage at high filling than glass flakes and the like, and can provide more excellent rigidity. Further, it is also preferable that a non-defective product having a relatively high purity can be obtained easily and inexpensively.

本発明のB−2成分として使用されるガラスフレークは、円筒ブロー法やゾル−ゲル法などに方法によって製造される板状のガラスフィラーである。かかるガラスフレークの原料の大きさも粉砕や分級の程度により種々のものを選択可能である。原料に使用するガラスフレークの平均粒径は10〜1000μmが好ましく、20〜500μmがより好ましく、30〜300μmが更に好ましい。上記範囲のものは取り扱い性と成形加工性との両立に優れるためである。通常板状ガラス充填材は樹脂との溶融混練加工により割れが生じ、その平均粒径は小径化する。樹脂組成物中のガラスフレークの数平均粒径は10〜200μmが好ましく、15〜100μmがより好ましく、20〜80μmが更に好ましい。尚、かかる数平均粒径は、成形品の高温灰化、溶剤による溶解、および薬品による分解等の処理で採取される板状ガラス充填材の残さを光学顕微鏡観察した画像から画像解析装置により算出される値である。また、かかる値の算出に際してはフレーク厚みを目安にそれ以下の長さのものはカウントしない方法による値である。また厚みとしては0.5〜10μmが好ましく、1〜8μmがより好ましく、1.5〜6μmが更に好ましい。上記数平均粒径および厚みを有するガラスフレークは良好な強度、剛性を達成する。   The glass flake used as the B-2 component of the present invention is a plate-like glass filler produced by a method such as a cylindrical blow method or a sol-gel method. Various kinds of glass flake raw materials can be selected depending on the degree of pulverization and classification. The average particle size of the glass flakes used for the raw material is preferably 10 to 1000 μm, more preferably 20 to 500 μm, and still more preferably 30 to 300 μm. This is because the above range is excellent in both handleability and moldability. Usually, a plate-like glass filler is cracked by melt-kneading with a resin, and its average particle size is reduced. The number average particle size of the glass flakes in the resin composition is preferably 10 to 200 μm, more preferably 15 to 100 μm, and still more preferably 20 to 80 μm. The number average particle size is calculated by an image analyzer from an image obtained by observing the residue of the sheet glass filler collected by high temperature ashing of the molded product, dissolution with a solvent, decomposition with chemicals, etc. with an optical microscope. Is the value to be Further, when calculating such a value, the flake thickness is used as a guide and the length of the flake is not counted. Moreover, as thickness, 0.5-10 micrometers is preferable, 1-8 micrometers is more preferable, 1.5-6 micrometers is still more preferable. The glass flakes having the above number average particle diameter and thickness achieve good strength and rigidity.

本発明のB−2成分として使用されるマイカとしては、剛性確保の面から、平均粒径が10〜700μmの粉末状のものが好ましい。マイカとは、アルミニウム、カリウム、マグネシウム、ナトリウム、鉄等を含んだケイ酸塩鉱物の粉砕物である。マイカには白雲母、金雲母、黒雲母、人造雲母等があり、本発明で使用するマイカとしてはいずれのマイカも使用できるが、白雲母は金雲母や黒雲母に比べてそれ自体が剛直であり、剛性の点では白雲母が好適である。また、金雲母、黒雲母は白雲母に比べて主成分中にFeが多く含まれているためそれ自体の色相が黒っぽくなり、種々の着色をする場合にも白雲母は好適である。また白雲母は、人造雲母(天然金雲母のOH基がFに置換されたもの)が高価であるのに対しても有利である。したがって本発明においては種々の点から白雲母が好適である。   The mica used as the B-2 component of the present invention is preferably in the form of a powder having an average particle size of 10 to 700 μm from the viewpoint of securing rigidity. Mica is a pulverized product of silicate mineral containing aluminum, potassium, magnesium, sodium, iron and the like. Mica includes muscovite, phlogopite, biotite, and artificial mica. Any mica can be used in the present invention, but muscovite is more rigid than phlogopite or biotite. Yes, muscovite is preferable in terms of rigidity. In addition, since phlogopite and biotite contain a larger amount of Fe in the main component than muscovite, their own hue becomes blackish, and muscovite is also suitable for various coloring. In addition, muscovite is advantageous in that artificial mica (natural phlogopite with OH group substituted by F) is expensive. Accordingly, muscovite is preferred in the present invention from various points of view.

また、マイカの製造に際しての粉砕法としては、マイカ原石を乾式粉砕機にて粉砕する乾式粉砕法とマイカ原石を乾式粉砕機にて粗粉砕した後、水などの粉砕助剤を加えてスラリー状態にて湿式粉砕機で本粉砕し、その後脱水、乾燥を行う湿式粉砕法がある。   In addition, as a pulverization method in the production of mica, a dry pulverization method of pulverizing raw mica ore with a dry pulverizer, and coarsely pulverizing mica ore with a dry pulverizer, followed by adding a grinding aid such as water to a slurry state There is a wet pulverization method in which the main pulverization is performed with a wet pulverizer, followed by dehydration and drying.

尚、マイカの平均粒径の下限は、マイクロトラックレーザー回折法により測定した平均粒径が10μm以上であるものが好まれ、一方上限は振動式ふるい分け法により測定された平均粒子径で700μm以下が好ましい。マイクロトラックレーザー回折法は、振動式篩分け法により325メッシュパスが、95重量%以上のマイカに対して行うのが好適である。それ以上の粒径のマイカに対しては、振動式篩分け法を使用するのが一般的である。本発明の振動式篩分け法は、まず振動篩器を用い使用するマイカ粉体100gを目開きの順番に重ねたJIS規格の標準篩により10分間篩分けを行う。各篩の上に残った紛体の重量を測定して粒度分布を求める方法である。振動式篩分け法で測定した重量平均粒径が50〜700μmの範囲が好ましく、さらに50〜400μmの範囲が衝撃強度に優れるためより好ましい。かかる粒径の効果は特に白雲母を原料として得られたマイカにおいて好適に発揮される。700μmを越えるものは稀であり、また成形時のゲート詰まり等の成形不良が生じ易くなるため好ましくない。一方10μm未満の粉砕は現在では極めて多くの工数を要するため経済的ではない。   The lower limit of the average particle size of mica is preferably 10 μm or more as measured by the microtrack laser diffraction method, while the upper limit is 700 μm or less as the average particle size measured by the vibration screening method. preferable. It is preferable that the microtrack laser diffraction method is performed by using a vibration sieving method with a 325 mesh pass for 95% by weight or more of mica. For mica having a larger particle size, the vibration sieving method is generally used. In the vibration sieving method of the present invention, first, sieving is carried out for 10 minutes using a JIS standard standard sieve in which 100 g of mica powder to be used is stacked in the order of openings using a vibration sieve device. In this method, the particle size distribution is obtained by measuring the weight of the powder remaining on each sieve. The weight average particle diameter measured by the vibration sieving method is preferably in the range of 50 to 700 μm, and more preferably in the range of 50 to 400 μm because the impact strength is excellent. Such an effect of the particle size is particularly preferably exhibited in mica obtained using muscovite as a raw material. Those exceeding 700 μm are rare, and molding defects such as gate clogging during molding tend to occur, which is not preferable. On the other hand, pulverization of less than 10 μm is not economical because it requires an extremely large number of man-hours.

マイカの厚みとしては、電子顕微鏡の観察により実測した厚みが0.01〜10μmのものを使用できる。更にかかるマイカは、シランカップリング剤等で表面処理されていてもよく、ウレタン系樹脂など各種樹脂や高級脂肪酸エステルなどの集束剤で造粒し顆粒状とされていてもよい。   As the thickness of mica, one having a thickness measured by observation with an electron microscope of 0.01 to 10 μm can be used. Further, such mica may be surface-treated with a silane coupling agent or the like, or may be granulated with a sizing agent such as various resins such as urethane resins or higher fatty acid esters.

本発明のB−2成分として使用されるタルクは、層状構造を持った鱗片状の粒子であり、化学組成的には含水珪酸マグネシウムであり、一般的には化学式4SiO・3MgO・2HOで表され、通常SiOを56〜65重量%、MgOを28〜35重量%、HO約5重量%程度から構成されている。その他の少量成分としてFeが0.03〜1.2重量%、Alが0.05〜1.5重量%、CaOが0.05〜1.2重量%、KOが0.2重量%以下、NaOが0.2重量%以下などを含有しており、比重は約2.7である。ここで示されるタルクの粒径は、JIS M8016に従って測定したアンドレアゼンピペット法により測定した粒度分布から求めた積重率50%時の粒子径である。その粒子径が0.3〜15μmが好ましく、0.5〜10μmがより好ましい。またかかるタルクを原石から粉砕する際の製法に関しては特に制限はなく、軸流型ミル法、アニュラー型ミル法、ロールミル法、ボールミル法、ジェットミル法、及び容器回転式圧縮剪断型ミル法等を利用することができる。更に粉砕後のタルクは、各種の分級機によって分級処理され、粒子径の分布が揃ったものが好適である。分級機としては特に制限はなく、インパクタ型慣性力分級機(バリアブルインパクターなど)、コアンダ効果利用型慣性力分級機(エルボージェットなど)、遠心場分級機(多段サイクロン、ミクロプレックス、ディスパージョンセパレーター、アキュカット、ターボクラシファイア、ターボプレックス、ミクロンセパレーター、およびスーパーセパレーターなど)などを挙げることができる。 The talc used as the B-2 component of the present invention is a scaly particle having a layered structure, which is a hydrous magnesium silicate in terms of chemical composition, and generally has a chemical formula of 4SiO 2 .3MgO.2H 2 O. in is expressed, the normal SiO 2 56-65 wt%, the MgO 28 to 35 wt%, and a H 2 O about 5 wt%. As other minor components, Fe 2 O 3 is 0.03 to 1.2% by weight, Al 2 O 3 is 0.05 to 1.5% by weight, CaO is 0.05 to 1.2% by weight, K 2 O. Is 0.2 wt% or less, Na 2 O is 0.2 wt% or less, and the specific gravity is about 2.7. The particle size of talc shown here is the particle size at a 50% stacking rate determined from the particle size distribution measured by the Andreazen pipette method measured according to JIS M8016. The particle diameter is preferably 0.3 to 15 μm, more preferably 0.5 to 10 μm. In addition, there is no particular limitation on the production method when pulverizing such talc from raw stone, and axial flow mill method, annular mill method, roll mill method, ball mill method, jet mill method, container rotary compression shearing mill method, etc. Can be used. Furthermore, the talc after pulverization is preferably classified by various classifiers and has a uniform particle size distribution. There are no particular restrictions on the classifier, impactor type inertial force classifier (variable impactor, etc.), Coanda effect type inertial force classifier (elbow jet, etc.), centrifugal field classifier (multistage cyclone, microplex, dispersion separator) , Accucut, Turbo Classifier, Turboplex, Micron Separator, and Super Separator).

更にかかるタルクは、その取り扱い性等の点で凝集状態であるものが好ましく、かかる製法としては脱気圧縮による方法、集束剤を使用し圧縮する方法等がある。特に脱気圧縮による方法が簡便かつ不要の集束剤樹脂成分を本発明の組成物中に混入させない点で好ましい。   Further, such talc is preferably in an agglomerated state in terms of its handleability and the like, and as such a production method, there are a method by deaeration compression, a method of compression using a sizing agent, and the like. In particular, the method by deaeration and compression is preferred because it is simple and does not include unnecessary sizing agent resin components in the composition of the present invention.

本発明のB−2成分として使用されるグラファイトは、鱗片状黒鉛である。かかる鱗片状黒鉛を配合した樹脂組成物は良好な導電性を有すると共に、良好な機械的強度、低異方性を有する。
本発明のグラファイトの粒径は、5〜300μmの範囲である。かかる粒径は好ましくは5〜70μm、より好ましくは7〜40μm、更に好ましくは7〜35μmである。かかる範囲を満足することにより、良好な難燃性が達成される。一方、平均粒径が5μm未満であると寸法精度の改良効果が低下しやすく、平均粒径が300μmを超えると、耐衝撃性も若干低下すると共に、成形品表面にいわゆる黒鉛の浮きが目立つようになり好ましくない。かかる表面の浮きは成形品表面から黒鉛が脱落し、電子部品と導通して部品を損傷する可能性を有するためである。また上記の好ましい平均粒径では、成形品の外観が良好になると共に、良好な摺動性も得られやすい利点がある。
The graphite used as the B-2 component of the present invention is scaly graphite. A resin composition containing such flaky graphite has good electrical conductivity, good mechanical strength, and low anisotropy.
The particle size of the graphite of the present invention is in the range of 5 to 300 μm. The particle size is preferably 5 to 70 μm, more preferably 7 to 40 μm, and still more preferably 7 to 35 μm. By satisfying such a range, good flame retardancy is achieved. On the other hand, if the average particle size is less than 5 μm, the effect of improving the dimensional accuracy tends to be lowered, and if the average particle size exceeds 300 μm, the impact resistance is slightly lowered and so-called graphite floats on the surface of the molded product. It is not preferable. This is because the float on the surface may cause graphite to fall off the surface of the molded product and cause electrical damage to the electronic component. In addition, the above preferable average particle diameter has an advantage that the appearance of the molded product is improved and good slidability is easily obtained.

本発明のグラファイトの固定炭素量は、好ましくは80重量%以上、より好ましくは90重量%以上、更に好ましくは98重量%以上である。また本発明のグラファイトの揮発分は、好ましくは3重量%以下、より好ましくは1.5重量%以下、更に好ましくは1重量%以下である。
本発明におけるグラファイトの平均粒径は、組成物となる以前のB−2成分自体の粒径をいい、またかかる粒径はレーザー回折法によって求められたものをいう。
また黒鉛の表面は、本発明の組成物の特性を損なわない限りにおいて熱可塑性樹脂との親和性を増すために、表面処理、例えばエポキシ処理、ウレタン処理、シランカップリング処理、および酸化処理等が施されていてもよい。
The fixed carbon content of the graphite of the present invention is preferably 80% by weight or more, more preferably 90% by weight or more, and still more preferably 98% by weight or more. The volatile content of the graphite of the present invention is preferably 3% by weight or less, more preferably 1.5% by weight or less, and still more preferably 1% by weight or less.
The average particle diameter of graphite in the present invention refers to the particle diameter of the B-2 component itself before the composition, and the particle diameter is determined by a laser diffraction method.
Further, the surface of graphite is subjected to surface treatment such as epoxy treatment, urethane treatment, silane coupling treatment, and oxidation treatment in order to increase the affinity with the thermoplastic resin as long as the characteristics of the composition of the present invention are not impaired. It may be given.

また、本発明の強化充填材(B成分)の含有量は、熱可塑性樹脂(A成分)と強化充填材(B成分)の合計100重量%中、1〜60重量%、好ましくは3〜55重量%、より好ましくは5〜50重量%である。B成分が1重量%未満では、機械的強度が不足し、60重量%を超えると成形流動性や成形品外観が低下する。   The content of the reinforcing filler (component B) of the present invention is 1 to 60% by weight, preferably 3 to 55%, out of a total of 100% by weight of the thermoplastic resin (component A) and the reinforcing filler (component B). % By weight, more preferably 5 to 50% by weight. If the component B is less than 1% by weight, the mechanical strength is insufficient, and if it exceeds 60% by weight, the molding fluidity and the appearance of the molded product are deteriorated.

(C成分:有機リン酸エステル系難燃剤)
本発明のC成分として使用する有機リン酸エステル系難燃剤としては、特に下記一般式(1)で表される1種または2種以上のリン酸エステルを挙げることができる。
(C component: organophosphate flame retardant)
Examples of the organic phosphate ester flame retardant used as the C component of the present invention include one or more phosphate esters represented by the following general formula (1).

Figure 0005021928
(但し上記式中のXは、ハイドロキノン、レゾルシノール、ビス(4−ヒドロキシジフェニル)メタン、ビスフェノールA、ジヒドロキシジフェニル、ジヒドロキシナフタレン、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン及びビス(4−ヒドロキシフェニル)サルファイドからなる群から選ばれたジヒドロキシ化合物の2個の水酸基を除去して得られる二価の基が挙げられ、j、k、l及びmはそれぞれ独立して0または1であり、nは0〜5の整数であり、または重合度nの異なるリン酸エステルの混合物の場合はnはその平均値を表し、0〜5の値であり、R、R、R、およびRはそれぞれ独立して1個以上のハロゲン原子で置換されていてもよいフェノール、クレゾール、キシレノール、イソプロピルフェノール、ブチルフェノール及びp−クミルフェノールからなる群から選ばれたモノヒドロキシ化合物の1個の水酸基を除去して得られる一価の基である。)
Figure 0005021928
(However, X 1 in the above formula is hydroquinone, resorcinol, bis (4-hydroxydiphenyl) methane, bisphenol A, dihydroxydiphenyl, dihydroxynaphthalene, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone and A divalent group obtained by removing two hydroxyl groups of a dihydroxy compound selected from the group consisting of bis (4-hydroxyphenyl) sulfide, and j, k, l and m are each independently 0 or 1 and n is an integer of 0 to 5, or in the case of a mixture of phosphate esters having different degrees of polymerization n, n represents an average value of 0 to 5 and R 1 , R 2 , R 3, and R 4 are each independently optionally substituted with one or more halogen atoms phenol, cresol, key Renoru, isopropyl phenol, butyl phenol and p- cumyl one monovalent group derived hydroxyl group by removal of the monohydroxy compound selected from the group consisting of phenol.)

この中で好ましくは、上記式中のXは、ハイドロキノン、レゾルシノール又はビスフェノールAから誘導される二価の基が挙げられ、j、k、l及びmはそれぞれ1であり、nは0〜3の整数であり、または重合度nの異なるリン酸エステルの混合物の場合nはその平均値を表し、0〜3の値であり、R、R、R、およびRはそれぞれ独立して1個以上のハロゲン原子で置換されていてもよいフェノール、クレゾール又はキシレノールから誘導される一価の基である。 Among these, X 1 in the above formula is preferably a divalent group derived from hydroquinone, resorcinol or bisphenol A, j, k, l and m are each 1, and n is 0 to 3 In the case of a mixture of phosphate esters having different degrees of polymerization n, n represents an average value of 0 to 3, and R 1 , R 2 , R 3 , and R 4 are each independently And a monovalent group derived from phenol, cresol or xylenol which may be substituted with one or more halogen atoms.

更に、特に好ましくは、Xはレゾルシノールから誘導される二価の基であり、j、k、l及びmはそれぞれ1であり、nは0または1であり、R、R、R、およびRはそれぞれ独立してフェノールまたはキシレノールから誘導される一価の基である。 More particularly preferably, X 1 is a divalent group derived from resorcinol, j, k, l and m are each 1, n is 0 or 1, and R 1 , R 2 , R 3 , And R 4 are each independently a monovalent group derived from phenol or xylenol.

かかる有機リン酸エステルの中でも、ホスフェート化合物としてはトリフェニルホスフェート、ホスフェートオリゴマーとしてはレゾルシノールビス(ジキシレニルホスフェート)およびビスフェノールAビス(ジフェニルホスフェート)が耐加水分解性などにも優れるため好ましく使用できる。更に好ましいのは、耐熱性などの点からレゾルシノールビス(ジキシレニルホスフェート)およびビスフェノールAビス(ジフェニルホスフェート)である。   Among these organic phosphates, triphenyl phosphate is preferable as a phosphate compound, and resorcinol bis (dixylenyl phosphate) and bisphenol A bis (diphenyl phosphate) are preferable as phosphate oligomers because of excellent hydrolysis resistance. More preferred are resorcinol bis (dixylenyl phosphate) and bisphenol A bis (diphenyl phosphate) from the viewpoint of heat resistance.

本発明のC成分の含有量は、A成分とB成分の合計100重量部を基準として、1〜30重量部、好ましくは3〜25重量部、より好ましくは5〜20重量部である。C成分が1重量%未満では、流動性、難燃性が不足し、30重量部を超えると耐熱性、機械的強度が低下する。   Content of C component of this invention is 1-30 weight part on the basis of the total of 100 weight part of A component and B component, Preferably it is 3-25 weight part, More preferably, it is 5-20 weight part. If the C component is less than 1% by weight, the fluidity and flame retardancy are insufficient, and if it exceeds 30 parts by weight, the heat resistance and mechanical strength are reduced.

(D成分:有機スルホン酸アルカリ(土類)金属塩)
本発明におけるスルホン酸アルカリ(土類)金属塩は、炭素原子数1〜10、好ましくは2〜8のパーフルオロアルキルスルホン酸とアルカリ金属またはアルカリ土類金属との金属塩の如きフッ素置換アルキルスルホン酸の金属塩、並びに炭素原子数7〜50、好ましくは7〜40の芳香族スルホン酸とアルカリ金属またはアルカリ土類金属塩との金属塩とを含む。
(D component: alkali organic sulfonate (earth) metal salt)
The alkali (earth) metal sulfonate in the present invention is a fluorine-substituted alkyl sulfone such as a metal salt of a perfluoroalkylsulfonic acid having 1 to 10 carbon atoms, preferably 2 to 8 carbon atoms and an alkali metal or alkaline earth metal. A metal salt of an acid, and a metal salt of an aromatic sulfonic acid having 7 to 50 carbon atoms, preferably 7 to 40 carbon atoms, and an alkali metal or alkaline earth metal salt.

本発明の金属塩を構成するアルカリ金属としてはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムが挙げられ、アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウムおよびバリウムが挙げられる。より好適にはアルカリ金属である。かかるアルカリ金属の中でも、難燃性と熱安定性の観点からカリウムおよびナトリウムが好ましく、特にカリウムが好ましい。かかるカリウム塩と他のアルカリ金属からなるスルホン酸アルカリ金属塩とを併用することもできる。   Examples of the alkali metal constituting the metal salt of the present invention include lithium, sodium, potassium, rubidium and cesium, and examples of the alkaline earth metal include beryllium, magnesium, calcium, strontium and barium. More preferred is an alkali metal. Among such alkali metals, potassium and sodium are preferable from the viewpoint of flame retardancy and thermal stability, and potassium is particularly preferable. Such potassium salts and sulfonic acid alkali metal salts comprising other alkali metals can be used in combination.

パーフルオロアルキルスルホン酸アルカリ金属塩の具体例としては、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、トリフルオロメタンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸ルビジウム、およびパーフルオロヘキサンスルホン酸ルビジウム等が挙げられ、これらは1種もしくは2種以上を併用して使用することができる。ここでパーフルオロアルキル基の炭素数は、1〜18の範囲が好ましく、1〜10の範囲がより好ましく、更に好ましくは1〜8の範囲である。これらの中で特にパーフルオロブタンスルホン酸カリウムが好ましい。   Specific examples of alkali metal perfluoroalkyl sulfonates include potassium trifluoromethane sulfonate, potassium perfluorobutane sulfonate, potassium perfluorohexane sulfonate, potassium perfluorooctane sulfonate, sodium pentafluoroethane sulfonate, perfluoro Sodium butanesulfonate, sodium perfluorooctanesulfonate, lithium trifluoromethanesulfonate, lithium perfluorobutanesulfonate, lithium perfluoroheptanesulfonate, cesium trifluoromethanesulfonate, cesium perfluorobutanesulfonate, perfluorooctanesulfonate Cesium, cesium perfluorohexane sulfonate, rubidium perfluorobutane sulfonate, and perf Oro hexane sulfonate rubidium, and these may be used in combination of at least one or two. Here, the carbon number of the perfluoroalkyl group is preferably in the range of 1-18, more preferably in the range of 1-10, and still more preferably in the range of 1-8. Of these, potassium perfluorobutanesulfonate is particularly preferred.

アルカリ金属からなるパーフルオロアルキルスルホン酸アルカリ(土類)金属塩中には、通常少なからず弗化物イオン(F)が混入する。かかる弗化物イオンの存在は難燃性を低下させる要因となり得るので、できる限り低減されることが好ましい。かかる弗化物イオンの割合はイオンクロマトグラフィー法により測定できる。弗化物イオンの含有量は、100ppm以下が好ましく、40ppm以下が更に好ましく、10ppm以下が特に好ましい。また製造効率的に0.2ppm以上であることが好適である。かかる弗化物イオン量の低減されたパーフルオロアルキルスルホン酸アルカリ(土類)金属塩は、製造方法は公知の製造方法を用い、かつ含フッ素有機スルホン酸アルカリ(土類)金属塩を製造する際の原料中に含有される弗化物イオンの量を低減する方法、反応により得られた弗化水素などを反応時に発生するガスや加熱によって除去する方法、並びに含フッ素有機スルホン酸アルカリ(土類)金属塩を製造に再結晶および再沈殿等の精製方法を用いて弗化物イオンの量を低減する方法などによって製造することができる。特にD成分は比較的水に溶けやすいことから、イオン交換水、特に電気抵抗値が18MΩ・cm以上、すなわち電気伝導度が約0.55μS/cm以下を満足する水を用い、かつ常温よりも高い温度で溶解させて洗浄を行い、その後冷却させて再結晶化させる工程により製造することが好ましい。 The alkali (earth) metal salt of perfluoroalkylsulfonic acid composed of an alkali metal is usually mixed with not less than fluoride ions (F ). The presence of such fluoride ions can be a factor that lowers the flame retardancy, so it is preferably reduced as much as possible. The ratio of such fluoride ions can be measured by ion chromatography. The content of fluoride ions is preferably 100 ppm or less, more preferably 40 ppm or less, and particularly preferably 10 ppm or less. Moreover, it is suitable that it is 0.2 ppm or more in terms of production efficiency. Such a perfluoroalkylsulfonic acid alkali (earth) metal salt with a reduced amount of fluoride ions is produced by using a known production method, and when producing a fluorine-containing organic sulfonic acid alkali (earth) metal salt. Of reducing the amount of fluoride ions contained in the raw materials, methods of removing hydrogen fluoride obtained by the reaction by gas generated during the reaction or heating, and alkali fluorine-containing organic sulfonate (earth) A metal salt can be produced by a method of reducing the amount of fluoride ions using a purification method such as recrystallization and reprecipitation. In particular, since the D component is relatively easily dissolved in water, ion-exchanged water, particularly water having an electric resistance value of 18 MΩ · cm or more, that is, an electric conductivity of about 0.55 μS / cm or less is used, and more than normal temperature. It is preferable to produce by a process of dissolving at a high temperature and washing, followed by cooling and recrystallization.

芳香族スルホン酸アルカリ(土類)金属塩の具体例としては、例えばジフェニルサルファイド−4,4’−ジスルホン酸ジナトリウム、ジフェニルサルファイド−4,4’−ジスルホン酸ジカリウム、5−スルホイソフタル酸カリウム、5−スルホイソフタル酸ナトリウム、ポリエチレンテレフタル酸ポリスルホン酸ポリナトリウム、1−メトキシナフタレン−4−スルホン酸カルシウム、4−ドデシルフェニルエーテルジスルホン酸ジナトリウム、ポリ(2,6−ジメチルフェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,3−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,4−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(2,6−ジフェニルフェニレンオキシド)ポリスルホン酸ポリカリウム、ポリ(2−フルオロ−6−ブチルフェニレンオキシド)ポリスルホン酸リチウム、ベンゼンスルホネートのスルホン酸カリウム、ベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸ストロンチウム、ベンゼンスルホン酸マグネシウム、p−ベンゼンジスルホン酸ジカリウム、ナフタレン−2,6−ジスルホン酸ジカリウム、ビフェニル−3,3’−ジスルホン酸カルシウム、ジフェニルスルホン−3−スルホン酸ナトリウム、ジフェニルスルホン−3−スルホン酸カリウム、ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3,4’−ジスルホン酸ジカリウムな、α,α,α−トリフルオロアセトフェノン−4−スルホン酸ナトリウム、ベンゾフェノン−3,3’−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸ジナトリウム、チオフェン−2,5−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸カルシウム、ベンゾチオフェンスルホン酸ナトリウム、ジフェニルスルホキサイド−4−スルホン酸カリウム、ナフタレンスルホン酸ナトリウムのホルマリン縮合物、およびアントラセンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。これら芳香族スルホン酸アルカリ(土類)金属塩では、特にカリウム塩が好適である。   Specific examples of the aromatic (earth) metal salt of an aromatic sulfonate include, for example, disodium diphenyl sulfide-4,4′-disulfonate, dipotassium diphenyl sulfide-4,4′-disulfonate, potassium 5-sulfoisophthalate, Sodium 5-sulfoisophthalate, polysodium polyethylene terephthalate polysulfonate, calcium 1-methoxynaphthalene-4-sulfonate, disodium 4-dodecylphenyl ether disulfonate, polysodium poly (2,6-dimethylphenylene oxide) polysulfonate Poly (1,3-phenylene oxide) polysulfonic acid polysodium, poly (1,4-phenylene oxide) polysulfonic acid polysodium, poly (2,6-diphenylphenylene oxide) polysulfonic acid poly Lithium, poly (2-fluoro-6-butylphenylene oxide) polysulfonate, potassium sulfonate of benzenesulfonate, sodium benzenesulfonate, strontium benzenesulfonate, magnesium benzenesulfonate, dipotassium p-benzenedisulfonate, naphthalene-2 , 6-disulfonic acid dipotassium, biphenyl-3,3'-disulfonic acid calcium, diphenylsulfone-3-sulfonic acid sodium, diphenylsulfone-3-sulfonic acid potassium, diphenylsulfone-3,3'-disulfonic acid dipotassium, diphenylsulfone Α, α, α-trifluoroacetophenone sodium 4-sulfonate, dipotassium benzophenone-3,3′-disulfonate, Nene-2,5-disulfonate, dipotassium thiophene-2,5-disulfonate, calcium thiophene-2,5-disulfonate, sodium benzothiophenesulfonate, potassium diphenylsulfoxide-4-sulfonate, naphthalene Examples thereof include a formalin condensate of sodium sulfonate and a formalin condensate of sodium anthracene sulfonate. Among these aromatic sulfonate alkali (earth) metal salts, potassium salts are particularly preferable.

D成分の配合量は、A成分とB成分の合計100重量部を基準として、0.005〜1重量部、好ましくは0.01〜0.3重量部、より好ましくは0.03〜0.2重量部である。D成分はA成分とB成分の合計100重量部当たり0.005重量部未満では、難燃性が達成されず、1重量部を超えると熱安定性が低下し、また難燃性も低下するようになる。   The amount of component D is 0.005 to 1 part by weight, preferably 0.01 to 0.3 part by weight, more preferably 0.03 to 0.3 part by weight, based on 100 parts by weight of the total of component A and component B. 2 parts by weight. When the D component is less than 0.005 parts by weight per 100 parts by weight of the total of the A component and the B component, the flame retardancy is not achieved, and when it exceeds 1 part by weight, the thermal stability is lowered and the flame retardancy is also lowered. It becomes like this.

(E成分:含フッ素滴下防止剤)
本発明で用いるガラス繊維強化難燃性樹脂組成物には、含フッ素滴下防止剤を含むことができる。かかる含フッ素滴下防止剤を上記難燃剤と併用することにより、より良好な難燃性を得ることができる。かかる含フッ素滴下防止剤としては、フィブリル形成能を有する含フッ素ポリマーを挙げることができ、かかるポリマーとしてはポリテトラフルオロエチレン、テトラフルオロエチレン系共重合体(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、など)、米国特許第4379910号公報に示されるような部分フッ素化ポリマー、フッ素化ジフェノールから製造されるポリカーボネート樹脂などを挙げることかできるが、好ましくはポリテトラフルオロエチレン(以下PTFEと称することがある)である。
(E component: fluorine-containing anti-dripping agent)
The glass fiber reinforced flame retardant resin composition used in the present invention may contain a fluorine-containing anti-dripping agent. By using such a fluorine-containing anti-drip agent in combination with the above flame retardant, better flame retardancy can be obtained. Examples of such a fluorine-containing anti-drip agent include a fluorine-containing polymer having a fibril-forming ability. Examples of such a polymer include polytetrafluoroethylene and tetrafluoroethylene copolymers (for example, tetrafluoroethylene / hexafluoropropylene copolymer). Polymer, etc.), partially fluorinated polymers as shown in US Pat. No. 4,379,910, polycarbonate resins produced from fluorinated diphenols, and the like, preferably polytetrafluoroethylene (hereinafter referred to as PTFE). May be called).

フィブリル形成能を有するポリテトラフルオロエチレン(フィブリル化PTFE)は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その数平均分子量は、150万〜数千万の範囲である。かかる下限はより好ましくは300万である。かかる数平均分子量は、特開平6−145520号公報に開示されているとおり、380℃でのポリテトラフルオロエチレンの溶融粘度に基づき算出される。即ち、フィブリル化PTFEは、かかる公報に記載された方法で測定される380℃における溶融粘度が10〜1013poiseの範囲であり、好ましくは10〜1012poiseの範囲である。 Polytetrafluoroethylene (fibrillated PTFE) having fibril-forming ability has a very high molecular weight, and exhibits a tendency to bind PTFE to each other by an external action such as shearing force to form a fiber. Its number average molecular weight ranges from 1.5 million to tens of millions. The lower limit is more preferably 3 million. The number average molecular weight is calculated based on the melt viscosity of polytetrafluoroethylene at 380 ° C. as disclosed in JP-A-6-145520. That is, the fibrillated PTFE has a melt viscosity at 380 ° C. measured by the method described in this publication in the range of 10 7 to 10 13 poise, preferably in the range of 10 8 to 10 12 poise.

かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、更に良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。また、特開平6−145520号公報に開示されているとおり、かかるフィブリル化PTFEを芯とし、低分子量のポリテトラフルオロエチレンを殻とした構造を有するものも好ましく利用される。   Such PTFE can be used in solid form or in the form of an aqueous dispersion. In addition, PTFE having such fibril-forming ability can improve the dispersibility in the resin, and it is also possible to use a PTFE mixture in a mixed form with other resins in order to obtain better flame retardancy and mechanical properties. is there. Further, as disclosed in JP-A-6-145520, those having a structure having such a fibrillated PTFE as a core and a low molecular weight polytetrafluoroethylene as a shell are also preferably used.

フィブリル化PTFEの市販品としては例えば三井・デュポンフロロケミカル(株)のテフロン(登録商標)6J、ダイキン化学工業(株)のポリフロンMPA FA500、F−201Lなどを挙げることができる。フィブリル化PTFEの水性分散液の市販品としては、旭アイシーアイフロロポリマーズ(株)製のフルオンAD−1、AD−936、ダイキン工業(株)製のフルオンD−1、D−2、三井・デュポンフロロケミカル(株)製のテフロン(登録商標)30Jなどを代表として挙げることができる。   Examples of commercially available fibrillated PTFE include Teflon (registered trademark) 6J from Mitsui DuPont Fluorochemical Co., Ltd., Polyflon MPA FA500, F-201L from Daikin Chemical Industries, Ltd., and the like. Commercially available aqueous dispersions of fibrillated PTFE include: Fluon AD-1, AD-936 manufactured by Asahi IC Fluoropolymers, Fluon D-1, D-2 manufactured by Daikin Industries, Ltd., Mitsui A representative example is Teflon (registered trademark) 30J manufactured by DuPont Fluorochemical Co., Ltd.

混合形態のフィブリル化PTFEとしては、(1)フィブリル化PTFEの水性分散液と有機重合体の水性分散液または溶液とを混合し共沈殿を行い共凝集混合物を得る方法(特開昭60−258263号公報、特開昭63−154744号公報などに記載された方法)、(2)フィブリル化PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4−272957号公報に記載された方法)、(3)フィブリル化PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06−220210号公報、特開平08−188653号公報などに記載された方法)、(4)フィブリル化PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9−95583号公報に記載された方法)、および(5)PTFEの水性分散液と有機重合体分散液を均一に混合後、更に該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11−29679号などに記載された方法)により得られたものが使用できる。これらの混合形態のフィブリル化PTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3800」(商品名)、GEスペシャリティーケミカルズ社製 「BLENDEX B449」(商品名)およびPacific Interchem Corporation社製「POLY TS AD001」(商品名)などが例示される。   As a mixed form of fibrillated PTFE, (1) a method in which an aqueous dispersion of fibrillated PTFE and an aqueous dispersion or solution of an organic polymer are mixed and co-precipitated to obtain a co-agglomerated mixture (JP-A-60-258263). (2) A method of mixing an aqueous dispersion of fibrillated PTFE and dried organic polymer particles (Japanese Patent Laid-Open No. 4-272957). Described method), (3) A method in which an aqueous dispersion of fibrillated PTFE and an organic polymer particle solution are uniformly mixed, and the respective media are simultaneously removed from the mixture (Japanese Patent Laid-Open Nos. 06-220210, (Method described in Japanese Patent Application Laid-Open No. 08-188653), (4) A method of polymerizing monomers forming an organic polymer in an aqueous dispersion of fibrillated PTFE (Method described in JP-A-9-95583), and (5) an aqueous dispersion of PTFE and an organic polymer dispersion are uniformly mixed, and then a vinyl monomer is further polymerized in the mixed dispersion. Thereafter, those obtained by a method for obtaining a mixture (a method described in JP-A No. 11-29679) can be used. Commercial products of these mixed forms of fibrillated PTFE include “Metablene A3800” (trade name) manufactured by Mitsubishi Rayon Co., Ltd., “BLENDEX B449” (trade name) manufactured by GE Specialty Chemicals, and “Products manufactured by Pacific Interchem Corporation” “POLY TS AD001” (product name) is exemplified.

本発明で用いるガラス繊維強化難燃性樹脂組成物が有する良好な機械的強度をより有効に活用するためには、上記フィブリル化PTFEはできる限り微分散されることが好ましい。かかる微分散を達成する手段として、上記混合形態のフィブリル化PTFEは有利である。また水性分散液形態のものを溶融混練機に直接供給する方法も微分散には有利である。但し水性分散液形態のものはやや色相が悪化する点に配慮を要する。混合形態におけるフィブリル化PTFEの割合としては、かかる混合物100重量%中、フィブリル化PTFEが10〜80重量%が好ましく、より好ましくは15〜75重量%である。フィブリル化PTFEの割合がかかる範囲にある場合は、フィブリル化PTFEの良好な分散性を達成することができる。   In order to more effectively utilize the good mechanical strength of the glass fiber reinforced flame retardant resin composition used in the present invention, the fibrillated PTFE is preferably finely dispersed as much as possible. As a means of achieving such fine dispersion, the above mixed form of fibrillated PTFE is advantageous. A method of directly supplying an aqueous dispersion in a melt kneader is also advantageous for fine dispersion. However, in the case of the aqueous dispersion form, consideration is required in that the hue is slightly deteriorated. The proportion of fibrillated PTFE in the mixed form is preferably 10 to 80% by weight, more preferably 15 to 75% by weight, in 100% by weight of the mixture. When the ratio of fibrillated PTFE is in such a range, good dispersibility of fibrillated PTFE can be achieved.

本発明のE成分の含有量は、A成分とB成分の合計100重量部を基準として、0.001〜3重量部であり、好ましくは0.01〜2重量部、より好ましくは0.1〜1.5重量部である。E成分が3重量部を超えると成形品外観が悪化する。また、E成分であるフィブリル化PTFEの含有量は、A成分とB成分の合計100重量部を基準として好ましくは0.001〜1重量部、より好ましくは0.1〜0.7重量部である。   Content of E component of this invention is 0.001-3 weight part on the basis of the total of 100 weight part of A component and B component, Preferably it is 0.01-2 weight part, More preferably, it is 0.1. -1.5 parts by weight. When the E component exceeds 3 parts by weight, the appearance of the molded product is deteriorated. The content of the fibrillated PTFE that is the E component is preferably 0.001 to 1 part by weight, more preferably 0.1 to 0.7 part by weight based on 100 parts by weight of the total of the A component and the B component. is there.

(その他の添加剤について)
本発明で用いるガラス繊維強化難燃性樹脂組成物には、B成分以外の強化充填材、成形加工時の分子量や色相を安定化させるために各種安定剤、離型剤や色材を使用することができる。
(Other additives)
In the glass fiber reinforced flame retardant resin composition used in the present invention, reinforcing fillers other than the component B, various stabilizers, mold release agents and coloring materials are used to stabilize the molecular weight and hue at the time of molding. be able to.

(i)B成分以外の強化充填材
本発明で用いるガラス繊維強化難燃性樹脂組成物には強化充填材としてB成分以外の公知の各種充填材を配合することができる。かかる強化充填材としてはスメクタイト系フィラー、白色度の高い珪酸塩鉱物系フィラー、ガラス系フィラー、炭素系フィラーが好ましい。かかるスメクタイト系フィラーとしてはクレー、グラファイト、およびモンモリロナイトが好適に例示される。珪酸塩鉱物系フィラーとしてはワラストナイトが好適に例示される。ガラス系フィラーとしては、B成分以外のガラス繊維、B成分以外のガラスミルドファイバー、ガラスバルーン、ガラスビーズなどが例示される。珪酸塩鉱物系フィラーおよびガラス系フィラーは、これらの表面に酸化チタン、酸化亜鉛、酸化セリウム、および酸化ケイ素などの金属酸化物コートされたフィラーも利用できる。炭素系フィラーとしては、例えばグラファイト、カーボンファイバー、金属コートカーボンファイバー、カーボンミルドファイバー、気相成長カーボンファイバー、およびカーボンナノチューブ、カーボンブラック等が挙げられる。カーボンナノチューブは繊維径0.003〜0.1μm、単層、2層、および多層のいずれであってもよく、多層(いわゆるMWCNT)が好ましい。これらの中でも機械的強度に優れる点、並びに良好な導電性を付与できる点において、カーボンファイバー、および金属コートカーボンファイバーが好ましい。
(I) Reinforcing fillers other than the B component Various known fillers other than the B component can be blended in the glass fiber reinforced flame retardant resin composition used in the present invention as a reinforcing filler. As such a reinforcing filler, a smectite filler, a silicate mineral filler with high whiteness, a glass filler, and a carbon filler are preferable. Examples of such smectite fillers include clay, graphite, and montmorillonite. Wollastonite is preferably exemplified as the silicate mineral filler. Examples of the glass filler include glass fibers other than the B component, glass milled fibers other than the B component, glass balloons, and glass beads. As the silicate mineral filler and the glass filler, fillers whose surfaces are coated with metal oxides such as titanium oxide, zinc oxide, cerium oxide, and silicon oxide can also be used. Examples of the carbon filler include graphite, carbon fiber, metal-coated carbon fiber, carbon milled fiber, vapor grown carbon fiber, carbon nanotube, and carbon black. The carbon nanotube may be any one of a fiber diameter of 0.003 to 0.1 μm, a single layer, a double layer, and a multilayer, and a multilayer (so-called MWCNT) is preferable. Among these, carbon fiber and metal-coated carbon fiber are preferable in that they are excellent in mechanical strength and can impart good electrical conductivity.

上記強化充填材は、予め各種の表面処理剤で表面処理されていてもよい。かかる表面処理剤としては、シランカップリング剤(アルキルアルコキシシランやポリオルガノハイドロジェンシロキサンなどを含む)、高級脂肪酸エステル、酸化合物(例えば、亜リン酸、リン酸、カルボン酸、およびカルボン酸無水物など)並びにワックスなどの各種表面処理剤で表面処理されていてもよい。さらに各種樹脂、高級脂肪酸エステル、およびワックスなどの集束剤で造粒し顆粒状とされていてもよい。
B成分以外の強化充填材は、A成分とB成分との合計100重量部を基準として、50重量部以下であり、好ましくは30重量部以下、より好ましくは20重量部以下である。
The reinforcing filler may be surface-treated with various surface treatment agents in advance. Such surface treatment agents include silane coupling agents (including alkylalkoxysilanes and polyorganohydrogensiloxanes), higher fatty acid esters, acid compounds (for example, phosphorous acid, phosphoric acid, carboxylic acid, and carboxylic acid anhydrides). Etc.) and various surface treatment agents such as wax. Furthermore, it may be granulated with a sizing agent such as various resins, higher fatty acid esters, and waxes.
The reinforcing filler other than the B component is 50 parts by weight or less, preferably 30 parts by weight or less, more preferably 20 parts by weight or less, based on 100 parts by weight of the total of the A component and the B component.

(ii)安定剤
本発明で用いるガラス繊維強化難燃性樹脂組成物には公知の各種安定剤を配合することができる。安定剤としては、リン系安定剤、ヒンダードフェノール系酸化防止剤、紫外線吸収剤および光安定剤などが挙げられる。
(Ii) Stabilizer Various known stabilizers can be blended in the glass fiber reinforced flame retardant resin composition used in the present invention. Examples of the stabilizer include phosphorus stabilizers, hindered phenol antioxidants, ultraviolet absorbers, and light stabilizers.

(ii−1)リン系安定剤
リン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル、並びに第3級ホスフィンなどが例示される。これらの中でも特に、亜リン酸、リン酸、亜ホスホン酸、およびホスホン酸、トリオルガノホスフェート化合物、およびアシッドホスフェート化合物が好ましい。尚、アシッドホスフェート化合物における有機基は、一置換、二置換、およびこれらの混合物のいずれも含む。該化合物に対応する下記の例示化合物においても同様にいずれをも含むものとする。
(Ii-1) Phosphorus stabilizer Examples of the phosphorous stabilizer include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof, and tertiary phosphine. Among these, phosphorous acid, phosphoric acid, phosphonous acid, and phosphonic acid, triorganophosphate compounds, and acid phosphate compounds are particularly preferable. The organic group in the acid phosphate compound includes any of mono-substituted, di-substituted, and mixtures thereof. Any of the following exemplified compounds corresponding to the compound is similarly included.

トリオルガノホスフェート化合物としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリデシルホスフェート、トリドデシルホスフェート、トリラウリルホスフェート、トリステアリルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、およびトリブトキシエチルホスフェートなどが例示される。これらの中でもトリアルキルホスフェートが好ましい。かかるトリアルキルホスフェートの炭素数は、好ましくは1〜22、より好ましくは1〜4である。特に好ましいトリアルキルホスフェートはトリメチルホスフェートである。   Triorganophosphate compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tridecyl phosphate, tridodecyl phosphate, trilauryl phosphate, tristearyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, diphenyl Examples include cresyl phosphate, diphenyl monoorthoxenyl phosphate, and tributoxyethyl phosphate. Among these, trialkyl phosphate is preferable. The carbon number of the trialkyl phosphate is preferably 1 to 22, more preferably 1 to 4. A particularly preferred trialkyl phosphate is trimethyl phosphate.

アシッドホスフェート化合物としては、メチルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、ブトキシエチルアシッドホスフェート、オクチルアシッドホスフェート、デシルアシッドホスフェート、ラウリルアシッドホスフェート、ステアリルアシッドホスフェート、オレイルアシッドホスフェート、ベヘニルアシッドホスフェート、フェニルアシッドホスフェート、ノニルフェニルアシッドホスフェート、シクロヘキシルアシッドホスフェート、フェノキシエチルアシッドホスフェート、アルコキシポリエチレングリコールアシッドホスフェート、およびビスフェノールAアシッドホスフェートなどが例示される。これらの中でも炭素数10以上の長鎖ジアルキルアシッドホスフェートが熱安定性の向上に有効であり、該アシッドホスフェート自体の安定性が高いことから好ましい。   Examples of the acid phosphate compound include methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, butoxyethyl acid phosphate, octyl acid phosphate, decyl acid phosphate, lauryl acid phosphate, stearyl acid phosphate, oleyl acid phosphate, behenyl acid phosphate, behenyl acid phosphate Nonylphenyl acid phosphate, cyclohexyl acid phosphate, phenoxyethyl acid phosphate, alkoxy polyethylene glycol acid phosphate, bisphenol A acid phosphate, and the like. Among these, long-chain dialkyl acid phosphates having 10 or more carbon atoms are effective for improving thermal stability, and the acid phosphate itself is preferable because of high stability.

ホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、およびジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。   Examples of the phosphite compound include triphenyl phosphite, tris (nonylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl Monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, tris (diethylphenyl) phosphite, tris (di-iso-propylphenyl) phosphite, tris (di-n-butyl) Phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, distearyl Taerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis ( 2,6-di-tert-butyl-4-ethylphenyl) pentaerythritol diphosphite, bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite, phenylbisphenol A penta Examples include erythritol diphosphite, bis (nonylphenyl) pentaerythritol diphosphite, and dicyclohexylpentaerythritol diphosphite.

更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、および2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイトなどが例示される。   Further, as other phosphite compounds, those which react with dihydric phenols and have a cyclic structure can be used. For example, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert- Examples include butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite and 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite.

ホスホナイト化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等があげられ、テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。   Examples of the phosphonite compound include tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenylenedi. Phosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite Tetrakis (2,6-di-tert-butylphenyl) -4,3′-biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3′-biphenylene diphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,4-di tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-n-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl)- 4-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, and the like, and tetrakis (di-tert-butylphenyl) -biphenylenediphosphonite, bis (Di-tert-butylphenyl) -phenyl-phenylphosphonite is preferred, tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl)- More preferred is phenyl-phenylphosphonite. Such a phosphonite compound is preferable because it can be used in combination with a phosphite compound having an aryl group in which two or more alkyl groups are substituted.

ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。   Examples of the phosphonate compound include dimethyl benzenephosphonate, diethyl benzenephosphonate, and dipropyl benzenephosphonate.

第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ−p−トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。   Tertiary phosphine includes triethylphosphine, tripropylphosphine, tributylphosphine, trioctylphosphine, triamylphosphine, dimethylphenylphosphine, dibutylphenylphosphine, diphenylmethylphosphine, diphenyloctylphosphine, triphenylphosphine, tri-p-tolyl. Examples include phosphine, trinaphthylphosphine, and diphenylbenzylphosphine. A particularly preferred tertiary phosphine is triphenylphosphine.

好適なリン系安定剤は、トリオルガノホスフェート化合物、アシッドホスフェート化合物、および下記一般式(2)で表されるホスファイト化合物である。殊にトリオルガノホスフェート化合物を配合することが好ましい。   Suitable phosphorus stabilizers are triorganophosphate compounds, acid phosphate compounds, and phosphite compounds represented by the following general formula (2). It is particularly preferable to add a triorganophosphate compound.

Figure 0005021928
(式(2)中、ArおよびAr’は炭素数6〜30のアルキル基または炭素数6〜30のアリール基を表し、互いに同一であっても異なっていてもよい。)
Figure 0005021928
(In formula (2), Ar and Ar ′ represent an alkyl group having 6 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and may be the same or different from each other.)

上記の如く、ホスホナイト化合物としてはテトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトが好ましく、該ホスホナイトを主成分とする安定剤は、Sandostab P−EPQ(商標、Clariant社製)およびIrgafos P−EPQ(商標、CIBA SPECIALTY CHEMICALS社製)として市販されておりいずれも利用できる。   As described above, tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite is preferable as the phosphonite compound, and the stabilizer containing phosphonite as a main component is Sandostab P-EPQ (trademark, manufactured by Clariant). ) And Irgafos P-EPQ (trademark, manufactured by CIBA SPECIALTY CHEMICALS) and both can be used.

また上記式(2)の中でもより好適なホスファイト化合物は、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、およびビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイトである。   Among the above formulas (2), more preferred phosphite compounds are distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di). -Tert-butyl-4-methylphenyl) pentaerythritol diphosphite, and bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite.

(ii−2)ヒンダードフェノール系酸化防止剤
ヒンダードフェノール化合物としては、通常樹脂に配合される各種の化合物が使用できる。かかるヒンダードフェノール化合物としては、例えば、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)、2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、テトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセテート、3,9−ビス[2−{3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセチルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、テトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、1,3,5−トリメチル−2,4,6−トリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)ベンゼン、およびトリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)イソシアヌレートなどが例示される。
(Ii-2) Hindered phenol antioxidant As the hindered phenol compound, various compounds that are usually blended in a resin can be used. Examples of such hindered phenol compounds include α-tocopherol, butylhydroxytoluene, sinapyl alcohol, vitamin E, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2-tert -Butyl-6- (3'-tert-butyl-5'-methyl-2'-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N, N-dimethylamino) Methyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl) -6-tert-butylphenol), 4,4'-methylenebis (2,6 Di-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-cyclohexylphenol), 2,2′-dimethylene-bis (6-α-methyl-benzyl-p-cresol), 2,2 ′ -Ethylidene-bis (4,6-di-tert-butylphenol), 2,2'-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert) -Butylphenol), triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, 1,6-hexanediol bis [3- (3,5-di- tert-butyl-4-hydroxyphenyl) propionate], bis [2-tert-butyl-4-methyl 6- (3-tert-butyl) Ru-5-methyl-2-hydroxybenzyl) phenyl] terephthalate, 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1, -Dimethylethyl} -2,4,8,10-tetraoxaspiro [5,5] undecane, 4,4'-thiobis (6-tert-butyl-m-cresol), 4,4'-thiobis (3- Methyl-6-tert-butylphenol), 2,2′-thiobis (4-methyl-6-tert-butylphenol), bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 4,4 ′ -Di-thiobis (2,6-di-tert-butylphenol), 4,4'-tri-thiobis (2,6-di-tert-butylphenol), 2,2-thiodie Renbis- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4-hydroxy-3,5-di-tert- Butylanilino) -1,3,5-triazine, N, N′-hexamethylenebis- (3,5-di-tert-butyl-4-hydroxyhydrocinnamide), N, N′-bis [3- (3 , 5-Di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl -2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tris (3,5-di-tert-butyl-4-hydroxyphenyl) iso Cyanurate, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate, 1,3,5-tris2 [3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl isocyanurate, tetrakis [methylene-3- (3,5-di-tert-butyl- 4-hydroxyphenyl) propionate] methane, triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, triethylene glycol-N-bis-3- (3- tert-butyl-4-hydroxy-5-methylphenyl) acetate, 3,9-bis [2 {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) acetyloxy} -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane, tetrakis [Methylene-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate] methane, 1,3,5-trimethyl-2,4,6-tris (3-tert-butyl-4-hydroxy Examples include -5-methylbenzyl) benzene and tris (3-tert-butyl-4-hydroxy-5-methylbenzyl) isocyanurate.

上記化合物の中でも、本発明においてはテトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、および3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましく利用される。特に3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましい。上記ヒンダードフェノール系酸化防止剤は、単独でまたは2種以上を組合せて使用することができる。   Among the above compounds, tetrakis [methylene-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate] methane, octadecyl-3- (3,5-di-tert-butyl-) is used in the present invention. 4-hydroxyphenyl) propionate, and 3,9-bis [2- {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4 , 8,10-Tetraoxaspiro [5,5] undecane is preferably used. In particular, 3,9-bis [2- {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4,8,10-tetraoxa Spiro [5,5] undecane is preferred. The said hindered phenolic antioxidant can be used individually or in combination of 2 or more types.

リン系安定剤およびヒンダードフェノール系酸化防止剤はいずれかが配合されることが好ましい。殊にリン系安定剤が配合されることが好ましく、トリオルガノホスフェート化合物が配合されることがより好ましい。リン系安定剤およびヒンダードフェノール系酸化防止剤の配合量は、それぞれA成分とB成分の合計100重量部を基準として、0.005〜1重量部、好ましくは0.01〜0.3重量部である。   It is preferable that either a phosphorus stabilizer or a hindered phenol antioxidant is blended. In particular, a phosphorus stabilizer is preferably blended, and a triorganophosphate compound is more blended. The compounding amount of the phosphorus stabilizer and the hindered phenol antioxidant is 0.005 to 1 part by weight, preferably 0.01 to 0.3 part by weight, based on the total of 100 parts by weight of component A and component B, respectively. Part.

(ii−3)紫外線吸収剤
本発明で用いるガラス繊維強化難燃性樹脂組成物は紫外線吸収剤を含有することができる。本発明の樹脂組成物は良好な色相をも有することから、紫外線吸収剤の配合により屋外の使用においてもかかる色相を長期間維持することができる。
(Ii-3) Ultraviolet absorber The glass fiber reinforced flame retardant resin composition used in the present invention may contain an ultraviolet absorber. Since the resin composition of the present invention also has a good hue, such a hue can be maintained for a long time even when used outdoors by blending an ultraviolet absorber.

本発明の紫外線吸収剤としては、具体的にはベンゾフェノン系では、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシトリハイドライドレイトベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2−ヒドロキシ−4−n−ドデシルオキシベンソフェノン、および2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノンなどが例示される。   Specific examples of the ultraviolet absorber of the present invention include, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4 in the benzophenone series. -Benzyloxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydridolate benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2, 2 ′, 4,4′-tetrahydroxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5-benzoyl-4-hydro Shi-2-methoxyphenyl) methane, 2-hydroxy -4-n-dodecyloxy benzoin phenone, and 2-hydroxy-4-methoxy-2'-carboxy benzophenone may be exemplified.

紫外線吸収剤としては、具体的に、ベンゾトリアゾール系では、例えば、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−アミルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾ−ル、2,2’−メチレンビス(4−クミル−6−ベンゾトリアゾールフェニル)、2,2’−p−フェニレンビス(1,3−ベンゾオキサジン−4−オン)、および2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾ−ル、並びに2−(2’−ヒドロキシ−5−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2−(2’―ヒドロキシ−5−アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2−ヒドロキシフェニル−2H−ベンゾトリアゾール骨格を有する重合体などが例示される。   Specific examples of the ultraviolet absorber include, for example, 2- (2-hydroxy-5-methylphenyl) benzotriazole and 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole in the benzotriazole series. 2- (2-hydroxy-3,5-dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′- Methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) ) Benzotriazole, 2- (2-hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazol 2- (2-hydroxy-3,5-di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-5- tert-butylphenyl) benzotriazole, 2- (2-hydroxy-4-octoxyphenyl) benzotriazole, 2,2'-methylenebis (4-cumyl-6-benzotriazolephenyl), 2,2'-p -Phenylenebis (1,3-benzoxazin-4-one), and 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimidomethyl) -5-methylphenyl] benzotriazole, and 2- (2'-Hydroxy-5-methacryloxyethylphenyl) -2H-benzotriazole and co-polymerized with the monomer 2 such as a copolymer with a possible vinyl monomer and a copolymer of 2- (2′-hydroxy-5-acryloxyethylphenyl) -2H-benzotriazole with a vinyl monomer copolymerizable with the monomer Examples include polymers having a -hydroxyphenyl-2H-benzotriazole skeleton.

紫外線吸収剤としては、具体的に、ヒドロキシフェニルトリアジン系では、例えば、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−メチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−エチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−プロピルオキシフェノール、および2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ブチルオキシフェノールなどが例示される。さらに2−(4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4−ジメチルフェニル基となった化合物が例示される。   Specific examples of the ultraviolet absorber include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-hexyloxyphenol and 2- (4) in hydroxyphenyltriazine series. , 6-Diphenyl-1,3,5-triazin-2-yl) -5-methyloxyphenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-ethyloxy Phenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-propyloxyphenol, and 2- (4,6-diphenyl-1,3,5-triazine-2- Yl) -5-butyloxyphenol and the like. Furthermore, the phenyl group of the above exemplary compounds such as 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-hexyloxyphenol is 2,4-dimethyl. Examples of the compound are phenyl groups.

紫外線吸収剤としては、具体的に環状イミノエステル系では、例えば2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、および2,2’−(2,6−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)などが例示される。   As the ultraviolet absorber, specifically, in the cyclic imino ester type, for example, 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) ) Bis (3,1-benzoxazin-4-one), 2,2 ′-(2,6-naphthalene) bis (3,1-benzoxazin-4-one) and the like.

また紫外線吸収剤としては、具体的にシアノアクリレート系では、例えば1,3−ビス−[(2’−シアノ−3’,3’−ジフェニルアクリロイル)オキシ]−2,2−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3−ビス−[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。   Further, as the ultraviolet absorber, specifically, for cyanoacrylate, for example, 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2- Examples include cyano-3,3-diphenylacryloyl) oxy] methyl) propane and 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene.

さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/またはヒンダードアミン構造を有する光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。上記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。   Further, the ultraviolet absorber has a structure of a monomer compound capable of radical polymerization, whereby the ultraviolet-absorbing monomer and / or the light-stable monomer having a hindered amine structure, and an alkyl (meth) acrylate. A polymer type ultraviolet absorber obtained by copolymerization with a monomer such as may be used. Preferred examples of the UV-absorbing monomer include compounds containing a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic imino ester skeleton, and a cyanoacrylate skeleton in the ester substituent of (meth) acrylate. The

上記の中でも紫外線吸収能の点においてはベンゾトリアゾール系およびヒドロキシフェニルトリアジン系が好ましく、耐熱性や色相の点では、環状イミノエステル系およびシアノアクリレート系が好ましい。上記紫外線吸収剤は単独であるいは2種以上の混合物で用いてもよい。
紫外線吸収剤の含有量は、A成分とB成分の合計100重量部を基準として0.01〜2重量部、好ましくは0.03〜2重量部、より好ましくは0.02〜1重量部、更に好ましくは0.05〜0.5重量部である。
Among them, benzotriazole and hydroxyphenyltriazine are preferable from the viewpoint of ultraviolet absorption ability, and cyclic imino ester and cyanoacrylate are preferable from the viewpoint of heat resistance and hue. You may use the said ultraviolet absorber individually or in mixture of 2 or more types.
The content of the ultraviolet absorber is 0.01 to 2 parts by weight, preferably 0.03 to 2 parts by weight, more preferably 0.02 to 1 part by weight, based on 100 parts by weight of the total of component A and component B. More preferably, it is 0.05-0.5 weight part.

(ii−4)その他の熱安定剤
本発明で用いるガラス繊維強化難燃性樹脂組成物には、上記のリン系安定剤およびヒンダードフェノール系酸化防止剤以外の他の熱安定剤を配合することもできる。かかるその他の熱安定剤は、これらの安定剤および酸化防止剤のいずれかと併用されることが好ましく、特に両者と併用されることが好ましい。かかる他の熱安定剤としては、例えば3−ヒドロキシ−5,7−ジ−tert−ブチル−フラン−2−オンとo−キシレンとの反応生成物に代表されるラクトン系安定剤(かかる安定剤の詳細は特開平7−233160号公報に記載されている)が好適に例示される。かかる化合物はIrganox HP−136(商標、CIBA SPECIALTY CHEMICALS社製)として市販され、該化合物を利用できる。更に該化合物と各種のホスファイト化合物およびヒンダードフェノール化合物を混合した安定剤が市販されている。例えば上記社製のIrganox HP−2921が好適に例示される。本発明においてもかかる予め混合された安定剤を利用することもできる。ラクトン系安定剤の配合量は、A成分とB成分の合計100重量部を基準として、好ましくは0.0005〜0.05重量部、より好ましくは0.001〜0.03重量部である。
(Ii-4) Other heat stabilizer The glass fiber reinforced flame retardant resin composition used in the present invention is blended with a heat stabilizer other than the phosphorus stabilizer and the hindered phenol antioxidant. You can also. Such other heat stabilizers are preferably used in combination with any of these stabilizers and antioxidants, and particularly preferably used in combination with both. Examples of such other heat stabilizers include lactone stabilizers represented by the reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene (such stabilizers). Is described in detail in JP-A-7-233160). Such a compound is commercially available as Irganox HP-136 (trademark, manufactured by CIBA SPECIALTY CHEMICALS) and can be used. Furthermore, a stabilizer obtained by mixing the compound with various phosphite compounds and hindered phenol compounds is commercially available. For example, Irganox HP-2921 manufactured by the above company is preferably exemplified. In the present invention, such a premixed stabilizer can also be used. The blending amount of the lactone-based stabilizer is preferably 0.0005 to 0.05 parts by weight, more preferably 0.001 to 0.03 parts by weight, based on 100 parts by weight of the total of component A and component B.

またその他の安定剤としては、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、およびグリセロール−3−ステアリルチオプロピオネートなどのイオウ含有安定剤が例示される。かかる安定剤は、樹脂組成物が回転成形に適用される場合に特に有効である。かかるイオウ含有安定剤の配合量は、A成分とB成分の合計100重量部を基準として好ましくは0.001〜0.1重量部、より好ましくは0.01〜0.08重量部である。   Other stabilizers include sulfur-containing stabilizers such as pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), and glycerol-3-stearylthiopropionate. Illustrated. Such a stabilizer is particularly effective when the resin composition is applied to rotational molding. The amount of the sulfur-containing stabilizer is preferably 0.001 to 0.1 parts by weight, more preferably 0.01 to 0.08 parts by weight, based on the total of 100 parts by weight of the component A and the component B.

(iii)離型剤
本発明で用いるガラス繊維強化難燃性樹脂組成物は、その成形時の生産性向上や成形品の寸法精度の向上を目的として、更に、脂肪酸エステル、ポリオレフィン系ワックス、シリコーン化合物、フッ素化合物(ポリフルオロアルキルエーテルに代表されるフッ素オイルなど)、パラフィンワックス、蜜蝋などの公知の離型剤を配合することもできる。本発明で用いるガラス繊維強化難燃性樹脂組成物は、良好な流動性を有することから圧力伝播が良好で、歪の均一化された成形品が得られる。一方でその成形収縮率が低いことから離型抵抗が大きくなりやすく、その結果離型時における成形品の変形を招きやすい。上記特定の成分の配合は、かかる問題をガラス繊維強化難燃性樹脂組成物の特性を損なうことなく解決するものである。
(Iii) Mold Release Agent The glass fiber reinforced flame retardant resin composition used in the present invention is further composed of a fatty acid ester, a polyolefin wax, a silicone for the purpose of improving productivity during molding and improving dimensional accuracy of a molded product. A known mold release agent such as a compound, a fluorine compound (fluorine oil typified by polyfluoroalkyl ether, etc.), paraffin wax, beeswax or the like can also be blended. Since the glass fiber reinforced flame retardant resin composition used in the present invention has good fluidity, a pressure propagation is good and a molded article with uniform strain is obtained. On the other hand, since the molding shrinkage rate is low, the mold release resistance tends to increase, and as a result, the molded product tends to be deformed at the time of mold release. The compounding of the specific component solves such a problem without impairing the properties of the glass fiber reinforced flame retardant resin composition.

かかる脂肪酸エステルは、脂肪族アルコールと脂肪族カルボン酸とのエステルである。かかる脂肪族アルコールは1価アルコールであっても2価以上の多価アルコールであってもよい。また該アルコールの炭素数は、好ましくは3〜32、より好ましくは5〜30である。一方、脂肪族カルボン酸は好ましくは炭素数3〜32、より好ましくは炭素数10〜30の脂肪族カルボン酸である。その中でも飽和脂肪族カルボン酸が好ましい。本発明の脂肪酸エステルは、全エステル(フルエステル)が高温時の熱安定性に優れる点で好ましい。本発明の脂肪酸エステルにおける酸価は、20以下(実質的に0を取り得る)であることが好ましい。また脂肪酸エステルの水酸基価は、0.1〜30の範囲がより好ましい。更に脂肪酸エステルのヨウ素価は、10以下(実質的に0を取り得る)が好ましい。これらの特性はJIS K 0070に規定された方法により求めることができる。   Such fatty acid esters are esters of aliphatic alcohols and aliphatic carboxylic acids. Such an aliphatic alcohol may be a monohydric alcohol or a dihydric or higher polyhydric alcohol. Moreover, carbon number of this alcohol becomes like this. Preferably it is 3-32, More preferably, it is 5-30. On the other hand, the aliphatic carboxylic acid is preferably an aliphatic carboxylic acid having 3 to 32 carbon atoms, more preferably 10 to 30 carbon atoms. Of these, saturated aliphatic carboxylic acids are preferred. The fatty acid ester of the present invention is preferable in that all esters (full esters) are excellent in thermal stability at high temperatures. The acid value in the fatty acid ester of the present invention is preferably 20 or less (can take substantially 0). The hydroxyl value of the fatty acid ester is more preferably in the range of 0.1-30. Further, the iodine value of the fatty acid ester is preferably 10 or less (can take substantially 0). These characteristics can be obtained by a method defined in JIS K 0070.

ポリオレフィン系ワックスとしては、分子量が1,000〜10,000である、エチレン単独重合体、炭素原子数3〜60のα−オレフィンの単独重合体または共重合体、もしくはエチレンと炭素原子数3〜60のα−オレフィンとの共重合体が例示される。かかる分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法により標準ポリスチレン換算で測定される数平均分子量である。かかる数平均分子量の上限は、より好ましくは6,000、更に好ましくは3,000である。ポリオレフィン系ワックスにおけるα−オレフィン成分の炭素数は好ましくは60以下、より好ましくは40以下である。より好適な具体例としては、プロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、および1−オクテンなどが例示される。好適なポリオレフィン系ワックスはエチレン単独重合体、もしくはエチレンと炭素原子数3〜60のα−オレフィンとの共重合体である。炭素原子数3〜60のα−オレフィンの割合は、好ましくは20モル%以下、より好ましくは10モル%以下である。いわゆるポリエチレンワックスとして市販されているものが好適に利用される。
上記の離型剤の含有量は、A成分とB成分の合計100重量部を基準として好ましくは0.005〜5重量部、より好ましくは0.01〜4重量部、更に好ましくは0.02〜3重量部である。
As the polyolefin wax, an ethylene homopolymer having a molecular weight of 1,000 to 10,000, a homopolymer or copolymer of an α-olefin having 3 to 60 carbon atoms, or ethylene and a carbon atom having 3 to 3 carbon atoms. A copolymer with 60 α-olefins is exemplified. The molecular weight is a number average molecular weight measured in terms of standard polystyrene by GPC (gel permeation chromatography) method. The upper limit of the number average molecular weight is more preferably 6,000, and still more preferably 3,000. The carbon number of the α-olefin component in the polyolefin wax is preferably 60 or less, more preferably 40 or less. More preferred specific examples include propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene and the like. A suitable polyolefin wax is an ethylene homopolymer or a copolymer of ethylene and an α-olefin having 3 to 60 carbon atoms. The proportion of the α-olefin having 3 to 60 carbon atoms is preferably 20 mol% or less, more preferably 10 mol% or less. What is marketed as what is called polyethylene wax is used suitably.
The content of the release agent is preferably 0.005 to 5 parts by weight, more preferably 0.01 to 4 parts by weight, and still more preferably 0.02 based on the total of 100 parts by weight of the component A and the component B. ~ 3 parts by weight.

(iv)染顔料
本発明で用いるガラス繊維強化難燃性樹脂組成物は更に各種の染顔料を含有し多様な意匠性を発現する成形品を提供できる。本発明で使用する染顔料としては、ペリレン系染料、クマリン系染料、チオインジゴ系染料、アンスラキノン系染料、チオキサントン系染料、紺青等のフェロシアン化物、ペリノン系染料、キノリン系染料、キナクリドン系染料、ジオキサジン系染料、イソインドリノン系染料、およびフタロシアニン系染料などを挙げることができる。更に本発明の樹脂組成物はメタリック顔料を配合してより良好なメタリック色彩を得ることもできる。メタリック顔料としては、アルミ粉が好適である。また、蛍光増白剤やそれ以外の発光をする蛍光染料を配合することにより、発光色を生かした更に良好な意匠効果を付与することができる。
(Iv) Dye and Pigment The glass fiber reinforced flame retardant resin composition used in the present invention can further contain various dyes and pigments and can provide molded products that exhibit various design properties. Examples of dyes used in the present invention include perylene dyes, coumarin dyes, thioindigo dyes, anthraquinone dyes, thioxanthone dyes, ferrocyanides such as bitumen, perinone dyes, quinoline dyes, quinacridone dyes, Examples thereof include dioxazine dyes, isoindolinone dyes, and phthalocyanine dyes. Furthermore, the resin composition of this invention can mix | blend a metallic pigment, and can also obtain a better metallic color. As the metallic pigment, aluminum powder is suitable. In addition, by blending a fluorescent brightening agent or other fluorescent dyes that emit light, a better design effect utilizing the luminescent color can be imparted.

本発明で使用する蛍光染料(蛍光増白剤を含む)としては、例えば、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、およびジアミノスチルベン系蛍光染料などを挙げることができる。これらの中でも耐熱性が良好でポリカーボネート樹脂の成形加工時における劣化が少ないクマリン系蛍光染料、ベンゾピラン系蛍光染料、およびペリレン系蛍光染料が好適である。
上記の染顔料の含有量は、A成分とB成分の合計100重量部を基準として、0.00001〜1重量部が好ましく、0.00005〜0.5重量部がより好ましい。
Examples of the fluorescent dye (including a fluorescent brightening agent) used in the present invention include a coumarin fluorescent dye, a benzopyran fluorescent dye, a perylene fluorescent dye, an anthraquinone fluorescent dye, a thioindigo fluorescent dye, and a xanthene fluorescent dye. And xanthone fluorescent dyes, thioxanthene fluorescent dyes, thioxanthone fluorescent dyes, thiazine fluorescent dyes, and diaminostilbene fluorescent dyes. Among these, coumarin fluorescent dyes, benzopyran fluorescent dyes, and perylene fluorescent dyes are preferable because they have good heat resistance and little deterioration during molding of the polycarbonate resin.
The content of the dye / pigment is preferably 0.00001 to 1 part by weight, and more preferably 0.00005 to 0.5 part by weight, based on 100 parts by weight of the total of component A and component B.

(v)熱線吸収能を有する化合物
本発明で用いるガラス繊維強化難燃性樹脂組成物は熱線吸収能を有する化合物を含有することができる。かかる化合物としてはフタロシアニン系近赤外線吸収剤、ATO、ITO、酸化イリジウムおよび酸化ルテニウムなどの金属酸化物系近赤外線吸収剤、ホウ化ランタン、ホウ化セリウムおよびホウ化タングステンなどの金属ホウ化物系近赤外線吸収剤などの近赤外吸収能に優れた各種の金属化合物、ならびに炭素フィラーが好適に例示される。かかるフタロシアニン系近赤外線吸収剤としてはたとえば三井化学(株)製MIR−362が市販され容易に入手可能である。炭素フィラーとしてはカーボンブラック、グラファイト(天然、および人工のいずれも含む)およびフラーレンなどが例示され、好ましくはカーボンブラックおよびグラファイトである。これらは単体または2種以上を併用して使用することができる。フタロシアニン系近赤外線吸収剤の含有量は、A成分とB成分の合計100重量部を基準として0.0005〜0.2重量部が好ましく、0.0008〜0.1重量部がより好ましく、0.001〜0.07重量部がさらに好ましい。金属酸化物系近赤外線吸収剤、金属ホウ化物系近赤外線吸収剤および炭素フィラーの含有量は、本発明の樹脂組成物中、0.1〜200ppm(重量割合)の範囲が好ましく、0.5〜100ppmの範囲がより好ましい。
(V) Compound having heat ray absorbing ability The glass fiber reinforced flame retardant resin composition used in the present invention may contain a compound having heat ray absorbing ability. Such compounds include phthalocyanine-based near-infrared absorbers, metal oxide-based near-infrared absorbers such as ATO, ITO, iridium oxide and ruthenium oxide, and metal boride-based near infrared rays such as lanthanum boride, cerium boride and tungsten boride. Preferred examples include various metal compounds having excellent near-infrared absorption ability such as an absorber, and carbon filler. As such a phthalocyanine-based near infrared absorber, for example, MIR-362 manufactured by Mitsui Chemicals, Inc. is commercially available and easily available. Examples of the carbon filler include carbon black, graphite (including both natural and artificial) and fullerene, and carbon black and graphite are preferable. These can be used alone or in combination of two or more. The content of the phthalocyanine-based near infrared absorber is preferably 0.0005 to 0.2 parts by weight, more preferably 0.0008 to 0.1 parts by weight, based on the total of 100 parts by weight of the component A and the component B. 0.001 to 0.07 part by weight is more preferable. The content of the metal oxide near-infrared absorber, the metal boride-based near infrared absorber, and the carbon filler is preferably in the range of 0.1 to 200 ppm (weight ratio) in the resin composition of the present invention. A range of ˜100 ppm is more preferable.

(vi)光拡散剤
本発明で用いるガラス繊維強化難燃性樹脂組成物には、光拡散剤を配合して光拡散効果を付与することができる。かかる光拡散剤としては高分子微粒子、炭酸カルシウムの如き低屈折率の無機微粒子、およびこれらの複合物等が例示される。かかる高分子微粒子は、既にポリカーボネート樹脂の光拡散剤として公知の微粒子である。より好適には粒径数μmのアクリル架橋粒子およびポリオルガノシルセスキオキサンに代表されるシリコーン架橋粒子などが例示される。光拡散剤の形状は球形、円盤形、柱形、および不定形などが例示される。かかる球形は、完全球である必要はなく変形しているものを含み、かかる柱形は立方体を含む。好ましい光拡散剤は球形であり、その粒径は均一であるほど好ましい。光拡散剤の含有量は、A成分とB成分の合計100重量部を基準として好ましくは0.005〜20重量部、より好ましくは0.01〜10重量部、更に好ましくは0.01〜3重量部である。尚、光拡散剤は2種以上を併用することができる。
(Vi) Light Diffusing Agent A light diffusing agent can be added to the glass fiber reinforced flame retardant resin composition used in the present invention to impart a light diffusing effect. Examples of such light diffusing agents include polymer fine particles, inorganic fine particles having a low refractive index such as calcium carbonate, and composites thereof. Such polymer fine particles are fine particles that are already known as light diffusing agents for polycarbonate resins. More preferably, acrylic crosslinked particles having a particle size of several μm, silicone crosslinked particles represented by polyorganosilsesquioxane, and the like are exemplified. Examples of the shape of the light diffusing agent include a spherical shape, a disk shape, a column shape, and an indefinite shape. Such spheres need not be perfect spheres, but include deformed ones, and such columnar shapes include cubes. A preferred light diffusing agent is spherical, and the more uniform the particle size is. The content of the light diffusing agent is preferably 0.005 to 20 parts by weight, more preferably 0.01 to 10 parts by weight, and still more preferably 0.01 to 3 parts by weight based on the total of 100 parts by weight of the component A and the component B. Parts by weight. Two or more light diffusing agents can be used in combination.

(vii)光高反射用白色顔料
本発明で用いるガラス繊維強化難燃性樹脂組成物には、光高反射用白色顔料を配合して光反射効果を付与することができる。かかる白色顔料としては二酸化チタン(特にシリコーンなど有機表面処理剤により処理された二酸化チタン)顔料が特に好ましい。かかる光高反射用白色顔料の含有量は、A成分とB成分の合計100重量部を基準として3〜30重量部が好ましく、8〜25重量部がより好ましい。尚、光高反射用白色顔料は2種以上を併用することができる。
(Vii) White pigment for high light reflection The glass fiber reinforced flame retardant resin composition used in the present invention can be provided with a light reflection effect by blending a white pigment for high light reflection. As such a white pigment, a titanium dioxide (particularly titanium dioxide treated with an organic surface treating agent such as silicone) pigment is particularly preferred. The content of the white pigment for high light reflection is preferably 3 to 30 parts by weight, more preferably 8 to 25 parts by weight based on the total of 100 parts by weight of the A component and the B component. Two or more kinds of white pigments for high light reflection can be used in combination.

(viii)難燃剤
本発明で用いるガラス繊維強化難燃性樹脂組成物には、難燃剤として知られる各種の化合物が配合されてよい。尚、難燃剤として使用される化合物の配合は難燃性の向上のみならず、各化合物の性質に基づき、例えば帯電防止性、流動性、剛性、および熱安定性の向上などがもたらされる。
(viii−1)シリコーン化合物からなるシリコーン系難燃剤、(v111−2)ハロゲン系難燃剤(例えば、臭素化エポキシ樹脂、臭素化ポリスチレン、臭素化ポリカーボネート(オリゴマーを含む)、臭素化ポリアクリレート、および塩素化ポリエチレンなど)等が挙げられる。
(Viii) Flame Retardant Various compounds known as flame retardants may be blended in the glass fiber reinforced flame retardant resin composition used in the present invention. The compounding of the compound used as a flame retardant not only improves the flame retardancy but also provides, for example, an improvement in antistatic properties, fluidity, rigidity, and thermal stability based on the properties of each compound.
(Viii-1) a silicone-based flame retardant comprising a silicone compound, (v111-2) a halogen-based flame retardant (for example, brominated epoxy resin, brominated polystyrene, brominated polycarbonate (including oligomer), brominated polyacrylate, and Chlorinated polyethylene, etc.).

(viii−1)シリコーン系難燃剤
本発明のシリコーン系難燃剤として使用されるシリコーン化合物は、燃焼時の化学反応によって難燃性を向上させるものである。該化合物としては従来芳香族ポリカーボネート樹脂の難燃剤として提案された各種の化合物を使用することができる。シリコーン化合物はその燃焼時にそれ自体が結合してまたは樹脂に由来する成分と結合してストラクチャーを形成することにより、または該ストラクチャー形成時の還元反応により、ポリカーボネート樹脂に難燃効果を付与するものと考えられている。したがってかかる反応における活性の高い基を含んでいることが好ましく、より具体的にはアルコキシ基およびハイドロジェン(即ちSi−H基)から選択された少なくとも1種の基を所定量含んでいることが好ましい。かかる基(アルコキシ基、Si−H基)の含有割合としては、0.1〜1.2mol/100gの範囲が好ましく、0.12〜1mol/100gの範囲がより好ましく、0.15〜0.6mol/100gの範囲が更に好ましい。かかる割合はアルカリ分解法より、シリコーン化合物の単位重量当たりに発生した水素またはアルコールの量を測定することにより求められる。尚、アルコキシ基は炭素数1〜4のアルコキシ基が好ましく、特にメトキシ基が好適である。
(Viii-1) Silicone Flame Retardant The silicone compound used as the silicone flame retardant of the present invention improves flame retardancy by a chemical reaction during combustion. As the compound, various compounds conventionally proposed as flame retardants for aromatic polycarbonate resins can be used. The silicone compound binds itself during combustion or binds to a component derived from the resin to form a structure, or gives a flame retardant effect to the polycarbonate resin by a reduction reaction during the structure formation. It is considered. Therefore, it is preferable that a group having high activity in such a reaction is contained, and more specifically, a predetermined amount of at least one group selected from an alkoxy group and a hydrogen (ie, Si—H group) is contained. preferable. As a content rate of this group (alkoxy group, Si-H group), the range of 0.1-1.2 mol / 100g is preferable, the range of 0.12-1 mol / 100g is more preferable, 0.15-0. The range of 6 mol / 100 g is more preferable. Such a ratio can be determined by measuring the amount of hydrogen or alcohol generated per unit weight of the silicone compound by the alkali decomposition method. The alkoxy group is preferably an alkoxy group having 1 to 4 carbon atoms, and particularly preferably a methoxy group.

一般的にシリコーン化合物の構造は、以下に示す4種類のシロキサン単位を任意に組み合わせることによって構成される。すなわち、
M単位:(CHSiO1/2、H(CHSiO1/2、H(CH)SiO1/2、(CH(CH=CH)SiO1/2、(CH(C)SiO1/2、(CH)(C)(CH=CH)SiO1/2等の1官能性シロキサン単位、
D単位:(CHSiO、H(CH)SiO、HSiO、H(C)SiO、(CH)(CH=CH)SiO、(CSiO等の2官能性シロキサン単位、
T単位:(CH)SiO3/2、(C)SiO3/2、HSiO3/2、(CH=CH)SiO3/2、(C)SiO3/2等の3官能性シロキサン単位、
Q単位:SiOで示される4官能性シロキサン単位である。
Generally, the structure of a silicone compound is constituted by arbitrarily combining the following four types of siloxane units. That is,
M units: (CH 3 ) 3 SiO 1/2 , H (CH 3 ) 2 SiO 1/2 , H 2 (CH 3 ) SiO 1/2 , (CH 3 ) 2 (CH 2 = CH) SiO 1/2 Monofunctional siloxane units such as (CH 3 ) 2 (C 6 H 5 ) SiO 1/2 , (CH 3 ) (C 6 H 5 ) (CH 2 ═CH) SiO 1/2 ,
D unit: (CH 3 ) 2 SiO, H (CH 3 ) SiO, H 2 SiO, H (C 6 H 5 ) SiO, (CH 3 ) (CH 2 ═CH) SiO, (C 6 H 5 ) 2 SiO Bifunctional siloxane units such as
T unit: (CH 3 ) SiO 3/2 , (C 3 H 7 ) SiO 3/2 , HSiO 3/2 , (CH 2 ═CH) SiO 3/2 , (C 6 H 5 ) SiO 3/2 etc. A trifunctional siloxane unit of
Q unit: a tetrafunctional siloxane unit represented by SiO 2 .

シリコーン系難燃剤に使用されるシリコーン化合物の構造は、具体的には、示性式としてD、T、M、M、M、M、M、M、M、D、D、Dが挙げられる。この中で好ましいシリコーン化合物の構造は、M、M、M、Mであり、さらに好ましい構造は、MまたはMである。 Specifically, the structure of the silicone compound used in the silicone-based flame retardant is represented by the following formulas: D n , T p , M m D n , M m T p , M m Q q , M m D n T p , M m D n Q q, M m T p Q q, M m D n T p Q q, D n T p, D n Q q, include D n T p Q q. Among these, preferable structures of the silicone compound are M m D n , M m T p , M m D n T p , and M m D n Q q , and more preferable structures are M m D n or M m D n. T p .

ここで、上記示性式中の係数m、n、p、qは各シロキサン単位の重合度を表す1以上の整数であり、各示性式における係数の合計がシリコーン化合物の平均重合度となる。この平均重合度は好ましくは3〜150の範囲、より好ましくは3〜80の範囲、更に好ましくは3〜60の範囲、特に好ましくは4〜40の範囲である。かかる好適な範囲であるほど難燃性において優れるようになる。更に後述するように芳香族基を所定量含むシリコーン化合物においては透明性や色相にも優れる。
またm、n、p、qのいずれかが2以上の数値である場合、その係数の付いたシロキサン単位は、結合する水素原子や有機残基が異なる2種以上のシロキサン単位とすることができる。
Here, the coefficients m, n, p, and q in the above formulas are integers of 1 or more representing the degree of polymerization of each siloxane unit, and the sum of the coefficients in each formula is the average degree of polymerization of the silicone compound. . This average degree of polymerization is preferably in the range of 3 to 150, more preferably in the range of 3 to 80, still more preferably in the range of 3 to 60, and particularly preferably in the range of 4 to 40. The better the range, the better the flame retardancy. Further, as described later, a silicone compound containing a predetermined amount of an aromatic group is excellent in transparency and hue.
When any of m, n, p, and q is a numerical value of 2 or more, the siloxane unit with the coefficient can be two or more types of siloxane units having different hydrogen atoms or organic residues to be bonded. .

シリコーン化合物は、直鎖状であっても分岐構造を持つものであってもよい。またシリコン原子に結合する有機残基は炭素数1〜30、より好ましくは1〜20の有機残基であることが好ましい。かかる有機残基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、およびデシル基などのアルキル基、シクロヘキシル基の如きシクロアルキル基、フェニル基の如きアリール基、並びにトリル基の如きアラルキル基を挙げることがでる。さらに好ましくは炭素数1〜8のアルキル基、アルケニル基またはアリール基である。アルキル基としては、特にはメチル基、エチル基、およびプロピル基等の炭素数1〜4のアルキル基が好ましい。   The silicone compound may be linear or have a branched structure. The organic residue bonded to the silicon atom is preferably an organic residue having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms. Specific examples of such an organic residue include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a decyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, And aralkyl groups such as tolyl groups. More preferably, they are a C1-C8 alkyl group, an alkenyl group, or an aryl group. As the alkyl group, an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, and a propyl group is particularly preferable.

さらにシリコーン系難燃剤として使用されるシリコーン化合物はアリール基を含有することが好ましい。より好適には下記一般式(3)で示される芳香族基が含まれる割合(芳香族基量)が10〜70重量%(より好適には15〜60重量%)である。

Figure 0005021928
(式(3)中、Xはそれぞれ独立にOH基、炭素数1〜20の一価の有機残基を示す。nは0〜5の整数を表わす。さらに式(3)中においてnが2以上の場合はそれぞれ互いに異なる種類のXを取ることができる。) Further, the silicone compound used as the silicone flame retardant preferably contains an aryl group. More preferably, the ratio (aromatic group amount) of the aromatic group represented by the following general formula (3) is 10 to 70% by weight (more preferably 15 to 60% by weight).
Figure 0005021928
(In Formula (3), each X 2 independently represents an OH group and a monovalent organic residue having 1 to 20 carbon atoms. N represents an integer of 0 to 5. Further, in Formula (3), n represents n. In the case of 2 or more, different types of X 2 can be taken.)

シリコーン系難燃剤として使用されるシリコーン化合物は、上記Si−H基およびアルコキシ基以外にも反応基を含有していてもよく、かかる反応基としては例えば、アミノ基、カルボキシル基、エポキシ基、ビニル基、メルカプト基、およびメタクリロキシ基などが例示される。   The silicone compound used as the silicone-based flame retardant may contain a reactive group in addition to the Si-H group and the alkoxy group. Examples of the reactive group include an amino group, a carboxyl group, an epoxy group, and a vinyl group. Examples include a group, a mercapto group, and a methacryloxy group.

Si−H基を有するシリコーン化合物としては、下記一般式(4)および(5)で示される構成単位の少なくとも一種以上を含むシリコーン化合物が好適に例示される。

Figure 0005021928
Figure 0005021928
(式(4)および式(5)中、Z〜Zはそれぞれ独立に水素原子、炭素数1〜20の一価の有機残基、または下記一般式(6)で示される化合物を示す。α〜αはそれぞれ独立に0または1を表わす。m1は0もしくは1以上の整数を表わす。さらに式(4)中においてm1が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。) Preferred examples of the silicone compound having a Si—H group include silicone compounds containing at least one of the structural units represented by the following general formulas (4) and (5).
Figure 0005021928
Figure 0005021928
(In formula (4) and formula (5), Z 1 to Z 3 each independently represent a hydrogen atom, a monovalent organic residue having 1 to 20 carbon atoms, or a compound represented by the following general formula (6). Α 1 to α 3 each independently represents 0 or 1. m1 represents 0 or an integer of 1 or more, and in formula (4), when m1 is 2 or more, the repeating unit is a plurality of different repeating units. Can take units.)

Figure 0005021928
(式(6)中、Z〜Zはそれぞれ独立に水素原子、炭素数1〜20の一価の有機残基を示す。α〜αはそれぞれ独立に0または1を表わす。m2は0もしくは1以上の整数を表わす。さらに式(6)中においてm2が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。)
Figure 0005021928
(In formula (6), Z 4 to Z 8 each independently represents a hydrogen atom or a monovalent organic residue having 1 to 20 carbon atoms. Α 4 to α 8 each independently represents 0 or 1. m 2 Represents 0 or an integer greater than or equal to 1. Further, in formula (6), when m2 is 2 or more, the repeating unit may take a plurality of repeating units different from each other.

シリコーン系難燃剤に使用されるシリコーン化合物において、アルコキシ基を有するシリコーン化合物としては、例えば一般式(7)および一般式(8)に示される化合物から選択される少なくとも1種の化合物があげられる。   In the silicone compound used for the silicone-based flame retardant, examples of the silicone compound having an alkoxy group include at least one compound selected from the compounds represented by the general formula (7) and the general formula (8).

Figure 0005021928
(式(7)中、βはビニル基、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示す。γ、γ、γ、γ、γ、およびγは炭素数1〜6のアルキル基およびシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示し、少なくとも1つの基がアリール基またはアラルキル基である。δ、δ、およびδは炭素数1〜4のアルコキシ基を示す。)
Figure 0005021928
(In formula (7), β 1 represents a vinyl group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group or aralkyl group having 6 to 12 carbon atoms. Γ 1 , γ 2 , γ 3 , γ 4 , γ 5 , and γ 6 represent an alkyl group and a cycloalkyl group having 1 to 6 carbon atoms, and an aryl group and an aralkyl group having 6 to 12 carbon atoms, and at least one group is aryl. And δ 1 , δ 2 , and δ 3 are each an alkoxy group having 1 to 4 carbon atoms.)

Figure 0005021928
(式(8)中、βおよびβはビニル基、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示す。γ、γ、γ、γ10、γ11、γ12、γ13およびγ14は炭素数1〜6のアルキル基、、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示し、少なくとも1つの基がアリール基またはアラルキルである。δ、δ、δ、およびδは炭素数1〜4のアルコキシ基を示す。)
Figure 0005021928
(In the formula (8), beta 2 and beta 3 is a vinyl group, an alkyl group having 1 to 6 carbon atoms, cycloalkyl group having 3 to 6 carbon atoms, and an aryl group and aralkyl group having 6 to 12 carbon atoms. γ 7 , γ 8 , γ 9 , γ 10 , γ 11 , γ 12 , γ 13, and γ 14 are each an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and 6 to 12 carbon atoms. And at least one group is an aryl group or an aralkyl group, and δ 4 , δ 5 , δ 6 , and δ 7 represent an alkoxy group having 1 to 4 carbon atoms.)

(viii−2)ハロゲン系難燃剤
本発明のハロゲン系難燃剤としては、臭素化ポリカーボネート(オリゴマーを含む)が特に好適である。臭素化ポリカーボネートは耐熱性に優れ、かつ大幅に難燃性を向上できる。本発明で使用する臭素化ポリカーボネートは、下記一般式(9)で表される構成単位が全構成単位の少なくとも60モル%、好ましくは少なくとも80モル%であり、特に好ましくは実質的に下記一般式(9)で表される構成単位からなる臭素化ポリカーボネート化合物である。
(Viii-2) Halogen Flame Retardant As the halogen flame retardant of the present invention, brominated polycarbonate (including oligomers) is particularly suitable. Brominated polycarbonate has excellent heat resistance and can greatly improve flame retardancy. In the brominated polycarbonate used in the present invention, the structural unit represented by the following general formula (9) is at least 60 mol%, preferably at least 80 mol%, particularly preferably substantially the following general formula. A brominated polycarbonate compound composed of the structural unit represented by (9).

Figure 0005021928
(式(9)中、Xは臭素原子、Rは炭素数1〜4のアルキレン基、炭素数1〜4のアルキリデン基または−SO−である。)
また、かかる式(9)において、好適にはRはメチレン基、エチレン基、イソプロピリデン基、−SO−、特に好ましくはイソプロピリデン基を示す。
Figure 0005021928
(In Formula (9), X 3 is a bromine atom, R is an alkylene group having 1 to 4 carbon atoms, an alkylidene group having 1 to 4 carbon atoms, or —SO 2 —.)
In the formula (9), R preferably represents a methylene group, an ethylene group, an isopropylidene group, —SO 2 —, and particularly preferably an isopropylidene group.

臭素化ポリカーボネートは、残存するクロロホーメート基末端が少なく、末端塩素量が0.3ppm以下であることが好ましく、より好ましくは0.2ppm以下である。かかる末端塩素量は、試料を塩化メチレンに溶解し、4−(p−ニトロベンジル)ピリジンを加えて末端塩素(末端クロロホーメート)と反応させ、これを紫外可視分光光度計(日立製作所製U−3200)により測定して求めることができる。末端塩素量が0.3ppm以下であると、ポリカーボネート樹脂組成物の熱安定性がより良好となり、更に高温の成形が可能となり、その結果成形加工性により優れたポリカーボネート樹脂組成物が提供される。   The brominated polycarbonate has a small number of remaining chloroformate groups and preferably has a terminal chlorine content of 0.3 ppm or less, more preferably 0.2 ppm or less. The amount of terminal chlorine is determined by dissolving a sample in methylene chloride, adding 4- (p-nitrobenzyl) pyridine and allowing it to react with terminal chlorine (terminal chloroformate). -3200). When the amount of terminal chlorine is 0.3 ppm or less, the thermal stability of the polycarbonate resin composition becomes better, and molding at a higher temperature becomes possible. As a result, a polycarbonate resin composition that is superior in molding processability is provided.

また臭素化ポリカーボネートは、残存する水酸基末端が少ないことが好ましい。より具体的には臭素化ポリカーボネートの構成単位1モルに対して、末端水酸基量が0.0005モル以下であることが好ましく、より好ましくは0.0003モル以下である。末端水酸基量は、試料を重クロロホルムに溶解し、H−NMR法により測定して求めることができる。かかる末端水酸基量であると、ポリカーボネート樹脂組成物の熱安定性が更に向上し好ましい。 The brominated polycarbonate preferably has a small number of remaining hydroxyl terminals. More specifically, the amount of terminal hydroxyl groups is preferably 0.0005 mol or less, more preferably 0.0003 mol or less with respect to 1 mol of the structural unit of brominated polycarbonate. The amount of terminal hydroxyl groups can be determined by dissolving a sample in deuterated chloroform and measuring it by 1 H-NMR method. Such a terminal hydroxyl group amount is preferable because the thermal stability of the polycarbonate resin composition is further improved.

臭素化ポリカーボネートの比粘度は、好ましくは0.015〜0.1の範囲、より好ましくは0.015〜0.08の範囲である。臭素化ポリカーボネートの比粘度は、前述した本発明のA成分であるポリカーボネート樹脂の粘度平均分子量を算出するに際し使用した上記比粘度の算出式に従って算出されたものである。   The specific viscosity of the brominated polycarbonate is preferably in the range of 0.015 to 0.1, more preferably in the range of 0.015 to 0.08. The specific viscosity of the brominated polycarbonate is calculated according to the above-described specific viscosity calculation formula used for calculating the viscosity average molecular weight of the polycarbonate resin which is the component A of the present invention.

(ix)帯電防止剤
本発明で用いるガラス繊維強化難燃性樹脂組成物には、帯電防止性能が求められる場合があり、かかる場合帯電防止剤を含むことが好ましい。かかる帯電防止剤としては、例えば(1)ドデシルベンゼンスルホン酸ホスホニウム塩に代表されるアリールスルホン酸ホスホニウム塩、およびアルキルスルホン酸ホスホニウム塩などの有機スルホン酸ホスホニウム塩、並びにテトラフルオロホウ酸ホスホニウム塩の如きホウ酸ホスホニウム塩が挙げられる。該ホスホニウム塩の含有量はA成分とB成分の合計100重量部を基準として、5重量部以下が適切であり、好ましくは0.05〜5重量部、より好ましくは1〜3.5重量部、更に好ましくは1.5〜3重量部の範囲である。
(Ix) Antistatic agent The glass fiber reinforced flame retardant resin composition used in the present invention may require antistatic performance, and in such a case, it is preferable to include an antistatic agent. Examples of the antistatic agent include (1) aryl sulfonic acid phosphonium salts represented by dodecylbenzenesulfonic acid phosphonium salts, organic sulfonic acid phosphonium salts such as alkyl sulfonic acid phosphonium salts, and tetrafluoroboric acid phosphonium salts. Examples thereof include phosphonium borate salts. The content of the phosphonium salt is suitably 5 parts by weight or less, preferably 0.05 to 5 parts by weight, more preferably 1 to 3.5 parts by weight, based on a total of 100 parts by weight of component A and component B. More preferably, it is in the range of 1.5 to 3 parts by weight.

帯電防止剤としては例えば、(2)有機スルホン酸リチウム、有機スルホン酸ナトリウム、有機スルホン酸カリウム、有機スルホン酸セシウム、有機スルホン酸ルビジウム、有機スルホン酸カルシウム、有機スルホン酸マグネシウム、および有機スルホン酸バリウムなどの有機スルホン酸アルカリ(土類)金属塩が挙げられる。かかる金属塩は前述のとおり、難燃剤としても使用される。かかる金属塩は、より具体的には例えばドデシルベンゼンスルホン酸の金属塩やパーフルオロアルカンスルホン酸の金属塩などが例示される。有機スルホン酸アルカリ(土類)金属塩の含有量はA成分とB成分の合計100重量部を基準として、0.5重量部以下が適切であり、好ましくは0.001〜0.3重量部、より好ましくは0.005〜0.2重量部である。特にカリウム、セシウム、およびルビジウムなどのアルカリ金属塩が好適である。   Examples of the antistatic agent include: (2) lithium organic sulfonate, organic sodium sulfonate, organic potassium sulfonate, cesium organic sulfonate, rubidium organic sulfonate, calcium organic sulfonate, magnesium organic sulfonate, and barium organic sulfonate. And organic sulfonate alkali (earth) metal salts. Such metal salts are also used as flame retardants as described above. More specific examples of such metal salts include metal salts of dodecylbenzene sulfonic acid and metal salts of perfluoroalkane sulfonic acid. The content of the organic sulfonate alkali (earth) metal salt is suitably 0.5 parts by weight or less, preferably 0.001 to 0.3 parts by weight, based on the total of 100 parts by weight of component A and component B. More preferably, it is 0.005-0.2 weight part. In particular, alkali metal salts such as potassium, cesium, and rubidium are preferable.

帯電防止剤としては、例えば(3)アルキルスルホン酸アンモニウム塩、およびアリールスルホン酸アンモニウム塩などの有機スルホン酸アンモニウム塩が挙げられる。該アンモニウム塩はA成分とB成分の合計100重量部を基準として、0.05重量部以下が適切である。帯電防止剤としては、例えば(4)ポリエーテルエステルアミドの如きポリ(オキシアルキレン)グリコール成分をその構成成分として含有するポリマーが挙げられる。該ポリマーはA成分とB成分の合計100重量部を基準として5重量部以下が適切である。   Examples of the antistatic agent include (3) organic sulfonic acid ammonium salts such as alkyl sulfonic acid ammonium salt and aryl sulfonic acid ammonium salt. The ammonium salt is suitably 0.05 parts by weight or less based on the total of 100 parts by weight of the A component and the B component. Examples of the antistatic agent include (4) a polymer containing a poly (oxyalkylene) glycol component such as polyether ester amide as a constituent component. The polymer is suitably 5 parts by weight or less based on a total of 100 parts by weight of the component A and the component B.

(x)その他の添加剤
本発明で用いるガラス繊維強化難燃性樹脂組成物には、A成分以外の熱可塑性樹脂、ゴム質重合体、その他の流動改質剤、抗菌剤、流動パラフィンの如き分散剤、光触媒系防汚剤およびフォトクロミック剤などを配合することができる。
(X) Other additives The glass fiber reinforced flame retardant resin composition used in the present invention includes thermoplastic resins other than the component A, rubbery polymers, other flow modifiers, antibacterial agents, liquid paraffin, and the like. A dispersant, a photocatalytic antifouling agent, a photochromic agent, and the like can be blended.

A成分以外の熱可塑性樹脂としては、芳香族ポリエステル樹脂(ポリエチレンテレフタレート樹脂(PET樹脂)、ポリブチレンテレフタレート樹脂(PBT樹脂)、シクロヘキサンジメタノール共重合ポリエチレンテレフタレート樹脂(いわゆるPET−G樹脂)、ポリエチレンナフタレート樹脂、およびポリブチレンナフタレート樹脂など)、ポリメチルメタクリレート樹脂(PMMA樹脂)、環状ポリオレフィン樹脂、ポリ乳酸樹脂、ポリカプロラクトン樹脂、熱可塑性フッ素樹脂(例えばポリフッ化ビニリデン樹脂に代表される)、並びにポリオレフィン樹脂(ポリエチレン樹脂、エチレン−(α−オレフィン)共重合体樹脂、ポリプロピレン樹脂、およびプロピレン−(α−オレフィン)共重合体樹脂など)が例示される。ゴム質重合体としては、各種のコア−シェル型グラフト共重合体および熱可塑性エラストマーが例示される。上記他の熱可塑性樹脂およびゴム質重合体は、A成分とB成分の合計100重量部を基準として10重量部以下、より好ましくは5重量部以下が好ましい。   Examples of thermoplastic resins other than the component A include aromatic polyester resins (polyethylene terephthalate resin (PET resin), polybutylene terephthalate resin (PBT resin), cyclohexanedimethanol copolymerized polyethylene terephthalate resin (so-called PET-G resin), polyethylene naphthalate. Phthalate resin, polybutylene naphthalate resin, etc.), polymethyl methacrylate resin (PMMA resin), cyclic polyolefin resin, polylactic acid resin, polycaprolactone resin, thermoplastic fluororesin (for example, represented by polyvinylidene fluoride resin), and Examples include polyolefin resins (polyethylene resin, ethylene- (α-olefin) copolymer resin, polypropylene resin, propylene- (α-olefin) copolymer resin, and the like). Examples of the rubbery polymer include various core-shell type graft copolymers and thermoplastic elastomers. The other thermoplastic resin and rubber polymer are preferably 10 parts by weight or less, more preferably 5 parts by weight or less based on the total of 100 parts by weight of the component A and the component B.

(ガラス繊維強化難燃性樹脂組成物の製造)
本発明のガラス繊維強化難燃性樹脂組成物を製造するには、任意の方法が採用される。
例えばA成分、B成分、C成分、D成分、E成分および任意に他の添加剤を、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などの予備混合手段を用いて充分に混合した後、必要に応じて押出造粒器やブリケッティングマシーンなどによりかかる予備混合物の造粒を行い、その後ベント式二軸押出機に代表される溶融混練機で溶融混練し、その後ペレタイザーによりペレット化する方法が挙げられる。
(Manufacture of glass fiber reinforced flame retardant resin composition)
Arbitrary methods are employ | adopted in order to manufacture the glass fiber reinforced flame-retardant resin composition of this invention.
For example, component A, component B, component C, component D, component E, and optionally other additives were mixed thoroughly using premixing means such as a V-type blender, Henschel mixer, mechanochemical device, extrusion mixer, etc. Then, if necessary, granulate the premix using an extrusion granulator or briquetting machine, then melt and knead it with a melt kneader typified by a vented twin screw extruder, and then pelletize it with a pelletizer. The method of doing is mentioned.

他に、各成分をそれぞれ独立にベント式二軸押出機に代表される溶融混練機に供給する方法や、各成分の一部を予備混合した後、残りの成分と独立に溶融混練機に供給する方法なども挙げられる。各成分の一部を予備混合する方法としては例えば、A成分以外の成分を予め予備混合した後、A成分に混合または押出機に直接供給する方法が挙げられる。   In addition, a method of supplying each component independently to a melt kneader represented by a vent type twin screw extruder, or a part of each component is premixed and then supplied to the melt kneader independently of the remaining components. The method of doing is also mentioned. Examples of the method of premixing a part of each component include a method in which components other than the component A are premixed in advance and then mixed with the component A or directly supplied to the extruder.

予備混合する方法としては例えば、A成分としてパウダーの形態を有するものを含む場合、かかるパウダーの一部と配合する添加剤とをブレンドしてパウダーで希釈した添加剤のマスターバッチを製造し、かかるマスターバッチを利用する方法が挙げられる。更に一成分を独立に溶融押出機の途中から供給する方法なども挙げられる。尚、配合する成分に液状のものがある場合には、溶融押出機への供給にいわゆる液注装置、または液添装置を使用することができる。   As a premixing method, for example, when a component having a powder form is included as the component A, a part of the powder and an additive to be blended are mixed to produce a master batch of the additive diluted with the powder. A method using a master batch can be mentioned. Furthermore, the method etc. which supply one component independently from the middle of a melt extruder are mentioned. In addition, when there exists a liquid thing in the component to mix | blend, what is called a liquid injection apparatus or a liquid addition apparatus can be used for supply to a melt extruder.

押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。
溶融混練機としては二軸押出機の他にバンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機などを挙げることができる。
As the extruder, one having a vent capable of degassing moisture in the raw material and volatile gas generated from the melt-kneaded resin can be preferably used. From the vent, a vacuum pump is preferably installed for efficiently discharging generated moisture and volatile gas to the outside of the extruder. It is also possible to remove a foreign substance from the resin composition by installing a screen for removing the foreign substance mixed in the extrusion raw material in the zone in front of the extruder die. Examples of such a screen include a wire mesh, a screen changer, a sintered metal plate (such as a disk filter), and the like.
Examples of the melt kneader include a banbury mixer, a kneading roll, a single screw extruder, a multi-screw extruder having three or more axes, in addition to a twin screw extruder.

上記の如く押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。更にかかるペレットの製造においては、光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を用いて、ペレットの形状分布の狭小化、ミスカット物の低減、運送または輸送時に発生する微小粉の低減、並びにストランドやペレット内部に発生する気泡(真空気泡)の低減を適宜行うことができる。これらの処方により成形のハイサイクル化、およびシルバーの如き不良発生割合の低減を行うことができる。またペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1〜5mm、より好ましくは1.5〜4mm、さらに好ましくは2〜3.3mmである。一方、円柱の長さは好ましくは1〜30mm、より好ましくは2〜5mm、さらに好ましくは2.5〜3.5mmである。   The resin extruded as described above is directly cut into pellets, or after forming strands, the strands are cut with a pelletizer to be pelletized. When it is necessary to reduce the influence of external dust during pelletization, it is preferable to clean the atmosphere around the extruder. Furthermore, in the manufacture of such pellets, various methods already proposed for polycarbonate resin for optical discs are used to narrow the shape distribution of pellets, reduce miscuts, and reduce fine powder generated during transportation or transportation. In addition, it is possible to appropriately reduce bubbles (vacuum bubbles) generated inside the strands and pellets. By these prescriptions, it is possible to increase the molding cycle and reduce the occurrence rate of defects such as silver. Moreover, although the shape of a pellet can take common shapes, such as a cylinder, a prism, and a spherical shape, it is a cylinder more suitably. The diameter of such a cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, and still more preferably 2 to 3.3 mm. On the other hand, the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 mm, and still more preferably 2.5 to 3.5 mm.

本発明の鏡筒は通常上記の如く製造されたペレットを射出成形して成形品を得ることができる。かかる射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などを挙げることができる。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。   The lens barrel of the present invention can usually be obtained by injection molding the pellets produced as described above. In such injection molding, not only ordinary molding methods but also injection compression molding, injection press molding, gas assist injection molding, foam molding (including a method of injecting a supercritical fluid), insert molding, in-mold coating molding, heat insulation Examples thereof include mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding. In addition, either a cold runner method or a hot runner method can be selected for molding.

これにより機械的強度、低異方性、流動特性および良好な難燃性とを併せ持つ鏡筒が提供される。即ち、本発明によれば、芳香族ポリカーボネート樹脂(A−1成分)よりなる熱可塑性樹脂、好ましくは芳香族ポリカーボネート樹脂(A−1成分)及びスチレン系樹脂(A−2成分)よりなる熱可塑性樹脂(A成分)40〜99重量%および繊維断面の長径の平均値が10〜50μm、長径と短径の比(長径/短径)の平均値が1.5〜8である扁平断面ガラス繊維(B−1成分)からなる強化充填材、好ましくは該充填材(B−1成分)及び板状無機充填材(B−2成分)よりなる強化充填材(B成分)1〜60重量%の合計100重量部に対し、有機リン酸エステル系難燃剤1〜30重量部(C成分)および/または有機スルホン酸アルカリ(土類)金属塩0.001〜1重量部であるガラス繊維強化難燃性樹脂組成物を射出成形した鏡筒が提供される。   This provides a lens barrel having both mechanical strength, low anisotropy, flow characteristics, and good flame retardancy. That is, according to the present invention, a thermoplastic resin comprising an aromatic polycarbonate resin (A-1 component), preferably a thermoplastic resin comprising an aromatic polycarbonate resin (A-1 component) and a styrene resin (A-2 component). Flat cross-section glass fiber having 40 to 99% by weight of resin (component A) and an average value of the major axis of the fiber cross section of 10 to 50 μm and an average ratio of major axis to minor axis (major axis / minor axis) of 1.5 to 8 A reinforcing filler composed of (B-1 component), preferably 1 to 60% by weight of a reinforcing filler (B component) composed of the filler (B-1 component) and a plate-like inorganic filler (B-2 component). Glass fiber reinforced flame retardant which is 1 to 30 parts by weight (C component) of organophosphate flame retardant and / or 0.001 to 1 part by weight of organic sulfonate alkali (earth) metal salt with respect to 100 parts by weight in total Resin composition was injection molded Tube is provided.

更に本発明の樹脂組成物からなる鏡筒には、各種の表面処理を行うことが可能である。ここでいう表面処理とは、蒸着(物理蒸着、化学蒸着など)、メッキ(電気メッキ、無電解メッキ、溶融メッキなど)、塗装、コーティング、印刷などの樹脂成形品の表層上に新たな層を形成させるものであり、通常のポリカーボネート樹脂に用いられる方法が適用できる。表面処理としては、具体的には、ハードコート、撥水・撥油コート、紫外線吸収コート、赤外線吸収コート、並びにメタライジング(蒸着など)などの各種の表面処理が例示される。   Furthermore, the lens barrel made of the resin composition of the present invention can be subjected to various surface treatments. Surface treatment here refers to a new layer on the surface of resin molded products such as vapor deposition (physical vapor deposition, chemical vapor deposition, etc.), plating (electroplating, electroless plating, hot dipping, etc.), painting, coating, printing, etc. A method used for ordinary polycarbonate resin is applicable. Specific examples of the surface treatment include various surface treatments such as hard coat, water / oil repellent coat, ultraviolet absorption coat, infrared absorption coat, and metalizing (evaporation).

本発明によれば、機械的強度、低異方性、流動性に優れ、さらに良好な難燃性を併せ持つ優れた鏡筒を得ることができることから、産業上の効果は極めて大である。   According to the present invention, an excellent lens barrel having excellent mechanical strength, low anisotropy, fluidity, and good flame retardancy can be obtained, so that the industrial effect is extremely large.

本発明者が現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。   The form of the present invention considered to be the best by the present inventor is a collection of the preferable ranges of the above requirements. For example, typical examples are described in the following examples. Of course, the present invention is not limited to these forms.

(I)ガラス繊維強化難燃性樹脂組成物の評価
(i)曲げ弾性率:ASTM D790(測定条件23℃)に準拠して測定した。なお、試験片は、射出成形機(住友重機械工業(株)製 SG−150U)によりシリンダー温度300℃、金型温度80℃で成形した。
(ii)曲げ強さ(ウエルド有、ウエルド無):ASTM D638 タイプIの試験片を使用し、ウエルドを有する試験片は、試験片の両側に設けたサイドゲートから充填させ試験片中央部にウエルドを作成した。また、ウエルドが無い試験片は一方のゲートを封鎖し、作成した。得られた試験片をASTM D790(測定条件23℃)に準拠して測定した。なお、試験片は、射出成形機(住友重機械工業(株)製 SG−150U)によりシリンダー温度300℃、金型温度80℃で成形した。
(iii)ウエルド強さ保持率:(ウエルド有の曲げ強さ)/(ウエルド無の曲げ強さ)×100=ウエルド強さ保持率(%)として求めた。
(iv)成形収縮率:一方の短辺側に厚み1.5mmのフィルムゲートを有する短辺50mm、長辺100mm、厚み4mmの平板を成形し、23℃、50%RH、24時間状態調節したのち、平板の流動の流れ方向および直角方向の寸法を三次元測定機(三豊製作所(株)製 MICROPAK 550)を使用し測定し、流れ方向および直角方向の成形収縮率を求めた。
(v)異方性:上記で求めた成形収縮率の流れ方向と直角方向の比を異方性として求めた。異方性の値は1に近いほど成形収縮率の異方性が小さく好ましい。
(vi)真円度:住友重機械工業(株)SG−150U成形機を用い、筒状の鏡筒金型(長さ15mm、内径20mm、肉厚2.5mm)にてシリンダー温度300℃、金型温度80℃で鏡筒成形体を成形し、内径の真円度を(株)東京精密製 RONDCOM41Aを用いて測定した。筒状成形体の内径の最長部と最短部の長さの差を真円度とした。この差が小さい程、真円度が高い。
(vii)難燃性:UL94規格に準拠し、厚み1.5mmにて最大燃焼秒数およびUL94ランクを評価した。なお、試験片は、射出成形機(住友重機械工業(株)製 SG−150U)によりシリンダー温度280℃、金型温度60℃で成形した。
(I) Evaluation of Glass Fiber Reinforced Flame Retardant Resin Composition (i) Flexural Modulus: Measured according to ASTM D790 (measurement condition 23 ° C.). The test piece was molded by an injection molding machine (SG-150U, manufactured by Sumitomo Heavy Industries, Ltd.) at a cylinder temperature of 300 ° C. and a mold temperature of 80 ° C.
(Ii) Bending strength (with weld, without weld): ASTM D638 type I test piece is used, and the test piece with weld is filled from the side gates provided on both sides of the test piece and welded at the center of the test piece. It was created. A test piece without weld was prepared by sealing one gate. The obtained test piece was measured according to ASTM D790 (measurement condition 23 ° C.). The test piece was molded by an injection molding machine (SG-150U, manufactured by Sumitomo Heavy Industries, Ltd.) at a cylinder temperature of 300 ° C. and a mold temperature of 80 ° C.
(Iii) Weld strength retention rate: (bending strength with weld) / (bending strength without weld) × 100 = weld strength retention rate (%).
(Iv) Mold shrinkage: A flat plate having a short side of 50 mm, a long side of 100 mm and a thickness of 4 mm having a film gate having a thickness of 1.5 mm on one short side is molded and conditioned at 23 ° C., 50% RH for 24 hours. Thereafter, the flow direction and the perpendicular direction dimension of the flow of the flat plate were measured using a three-dimensional measuring machine (MICROPAK 550 manufactured by Mitoyo Seisakusho Co., Ltd.), and the molding shrinkage in the flow direction and the perpendicular direction was determined.
(V) Anisotropy: The ratio of the molding shrinkage ratio determined above to the direction perpendicular to the flow direction was determined as anisotropy. The anisotropy value closer to 1 is preferable because the anisotropy of the molding shrinkage ratio is small.
(Vi) Roundness: Using a SG-150U molding machine, Sumitomo Heavy Industries, Ltd., cylinder temperature (15 mm, inner diameter 20 mm, wall thickness 2.5 mm) at a cylinder temperature of 300 ° C., A lens barrel molded body was molded at a mold temperature of 80 ° C., and the roundness of the inner diameter was measured using RONDCOM 41A manufactured by Tokyo Seimitsu Co., Ltd. The difference in length between the longest part and the shortest part of the inner diameter of the cylindrical molded body was defined as roundness. The smaller the difference, the higher the roundness.
(Vii) Flame retardancy: Based on the UL94 standard, the maximum combustion seconds and UL94 rank were evaluated at a thickness of 1.5 mm. In addition, the test piece was shape | molded by the cylinder temperature of 280 degreeC and the mold temperature of 60 degreeC with the injection molding machine (Sumitomo Heavy Industries, Ltd. SG-150U).

[実施例1〜12、比較例1〜10]
ポリカーボネート樹脂、スチレン系樹脂、扁平断面ガラス繊維、リン酸エステル系難燃剤、有機リン酸エステル系難燃剤、及び各種添加剤を表1記載の各種添加剤を各配合量で、ブレンダーにて混合した後、ベント式二軸押出機を用いて溶融混練してペレットを得た。使用する各種添加剤は、それぞれ配合量の10〜100倍の濃度を目安に予めポリカーボネート樹脂との予備混合物を作成した後、ブレンダーによる全体の混合を行った。ベント式二軸押出機は(株)日本製鋼所製:TEX−30XSST(完全かみ合い、同方向回転、2条ネジスクリュー)を使用した。押出条件は吐出量20kg/h、スクリュー回転数150rpm、ベントの真空度3kPaであり、また押出温度は第一供給口から第二供給口まで270℃、第二供給口からダイス部分まで290℃とした。なお、強化充填剤は上記押出機のサイドフィーダーを使用し第二供給口から供給し、残りの熱可塑性樹脂および添加剤は第一供給口から押出機に供給した。ここでいう第一供給口とはダイスから最も離れた供給口であり、第二供給口とは押出機のダイスと第一供給口の間に位置する供給口である。
得られたペレットを120℃で5時間、熱風循環式乾燥機にて乾燥した後、射出成形機を用いて、評価用の試験片及び鏡筒成形体を成形した。各評価結果を表1に示した。
[Examples 1 to 12, Comparative Examples 1 to 10]
Polycarbonate resin, styrene resin, flat cross-section glass fiber, phosphate ester flame retardant, organic phosphate ester flame retardant, and various additives were mixed in a blender with various additives listed in Table 1 in various blending amounts. Then, it melt-kneaded using the vent type twin-screw extruder, and obtained the pellet. Various additives to be used were prepared in advance by premixing with a polycarbonate resin with a concentration of 10 to 100 times the blending amount as a guide, and then the whole was mixed by a blender. The vent type twin-screw extruder used was TEX-30XSST (completely meshing, rotating in the same direction, two-thread screw) manufactured by Nippon Steel Works. The extrusion conditions were a discharge rate of 20 kg / h, a screw rotation speed of 150 rpm, a vent vacuum of 3 kPa, and an extrusion temperature of 270 ° C. from the first supply port to the second supply port and 290 ° C. from the second supply port to the die part. did. The reinforcing filler was supplied from the second supply port using the side feeder of the extruder, and the remaining thermoplastic resin and additives were supplied from the first supply port to the extruder. The first supply port here is a supply port farthest from the die, and the second supply port is a supply port located between the die of the extruder and the first supply port.
The obtained pellets were dried in a hot air circulation dryer at 120 ° C. for 5 hours, and then an evaluation test piece and a lens barrel molded body were molded using an injection molding machine. The evaluation results are shown in Table 1.

表1中の記号表記の各成分は下記の通りである。
(A成分)
PC:粘度平均分子量22400の直鎖状ポリカーボネート樹脂パウダー(帝人化成(株)製:パンライトL−1225WP)
AS:アクリロニトリル−スチレン共重合体(第一毛織(株)製「STAREX HF5670」(商品名)、GPC測定による標準ポリスチレン換算の重量平均分子量:95,000、アクリロニトリル成分含有量:28.5重量%、スチレン成分含有量:71.5重量%)
ABS:アクリロニトリル−スチレンーブタジエン共重合体(日本エアイアンドエル(株)製「サンタックUT−61」(商品名)、塊状重合、遊離のAS重合体成分約80重量%およびABS重合体成分(アセトン不溶ゲル分)約20重量%、ブタジエンゴム成分含有量が全体の約15重量%)
Each component of the symbol notation in Table 1 is as follows.
(A component)
PC: Linear polycarbonate resin powder having a viscosity average molecular weight of 22400 (manufactured by Teijin Chemicals Ltd .: Panlite L-1225WP)
AS: Acrylonitrile-styrene copolymer (“STAREX HF5670” (trade name) manufactured by Daiichi Koryo Co., Ltd.), weight average molecular weight in terms of standard polystyrene by GPC measurement: 95,000, acrylonitrile component content: 28.5% by weight , Styrene component content: 71.5 wt%)
ABS: Acrylonitrile-styrene-butadiene copolymer (“Santac UT-61” (trade name) manufactured by Nippon Air and L Co., Ltd.), bulk polymerization, about 80% by weight of free AS polymer component and ABS polymer component (acetone Insoluble gel content) About 20% by weight, butadiene rubber component content is about 15% by weight of the total)

(B成分)
(B−1成分)
HGF−1:扁平断面チョップドガラス繊維(日東紡績(株)製:CSG 3PA−820、長径27μm、短径4μm、カット長3mm、ウレタン系集束剤)
HGF−2:扁平断面チョップドガラス繊維(日東紡績(株)製:CSG 3PA−830、長径27μm、短径4μm、カット長3mm、エポキシ系集束剤)
(B−2成分)
GFL:顆粒状ガラスフレーク(日本板硝子(株)製フレカREFG−301、標準篩法によるメジアン平均粒径140μm、厚み5μm、エポキシ系集束剤)
MICA:平均粒子径250μmマスコバイト(林化成(株)製「MC−40」(商品名))
TALC:タルク((株)勝光山鉱業所製「ビクトリライトTK−RC」(商品名)、かさ密度:0.80g/cm、平均粒子径:2μm)
(本発明以外の無機充填剤)
GF−1:円形断面チョップドガラス繊維(日本電気硝子(株)製;ECS―03T−511、直径13μm、カット長3mm、アミノシラン処理表面処理およびウレタン系集束剤)
(B component)
(B-1 component)
HGF-1: flat section chopped glass fiber (manufactured by Nitto Boseki Co., Ltd .: CSG 3PA-820, major axis 27 μm, minor axis 4 μm, cut length 3 mm, urethane sizing agent)
HGF-2: flat cross-section chopped glass fiber (manufactured by Nittobo Co., Ltd .: CSG 3PA-830, major axis 27 μm, minor axis 4 μm, cut length 3 mm, epoxy-based sizing agent)
(B-2 component)
GFL: Granular glass flakes (Fleka REFG-301 manufactured by Nippon Sheet Glass Co., Ltd., median average particle size 140 μm, thickness 5 μm, epoxy sizing agent by standard sieving method)
MICA: average particle size 250 μm mascobite (“MC-40” (trade name) manufactured by Hayashi Kasei Co., Ltd.)
TALC: Talc (“Victory Lite TK-RC” (trade name) manufactured by Katsumiyama Mining Co., Ltd., bulk density: 0.80 g / cm 3 , average particle size: 2 μm)
(Inorganic filler other than the present invention)
GF-1: Circular cross-section chopped glass fiber (manufactured by Nippon Electric Glass Co., Ltd .; ECS-03T-511, diameter 13 μm, cut length 3 mm, surface treatment with aminosilane and urethane sizing agent)

(C成分)
FR−1:レゾルシノールビス(ジキシレニルホスフェート)(大八化学工業(株)製「PX−200」(商品名)、TGA5%重量減少温度=351.0℃)
(D成分)
FR−2:パーフルオロブタンスルホン酸カリウム塩[大日本インキ(株)製:メガファックF−114P(商品名)]
(E成分)
PTFE:フィブリル形成能を有するポリテトラフルオロエチレン(ダイキン工業(株)製「ポリフロンMPA FA500」(商品名))
(その他の成分)
WAX:モンタン酸エステル(クラリアントジャパン(株)製;Licolub WE−1(商品名))
TMP:トリメチルホスフェート(大八化学工業(株)製TMP)
CB:カーボンブラックマスター(越谷化成(株)カーボンブラック40%含有ポリスチレン樹脂マスター)
(C component)
FR-1: resorcinol bis (dixylenyl phosphate) (“PX-200” (trade name) manufactured by Daihachi Chemical Industry Co., Ltd., TGA 5% weight loss temperature = 351.0 ° C.)
(D component)
FR-2: Potassium perfluorobutane sulfonate [Dainippon Ink Co., Ltd .: Megafac F-114P (trade name)]
(E component)
PTFE: Polytetrafluoroethylene having a fibril forming ability (“Polyflon MPA FA500” (trade name) manufactured by Daikin Industries, Ltd.)
(Other ingredients)
WAX: Montanate ester (manufactured by Clariant Japan KK; Licolub WE-1 (trade name))
TMP: Trimethyl phosphate (TMP manufactured by Daihachi Chemical Industry Co., Ltd.)
CB: Carbon Black Master (Polystyrene resin master containing 40% carbon black)

Figure 0005021928
Figure 0005021928

Figure 0005021928
Figure 0005021928

Claims (10)

芳香族ポリカーボネート樹脂(A−1成分)よりなる熱可塑性樹脂(A成分)40〜99重量%および繊維断面の長径の平均値が10〜50μm、長径と短径の比(長径/短径)の平均値が6.7〜8である扁平断面ガラス繊維(B−1成分)よりなる強化充填材(B成分)1〜60重量%の合計100重量部に対し、有機リン酸エステル系難燃剤(C成分)1〜30重量部および/またはパーフルオロアルキルスルホン酸アルカリ(土類)金属塩または芳香族スルホン酸アルカリ(土類)金属塩(D成分)0.005〜1重量部を含んでなるガラス繊維強化難燃性樹脂樹脂組成物を射出成形してなることを特徴とする鏡筒。 Thermoplastic resin (component A) composed of an aromatic polycarbonate resin (component A-1) 40 to 99% by weight, the average value of the major axis of the fiber cross section is 10 to 50 μm, the ratio of major axis to minor axis (major axis / minor axis) With respect to a total of 100 parts by weight of reinforcing filler (component B) consisting of flat cross-section glass fibers (component B-1) having an average value of 6.7 to 8, organic phosphate ester flame retardant ( C component) 1 to 30 parts by weight and / or alkali (earth) metal salt of perfluoroalkylsulfonic acid or alkali (earth) metal salt of aromatic sulfonate (component D) 0.005 to 1 part by weight A lens barrel obtained by injection molding a glass fiber reinforced flame retardant resin resin composition. 芳香族ポリカーボネート樹脂(A−1成分)よりなる熱可塑性樹脂(A成分)40〜99重量%および繊維断面の長径の平均値が10〜50μm、長径と短径の比(長径/短径)の平均値が6.7〜8である扁平断面ガラス繊維(B−1成分)及び板状無機充填剤(B−2成分)よりなり、(B−1成分)と(B−2成分)の重量比(B−1成分/B―2成分)が5/95〜95/5である強化充填材(B成分)1〜60重量%の合計100重量部に対し、有機リン酸エステル系難燃剤(C成分)1〜30重量部および/またはパーフルオロアルキルスルホン酸アルカリ(土類)金属塩または芳香族スルホン酸アルカリ(土類)金属塩(D成分)0.005〜1重量部を含んでなるガラス繊維強化難燃性樹脂樹脂組成物を射出成形してなることを特徴とする鏡筒。 Thermoplastic resin (component A) composed of an aromatic polycarbonate resin (component A-1) 40 to 99% by weight, the average value of the major axis of the fiber cross section is 10 to 50 μm, the ratio of major axis to minor axis (major axis / minor axis) It consists of a flat cross-section glass fiber (B-1 component) having an average value of 6.7 to 8 and a plate-like inorganic filler (B-2 component), and the weight of (B-1 component) and (B-2 component) The organic phosphate ester flame retardant (100 parts by weight of the reinforcing filler (B component) having a ratio (B-1 component / B-2 component) of 5/95 to 95/5, C component) 1 to 30 parts by weight and / or alkali (earth) metal salt of perfluoroalkylsulfonic acid or alkali (earth) metal salt of aromatic sulfonate (component D) 0.005 to 1 part by weight This is made by injection molding a glass fiber reinforced flame retardant resin composition. Barrel characterized by. 熱可塑性樹脂がスチレン系樹脂(A−2成分)を含有する請求項1または2に記載の鏡筒。   The lens barrel according to claim 1 or 2, wherein the thermoplastic resin contains a styrene resin (component A-2). スチレン系樹脂がポリスチレン、ABS樹脂、AS樹脂、及びHIPS樹脂からなる群より選ばれる一種以上の樹脂からなる請求項1〜3のいずれかに記載の鏡筒。   The lens barrel according to any one of claims 1 to 3, wherein the styrenic resin is made of one or more resins selected from the group consisting of polystyrene, ABS resin, AS resin, and HIPS resin. A成分が芳香族ポリカーボネート樹脂を50重量%以上含有することを特徴とする請求項1〜4のいずれかに記載の鏡筒。   The lens barrel according to any one of claims 1 to 4, wherein the component A contains 50% by weight or more of an aromatic polycarbonate resin. B−2成分がガラスフレーク、マイカ、及びタルクからなる群より選ばれる一種以上の板状無機充填剤である請求項2〜5のいずれかに記載の鏡筒。   The lens barrel according to any one of claims 2 to 5, wherein the B-2 component is one or more plate-like inorganic fillers selected from the group consisting of glass flakes, mica, and talc. B−1成分の平均繊維長と平均繊維径の比(アスペクト比)が2〜120である請求項1〜のいずれかに記載の鏡筒。 The lens barrel according to any one of claims 1 to 6 , wherein a ratio (aspect ratio) of an average fiber length and an average fiber diameter of the component B-1 is 2 to 120. C成分が下記一般式(1)で表される有機リン酸エステル系難燃剤である請求項1〜のいずれかに記載の鏡筒。
Figure 0005021928
(但し上記式中のXは、ハイドロキノン、レゾルシノール、ビス(4−ヒドロキシジフェニル)メタン、ビスフェノールA、ジヒドロキシジフェニル、ジヒドロキシナフタレン、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン及びビス(4−ヒドロキシフェニル)サルファイドからなる群から選ばれたジヒドロキシ化合物の2個の水酸基を除去して得られる二価の基が挙げられ、j、k、l、mはそれぞれ独立して0または1であり、nは0〜5の整数であり、または重合度nの異なるリン酸エステルの混合物の場合はnはその平均値を表し、0〜5の値であり、R、R、R、およびRはそれぞれ独立して1個以上のハロゲン原子で置換されていてもよいフェノール、クレゾール、キシレノール、イソプロピルフェノール、ブチルフェノール及びp−クミルフェノールからなる群から選ばれたモノヒドロキシ化合物の1個の水酸基を除去して得られる一価の基である。)
The lens barrel according to any one of claims 1 to 7 , wherein the C component is an organic phosphate ester flame retardant represented by the following general formula (1).
Figure 0005021928
(However, X 1 in the above formula is hydroquinone, resorcinol, bis (4-hydroxydiphenyl) methane, bisphenol A, dihydroxydiphenyl, dihydroxynaphthalene, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone and A divalent group obtained by removing two hydroxyl groups of a dihydroxy compound selected from the group consisting of bis (4-hydroxyphenyl) sulfide, and j, k, l and m are each independently 0 or 1 and n is an integer of 0 to 5, or in the case of a mixture of phosphate esters having different degrees of polymerization n, n represents an average value of 0 to 5 and R 1 , R 2 , R 3, and R 4 are each independently optionally substituted with one or more halogen atoms phenol, cresol, xylene Nord, isopropyl phenol, butyl phenol and p- cumyl one monovalent group derived hydroxyl group by removal of the monohydroxy compound selected from the group consisting of phenol.)
A成分とB成分の合計100重量部に対し、更に、含フッ素滴下防止剤(E成分)0.01〜3重量部を含有してなる請求項1〜のいずれかに記載の鏡筒。 The lens barrel according to any one of claims 1 to 8 , further comprising 0.01 to 3 parts by weight of a fluorine-containing anti-dripping agent (E component) with respect to 100 parts by weight of the total of A component and B component. E成分がポリテトラフルオロエチレンである請求項に記載の鏡筒。 The lens barrel according to claim 9 , wherein the E component is polytetrafluoroethylene.
JP2005302814A 2005-10-18 2005-10-18 A lens barrel made of a glass fiber reinforced flame retardant resin composition Active JP5021928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005302814A JP5021928B2 (en) 2005-10-18 2005-10-18 A lens barrel made of a glass fiber reinforced flame retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005302814A JP5021928B2 (en) 2005-10-18 2005-10-18 A lens barrel made of a glass fiber reinforced flame retardant resin composition

Publications (2)

Publication Number Publication Date
JP2007114264A JP2007114264A (en) 2007-05-10
JP5021928B2 true JP5021928B2 (en) 2012-09-12

Family

ID=38096556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005302814A Active JP5021928B2 (en) 2005-10-18 2005-10-18 A lens barrel made of a glass fiber reinforced flame retardant resin composition

Country Status (1)

Country Link
JP (1) JP5021928B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190063833A (en) * 2017-11-30 2019-06-10 롯데케미칼 주식회사 Glass fiber reinforced polycarbonate resin composition having improved heat stability and flame retardant

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226227B2 (en) * 2007-02-23 2013-07-03 ダイセルポリマー株式会社 Long fiber reinforced thermoplastic resin composition
JP5571279B2 (en) * 2007-11-01 2014-08-13 帝人株式会社 Flame retardant light diffusing polycarbonate resin composition
JP2009161748A (en) * 2007-12-14 2009-07-23 Mitsubishi Engineering Plastics Corp Fiber-reinforced flame-retardant thermoplastic resin composition, molded article and method for producing fiber-reinforced flame-retardant thermoplastic resin composition
JP5495796B2 (en) * 2007-12-20 2014-05-21 ユニチカ株式会社 Thermoplastic resin composition and molded body formed by molding the same
US20090227707A1 (en) * 2008-03-07 2009-09-10 Domenico La Camera Flame retardant polycarbonate based composition including carbon
JP5421548B2 (en) * 2008-05-19 2014-02-19 出光興産株式会社 Glass fiber reinforced flame retardant polycarbonate resin composition and molded article using the resin composition
JP2010015091A (en) * 2008-07-07 2010-01-21 Teijin Chem Ltd Lens barrel made of glass fiber reinforced resin composition
JP5524463B2 (en) * 2008-09-04 2014-06-18 帝人株式会社 A lens barrel made of a glass fiber reinforced flame retardant resin composition
JP5211994B2 (en) * 2008-09-30 2013-06-12 三菱エンジニアリングプラスチックス株式会社 Flame retardant aromatic polycarbonate resin composition and electrical and electronic parts comprising the same
JP2010275413A (en) * 2009-05-28 2010-12-09 Teijin Chem Ltd Glass-reinforced resin composition
JP5399136B2 (en) * 2009-06-09 2014-01-29 株式会社クラレ Camera module barrel or holder
JP5144601B2 (en) * 2009-07-17 2013-02-13 ダイセルポリマー株式会社 Flame retardant resin composition
JP2011026439A (en) * 2009-07-24 2011-02-10 Teijin Chem Ltd Glass fiber-reinforced resin composition
US20110071241A1 (en) * 2009-09-23 2011-03-24 Bayer Materialscience Llc Flame retardant, optically clear thermoplastic molding composition
KR20140092470A (en) * 2012-12-28 2014-07-24 코오롱플라스틱 주식회사 Polycabonate resin composition and polycabonate resin molded articles comprising the same
JP5744077B2 (en) * 2013-01-29 2015-07-01 ユーエムジー・エービーエス株式会社 Reinforced thermoplastic resin composition and molded article
CN105051110B (en) * 2013-03-21 2018-05-25 帝人株式会社 Glass fiber-reinforced poly carbonate resin composition
KR102141727B1 (en) * 2017-12-31 2020-08-05 롯데첨단소재(주) Lens barrel member
JP7363042B2 (en) 2019-02-12 2023-10-18 コニカミノルタ株式会社 Resin composition, its manufacturing method and molded product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3007237B2 (en) * 1993-01-11 2000-02-07 帝人化成株式会社 Aromatic polycarbonate resin molded product
JPH1030056A (en) * 1996-07-16 1998-02-03 Mitsubishi Eng Plast Kk Polycarbonate resin composition
JP4971544B2 (en) * 2001-01-10 2012-07-11 出光興産株式会社 Polycarbonate resin composition and molded product
JP2003277597A (en) * 2002-03-25 2003-10-02 Teijin Chem Ltd Glass fiber-reinforced polycarbonate resin composition
JP4105004B2 (en) * 2003-02-24 2008-06-18 出光興産株式会社 A lens barrel made of a flame retardant polycarbonate resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190063833A (en) * 2017-11-30 2019-06-10 롯데케미칼 주식회사 Glass fiber reinforced polycarbonate resin composition having improved heat stability and flame retardant
KR102200883B1 (en) * 2017-11-30 2021-01-11 롯데케미칼 주식회사 Glass fiber reinforced polycarbonate resin composition having improved heat stability and flame retardant

Also Published As

Publication number Publication date
JP2007114264A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP5021928B2 (en) A lens barrel made of a glass fiber reinforced flame retardant resin composition
JP5021918B2 (en) Glass fiber reinforced flame retardant resin composition
JP6195904B2 (en) Glass fiber reinforced polycarbonate resin composition
JP5602997B2 (en) Glass fiber reinforced aromatic polycarbonate resin composition
JP5524463B2 (en) A lens barrel made of a glass fiber reinforced flame retardant resin composition
JP5085862B2 (en) Resin composition for flat panel display fixing frame and flat panel display fixing frame
JP2011026439A (en) Glass fiber-reinforced resin composition
JP5752990B2 (en) High cycle moldable thermoplastic resin composition
JP2010015091A (en) Lens barrel made of glass fiber reinforced resin composition
JP2010275346A (en) Glass fiber-reinforced resin composition
JP2011001514A (en) Electric-electronic device component obtained by performing injection molding of glass fiber-reinforced resin composition
JP5048948B2 (en) Glass fiber reinforced aromatic polycarbonate resin composition
JP2007211157A (en) Glass fiber-reinforced flame-retardant polycarbonate resin composition
JP6181513B2 (en) Carbon fiber reinforced polycarbonate resin composition
JP5431758B2 (en) Polycarbonate resin composition
JP5541881B2 (en) Glass reinforced resin composition
JP6196072B2 (en) Resin composition for decorative molding
JP5352076B2 (en) Resin composition
JPWO2009060986A1 (en) Resin composition
JP2015059138A (en) Flame retardant glass fiber-reinforced polycarbonate resin composition
JP2010275413A (en) Glass-reinforced resin composition
JP2015137308A (en) Fire retardant carbon fiber reinforced polycarbonate resin composition
JP2011140545A (en) Fiber-reinforced resin composition and resin molded article produced by molding the same
JP2011016901A (en) Electric-electronic equipment part
JP5662220B2 (en) Glass reinforced resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110711

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120615

R150 Certificate of patent or registration of utility model

Ref document number: 5021928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3