JP6041374B2 - Spot welding method for steel plates with different thickness - Google Patents
Spot welding method for steel plates with different thickness Download PDFInfo
- Publication number
- JP6041374B2 JP6041374B2 JP2012038093A JP2012038093A JP6041374B2 JP 6041374 B2 JP6041374 B2 JP 6041374B2 JP 2012038093 A JP2012038093 A JP 2012038093A JP 2012038093 A JP2012038093 A JP 2012038093A JP 6041374 B2 JP6041374 B2 JP 6041374B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- plate
- steel plates
- spot welding
- plate side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003466 welding Methods 0.000 title claims description 45
- 229910000831 Steel Inorganic materials 0.000 title claims description 38
- 239000010959 steel Substances 0.000 title claims description 38
- 238000000034 method Methods 0.000 title claims description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 16
- 229910052721 tungsten Inorganic materials 0.000 claims description 15
- 239000010937 tungsten Substances 0.000 claims description 15
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 239000011733 molybdenum Substances 0.000 claims description 8
- 239000011162 core material Substances 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000000463 material Substances 0.000 description 23
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910001335 Galvanized steel Inorganic materials 0.000 description 2
- 239000008397 galvanized steel Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- -1 specifically Inorganic materials 0.000 description 1
Images
Landscapes
- Resistance Welding (AREA)
Description
本発明は、板厚の異なる2枚の鋼板を重ね合わせた板厚比のある板組みのスポット溶接方法に関する。 The present invention relates to a spot welding method for a plate assembly having a plate thickness ratio in which two steel plates having different plate thicknesses are overlapped.
昨近、住宅建材分野や自動車分野などでは、重ね合わせた2枚の鋼板を接合する際、高効率性などの観点から、スポット溶接法が多用されている。接合する2枚の鋼板の板厚が同等であれば、ほとんど問題なくスポット溶接される(図1(a)参照)が、板厚の異なる2枚の鋼板を重ね合わせた板厚比のある板組みをスポット溶接すると、所望の接合強度が得られないなどの不具合が発生することがある。
通常の同厚の溶接で用いられるような上下とも同一形状、同一材質の電極で溶接を行うと、水冷された電極から受ける冷却効果は上下とも等しいことから、差厚であっても電極間の中央から発熱してナゲットが形成されるため、鋼板界面へのナゲットの成長が遅れることに起因すると考えられている(図1(b)参照)。
Recently, in the housing construction material field, the automobile field, and the like, spot welding is frequently used from the viewpoint of high efficiency and the like when joining two stacked steel sheets. If the two steel plates to be joined have the same thickness, they are spot-welded with almost no problem (see FIG. 1 (a)), but a plate having a thickness ratio in which two steel plates having different thicknesses are stacked. When a set is spot welded, problems such as failure to obtain a desired joint strength may occur.
If welding is performed with electrodes of the same shape and the same material on the top and bottom as used in normal welding with the same thickness, the cooling effect received from the water-cooled electrodes is the same on both the top and bottom. Since nuggets are formed by heat generation from the center, it is considered that the growth of nuggets on the steel plate interface is delayed (see FIG. 1B).
所望の接合強度を発現させるためには、重ね合わせた鋼板の接合界面でナゲットを形成させることが必要となる。
このため、板厚の異なる2枚の鋼板を重ね合わせた板厚比のある板組みをスポット溶接する際に、図1(c)に見られるように、用いる電極の先端径を異ならせ、厚板側には先端径を大きくした電極を、薄板側には先端径を小さくした電極を用いている。これにより、電極の接触面積を異ならせ、電極からの冷却条件を変化させて、鋼板界面寄りにナゲット形成位置をずらしている(例えば非特許文献1)。
In order to develop a desired bonding strength, it is necessary to form a nugget at the bonding interface of the stacked steel sheets.
For this reason, when spot welding a plate assembly having a plate thickness ratio in which two steel plates having different plate thicknesses are overlapped, as shown in FIG. An electrode with a large tip diameter is used on the plate side, and an electrode with a small tip diameter is used on the thin plate side. Thereby, the contact area of the electrode is varied, the cooling condition from the electrode is changed, and the nugget formation position is shifted closer to the steel plate interface (for example, Non-Patent Document 1).
また、特許文献1には高剛性の2枚の厚板材と低剛性の1枚の薄板材を重ね合わせた板組みを、一対の電極チップにより挟んでスポット溶接する際に、剛性が最も小さい薄板材側に接する電極チップの先端径を厚板材側に接する電極チップの先端よりも小さくすることで、薄板材と電極チップが接する面積が厚板材と電極チップが接する面積よりも小さくなり、低剛性の板材と他の板材間の接触部にナゲットが形成され、溶接強度を向上させることができる手法が提案されている。 Further, Patent Document 1 discloses a thin plate having the smallest rigidity when spot welding is performed by sandwiching a plate assembly in which two thick plates having high rigidity and one thin plate having low rigidity are stacked between each other. By making the tip diameter of the electrode tip in contact with the plate material side smaller than the tip of the electrode tip in contact with the thick plate material side, the area where the thin plate material and the electrode chip contact is smaller than the area where the thick plate material and the electrode chip contact, resulting in low rigidity A method has been proposed in which a nugget is formed at a contact portion between the other plate material and another plate material, and the welding strength can be improved.
さらに、特許文献2には重ね合わせた2枚以上の厚板の一方に薄板を重ね合わせた板組みを一対の電極チップで挟み、スポット溶接する際に、薄板側の電極チップの先端が所定の曲率半径を有する曲面である電極チップとし、他方の厚板側の電極チップを先端が平面または薄板側に接する電極チップの先端の曲率半径より大きな曲率半径を有する曲面である電極チップとし、スポット溶接を第一段および第二段の二段階からなる溶接とし、第二段の溶接が第一段の溶接に比べて高加圧力の溶接とし、且つ、第二段の溶接電流値を第一段の溶接の電流値以下とすることを特徴とするスポット溶接方法が提案されている。
Furthermore, in
さらにまた、特許文献3には重ね合わされた2枚の厚板の少なくとも一方に薄板をさらに重ね合わせた板厚比の大きな板組をスポット溶接する際に、薄板の溶接すべき部位に部分的に一般部より一段高い座面を形成するとともに、薄板に対向する電極の先端を球面に形成し、溶接初期は低下圧で薄板の座面を球面の電極によって球面状に押しつぶすよう変形させて、薄板と隣り合う厚板と溶接し、その後、高加圧力で2枚の厚板同士を溶接することを特徴とするスポット溶接方法が提案されている。
Furthermore, in
しかしながら、非特許文献1や特許文献1、特許文献2のように先端径や先端形状の異なる2種類の電極を準備することは、電極の管理が2倍になるばかりでなく、電極研磨用の工具も2種類必要となって、結果的にコスト高となってしまう。
また、特許文献2では溶接途中に加圧力や電流を変更させる制御を必須とするものであるため、制御の設定に手間が掛かる上、設備費用の増大も招く。
However, preparing two types of electrodes having different tip diameters and tip shapes as in Non-Patent Document 1, Patent Document 1, and
Moreover, in
さらに、特許文献3では薄板の溶接する部分に予め一般部よりも一段高い座面をプレス加工などで形成する工程が必要となり、生産性が低下するという問題がある。
本発明は、このような問題点を解消するために案出されたものであり、板厚の異なる2枚の鋼板を重ね合わせた板厚比のある板組みをスポット溶接する際に、先端径や先端形状が同一の電極を用いても、ナゲットの形成位置が溶接しようとする鋼板の界面付近になるようにして接合強度の高いスポット溶接方法を提供することを目的とする。
Furthermore,
The present invention has been devised in order to solve such problems. When spot welding a plate assembly having a thickness ratio in which two steel plates having different thicknesses are overlapped, the tip diameter is determined. Another object of the present invention is to provide a spot welding method with high joint strength so that the nugget formation position is in the vicinity of the interface of the steel sheet to be welded even when electrodes having the same tip shape are used.
本発明の板厚の異なる鋼板のスポット溶接方法は、その目的を達成するため、板厚の異なる複数の鋼板を重ね合わせた板厚比のある板組みをスポット溶接する際に、同一の形状を有し、薄板側にタングステン又はモリブデン若しくはそれらを基材とする合金からなる電極を、厚板側に銅合金からなる電極厚板側に銅合金からなる電極を用いることを特徴とする。
また、薄板側に配する電極としては、タングステン又はモリブデン若しくはそれらを基材とする合金からなる芯材を先端に埋設した銅製の電極を用いることがより好ましい。
In order to achieve the object, the spot welding method for steel plates having different thicknesses according to the present invention has the same shape when spot welding a plate assembly having a thickness ratio in which a plurality of steel plates having different thicknesses are stacked. And an electrode made of tungsten or molybdenum or an alloy based on them on the thin plate side, and an electrode made of copper alloy on the electrode thick plate side made of copper alloy on the thick plate side.
Further, as the electrode disposed on the thin plate side, it is more preferable to use a copper electrode in which a core material made of tungsten or molybdenum or an alloy based on them is embedded at the tip.
本発明では、板厚の異なる複数の鋼板を重ね合わせた板厚比のある板組みをスポット溶接する際に、薄板側電極からの冷却効果を小さくすることができている。このため、薄板側において板厚方向へのナゲット成長を促進させて、鋼板界面でのナゲット形成を得易くすることができている。その結果、板厚の異なる2枚の鋼板を重ね合わせた板組みであっても、所望の接合強度が発現できるスポット溶接を、上下電極の先端径や先端形状を異ならせたり、加圧力や電流値を複雑に制御することなく、一般的な溶接条件で、かつ高効率で安定的に行うことができる。 In the present invention, the cooling effect from the thin plate side electrode can be reduced when a plate assembly having a plate thickness ratio obtained by superposing a plurality of steel plates having different plate thicknesses is spot-welded. For this reason, nugget growth in the plate thickness direction is promoted on the thin plate side, and nugget formation at the steel plate interface can be easily obtained. As a result, spot welding that can produce the desired joint strength, even with a plate assembly in which two steel plates with different thicknesses are overlapped, has different tip diameters and tip shapes of the upper and lower electrodes, pressure force and current. Without complicated control of the value, it can be performed stably under general welding conditions and with high efficiency.
本発明者らは、板厚の異なる2枚の鋼板を重ね合わせた板厚比のある板組みをスポット溶接する際に、ナゲット形成位置が溶接しようとする2枚の鋼板の界面になるように調整する手段について鋭意検討した。
前記したように、従来技術では、板厚の異なる2枚の鋼板を重ね合わせた板厚比のある板組みをスポット溶接する際に、厚板側には先端径を大きくした電極を、薄板側には先端径を小さくした電極を用いていることにより、薄板側の電極からの冷却速度を遅らせて鋼板界面寄りにナゲット形成位置をずらしている。
そこで、電極の先端形状が同じであっても、薄板側の電極からの冷却速度が遅ければ、鋼板界面近傍の残存熱が均等になって当該部位近傍にナゲットが形成されると推測し、本発明に到達した。
When performing spot welding of a plate assembly having a thickness ratio in which two steel plates having different thicknesses are overlapped, the present inventors make the nugget formation position an interface between the two steel plates to be welded. We intensively studied how to adjust.
As described above, in the prior art, when spot welding a plate assembly having a thickness ratio in which two steel plates having different thicknesses are overlapped, an electrode having a large tip diameter is provided on the thick plate side, Since an electrode having a reduced tip diameter is used, the cooling rate from the electrode on the thin plate side is delayed to shift the nugget formation position closer to the steel plate interface.
Therefore, even if the tip shape of the electrode is the same, if the cooling rate from the electrode on the thin plate side is slow, it is assumed that the residual heat near the steel plate interface becomes uniform and nuggets are formed near the part. The invention has been reached.
以下、本発明について詳述する。
通常のスポット溶接法では、電極として銅系の素材を用いる場合が多い。そこで、本発明でも、一方の電極として銅材を、具体的には安価で数多く流通している1%程度のCrを含有したCr−Cu合金を用いる。他方の電極としては、Cr−Cu合金よりも熱伝導率が低い材料からなるものを、具体的にはタングステン(W)を用いる。
Hereinafter, the present invention will be described in detail.
In ordinary spot welding, a copper-based material is often used as an electrode. Therefore, also in the present invention, a copper material is used as one of the electrodes, specifically, a Cr-Cu alloy containing about 1% of Cr that is widely distributed at low cost. As the other electrode, an electrode made of a material having a lower thermal conductivity than that of the Cr—Cu alloy, specifically, tungsten (W) is used.
そして、薄板側には熱伝導率が低い材質からなる電極、すなわちタングステン製電極を配し、厚板側には熱伝導率が高い材質からなる電極、すなわちCr−Cu合金製電極を配してスポット溶接する。
なお、1%のCrを含有したCr−Cu合金と、タングステン(W)の熱伝導率を表1に示しておく。
An electrode made of a material having a low thermal conductivity, that is, a tungsten electrode is arranged on the thin plate side, and an electrode made of a material having a high thermal conductivity, that is, a Cr-Cu alloy electrode is arranged on the thick plate side. Spot weld.
Table 1 shows the thermal conductivity of the Cr—Cu alloy containing 1% Cr and tungsten (W).
熱伝導率が高い材質からなる電極としては、例えば全体をタングステン製としてもよいが、電極自体の冷却性を考慮すると、タングステンからなる芯材を先端に埋設した銅製のものであることが好ましい。
厚板側電極の方が薄板側電極よりも熱伝導率が高いので、図2に見られるように、スポット溶接電流を流した後、薄板側電極からよりも厚板側電極を通しての冷却が進んでナゲット形成位置が2枚の鋼板を重ねた中心位置から薄板側である接合界面付近に移動するため、所望の接合強度が低電流で得られる。
The electrode made of a material having high thermal conductivity may be made of, for example, tungsten as a whole. However, considering the cooling property of the electrode itself, it is preferable that the electrode is made of copper with a core material made of tungsten embedded at the tip.
Since the thick plate side electrode has higher thermal conductivity than the thin plate side electrode, as shown in FIG. 2, after passing the spot welding current, the cooling through the thick plate side electrode proceeds more than from the thin plate side electrode. Since the nugget formation position moves from the center position where the two steel plates are stacked to the vicinity of the bonding interface on the thin plate side, a desired bonding strength can be obtained with a low current.
0.6mmの厚さの亜鉛めっき鋼板と、1.6mmの厚さの普通鋼板を、図3に示す形状に裁断して試料とし、図4に示す形状を有する電極を用い、表2に示す条件でスポット溶接を行なった。なお、薄板側にφ6mmのタングステン製芯材を先端に埋設したCu製の電極を、厚板側にCr−Cu合金製の電極を配してスポット溶接した。比較として、薄板側と厚板側の両方ともCr−Cu合金製の電極を配してスポット溶接も行った。
その後、溶接接合体について、溶接部断面の観察を行ってナゲットの図5に示すサイズを測定するとともに、引張剪断試験を行った。
A galvanized steel sheet having a thickness of 0.6 mm and a plain steel sheet having a thickness of 1.6 mm are cut into the shape shown in FIG. 3 as a sample, and an electrode having the shape shown in FIG. 4 is used and shown in Table 2. Spot welding was performed under the conditions. Note that a Cu electrode in which a φ6 mm tungsten core material was embedded at the tip on the thin plate side and a Cr—Cu alloy electrode on the thick plate side were spot welded. For comparison, spot welding was also performed by arranging Cr-Cu alloy electrodes on both the thin plate side and the thick plate side.
Thereafter, the welded joint was observed for the cross section of the welded portion to measure the size of the nugget shown in FIG.
その結果を図6,7,8に示す。
図6には引張剪断試験結果を、図7にはナゲット厚みの測定結果、図8には鋼板界面ナゲット径の測定結果を示す。
図6より、溶接電流を増加させると、いずれの電極組合せにおいても引張剪断荷重は同一荷重域に飽和しているが、ナゲット形成初期段階である低電流域(6〜7.5kA)では薄板側に低熱伝導率材質であるタングステン(W)製芯材を先端に埋設したCu製電極を、厚板側に高熱伝導率材質のCr−Cu合金製電極を用いた組合せの方が、高い引張剪断荷重が得られており、さらに引張剪断試験における破断形態についても母材破断となっている。
The results are shown in FIGS.
FIG. 6 shows the tensile shear test results, FIG. 7 shows the nugget thickness measurement results, and FIG. 8 shows the steel plate interface nugget diameter measurement results.
From FIG. 6, when the welding current is increased, the tensile shear load is saturated in the same load region in any electrode combination, but in the low current region (6-7.5 kA), which is the initial stage of nugget formation, the thin plate side The combination of a Cu electrode with a tungsten (W) core material, which is a low thermal conductivity material, embedded in the tip, and a Cr-Cu alloy electrode, which is a high thermal conductivity material, on the thick plate side is higher in tensile shear. A load is obtained, and the fracture state in the tensile shear test is also a base material fracture.
これは、図7および図8からわかるように、薄板側に低熱伝導率材質であるタングステン(W)製芯材を先端に埋設したCu製電極を、厚板側に高熱伝導率材質のCr−Cu合金製電極を用いた組合せの方が、薄板側において電極から受ける冷却効果が小さくなるため、薄板側のナゲットの板厚方向への成長が速くなり、それに伴って鋼板界面に形成されるナゲット径が大きくなっていることに起因していると考えられる。
板厚の異なる鋼板を重ね合わせたスポット溶接の連続溶接における電極寿命は、同一材質、同一形状の電極で溶接した場合、ナゲット外周部近傍に鋼板界面が位置する(図1(b)参照)ため、連続溶接によって電極が損耗し、先端径が拡大することにより電流密度が低下した際、ジュール発熱量が低下しナゲットが縮小してしまい、早期に鋼板界面にナゲットが形成されなくなるため、鋼板界面がナゲット中央部に位置する同厚の鋼板を重ね合わせた場合よりも電極寿命は短くなる。また、ナゲットを鋼板界面に形成しようとすると溶接電流を高くしなければならない(図7参照)ため、電極の損耗が進み電極寿命が短くなる。
As can be seen from FIG. 7 and FIG. 8, a Cu electrode in which a tungsten (W) core material, which is a low thermal conductivity material, is embedded on the thin plate side on the thin plate side, and a Cr— The combination using a Cu alloy electrode has a smaller cooling effect from the electrode on the thin plate side, so that the growth of the nugget on the thin plate side in the plate thickness direction becomes faster, and accordingly the nugget formed at the steel plate interface This is thought to be due to the increased diameter.
The electrode life in spot welding continuous welding with steel plates with different thicknesses overlaps with the steel material interface near the outer periphery of the nugget when welding with electrodes of the same material and shape (see Fig. 1 (b)). When the current density decreases due to electrode wear due to continuous welding and the increase in tip diameter, the joule heat generation decreases and the nugget shrinks, and the nugget is not formed at the steel sheet interface at an early stage. However, the electrode life is shorter than when the steel plates of the same thickness located at the center of the nugget are overlapped. Further, if the nugget is to be formed at the steel plate interface, the welding current must be increased (see FIG. 7), so that the electrode wears out and the electrode life is shortened.
これに対して、本発明では板厚の異なる鋼板を重ね合わせたスポット溶接時に熱伝導率が異なる電極を用いることにより、薄板側において板厚方向へのナゲット成長が促進されるため、連続溶接時における電極損耗によるジュール発熱量低下に伴うナゲット縮小時においても鋼板界面にナゲットが形成されなくなる時期が遅くなる。また、同一材質、同一形状の電極で溶接した場合と比較して、溶接電流を低く設定することができる(図7参照)。ゆえに、本発明を用いることで、板厚が異なる鋼板を重ね合わせたスポット溶接時の電極寿命を改善することができる。 On the other hand, in the present invention, by using electrodes having different thermal conductivities during spot welding in which steel plates having different thicknesses are overlapped, nugget growth in the thickness direction is promoted on the thin plate side. Even when the nugget is reduced due to a decrease in the amount of Joule heat generated due to electrode wear, the time when no nugget is formed at the steel plate interface is delayed. Moreover, compared with the case where it welds with the electrode of the same material and the same shape, a welding current can be set low (refer FIG. 7). Therefore, by using the present invention, it is possible to improve the electrode life at the time of spot welding in which steel plates having different thicknesses are overlapped.
なお、本実施例は亜鉛めっき鋼板と普通鋼板の組合せで行ったが、本発明はこれに限られることはなく、あらゆるめっき種、材質、板組み合わせに適用できる。
また、重ね合わせる鋼板の枚数も2枚に限らず、例えば、重ね合わせた2枚の厚板に1枚の薄板を重ね合わせるなど複数枚の板組み合わせにも適用してもよい。
さらに、熱伝導率が低い材質としてタングステン(W)を用いたが、モリブデンもタングステンとほとんど同じ挙動を示す金属であるため、タングステンで得られた結果はモリブデンにも当てはまると予測できる。よって、その他、モリブテン、タングステンやモリブデンを基材とする合金など低熱伝導率を有し、導電性がある材質を適用してもよい。
In addition, although the present Example was performed with the combination of the galvanized steel plate and the ordinary steel plate, the present invention is not limited to this, and can be applied to any plating type, material, and plate combination.
Further, the number of steel plates to be overlapped is not limited to two. For example, the present invention may be applied to a combination of a plurality of plates, for example, by superimposing one thin plate on two stacked thick plates.
Furthermore, tungsten (W) was used as a material having low thermal conductivity. However, since molybdenum is a metal that exhibits almost the same behavior as tungsten, the results obtained with tungsten can be expected to apply to molybdenum. Therefore, a material having low thermal conductivity and conductivity, such as molybdenum, an alloy based on tungsten or molybdenum, may be used.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012038093A JP6041374B2 (en) | 2012-02-24 | 2012-02-24 | Spot welding method for steel plates with different thickness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012038093A JP6041374B2 (en) | 2012-02-24 | 2012-02-24 | Spot welding method for steel plates with different thickness |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013173155A JP2013173155A (en) | 2013-09-05 |
JP6041374B2 true JP6041374B2 (en) | 2016-12-07 |
Family
ID=49266593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012038093A Active JP6041374B2 (en) | 2012-02-24 | 2012-02-24 | Spot welding method for steel plates with different thickness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6041374B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101865501B1 (en) * | 2017-02-22 | 2018-06-07 | 부경대학교 산학협력단 | Electric resistance spot welding machine with surface friction heating |
KR101865483B1 (en) * | 2016-12-23 | 2018-07-13 | 부경대학교 산학협력단 | Apparatus and method for spot welding of dissimilar metal plates |
WO2024056980A1 (en) * | 2022-09-16 | 2024-03-21 | Gaming Engineering | Spot welding method |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6153744B2 (en) * | 2013-03-06 | 2017-06-28 | 新日鐵住金株式会社 | Manufacturing method of welded joint |
JP6406297B2 (en) * | 2016-03-28 | 2018-10-17 | マツダ株式会社 | Method for manufacturing spot weldment and manufacturing apparatus therefor |
JP6519510B2 (en) * | 2016-03-28 | 2019-05-29 | マツダ株式会社 | Method of manufacturing spot welds and manufacturing apparatus therefor |
JP7003805B2 (en) * | 2018-03-30 | 2022-01-21 | 日本製鉄株式会社 | Joined structure and its manufacturing method |
CN111745274A (en) * | 2019-03-27 | 2020-10-09 | 中国科学院上海光学精密机械研究所 | Resistance spot welding method for differential thickness metal workpiece |
JP7208193B2 (en) * | 2020-07-08 | 2023-01-18 | フタバ産業株式会社 | Resistance spot welding method and resistance spot welding device |
JP7132300B2 (en) | 2020-09-18 | 2022-09-06 | フタバ産業株式会社 | Resistance spot welding method and resistance spot welding device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01154880A (en) * | 1987-12-11 | 1989-06-16 | Mazda Motor Corp | Resistance welding method |
JPH07214337A (en) * | 1994-02-07 | 1995-08-15 | Honda Motor Co Ltd | Resistance welding method of low electric resistant metal member |
JPH11342477A (en) * | 1998-06-01 | 1999-12-14 | Mitsubishi Electric Corp | Spot welding method |
JP4683896B2 (en) * | 2004-10-05 | 2011-05-18 | 日本タングステン株式会社 | Spot welding electrode |
JP2009220168A (en) * | 2008-03-18 | 2009-10-01 | Aisin Seiki Co Ltd | Electrode for resistance welding |
-
2012
- 2012-02-24 JP JP2012038093A patent/JP6041374B2/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101865483B1 (en) * | 2016-12-23 | 2018-07-13 | 부경대학교 산학협력단 | Apparatus and method for spot welding of dissimilar metal plates |
KR101865501B1 (en) * | 2017-02-22 | 2018-06-07 | 부경대학교 산학협력단 | Electric resistance spot welding machine with surface friction heating |
WO2024056980A1 (en) * | 2022-09-16 | 2024-03-21 | Gaming Engineering | Spot welding method |
FR3139742A1 (en) * | 2022-09-16 | 2024-03-22 | Gaming Engineering | Spot welding process |
Also Published As
Publication number | Publication date |
---|---|
JP2013173155A (en) | 2013-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6041374B2 (en) | Spot welding method for steel plates with different thickness | |
JP6108030B2 (en) | Resistance spot welding method | |
CN107160022A (en) | For aluminium workpiece and steel workpiece resistance spot welding match somebody with somebody composite electrode | |
KR101863466B1 (en) | Resistive spot welding device, composite electrode, and resistive spot welding method | |
JP2008093726A (en) | Lap resistance spot welding method | |
JP5938747B2 (en) | Rivet, dissimilar material joining structure provided with rivets, and dissimilar material joint manufacturing method | |
JP2008161877A (en) | Lap resistance spot welding method | |
WO2016056563A1 (en) | Arc spot welding method and welding device for performing same | |
JP6112209B2 (en) | Resistance spot welding method and manufacturing method of welded structure | |
JP6094079B2 (en) | Resistance spot welding method | |
Charde | Effects of electrode deformation of resistance spot welding on 304 austenitic stainless steel weld geometry | |
JP6136249B2 (en) | SPOT WELDING ELECTRODE, SPOT WELDING METHOD, AND SPOT WELDING MEMBER | |
JP2020062655A (en) | Spot weldment | |
JP6037018B2 (en) | Resistance spot welding method | |
JP5906618B2 (en) | Resistance spot welding method | |
JP6060579B2 (en) | Resistance spot welding method | |
JP6089901B2 (en) | Manufacturing method of joined body, resistance spot welding apparatus and composite electrode used therefor | |
JP5901014B2 (en) | Resistance welding method for plated steel cylindrical member | |
KR101871077B1 (en) | Resistance spot welding method and welded structure | |
JP6175041B2 (en) | Spot welding method | |
JP2011031269A (en) | Resistance welding apparatus, and electrode used therefor | |
JP2017140633A (en) | Spot welding method | |
JP2009190046A (en) | Spot welding method of high-tensile steel plate, and weld joint of high-tensile steel plate | |
JP4521756B2 (en) | Spot welding electrode | |
JP6811063B2 (en) | Resistance spot welding method and resistance spot welding joint manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150108 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160212 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160916 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20161012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161104 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6041374 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |