JP6036664B2 - Running thickness change method and apparatus - Google Patents

Running thickness change method and apparatus Download PDF

Info

Publication number
JP6036664B2
JP6036664B2 JP2013244537A JP2013244537A JP6036664B2 JP 6036664 B2 JP6036664 B2 JP 6036664B2 JP 2013244537 A JP2013244537 A JP 2013244537A JP 2013244537 A JP2013244537 A JP 2013244537A JP 6036664 B2 JP6036664 B2 JP 6036664B2
Authority
JP
Japan
Prior art keywords
plate thickness
change
change amount
rolling
thickness change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013244537A
Other languages
Japanese (ja)
Other versions
JP2015100826A (en
Inventor
知義 小笠原
知義 小笠原
磯川 徹
徹 磯川
佑輔 吉岡
佑輔 吉岡
達人 福島
達人 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013244537A priority Critical patent/JP6036664B2/en
Publication of JP2015100826A publication Critical patent/JP2015100826A/en
Application granted granted Critical
Publication of JP6036664B2 publication Critical patent/JP6036664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Description

本発明は、タンデム圧延機で連続圧延する際の走間板厚変更方法および装置に関するものである。   The present invention relates to a method and apparatus for changing a running plate thickness when continuously rolling with a tandem rolling mill.

冷間連続圧延では、タンデム圧延機の入側で先行材尾端と後行材先端を溶接して、一つの連続した金属帯としてタンデム圧延機で連続的に圧延する。そして、圧延機の出側にて製品単位の位置で切断し、テンションリールで順次巻き取る。   In the cold continuous rolling, the leading end of the preceding material and the leading end of the succeeding material are welded on the entry side of the tandem rolling mill and continuously rolled by the tandem rolling mill as one continuous metal strip. And it cut | disconnects in the position of a product unit at the delivery side of a rolling mill, and winds up one by one with a tension reel.

圧延にあたっては、先行材と後行材の硬度、母板厚、仕上厚のいずれかが異なる場合には、先行材と後行材が各々目標の板厚となるように圧延機のロールギャップとロール速度を制御する、所謂、走間板厚変更(以下、走変と略称することもある)の技術が良く知られている。   In rolling, if any of the hardness, base plate thickness, and finishing thickness of the preceding material and the following material is different, the roll gap of the rolling mill is set so that the preceding material and the following material each have the target thickness. A technique for controlling the roll speed, that is, a so-called running plate thickness change (hereinafter also referred to as running change) is well known.

このような先行材と後行材をそれぞれの目標の板厚となるように制御する走間板厚変更方法以外にも、操業上のトラブルを回避するために、コイルの溶接点前後を定常部よりも厚く圧延する板厚制御方法(以降、厚み付け圧延と称する)が、以下に示す特許文献1〜4に開示されている。   In addition to the running plate thickness changing method that controls the preceding and succeeding materials to the respective target plate thicknesses, in order to avoid operational troubles, the coil A sheet thickness control method (hereinafter referred to as “thickening rolling”) that rolls thicker is disclosed in Patent Documents 1 to 4 shown below.

先行材と後行材の仕上厚目標値が薄い場合には、コイル状にした際に内巻部にかかる応力によりコイルが潰れてしまうことがあり、これを防止するために、従来はスリーブと呼ばれる鋼板をコイル先端に接合して厚み付けしていた。先ず、特許文献1では、スリーブ接合に伴うコスト削減のため、スリーブの代わりに溶接点前後で厚み付け圧延することが開示されている。   When the finish thickness target value of the preceding material and the following material is thin, the coil may be crushed by the stress applied to the inner winding part when it is formed into a coil shape. A steel plate called was joined to the coil tip to thicken it. First, Patent Document 1 discloses that thickness rolling is performed before and after a welding point instead of a sleeve in order to reduce the cost associated with sleeve joining.

また特許文献2には、テンションリールに巻きつく際の過張力状態においても、破断なく安定的に巻き取りを行うことを目的に、極薄材の溶接点前後を厚み付け圧延する方法が開示されている。この方法は、まず先行材の製品厚(極薄部)より厚い中間板厚目標値に圧延し、そこから溶接点前後をさらに厚く圧延する2段階にわたる走間板厚変更方法である。2段階にわたる走間板厚変更をしているのは、板厚変更量が大きい場合に張力変動が大きくなることによる絞りや蛇行といったトラブルを回避するためであり、実施例では厚み付け部は90m程度である。   Further, Patent Document 2 discloses a method of thickening and rolling the front and rear welding points of an ultrathin material for the purpose of stably winding without breaking even in an over-tension state when winding on a tension reel. ing. This method is a running plate thickness changing method in two stages in which rolling is first performed to an intermediate plate thickness target value that is thicker than the product thickness (ultra-thin portion) of the preceding material and then thicker before and after the welding point. The reason why the plate thickness is changed in two stages is to avoid troubles such as squeezing and meandering due to large fluctuations in tension when the plate thickness change amount is large. Degree.

また特許文献3は、前工程で検出された圧延材の耳割れ部の前後を定常部と比べて厚み付け圧延することで、破断を防止している。実施例には、耳割れ部前後30m(全長60m)程度を厚み付け圧延していることが開示されている。   Moreover, patent document 3 is preventing the fracture | rupture by carrying out thick rolling before and behind the ear crack part of the rolling material detected at the front process compared with a stationary part. It is disclosed in the Examples that thickness rolling is performed about 30 m (total length 60 m) before and after the ear crack.

さらに特許文献4は、特許文献2と同様の課題を解決するために厚み付け圧延している。ただし、ロールギャップの設定とロール速度の設定は、AGC(自動板厚制御)により行い、厚み付け部の長さは5〜100m程度で行えば良いと記載されている。   Furthermore, Patent Document 4 performs thickness rolling in order to solve the same problem as Patent Document 2. However, it is described that the setting of the roll gap and the setting of the roll speed may be performed by AGC (automatic plate thickness control) and the length of the thickening portion may be about 5 to 100 m.

なお上述した特許文献1〜4は、それぞれ対象にしている仕上厚は多少異なるものの、仕上厚0.4mm以下程度の極薄材を対象としており、厚み付厚は最大200μmである。   Although the above-described Patent Documents 1 to 4 have a slightly different finishing thickness, they are intended for ultra-thin materials having a finishing thickness of about 0.4 mm or less, and the thickness with a thickness is 200 μm at the maximum.

コイル溶接点前後は溶接による入熱のため、材質の変化があり、製品とすることはできず、屑として処理される。従って、屑量削減のために、前述した極薄材特有の破断などの操業上トラブルが生じない仕上厚が厚い材料の連続圧延では、厚み付け圧延とは逆に溶接点前後を薄く圧延する(以降、薄引圧延と称する)ことが求められている。   Before and after the coil welding point, there is a change in material due to heat input by welding, so it cannot be made into a product and is treated as scrap. Therefore, in order to reduce the amount of scrap, in continuous rolling of a material with a thick finish thickness that does not cause operational troubles such as the above-mentioned breakage unique to ultra-thin materials, the front and back of the welding point are thinly rolled contrary to thick rolling ( Hereinafter, it is called thin drawing rolling).

以上のように、コイル溶接点前後は定常部の板厚と異なるように圧延することが必要である。なお、以下の先行技術文献の中には、以下で参照する非特許文献1も加えている。   As described above, it is necessary to perform rolling so as to be different from the plate thickness of the stationary part before and after the coil welding point. Note that Non-Patent Document 1 referred to below is also added to the following prior art documents.

特開平5−169102号公報JP-A-5-169102 特開2003−260505号公報JP 2003-260505 A 特開2006−224119号公報JP 2006-224119 A 特開平11−33612号公報JP-A-11-33612

D.R.Bland and H.Ford:Proc. Inst. Mech. Eng.、163(1948)、144D.R.Bland and H.Ford: Proc. Inst. Mech. Eng., 163 (1948), 144

本発明は、冷間連続圧延において溶接点前後の板厚を定常部と異なるように圧延するものであり、必ずしも背景技術に示した極薄材同士の溶接点前後の厚み付け圧延に限られるものではなく、仕上厚が厚い材料同士の溶接点前後を薄くする薄引圧延も含むものである。   The present invention rolls the plate thickness before and after the welding point in the cold continuous rolling so as to be different from the steady portion, and is not necessarily limited to the thickness rolling before and after the welding point between the ultrathin materials shown in the background art. Instead, it also includes thinning rolling in which the thickness before and after the welding point between materials having a thick finish is thinned.

先に挙げた特許文献に開示されている厚み付け圧延を薄引圧延に転用するためには、以下のような問題がある。   In order to divert the thickness rolling disclosed in the above-mentioned patent documents to thin drawing rolling, there are the following problems.

特許文献1〜3には、厚み付部の長さが長い実施例が記載されている。これは、操業トラブルなく安定的に圧延する目的のために、タンデム圧延機の機内(第1スタンド[以下、#1スタンド、1STDなどとも記載]から最終スタンドまで)に走間板厚変更点が2点以上入ることを避け、張力変動を抑制しているためであると推測される。上述したように、溶接点前後の板厚変更部の長さは、極力短い方が好ましいため、機内のスタンド間に走間板厚変更点が2点入る場合(走間板厚変更開始点と走間板厚変更終了点)であっても、溶接点前後の板厚変更部が短く、張力変動を抑制しつつ走間板厚変更できる技術の開発が課題である。   Patent Documents 1 to 3 describe examples in which the length of the thickened portion is long. For the purpose of stable rolling without operational trouble, there is a change in the thickness of the running plate in the tandem mill (from the first stand [hereinafter referred to as # 1 stand, 1STD etc.) to the final stand). It is presumed that this is because the tension fluctuation is suppressed by avoiding entering two or more points. As described above, the length of the plate thickness change part before and after the welding point is preferably as short as possible, so when there are two plate thickness change points between the stands in the machine (the plate thickness change start point and Even if it is the end point of the change of the running plate thickness), the development of the technology that can change the running plate thickness while suppressing the variation in tension is a problem because the plate thickness changing part before and after the welding point is short.

また、特許文献4では、厚み付け部が5m程度に短くできると記載されているものの、これは、あくまで厚み付け厚さが200μm程度と小さく、AGCで対処可能であるためと考えられる。しかしながら、この方法を用いて200μm程度以上の板厚変更を伴う場合には、全スタンド間のマスフロー変動が大きいため、フィードバック制御を主体とするAGCの構成では、張力変動は大きくなってしまい、大幅な板厚変更を行うことは困難である。張力は、スタンド間のマスフローの収支により決まるため、その変動を抑制するためには、ロールギャップの設定方法とロール速度を適切に設定することが必要である。   Further, although Patent Document 4 describes that the thickened portion can be shortened to about 5 m, it is considered that this is because the thickened thickness is as small as about 200 μm and can be dealt with by AGC. However, when the plate thickness is changed by about 200 μm or more using this method, the mass flow fluctuation between all the stands is large. Therefore, in the AGC configuration mainly using feedback control, the tension fluctuation becomes large. It is difficult to change the plate thickness. Since the tension is determined by the mass flow balance between the stands, it is necessary to appropriately set the roll gap setting method and the roll speed in order to suppress the fluctuation.

本発明では、これら従来技術の問題点に鑑み、走間板厚変更圧延において、溶接点前後の板厚変更部が短く、かつ張力変動を抑制するロール速度(ロール周速度、ロール回転速度とも言う)の設定およびロールギャップの設定を行うことができる走間板厚変更方法および装置を提供することを課題とする。   In the present invention, in view of these problems of the prior art, roll speed (also referred to as roll peripheral speed and roll rotation speed) in which the thickness change portion before and after the welding point is short and the fluctuation in tension is suppressed in rolling thickness change rolling. It is an object of the present invention to provide a running plate thickness changing method and apparatus capable of setting the roll gap and setting the roll gap.

上記課題は、以下の発明によって解決できる。   The above problems can be solved by the following invention.

[1] 先行材と後行材を接合してタンデム圧延機で連続圧延する際に、接合部前後の板厚を定常部の板厚と異なる仕上げ厚に圧延する走間板厚変更方法であって、
定常部から板厚変更部への板厚変更点1と板厚変更部から定常部への板厚変更点2は、同一の圧延スタンド間に同時に入ることを特徴とする走間板厚変更方法。
[1] This is a running plate thickness changing method in which the plate thickness before and after the bonded portion is rolled to a finished thickness different from the thickness of the steady portion when the preceding material and the following material are bonded and continuously rolled by a tandem rolling mill. And
Thickness change point 1 from the steady portion to the thickness change portion and the thickness change point 2 from the thickness change portion to the steady portion are simultaneously entered between the same rolling stands. .

[2] 上記[1]に記載の走間板厚変更方法において、
前記板厚変更点1および前記板厚変更点2の各圧延スタンド到達時に設定するロール速度変更量とロールギャップ変更量を圧延条件と板厚変更部の設定長さに基づいてそれぞれ求め、前記板厚変更点1が各圧延スタンド到達時に、前記求めた板厚変更点1用のロール速度変更量とロールギャップ変更量を設定し、次に前記板厚変更点2が対応する各圧延スタンド到達時に、先に設定したロール速度変更量とロールギャップ変更量に、板厚変更点2用のロール速度変更量とロールギャップ変更量をそれぞれ重ね合わせることを特徴とする走間板厚変更方法。
[2] In the running plate thickness changing method according to [1] above,
A roll speed change amount and a roll gap change amount set when the plate thickness change point 1 and the plate thickness change point 2 reach each rolling stand are respectively determined based on rolling conditions and a set length of the plate thickness change portion, When the thickness change point 1 reaches each rolling stand, the roll speed change amount and the roll gap change amount for the obtained plate thickness change point 1 are set, and then when the plate thickness change point 2 reaches each corresponding rolling stand. A running thickness change method characterized by superimposing a roll speed change amount and a roll gap change amount for the plate thickness change point 2 on the previously set roll speed change amount and roll gap change amount, respectively.

[3] 上記[2]に記載の走間板厚変更方法において、
前記板厚変更点1と前記板厚変更点2のタンデム圧延機内での位置関係の遷移パターンを分類し、分類した遷移パターンに基づきロール速度変更量とロールギャップ変更量を算出することを特徴とする走間板厚変更方法。
[3] In the running plate thickness changing method according to [2] above,
The transition pattern of the positional relationship in the tandem rolling mill of the plate thickness change point 1 and the plate thickness change point 2 is classified, and a roll speed change amount and a roll gap change amount are calculated based on the classified transition pattern. How to change the plate thickness between running.

[4] 上記[2]に記載の走間板厚変更方法において、
板厚変更部の設定長さが短いため実現できない場合には、実現可能な範囲で板厚変更部の長さが最短となるように再設定し、再計算を行うことを特徴とする走間板厚変更方法。
[4] In the running plate thickness changing method according to [2] above,
If this is not possible because the set length of the plate thickness change section is short, it is reset so that the length of the plate thickness change section is as short as possible, and recalculation is performed. Thickness change method.

[5] 先行材と後行材を接合してタンデム圧延機で連続圧延する際に、接合部前後の板厚を定常部の板厚と異なる仕上げ厚に圧延する走間板厚変更装置であって、
定常部から板厚変更部への板厚変更点1および板厚変更部から定常部への板厚変更点2が各圧延スタンド到達時に設定するロール速度変更量とロールギャップ変更量を圧延条件と板厚変更部の設定長さに基づいてそれぞれ求める変更量計算手段と、
前記板厚変更点1が各圧延スタンド到達時に、前記変更量計算手段で求めた板厚変更点1用のロール速度変更量とロールギャップ変更量を設定し、次に前記板厚変更点2が対応する各圧延スタンド到達時に、先に設定したロール速度変更量とロールギャップ変更量に、板厚変更点2用のロール速度変更量とロールギャップ変更量をそれぞれ重ね合わせる設定変更手段を具備し、
定常部から板厚変更部への板厚変更点1と板厚変更部から定常部への板厚変更点2は、同一の圧延スタンド間に同時に入ることを特徴とする走間板厚変更装置。
[5] This is a running plate thickness changing device that rolls the plate thickness before and after the joint to a finished thickness different from the plate thickness of the steady portion when joining the preceding and subsequent materials and continuously rolling with a tandem mill. And
The roll speed change amount and the roll gap change amount set when the plate thickness change point 1 from the steady portion to the plate thickness change portion and the plate thickness change point 2 from the plate thickness change portion to the steady portion reach each rolling stand are defined as rolling conditions. A change amount calculating means for obtaining each based on the set length of the plate thickness changing portion,
When the plate thickness change point 1 reaches each rolling stand, the roll speed change amount and roll gap change amount for the plate thickness change point 1 obtained by the change amount calculation means are set, and then the plate thickness change point 2 When each corresponding rolling stand is reached, it comprises setting change means for superimposing the roll speed change amount and roll gap change amount for the plate thickness change point 2 on the previously set roll speed change amount and roll gap change amount,
Thickness change point 1 from the steady portion to the thickness change portion and the thickness change point 2 from the thickness change portion to the steady portion enter simultaneously between the same rolling stands. .

[6] 上記[5]に記載の走間板厚変更装置において、
前記変更量計算手段は、圧延条件と板厚変更部の設定長さに基づき前記板厚変更点1と前記板厚変更点2のタンデム圧延機内での位置関係の遷移パターンを分類し、分類した遷移パターンに基づきロール速度変更量とロールギャップ変更量を算出し、前記設定長さが短いため実現できない場合には、実現可能な範囲で板厚変更部の長さが最短となるように再設定し、再計算を行うことを特徴とする走間板厚変更装置。
[6] In the running plate thickness changing device according to [5],
The change amount calculation means classifies and classifies the transition pattern of the positional relationship in the tandem rolling mill of the plate thickness change point 1 and the plate thickness change point 2 based on the rolling conditions and the set length of the plate thickness change portion. Calculate the roll speed change amount and roll gap change amount based on the transition pattern, and if the setting length is short and cannot be realized, reset the length change portion to the shortest possible range. And a running plate thickness changing device characterized by performing recalculation.

本発明によれば、タンデム圧延機での冷間連続圧延における溶接点前後で板厚を変更するにあたって、タンデム圧延機内の同一スタンド間に同時に板厚変更点が2点入る場合を考慮してロール速度とロールギャップの動作を規定するようにしたので、スクラップとなる板厚変更部の長さを短くすることが可能となった。また、マスフローを考慮してロール速度を設定するようにしたので、張力変動が抑制可能となり安定した圧延が実現できる。   According to the present invention, when changing the plate thickness before and after the welding point in the cold continuous rolling in the tandem rolling mill, the roll is taken into consideration when two plate thickness changing points are simultaneously inserted between the same stands in the tandem rolling mill. Since the speed and the operation of the roll gap are regulated, it is possible to shorten the length of the thickness changing portion that becomes scrap. In addition, since the roll speed is set in consideration of the mass flow, the tension fluctuation can be suppressed and stable rolling can be realized.

本発明における薄引圧延の開始点と終了点の位置関係を示す図である。It is a figure which shows the positional relationship of the starting point and end point of thin rolling in this invention. 本発明における変更量計算の処理フロー例を示す図である。It is a figure which shows the example of a processing flow of change amount calculation in this invention. ケース分類計算における遷移状態の計算ロジックを示す図である。It is a figure which shows the calculation logic of the transition state in case classification calculation. ケース1における板厚変更点の遷移を示す図である。FIG. 6 is a diagram showing transition of a plate thickness change point in case 1. ケース2における板厚変更点の遷移を示す図である。It is a figure which shows the transition of the board thickness change point in case 2. FIG. ケース3における板厚変更点の遷移を示す図である。FIG. 10 is a diagram showing transition of a plate thickness change point in case 3. ケース4における板厚変更点の遷移を示す図である。It is a figure which shows the transition of the board thickness change point in case 4. FIG. 初期状態における圧延状態を示す図である。It is a figure which shows the rolling state in an initial state. 遷移状態1における圧延状態を示す図である。It is a figure which shows the rolling state in the transition state. 遷移状態2における圧延状態を示す図である。It is a figure which shows the rolling state in the transition state 2. FIG. 遷移状態3における圧延状態を示す図である。It is a figure which shows the rolling state in the transition state 3. 遷移状態7における圧延状態を示す図である。It is a figure which shows the rolling state in the transition state. 最終状態における圧延状態を示す図である。It is a figure which shows the rolling state in a final state. ケース1の遷移状態4における圧延状態を示す図である。FIG. 6 is a diagram showing a rolling state in transition state 4 of case 1. ケース1の遷移状態5における圧延状態を示す図である。FIG. 6 is a diagram showing a rolling state in transition state 5 of case 1. ケース1の遷移状態6における圧延状態を示す図である。6 is a diagram showing a rolling state in transition state 6 of case 1. FIG. 本発明におけるロール速度、ロールギャップの設定変更に関する装置構成例を示す図である。It is a figure which shows the apparatus structural example regarding the setting change of the roll speed in this invention, and a roll gap. 本発明法と比較法との比較例を示す図である。It is a figure which shows the comparative example of this invention method and a comparative method. 2つの板厚変更点のミル内での位置関係の遷移状態を示す図である。It is a figure which shows the transition state of the positional relationship within the mill of two board thickness change points.

本発明についての説明を、以下に図、表、数式を用いて具体的に行う。図1は、本発明における薄引圧延の開始点(以下、板厚変更開始点または板厚変更点1と称する)と終了点(以下、板厚変更終了点または板厚変更点2と称する)の位置関係を示す図である。ここで、板厚変更開始点から終了点にかけて定常部より薄く圧延する。本発明では、薄引長を短くするために、図に示すように板厚変更開始点と終了点がタンデム圧延機内(#1圧延スタンド(#1STD)〜#4圧延スタンド(#4STD)間)の同一の圧延スタンド間に同時に入る場合を対象とする(以降では、圧延スタンドを略してスタンドと称することもある)。   The present invention will be specifically described below using figures, tables, and mathematical expressions. FIG. 1 shows a starting point (hereinafter referred to as a plate thickness change start point or a plate thickness change point 1) and an end point (hereinafter referred to as a plate thickness change end point or a plate thickness change point 2). It is a figure which shows these positional relationships. Here, rolling is performed thinner than the steady portion from the start point to the end point of the plate thickness change. In the present invention, in order to shorten the thinning length, the thickness change start point and end point are in the tandem rolling mill (between # 1 rolling stand (# 1 STD) to # 4 rolling stand (# 4 STD)) as shown in the figure. (Hereinafter, the rolling stand may be abbreviated as a stand).

まず、板厚変更点1と板厚変更点2が各圧延スタンド到達時に設定するロール速度変更量とロールギャップ変更量を、圧延条件と板厚変更部の設定長さに基づき求める変更量計算方法について説明する。図2は、本発明における変更量計算の処理フロー例を示す図である。   First, the change amount calculation method for obtaining the roll speed change amount and the roll gap change amount set when the plate thickness change point 1 and the plate thickness change point 2 reach each rolling stand based on the rolling conditions and the set length of the plate thickness change portion. Will be described. FIG. 2 is a diagram showing an example of a processing flow of change amount calculation in the present invention.

対象圧延材が通板されたとの通知により、処理が開始される。そして、Step1のケース分類計算にて、板厚変更部の設定長さと板厚変更点1と板厚変更点2の各スタンド出側目標厚を用いて、板厚変更点のタンデム圧延機内での位置関係の遷移パターンを分類する。
分類した遷移パターンと圧延条件に基づき、ロール速度変更量(Step2-1)とロールギャップ変更量すなわち圧下変更量(Step2-2)を求める。そして、Step3-1にて、設定長さ実現可否の評価を行う。
A process is started by the notification that the target rolled material has been passed. Then, in the case classification calculation in Step 1, using the set length of the plate thickness change section and the target thicknesses on the stand exit side of the plate thickness change point 1 and plate thickness change point 2, the plate thickness change point in the tandem rolling mill Classify transition patterns of positional relationship.
Based on the classified transition pattern and rolling conditions, a roll speed change amount (Step 2-1) and a roll gap change amount, that is, a reduction change amount (Step 2-2) are obtained. In Step 3-1, it is evaluated whether or not the set length can be realized.

実現可能な場合は、それで処理を終了する。しかし、予め設定したロールギャップ変更時間で、板厚変更部の設定長さが短くて実現できないときは、設定長さが実現できる範囲内で最短となるように設定長さを再設定(Step3-2)し、Step1に戻って以下のStepを再計算する。   If it is feasible, the process is terminated. However, when the set length of the plate thickness changing part is short and cannot be realized with the preset roll gap change time, the set length is reset to the shortest within the range where the set length can be realized (Step3- 2) Go back to Step 1 and recalculate the following Steps.

図2の各処理ステップに基づいて具体的に本発明の説明を行うにあたって、説明に必要な変数を、表1にまとめて一覧として示す。記号の右上の添字(I、II、III))は、板厚変更前(定常部)、板厚変更部、板厚変更後(定常部)をそれぞれ表し(便宜上それぞれ、スケジュールI、スケジュールII、スケジュールIIIとも称する)、また、右上の添字(t)は遷移状態(transition)を表す。さらに、記号右下の添字(1〜4)はスタンド番号を表している。なお、ロール速度については、例外的にVと記載している。 When the present invention is specifically described based on each processing step in FIG. 2, variables necessary for the description are collectively shown in Table 1 as a list. The subscripts (I, II, III) on the upper right of the symbol represent before the plate thickness change (steady portion), after the plate thickness change portion, after the plate thickness change (steady portion), respectively (for convenience, Schedule I, Schedule II, The subscript (t) in the upper right represents a transition state. Furthermore, the subscripts (1 to 4) at the lower right of the symbol represent stand numbers. Note that the roll rate is described as exceptionally V R.

図2のStep1ケース分類計算について説明する。ここでは、板厚変更部の各スタンド出側目標厚と板厚変更部の設定長さを使用して、仕上圧延機内における板厚変更点の位置関係の遷移状態を計算する。   The Step1 case classification calculation in FIG. 2 will be described. Here, the transition state of the positional relationship of the thickness change points in the finish rolling mill is calculated using each stand delivery target thickness of the thickness change portion and the set length of the thickness change portion.

図1で例示する4スタンドのタンデム圧延機の場合では、遷移ケースは全部で4ケース存在し、それぞれ初期状態、最終状態を含めると後述する図4〜12に示す9つの遷移状態がある。図3は、ケース分類計算における遷移状態の計算ロジックを示す図である。ここで、A、Bがそれぞれ板厚変更点1と板厚変更点2に対応し、添字が通過したスタンド名を示している。A1 と書かれていれば、板厚変更点1が#1スタンドを通過したことを表している。 In the case of the 4-stand tandem rolling mill illustrated in FIG. 1, there are four transition cases in total, and there are nine transition states shown in FIGS. FIG. 3 is a diagram showing the calculation logic of the transition state in the case classification calculation. Here, A and B correspond to the plate thickness change point 1 and the plate thickness change point 2, respectively, and indicate the name of the stand through which the subscripts have passed. If A 1 is written, it means that thickness change point 1 has passed the # 1 stand.

ケース1に分類されると、A1→B1→A2→A3→A4→B2→B3→B4という通過順になる。図4は、ケース1における板厚変更点の遷移を示す図である。同様に、ケース2〜4に関しては、図5〜7に示す通りである。 When classified as Case 1, the order of passage is A 1 → B 1 → A 2 → A 3 → A 4 → B 2 → B 3 → B 4 . FIG. 4 is a diagram showing the transition of the plate thickness change point in case 1. FIG. Similarly, cases 2 to 4 are as shown in FIGS.

上記ケース分類に基づき、図2のStep2-1速度変更量では、表2と表3に示す形式で速度変更量を保存する。初期状態、遷移状態1、遷移状態2、遷移状態3、遷移状態7と最終状態は、全ケースで共通であるので、変更量を計算する処理内容を説明にあたってはまず、共通の状態での設定速度の計算方法を示し、続いて、各ケースの速度の計算方法を示すものとする。   Based on the above case classification, the speed change amount is stored in the format shown in Table 2 and Table 3 in the Step 2-1 speed change amount of FIG. Since the initial state, transition state 1, transition state 2, transition state 3, transition state 7 and final state are common to all cases, the processing content for calculating the amount of change is described first by setting the common state. The speed calculation method will be shown, followed by the speed calculation method for each case.

以下、共通の状態での速度計算方法(初期状態、遷移状態1、遷移状態2、遷移状態3、遷移状態7と最終状態)を示すが、速度記号の上付きアスタリスク(*)は、初期状態とは異なり計算すべき速度を示している。 The speed calculation method (initial state, transition state 1, transition state 2, transition state 3, transition state 7 and final state) in the common state is shown below, but the superscript asterisk (*) of the speed symbol is the initial state. Unlike, it shows the speed to be calculated.

[初期状態]
図8は、初期状態における圧延状態を示す図である。板厚変更点がスタンド通過前の初期状態であり、この状態では、マスフローの整合性が取れているのでスタンドのロール速度を変更する必要はない。
[initial state]
FIG. 8 is a diagram showing a rolling state in the initial state. The plate thickness change point is the initial state before passing through the stand, and in this state, the mass flow is consistent, so there is no need to change the roll speed of the stand.

[遷移状態1]
図9は、遷移状態1における圧延状態を示す図である。#1STD速度設定は、質量保存則すなわち#2STD入出のマスは不変であるから、以下の(1)式により求める。なお、先進率fについては、例えば、非特許文献1に記載の方法を用いるようにするとよい。
[Transition state 1]
FIG. 9 is a diagram showing a rolling state in the transition state 1. The # 1 STD speed setting is obtained by the following equation (1) because the mass conservation law, that is, the # 2 STD input / output mass is unchanged. For the advanced rate f, for example, the method described in Non-Patent Document 1 may be used.

[遷移状態2]
図10は、遷移状態2における圧延状態を示す図である。#1STD速度設定は、#2STD入出のマスは不変であるから、以下の(2)式により求める。
[Transition state 2]
FIG. 10 is a diagram illustrating a rolling state in the transition state 2. The # 1 STD speed setting is obtained by the following equation (2) because the # 2 STD entry / exit mass is unchanged.

[遷移状態3]
図11は、遷移状態3における圧延状態を示す図である。#2STD速度設定は、#3STD入出のマスは不変であるから、以下の(3)式により求める。
[Transition state 3]
FIG. 11 is a diagram illustrating a rolling state in the transition state 3. The # 2 STD speed setting is obtained by the following equation (3) because the # 3 STD entry / exit mass is unchanged.

また、#1STD速度設定は、#2STD入出のマスは不変であるから、以下の(4)式により求める。 Also, the # 1 STD speed setting is obtained by the following equation (4) because the # 2 STD input / output square is unchanged.

[遷移状態7]
図12は、遷移状態7における圧延状態を示す図である。#3STD速度設定は、#4STD入出のマスは不変であるから、以下の(5)式により求める。
[Transition state 7]
FIG. 12 is a diagram illustrating a rolling state in the transition state 7. The # 3STD speed setting is obtained by the following equation (5) because the # 4 STD input / output square is unchanged.

また、#2STD速度設定は、#3STD入出のマスは不変であるから、以下の(6)式により求める。 Also, the # 2STD speed setting is obtained by the following equation (6) because the # 3 STD input / output square is unchanged.

さらに、#1STD速度設定は、#2STD入出のマスは不変であるから、以下の(7)式により求める。 Further, the # 1 STD speed setting is obtained by the following equation (7) because the # 2 STD input / output square is unchanged.

[最終状態]
図13は、最終状態における圧延状態を示す図である。最終スタンドと各スタンドのマスフローが一致するように計算すると、以下の(8)式となる。
[Final state]
FIG. 13 is a diagram showing a rolled state in the final state. When calculating so that the mass flow of the final stand and each stand coincide, the following equation (8) is obtained.

以上が、各ケース共通の速度設定値である。
続いてケース1の遷移状態4、5、6における速度計算方法と変更量の計算式を示す。
The above is the speed setting value common to each case.
Next, the speed calculation method and the calculation formula for the change amount in transition states 4, 5, and 6 of case 1 are shown.

[遷移状態4]
図14は、遷移状態4における圧延状態を示す図である。#3STD速度設定は、#4STD入出のマスは不変であるから、以下の(9)式により求める。
[Transition state 4]
FIG. 14 is a diagram illustrating a rolling state in the transition state 4. The # 3STD speed setting is obtained by the following equation (9) because the # 4 STD input / output square is unchanged.

また、#2STD速度設定は、#3STD入出のマスは不変であるから、以下の(10)式により求める。 Also, the # 2STD speed setting is obtained by the following equation (10) because the # 3 STD input / output square is unchanged.

さらに、#1STD速度設定は、#2STD入出のマスは不変であるから、以下の(11)式により求める。 Further, the # 1 STD speed setting is obtained by the following equation (11) because the # 2 STD input / output square is unchanged.

[遷移状態5]
図15は、遷移状態5における圧延状態を示す図である。#3STD速度設定は、#4STD入出のマスは不変であるから、以下の(12)式により求める。
[Transition state 5]
FIG. 15 is a diagram illustrating a rolling state in the transition state 5. The # 3STD speed setting is obtained by the following equation (12) because the # 4 STD input / output square is unchanged.

また、#2STD速度設定は、#3STD入出のマスは不変であるから、以下の(13)式により求める。 Also, the # 2STD speed setting is obtained by the following equation (13) because the # 3 STD input / output square is unchanged.

さらに、#1STD速度設定は、#2STD入出のマスは不変であるから、以下の(14)式により求める。 Further, the # 1 STD speed setting is obtained by the following equation (14) because the # 2 STD input / output square is unchanged.

[遷移状態6]
図16は、遷移状態6における圧延状態を示す図である。#3STD速度設定は、#4STD入出のマスは不変であるから、以下の(15)式により求める。
[Transition state 6]
FIG. 16 is a diagram showing a rolling state in the transition state 6. The # 3STD speed setting is obtained by the following equation (15) because the # 4 STD input / output square is unchanged.

また、#2STD速度設定は、#3STD入出のマスは不変であるから、以下の(16)式により求める。 Also, the # 2STD speed setting is obtained by the following equation (16) because the # 3 STD input / output square is unchanged.

さらに、#1STD速度設定は、#2STD入出のマスは不変であるから、以下の(17)式により求める。 Further, the # 1 STD speed setting is obtained by the following equation (17) because the # 2 STD input / output square is unchanged.

以上が、ケース1の遷移状態4、5、6における速度計算方法と変更量の計算式である。 The above is the speed calculation method and the calculation formula of the change amount in transition states 4, 5, and 6 of case 1.

続いて、板厚変更点1が各スタンド到達時に変更する速度変更量の計算方法を示す。これは、遷移状態1と初期状態の速度差、遷移状態3と遷移状態2の速度差、遷移状態4と遷移状態3の速度差、遷移状態5と遷移状態4の速度差を求める処理である。   Subsequently, a method of calculating the speed change amount that the thickness change point 1 changes when reaching each stand will be described. This is a process to find the speed difference between transition state 1 and initial state, the speed difference between transition state 3 and transition state 2, the speed difference between transition state 4 and transition state 3, and the speed difference between transition state 5 and transition state 4. .

<遷移状態1と初期状態の速度差>   <Speed difference between transition state 1 and initial state>

<遷移状態3と遷移状態2の速度差>   <Speed difference between transition state 3 and transition state 2>

<遷移状態4と遷移状態3の速度差>   <Speed difference between transition state 4 and transition state 3>

<遷移状態5と遷移状態4の速度差> <Speed difference between transition state 5 and transition state 4>

続いて、板厚変更点2が各スタンド到達時に変更する速度変更量の計算方法を示す。これは、遷移状態2と遷移状態1の速度差、遷移状態6と遷移状態5の速度差、遷移状態7と遷移状態6の速度差、最終状態と遷移状態7の速度差を求める処理である。 Subsequently, a method of calculating the speed change amount that is changed when the plate thickness change point 2 reaches each stand will be described. This is a process to find the speed difference between transition state 2 and transition state 1, the speed difference between transition state 6 and transition state 5, the speed difference between transition state 7 and transition state 6, and the speed difference between final state and transition state 7. .

<遷移状態2と遷移状態1の速度差>   <Speed difference between transition state 2 and transition state 1>

<遷移状態6と遷移状態5の速度差>   <Speed difference between transition state 6 and transition state 5>

<遷移状態7と遷移状態6の速度差>   <Speed difference between transition state 7 and transition state 6>

<最終状態と遷移状態7の速度差> <Speed difference between final state and transition state 7>

上記はケース1の場合の速度変更量を計算したものであるが、ケース2〜4の速度変更量についても同様の考え方で計算できる。以下には結果のみ示すものとする。   The above is the calculation of the speed change amount in case 1, but the speed change amount in cases 2 to 4 can be calculated in the same way. Only the results are shown below.

ケース2の場合:
<遷移状態1と初期状態の速度差>
For case 2:
<Speed difference between transition state 1 and initial state>

<遷移状態3と遷移状態2の速度差>   <Speed difference between transition state 3 and transition state 2>

<遷移状態4と遷移状態3の速度差>   <Speed difference between transition state 4 and transition state 3>

<遷移状態6と遷移状態5の速度差> <Speed difference between transition state 6 and transition state 5>

<遷移状態2と遷移状態1の速度差> <Speed difference between transition state 2 and transition state 1>

<遷移状態5と遷移状態4の速度差>   <Speed difference between transition state 5 and transition state 4>

<遷移状態7と遷移状態6の速度差>   <Speed difference between transition state 7 and transition state 6>

<最終状態と遷移状態7の速度差> <Speed difference between final state and transition state 7>

ケース3の場合:
<遷移状態1と初期状態の速度差>
For case 3:
<Speed difference between transition state 1 and initial state>

<遷移状態3と遷移状態2の速度差>   <Speed difference between transition state 3 and transition state 2>

<遷移状態5と遷移状態4の速度差>   <Speed difference between transition state 5 and transition state 4>

<遷移状態6と遷移状態5の速度差> <Speed difference between transition state 6 and transition state 5>

<遷移状態2と遷移状態1の速度差> <Speed difference between transition state 2 and transition state 1>

<遷移状態4と遷移状態3の速度差>   <Speed difference between transition state 4 and transition state 3>

<遷移状態7と遷移状態6の速度差>   <Speed difference between transition state 7 and transition state 6>

<最終状態と遷移状態7の速度差> <Speed difference between final state and transition state 7>

ケース4の場合:
<遷移状態1と初期状態の速度差>
For case 4:
<Speed difference between transition state 1 and initial state>

<遷移状態3と遷移状態2の速度差>   <Speed difference between transition state 3 and transition state 2>

<遷移状態5と遷移状態4の速度差>   <Speed difference between transition state 5 and transition state 4>

<遷移状態7と遷移状態6の速度差> <Speed difference between transition state 7 and transition state 6>

<遷移状態2と遷移状態1の速度差> <Speed difference between transition state 2 and transition state 1>

<遷移状態4と遷移状態3の速度差>   <Speed difference between transition state 4 and transition state 3>

<遷移状態6と遷移状態5の速度差>   <Speed difference between transition state 6 and transition state 5>

<最終状態と遷移状態7の速度差> <Speed difference between final state and transition state 7>

次に、Step2−2のロールギャップ変更量計算の手順を示す。ここでは、板厚変更点1と板厚変更点2に対応するロールギャップ変更量を求め、表4、表5の形式で保存する。   Next, the procedure for calculating the roll gap change amount in Step 2-2 is shown. Here, the roll gap change amount corresponding to the plate thickness change point 1 and the plate thickness change point 2 is obtained and stored in the formats shown in Tables 4 and 5.

ロールギャップ変更量は、次の(50)式のゲージメーター式で求めることができる。   The roll gap change amount can be obtained by the following gauge meter formula (50).

次に、Step3−1の設定長さ実現可否評価を行う。通常、ロールギャップの変更開始から変更完了までの時間は、数秒程度であるため、設定長さが短いと板厚変更点1と板厚変更点2のロールギャップの指令が干渉してしまい、目標の板厚に制御できず、薄引の設定長さも実現できない。そこで、ロールギャップの干渉が発生するかどうかを判定し、ロールギャップの干渉がある場合には、設定長さを実現可能な長さに再設定する。 Next, it is evaluated whether or not the set length in Step 3-1 is realized. Usually, since the time from the start of the change of the roll gap to the completion of the change is about several seconds, if the set length is short, the roll gap commands at the plate thickness change point 1 and the plate thickness change point 2 interfere with each other, and the target The sheet thickness cannot be controlled, and the set length of thinning cannot be realized. Therefore, it is determined whether or not roll gap interference occurs. If there is roll gap interference, the set length is reset to a realizable length.

例えば、#1スタンドにおいてロールギャップの干渉なく圧延できる出側長さ下限は、次の(51)式で計算できる。   For example, the lower limit of the exit length that can be rolled without interference of the roll gap in the # 1 stand can be calculated by the following equation (51).

板厚変更の設定長さと上記のように求めた出側長さ下限との間に、(設定長さ>出側長さ下限)が成り立てば設定長さを実現できる。成り立たない場合には、設定長さを出側長さ下限に設定して、Step1以下の再計算を行う。なお、(51)式の#1速度は前述した(1)式を、#1圧下変更時間は#1ロールギャップ変更量と#1ロール圧下スピードから求める。   The set length can be realized if (set length> exit side length lower limit) is established between the set length for changing the plate thickness and the output side lower limit obtained as described above. If not, the set length is set to the output side lower limit, and recalculation is performed after Step 1. The # 1 speed of the formula (51) is obtained from the above-described formula (1), and the # 1 reduction time is obtained from the # 1 roll gap change amount and the # 1 roll reduction speed.

以上の処理は、変更量計算手段で行う。なお、この変更量計算手段は、入出力装置を有する演算装置にて構成する。そして、このように計算された変更量を、板厚変更開始点と板厚変更終了点が各スタンドに到達する時において重ね合わせて反映させる設定変更手段について説明する。   The above processing is performed by the change amount calculation means. The change amount calculation means is constituted by an arithmetic device having an input / output device. Then, the setting change means for reflecting the amount of change calculated in this way when the plate thickness change start point and the plate thickness change end point reach each stand will be described.

図17は、本発明におけるロール速度、ロールギャップの設定変更に関する装置構成例を示す図である。図中、101は開始点トラッキング装置、102は終了点トラッキング装置、201は開始点油圧圧下指令装置、202は終了点油圧圧下指令装置、301は開始点ロール速度指令装置、302は終了点ロール速度指令装置をそれぞれ表す。   FIG. 17 is a diagram showing an apparatus configuration example relating to the setting change of the roll speed and the roll gap in the present invention. In the figure, 101 is a start point tracking device, 102 is an end point tracking device, 201 is a start point hydraulic pressure reduction command device, 202 is an end point hydraulic pressure reduction command device, 301 is a start point roll speed command device, and 302 is an end point roll speed. Each command device is represented.

開始点トラッキング装置101および終了点トラッキング装置102は、薄引開始点と終了点の通過位置をトラッキングしている。そして、各スタンドを通過したタイミングに応じて、開始点油圧圧下指令装置201及び終了点油圧圧下指令装置202の圧下指令装置が、前述した表4と表5に従って、各スタンドの圧下装置に対して圧下指令を出す。なお、双方の出力は重ね合わせたものが圧下指令となる。   The start point tracking device 101 and the end point tracking device 102 track the passing positions of the thinning start point and the end point. Then, depending on the timing of passing through each stand, the reduction command devices of the start point hydraulic reduction command device 201 and the end point hydraulic reduction command device 202 are applied to the reduction devices of each stand according to Tables 4 and 5 described above. Issue a reduction command. It should be noted that the output of both is the command for reduction.

圧下指令と同様に薄引開始点と終了点の位置により、開始点ロール速度指令装置301及び終了点ロール速度指令装置302で示されるロール速度指令装置が前述した表2と表3に従って、各スタンドのロール速度変更量を出力し、それらを重ね合わせたものを速度変更量として電動機を駆動させる。   The roll speed command device indicated by the start point roll speed command device 301 and the end point roll speed command device 302 according to the above-described Tables 2 and 3 according to the positions of the thinning start point and the end point as in the reduction command. The roll speed change amount is output, and the motor is driven using the superposition of these as the speed change amount.

また、ロールギャップとロール速度の変更レートは、変更時間(動作開始時刻から終了時刻までの時間)が一致するように指令を出す。   Further, the change rate of the roll gap and the roll speed is instructed so that the change time (time from the operation start time to the end time) matches.

以上の構成および処理により、隣合うスタンド間に走変変更点が2点入る場合でも張力変動を抑制しつつ、板厚制御を行うことが可能となり、前述の課題を解決する。   With the above configuration and processing, it is possible to perform plate thickness control while suppressing tension fluctuations even when two run change points enter between adjacent stands, thereby solving the above-described problems.

ある規格の鋼板に対して、本発明を適用した例と比較法の例を下に示す。比較法は、2つの板厚変更点が、最上流の圧延スタンドから最下流の圧延スタンド間に同時に入るものの、同一の圧延スタンド間には同時に入らない方法である。 An example in which the present invention is applied to a steel sheet of a certain standard and an example of a comparative method are shown below. The comparative method is a method in which two plate thickness change points are simultaneously entered between the most upstream rolling stand and the most downstream rolling stand, but not simultaneously between the same rolling stands.

本発明法では、2点の走変点がケース3の遷移パターンとなる。図18は、本発明法と比較法との比較例を示す図である。コイル長さ方向における仕上厚を比較している。また、図19は、2つの板厚変更点のミル内での位置関係の遷移状態を示す図である。板厚変更開始点、溶接点、および板厚変更終了点の位置遷移を、(a)に本発明法、(b)に比較法をそれぞれ示している。   In the method of the present invention, the two running change points are the transition pattern of case 3. FIG. 18 is a diagram showing a comparative example between the method of the present invention and the comparative method. The finish thickness in the coil length direction is compared. Moreover, FIG. 19 is a figure which shows the transition state of the positional relationship within the mill of two board thickness change points. The position transitions of the plate thickness change start point, the welding point, and the plate thickness change end point are shown in FIG.

仕上厚が1.7mm未満になっているコイル長さは、本発明法で11m、比較法で19m程度となり、本発明法の方が短くできることが確認できた。   The coil length with a finished thickness of less than 1.7 mm was about 11 m in the method of the present invention and about 19 m in the comparative method, and it was confirmed that the method of the present invention can be shortened.

101 開始点トラッキング装置
102 終了点トラッキング装置
201 開始点油圧圧下指令装置
202 終了点油圧圧下指令装置
301 開始点ロール速度指令装置
302 終了点ロール速度指令装置
M 電動機
101 Start Point Tracking Device 102 End Point Tracking Device 201 Start Point Hydraulic Reduction Command Device 202 End Point Hydraulic Reduction Command Device 301 Start Point Roll Speed Command Device 302 End Point Roll Speed Command Device M Electric Motor

Claims (5)

先行材と後行材を接合してタンデム圧延機で連続圧延する際に、接合部前後の板厚を定常部の板厚と異なる仕上げ厚に圧延する走間板厚変更方法であって、
定常部から板厚変更部への板厚変更点1と板厚変更部から定常部への板厚変更点2は、同一の圧延スタンド間に同時に入り、
前記板厚変更点1および前記板厚変更点2の各圧延スタンド到達時に設定するロール速度変更量とロールギャップ変更量を圧延条件と板厚変更部の設定長さに基づいてそれぞれ求め、前記板厚変更点1が各圧延スタンド到達時に、前記で求めた板厚変更点1用のロール速度変更量とロールギャップ変更量を設定し、次に前記板厚変更点2が対応する各圧延スタンド到達時に、先に設定したロール速度変更量とロールギャップ変更量に、板厚変更点2用のロール速度変更量とロールギャップ変更量をそれぞれ重ね合わせることを特徴とする走間板厚変更方法。
When the preceding material and the following material are joined and continuously rolled by a tandem rolling mill, the sheet thickness before and after the joint is rolled to a finished thickness different from the thickness of the steady part,
Thickness changes 2 from the constant region to the constant region from a thickness change point 1 and the plate thickness changing portion to the plate thickness changing portion is Ri enter simultaneously between the same rolling stand,
A roll speed change amount and a roll gap change amount set when the plate thickness change point 1 and the plate thickness change point 2 reach each rolling stand are respectively determined based on rolling conditions and a set length of the plate thickness change portion, When the thickness change point 1 reaches each rolling stand, the roll speed change amount and the roll gap change amount for the plate thickness change point 1 obtained above are set, and then the plate thickness change point 2 reaches the corresponding rolling stand. A method for changing the plate thickness during running, characterized in that the roll speed change amount and the roll gap change amount for the plate thickness change point 2 are respectively superimposed on the previously set roll speed change amount and roll gap change amount.
請求項に記載の走間板厚変更方法において、
前記板厚変更点1と前記板厚変更点2のタンデム圧延機内での位置関係の遷移パターンを分類し、分類した遷移パターンに基づきロール速度変更量とロールギャップ変更量を算出することを特徴とする走間板厚変更方法。
In the running plate thickness changing method according to claim 1 ,
The transition pattern of the positional relationship in the tandem rolling mill of the plate thickness change point 1 and the plate thickness change point 2 is classified, and a roll speed change amount and a roll gap change amount are calculated based on the classified transition pattern. How to change the plate thickness between running.
請求項に記載の走間板厚変更方法において、
板厚変更部の設定長さが短いため実現できない場合には、実現可能な範囲で板厚変更部の長さが最短となるように再設定し、再計算を行うことを特徴とする走間板厚変更方法。
In the running plate thickness changing method according to claim 1 ,
If this is not possible because the set length of the plate thickness change section is short, it is reset so that the length of the plate thickness change section is as short as possible, and recalculation is performed. Thickness change method.
先行材と後行材を接合してタンデム圧延機で連続圧延する際に、接合部前後の板厚を定常部の板厚と異なる仕上げ厚に圧延する走間板厚変更装置であって、
定常部から板厚変更部への板厚変更点1および板厚変更部から定常部への板厚変更点2が各圧延スタンド到達時に設定するロール速度変更量とロールギャップ変更量を圧延条件と板厚変更部の設定長さに基づいてそれぞれ求める変更量計算手段と、
前記板厚変更点1が各圧延スタンド到達時に、前記変更量計算手段で求めた板厚変更点1用のロール速度変更量とロールギャップ変更量を出力し、
次に前記板厚変更点2が対応する各圧延スタンド到達時に、先に設定したロール速度変更量とロールギャップ変更量に、板厚変更点2用のロール速度変更量とロールギャップ変更量をそれぞれ重ね合わせて出力する設定変更手段を具備し、
定常部から板厚変更部への板厚変更点1と板厚変更部から定常部への板厚変更点2は、同一の圧延スタンド間に同時に入ることを特徴とする走間板厚変更装置。
When joining the preceding material and the succeeding material and continuously rolling with a tandem rolling mill, it is a running plate thickness changing device that rolls the plate thickness before and after the bonded portion to a finished thickness different from the plate thickness of the steady portion,
The roll speed change amount and the roll gap change amount set when the plate thickness change point 1 from the steady portion to the plate thickness change portion and the plate thickness change point 2 from the plate thickness change portion to the steady portion reach each rolling stand are defined as rolling conditions. A change amount calculating means for obtaining each based on the set length of the plate thickness changing portion,
When the plate thickness change point 1 reaches each rolling stand, the roll speed change amount and roll gap change amount for the plate thickness change point 1 obtained by the change amount calculation means are output,
Next, when reaching each rolling stand to which the plate thickness change point 2 corresponds, the roll speed change amount and roll gap change amount for the plate thickness change point 2 are respectively set in the roll speed change amount and roll gap change amount set previously. provided with a setting change means you overlay output,
Thickness change point 1 from the steady portion to the thickness change portion and the thickness change point 2 from the thickness change portion to the steady portion enter simultaneously between the same rolling stands. .
請求項に記載の走間板厚変更装置において、
前記変更量計算手段は、圧延条件と板厚変更部の設定長さに基づき前記板厚変更点1と前記板厚変更点2のタンデム圧延機内での位置関係の遷移パターンを分類し、分類した遷移パターンに基づきロール速度変更量とロールギャップ変更量を算出し、前記設定長さが短いため実現できない場合には、実現可能な範囲で板厚変更部の長さが最短となるように再設定し、再計算を行うことを特徴とする走間板厚変更装置。
In the running plate thickness changing device according to claim 4 ,
The change amount calculation means classifies and classifies the transition pattern of the positional relationship in the tandem rolling mill of the plate thickness change point 1 and the plate thickness change point 2 based on the rolling conditions and the set length of the plate thickness change portion. Calculate the roll speed change amount and roll gap change amount based on the transition pattern, and if the setting length is short and cannot be realized, reset the length change portion to the shortest possible range. And a running plate thickness changing device characterized by performing recalculation.
JP2013244537A 2013-11-27 2013-11-27 Running thickness change method and apparatus Active JP6036664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013244537A JP6036664B2 (en) 2013-11-27 2013-11-27 Running thickness change method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013244537A JP6036664B2 (en) 2013-11-27 2013-11-27 Running thickness change method and apparatus

Publications (2)

Publication Number Publication Date
JP2015100826A JP2015100826A (en) 2015-06-04
JP6036664B2 true JP6036664B2 (en) 2016-11-30

Family

ID=53377005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013244537A Active JP6036664B2 (en) 2013-11-27 2013-11-27 Running thickness change method and apparatus

Country Status (1)

Country Link
JP (1) JP6036664B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105880295B (en) * 2016-05-04 2018-06-26 首钢京唐钢铁联合有限责任公司 A kind of acid rolls the control method and device that thicken of strip steel head after shearing
JP6652097B2 (en) * 2017-03-23 2020-02-19 Jfeスチール株式会社 Running thickness changing method and running thickness changing device
JP7303439B2 (en) * 2019-10-18 2023-07-05 日本製鉄株式会社 Control device, control method, and control program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205612A (en) * 1982-05-24 1983-11-30 Toshiba Corp Controlling method of continuous rolling of tandem rolling mill
JP3147206B2 (en) * 1994-01-24 2001-03-19 川崎製鉄株式会社 How to change the running strip thickness of a continuous rolling mill
JP5929554B2 (en) * 2011-07-11 2016-06-08 Jfeスチール株式会社 Running thickness change method and apparatus

Also Published As

Publication number Publication date
JP2015100826A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP5929554B2 (en) Running thickness change method and apparatus
JP5741263B2 (en) Running thickness change method and apparatus
JPWO2008062506A1 (en) Cold rolled material manufacturing equipment and cold rolling method
JP6036664B2 (en) Running thickness change method and apparatus
CN104001734B (en) A kind of hot-rolled coiling clamp roller pressure levelling device and control method
CN103088354A (en) Control method for eliminating strip steel bending-crease defect
JP4698132B2 (en) Hot rolling equipment
JP6652097B2 (en) Running thickness changing method and running thickness changing device
JP2014176879A (en) Manufacturing method for hot rolled steel sheet
JP5807499B2 (en) Continuous cold rolling method of steel strip
JP2005034875A (en) Method for controlling width of rolling stock in hot rolling
JP2006224119A (en) Rolling method by cold tandem mill
CN105880295A (en) Control method and device for thickening of head part of strip steel subjected to acid rolling and shearing
CN104646433B (en) A kind of aluminium volume that reduces causes surface to play the method that folded is hindered owing to head coil diameter thickness jumps
JP2016078026A (en) Rolling method for hot rolled steel plate
JP7310780B2 (en) Method for predicting tension variation in changing strip thickness between runs, method for changing strip thickness between runs, method for manufacturing steel strip, method for generating tension variation prediction model for changing strip thickness between runs, and apparatus for predicting tension variation during strip thickness changes between runs
CN115401077B (en) Rear sliding speed control method, device, medium and equipment
JP7222380B2 (en) Roll gap determination method and running strip thickness change method
JP2012183578A (en) Method of controlling plate thickness and plate thickness controller in cold rolling mill
JP7425286B2 (en) Continuous annealing equipment for steel strips
JP4871250B2 (en) Strip rolling method
JP4314931B2 (en) Rolling control method in continuous cold rolling mill
JP3661640B2 (en) Cross roll rolling method and leveling control method
JP2009279637A (en) Method of commercializing passing residual material on hot rolling line
JP2004160488A (en) Method and apparatus for high-speed winding of strip in hot rolling line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6036664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250