JP6036345B2 - Measuring method of cutoff wavelength of optical fiber - Google Patents

Measuring method of cutoff wavelength of optical fiber Download PDF

Info

Publication number
JP6036345B2
JP6036345B2 JP2013015888A JP2013015888A JP6036345B2 JP 6036345 B2 JP6036345 B2 JP 6036345B2 JP 2013015888 A JP2013015888 A JP 2013015888A JP 2013015888 A JP2013015888 A JP 2013015888A JP 6036345 B2 JP6036345 B2 JP 6036345B2
Authority
JP
Japan
Prior art keywords
wavelength
transmitted light
optical fiber
light power
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013015888A
Other languages
Japanese (ja)
Other versions
JP2014145740A (en
Inventor
鐘大 鄭
鐘大 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013015888A priority Critical patent/JP6036345B2/en
Publication of JP2014145740A publication Critical patent/JP2014145740A/en
Application granted granted Critical
Publication of JP6036345B2 publication Critical patent/JP6036345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光ファイバのカットオフ波長の測定方法に関し、特に曲げ法によるシングルモード光ファイバのカットオフ波長の測定方法に関する。   The present invention relates to a method for measuring a cutoff wavelength of an optical fiber, and more particularly to a method for measuring a cutoff wavelength of a single mode optical fiber by a bending method.

シングルモード光ファイバにおけるカットオフ波長の測定方法は、International Telecommunication Union−T(ITU−T)にて次のような曲げ法を勧告している。例えば、上記曲げ法によるカットオフ波長の測定方法は、直径280mmの第1のマンドレルと、直径60mmの第2のマンドレルとを用いて、所定長の光ファイバに直径60mmの円周形の最小曲げを加えたときの透過光パワーP1と、前記光ファイバに直径280mmの円周形の最小曲げを加えたときの透過光パワーP2とを測定し、これらの透過光パワーP1,P2相互のパワー比が0.1dBとなる最長の波長をカットオフ波長λcとする(特許文献1参照)。   As a method of measuring the cutoff wavelength in a single mode optical fiber, the following bending method is recommended by International Telecomunication Union-T (ITU-T). For example, the measurement method of the cut-off wavelength by the bending method described above uses a first mandrel having a diameter of 280 mm and a second mandrel having a diameter of 60 mm, and an optical fiber having a predetermined length has a circumferential minimum bending diameter of 60 mm. Is measured, and the transmitted light power P2 is measured when the optical fiber is subjected to a circumferential minimum bend of 280 mm in diameter, and the power ratio between these transmitted light powers P1 and P2 is measured. Is the longest wavelength at which the wavelength becomes 0.1 dB (see Patent Document 1).

特開平9−22981号公報Japanese Patent Laid-Open No. 9-22981

上記曲げ法によるカットオフ波長の測定方法では、光ファイバに直径280mmの円周形の最小曲げを加えた場合と、直径60mmの円周形の最小曲げを加えた場合とで、所定の波長範囲(特許文献1では800nmから1400nmまでの範囲)において、それぞれ透過光パワーの測定を行っている。確実にカットオフ波長を求めるには、それぞれの最小曲げを加えた場合の測定において、測定する波長範囲をある程度広くする必要があるが、波長範囲を広くするほど測定時間が長くなる。   In the measurement method of the cut-off wavelength by the bending method, a predetermined wavelength range is obtained when a circumferential minimum bend of 280 mm in diameter is added to the optical fiber and when a minimum bend of a circumference of 60 mm in diameter is added. In (Patent Document 1, in the range from 800 nm to 1400 nm), the transmitted light power is measured. In order to obtain the cut-off wavelength with certainty, it is necessary to widen the wavelength range to be measured to some extent in the measurement with each minimum bend, but the longer the wavelength range, the longer the measurement time.

そこで、本発明の目的は、正確に測定しつつ、測定時間を短くすることのできる光ファイバのカットオフ波長の測定方法を提供することにある。   Therefore, an object of the present invention is to provide a method for measuring the cutoff wavelength of an optical fiber that can shorten the measurement time while accurately measuring.

上記の目的を達成するために、本発明は、試料長略2mの光ファイバに直径略280mmの最小曲げを加えたときの透過光パワーP1と、当該光ファイバに直径略60mmの最小曲げを加えたときの透過光パワーP2とのパワー比が略0.1dBとなる最長の波長をカットオフ波長とする光ファイバのカットオフ波長の測定方法において、
前記透過光パワーP1またはP2のいずれか一方の測定データを用い、前記透過光パワーP1またはP2のいずれか他方の測定波長範囲を決定する。
In order to achieve the above object, the present invention adds a transmitted light power P1 when a minimum bend of about 280 mm in diameter is applied to an optical fiber having a sample length of about 2 m, and a minimum bend of about 60 mm in diameter to the optical fiber. In the measurement method of the cutoff wavelength of the optical fiber, in which the longest wavelength at which the power ratio with the transmitted light power P2 is about 0.1 dB is the cutoff wavelength,
Using either measurement data of the transmitted light power P1 or P2, the other measurement wavelength range of the transmitted light power P1 or P2 is determined.

また、前記光ファイバのカットオフ波長の測定方法において、前記透過光パワーP1またはP2のいずれか一方の前記透過光パワーが最大となる波長を基準とし、前記透過光パワーが最大となる波長より長波長側および短波長側の少なくとも一方側の所定波長までの範囲を前記透過光パワーP2とP1のいずれか他方の測定波長範囲としてもよい。   Further, in the method for measuring the cut-off wavelength of the optical fiber, the wavelength at which the transmitted light power of either the transmitted light power P1 or P2 is maximized is used as a reference and is longer than the wavelength at which the transmitted light power is maximized. A range up to a predetermined wavelength on at least one side of the wavelength side and the short wavelength side may be set as the other measurement wavelength range of the transmitted light powers P2 and P1.

本発明によれば、透過光パワーの測定波長範囲を狭くしても、正確なカットオフ波長を求めることができるので、光ファイバのカットオフ波長の測定時間を短くすることができる。   According to the present invention, even when the measurement wavelength range of transmitted light power is narrowed, an accurate cut-off wavelength can be obtained, so that the measurement time of the cut-off wavelength of the optical fiber can be shortened.

本発明の一実施形態に係る光ファイバのカットオフ波長の測定方法を実施する測定装置の概略図である。It is the schematic of the measuring apparatus which implements the measuring method of the cutoff wavelength of the optical fiber which concerns on one Embodiment of this invention. 図1の測定装置による測定結果を説明する模式的な波形図である。FIG. 2 is a schematic waveform diagram for explaining a measurement result by the measuring apparatus of FIG. 実施例1の波長測定結果を示すグラフである。4 is a graph showing the wavelength measurement results of Example 1. 実施例2の波長測定結果を示すグラフである。It is a graph which shows the wavelength measurement result of Example 2.

以下、本発明の一実施形態に係る光ファイバのカットオフ波長の測定方法について、図面を参照して詳細に説明する。   Hereinafter, a method for measuring a cutoff wavelength of an optical fiber according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1は曲げ法による光ファイバのカットオフ波長の測定方法を実施する測定装置の概略図を示したものである。
図1に示した、光ファイバのカットオフ波長の測定方法を実施する測定装置は、光ファイバ1の両端を弛みが生じないように保持する一対の保持部4,5と、一方の保持部4に保持された光ファイバ端に測定光を入射させる光源6と、他方の保持部5に保持された光ファイバ端から出射される透過光パワーを検出する受光部7と、を備えている。
FIG. 1 shows a schematic view of a measuring apparatus for carrying out a method for measuring a cutoff wavelength of an optical fiber by a bending method.
The measuring apparatus for performing the method for measuring the cutoff wavelength of the optical fiber shown in FIG. 1 includes a pair of holding parts 4 and 5 that hold both ends of the optical fiber 1 so as not to be loosened, and one holding part 4. A light source 6 for allowing measurement light to enter the end of the optical fiber held by the optical fiber, and a light receiving unit 7 for detecting the transmitted light power emitted from the end of the optical fiber held by the other holding unit 5.

また、この測定装置は、外周に光ファイバを巻き付けることで光ファイバに所定径の曲げを付与する、φ280mm(直径280mm)の第1のマンドレル2と、φ60mm(直径60mm)の第2のマンドレル3を備えている。   In addition, this measuring apparatus provides a first mandrel 2 with a diameter of 280 mm (diameter 280 mm) and a second mandrel 3 with a diameter of 60 mm (diameter 60 mm) by winding the optical fiber around the outer periphery. It has.

図1(a)に示すように、第1のマンドレル2の外周に光ファイバ1を巻き付けることでφ280mm(直径280mm)の円周形の最小曲げを付与できる。   As shown in FIG. 1 (a), by winding the optical fiber 1 around the outer periphery of the first mandrel 2, a circumferential minimum bend of φ280 mm (diameter 280 mm) can be imparted.

また、図1(b)に示すように、光ファイバ1を第2のマンドレル3の外周、若しくは第1のマンドレル2の外周と第2のマンドレル3の外周の両方に巻きつけることで、光ファイバ1に高次モード光を通過させないようにできる。   Further, as shown in FIG. 1B, the optical fiber 1 is wound around the outer periphery of the second mandrel 3, or both the outer periphery of the first mandrel 2 and the outer periphery of the second mandrel 3. 1 can prevent high-order mode light from passing therethrough.

次に、本実施形態による光ファイバのカットオフ波長の測定方法について、図1及び図2を用いて説明する。
図2は、図1の測定装置による測定結果を説明する模式的な波形図である。
図2(a)は、図1(a)の測定装置で測定された透過光パワーP1と、図1(b)の測定装置で測定された透過光パワーP2を示す模式的な波形図である。
図2(b)は、透過光パワーP1,P2のパワー比(差分)を示す模式的な波形図である。
Next, a method for measuring the cutoff wavelength of the optical fiber according to the present embodiment will be described with reference to FIGS.
FIG. 2 is a schematic waveform diagram for explaining a measurement result by the measurement apparatus of FIG.
FIG. 2A is a schematic waveform diagram showing the transmitted light power P1 measured by the measuring apparatus of FIG. 1A and the transmitted light power P2 measured by the measuring apparatus of FIG. .
FIG. 2B is a schematic waveform diagram showing the power ratio (difference) between the transmitted light powers P1 and P2.

まず、試料長2mの光ファイバ1をφ280mmの第1のマンドレル2に1ターン巻きつけて、図1(a)に示した状態にして、透過光パワーP1を測定する。
図1(a)の状態で光源6を発光させて、所定波長の測定光を、保持部4に保持された光ファイバ端から光ファイバ1に入射させる。この入射光は、第1のマンドレル2に巻きつけた部分を通過し、保持部5に保持された光ファイバ端から出射する。この出射光は受光部7で検出され、これにより透過光パワーP1が測定される。この透過光パワーP1の測定は、所定の波長範囲(例えば1000nmから1500nmまでの範囲)において、波長を所定の単位(例えば10nm)ずつ変化させて、変化させた波長毎にそれぞれ行う。これにより、上記所定の波長範囲における各透過光パワーP1が測定される。
First, the optical fiber 1 having a sample length of 2 m is wound around the first mandrel 2 having a diameter of 280 mm, and the transmitted light power P1 is measured in the state shown in FIG.
In the state of FIG. 1A, the light source 6 emits light, and measurement light having a predetermined wavelength enters the optical fiber 1 from the end of the optical fiber held by the holding unit 4. This incident light passes through the portion wound around the first mandrel 2 and exits from the end of the optical fiber held by the holding unit 5. This emitted light is detected by the light receiving unit 7, and the transmitted light power P1 is thereby measured. The measurement of the transmitted light power P1 is performed for each changed wavelength by changing the wavelength by a predetermined unit (for example, 10 nm) in a predetermined wavelength range (for example, a range from 1000 nm to 1500 nm). Thereby, each transmitted light power P1 in the predetermined wavelength range is measured.

このようにして得られた、所定の波長範囲における透過光パワーP1の各測定数値を、図2(a)のようにグラフにプロットし、このグラフから透過光パワーP1の数値が最大になる波長である波長λmaxを求める。   Each measured numerical value of the transmitted light power P1 in the predetermined wavelength range thus obtained is plotted on a graph as shown in FIG. 2A, and the wavelength at which the numerical value of the transmitted light power P1 is maximized from this graph. A wavelength λmax is obtained.

カットオフ波長λcは、透過光パワーが最大となる波長λmax付近の長波長側の波長になるので、この測定結果により、カットオフ波長λcがどの程度の値になるかをある程度推定することができる。光ファイバの種類・製法の違いなどによってカットオフ波長がλmaxからどの程度離れた値になるかは異なるが、各々の光ファイバの種類・製法で所定の範囲内に収まることが、実際の測定による経験から分かっている。   Since the cutoff wavelength λc is a wavelength on the long wavelength side near the wavelength λmax where the transmitted light power is maximum, it is possible to estimate to some extent how much the cutoff wavelength λc will be based on this measurement result. . Depending on the type and manufacturing method of the optical fiber, how far the cutoff wavelength is from λmax differs, but the actual measurement may be within the specified range for each optical fiber type and manufacturing method. I know from experience.

そして、波長λmaxに所定の数値λaを加えたλmax+λaと、波長λmaxから所定の数値λbを引いたλmax−λbとを求めて、次に述べる透過光パワーP2の測定を行う。   Then, λmax + λa obtained by adding a predetermined numerical value λa to the wavelength λmax and λmax−λb obtained by subtracting the predetermined numerical value λb from the wavelength λmax are measured, and the transmitted light power P2 described below is measured.

次に、光ファイバ1を、φ280mmの第1のマンドレル2と、φ60mmの第2のマンドレル3とにそれぞれ1ターンずつ巻きつけて、図1(b)の状態にして、高次モードを含まない透過光パワーP2を測定する。   Next, the optical fiber 1 is wound around the first mandrel 2 having a diameter of 280 mm and the second mandrel 3 having a diameter of 60 mm, respectively, so that the state shown in FIG. The transmitted light power P2 is measured.

図1(b)の状態で光源6を発光させて所定波長の測定光を、保持部4に保持された光ファイバ端から光ファイバ1に入射させる。この入射光は、第1のマンドレル2に巻きつけられた部分と、第2のマンドレル3に巻きつけられた部分と、を通過し、保持部5に保持された光ファイバ端から出射する。この出射光は、受光部7で検出され、これにより透過光パワーP2が測定される。この測定における測定波長の範囲は、先に行った透過光パワーP1の測定で得られたλmaxの値より、λmax−λbからλmax+λaまでの範囲とする。この波長範囲において、波長を所定の単位(例えば10nm)ずつ変化させて、変化させた波長毎にそれぞれ透過光パワーの測定を行う。これにより、λmax−λbからλmax+λaの波長範囲における各透過光パワーP2が測定される。そして、このようにして得られた、透過光パワーP2を透過光パワーP1のグラフにプロットする(図2(a)参照)。   In the state of FIG. 1B, the light source 6 emits light and measurement light having a predetermined wavelength is incident on the optical fiber 1 from the end of the optical fiber held by the holding unit 4. The incident light passes through the portion wound around the first mandrel 2 and the portion wound around the second mandrel 3 and exits from the end of the optical fiber held by the holding unit 5. This emitted light is detected by the light receiving unit 7, and the transmitted light power P2 is thereby measured. The range of the measurement wavelength in this measurement is a range from λmax−λb to λmax + λa from the value of λmax obtained by the previous measurement of the transmitted light power P1. In this wavelength range, the wavelength is changed by a predetermined unit (for example, 10 nm), and the transmitted light power is measured for each changed wavelength. Thereby, each transmitted light power P2 in the wavelength range from λmax−λb to λmax + λa is measured. Then, the transmitted light power P2 thus obtained is plotted on a graph of the transmitted light power P1 (see FIG. 2A).

次に、測定された透過光パワーP1,P2のパワー比(ここでは、P1−P2の数値)である透過光パワー比をグラフにプロットすると、図2(b)のようになる。そして、図2(b)に示すように、透過光パワー比が0.1dBとなる最長の波長をカットオフ波長λcとする。   Next, when the transmitted light power ratio, which is the measured power ratio between the transmitted light powers P1 and P2 (here, the numerical value of P1-P2) is plotted on a graph, it is as shown in FIG. Then, as shown in FIG. 2B, the longest wavelength at which the transmitted light power ratio is 0.1 dB is defined as a cutoff wavelength λc.

本実施形態に係る光ファイバ1のカットオフ波長λcの測定方法によれば、所定の波長範囲において各透過光パワーP1を測定し、測定された透過光パワーP1が最大となる波長λmaxを求め、波長λmaxに所定の数値λaを加えたλmax+λaと、波長λmaxから所定の数値λbを引いたλmax−λbとを求めて、λmax−λbからλmax+λaまでの波長範囲で、透過光パワーP2の測定を行ってカットオフ波長λcを求める。すなわち、透過光パワーP1の測定データを用い、波長λmaxを基準とし、透過光パワーP2の測定波長範囲を決定している。これにより、透過光パワーP2の測定波長範囲を狭くしてもカットオフ波長λcを求めることができ、光ファイバ1のカットオフ波長λcの測定時間を短くすることができる。   According to the method of measuring the cutoff wavelength λc of the optical fiber 1 according to the present embodiment, each transmitted light power P1 is measured in a predetermined wavelength range, and the wavelength λmax at which the measured transmitted light power P1 is maximized is obtained. Λmax + λa obtained by adding a predetermined numerical value λa to the wavelength λmax and λmax−λb obtained by subtracting the predetermined numerical value λb from the wavelength λmax are obtained, and the transmitted light power P2 is measured in a wavelength range from λmax−λb to λmax + λa. To obtain the cutoff wavelength λc. That is, the measurement wavelength range of the transmitted light power P2 is determined using the measurement data of the transmitted light power P1 and the wavelength λmax as a reference. Thereby, even if the measurement wavelength range of the transmitted light power P2 is narrowed, the cutoff wavelength λc can be obtained, and the measurement time of the cutoff wavelength λc of the optical fiber 1 can be shortened.

以上、実施形態に基づいて本発明に係る光ファイバのカットオフ波長の測定方法について説明したが、上記実施形態は本発明の理解を容易にするためのものであって、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく変更・改良され得ると共に、本発明にはその等価物が含まれる事は勿論である。   As described above, the method for measuring the cutoff wavelength of the optical fiber according to the present invention has been described based on the embodiment. However, the above embodiment is for facilitating the understanding of the present invention and limits the present invention. is not. The present invention can be changed and improved without departing from the gist thereof, and the present invention naturally includes equivalents thereof.

例えば、透過光パワーP2の測定は、図1(b)に示したφ280mmの第1のマンドレル2を使用せず、φ60mmの第2のマンドレル3のみに光ファイバを巻き付けて測定を行うようにしてもよい。   For example, the transmitted light power P2 is measured by wrapping an optical fiber only around the second mandrel 3 with a diameter of 60 mm, without using the first mandrel 2 with a diameter of 280 mm shown in FIG. Also good.

また、上記実施形態では、図1(a)の測定装置で透過光パワーP1の測定を行うことにより、透過光パワーP2の測定波長範囲を決定してから、図1(b)の測定装置で透過光パワーP2の測定を行っているが、例えば、図1(b)の測定装置で透過光パワーP2の測定を行うことにより、透過光パワーP1の測定波長範囲を決定してから、図1(a)の測定装置で透過光パワーP1の測定を行うようにしてもよい。すなわち、透過光パワーP2の測定データを用いて、透過光パワーP1の測定波長範囲を決定するようにしてもよい。   Further, in the above embodiment, the measurement wavelength range of the transmitted light power P2 is determined by measuring the transmitted light power P1 with the measurement apparatus of FIG. 1A, and then the measurement apparatus of FIG. Although the transmitted light power P2 is measured, for example, the measured wavelength range of the transmitted light power P1 is determined by measuring the transmitted light power P2 with the measurement device of FIG. You may make it measure the transmitted light power P1 with the measuring apparatus of (a). That is, the measurement wavelength range of the transmitted light power P1 may be determined using the measured data of the transmitted light power P2.

また、上記実施形態における所定の数値λa,λbは、光ファイバの種類などに応じて数値を設定すればよい。また、λa,λbはどちらか一方若しくは両方の数値を、測定された透過光パワーP1またはP2が最大となる波長λmaxの数値に基づいて変化させるようにしてもよい。   In addition, the predetermined numerical values λa and λb in the embodiment may be set according to the type of optical fiber. One or both of λa and λb may be changed based on the value of the wavelength λmax at which the measured transmitted light power P1 or P2 is maximum.

また、上記実施形態では、透過光パワーP2の測定波長範囲を、λmax−λbからλmax+λaまでとしたが、短波長側の測定開始波長は変えず、波長λmaxの長波長側の所定波長(λmax+λa)までの範囲を測定波長範囲としてもよい。例えば、透過光パワーP2に対する測定波長の範囲をλmax+λaまでとしても、透過光パワー比が0.1dBとなる最長の波長であるカットオフ波長λcを測定でき、光ファイバ1のカットオフ波長λcの測定時間を短くすることができる。
また、逆に、長波長側の測定終了波長は変えず、(λmax−λb)から測定を開始してもよい。
In the above embodiment, the measurement wavelength range of the transmitted light power P2 is from λmax−λb to λmax + λa, but the measurement start wavelength on the short wavelength side is not changed, and the predetermined wavelength (λmax + λa) on the long wavelength side of the wavelength λmax is changed. The range up to may be the measurement wavelength range. For example, even if the range of the measurement wavelength with respect to the transmitted light power P2 is up to λmax + λa, the cutoff wavelength λc, which is the longest wavelength at which the transmitted light power ratio is 0.1 dB, can be measured, and the cutoff wavelength λc of the optical fiber 1 can be measured. Time can be shortened.
Conversely, the measurement may be started from (λmax−λb) without changing the measurement end wavelength on the long wavelength side.

次に、実際に光ファイバを使って測定した実施例について述べる。
図1の測定装置を使用し、以下の実施例1では光ファイバA、実施例2では光ファイバBに対して測定を行った。
Next, an embodiment actually measured using an optical fiber will be described.
The measurement apparatus of FIG. 1 was used, and measurement was performed on the optical fiber A in Example 1 and the optical fiber B in Example 2.

(実施例1)
試料長2mの光ファイバAを図1(a)の状態にして、光源6から照射する測定光の波長を1000nmから1500nmの波長範囲で、10nmずつ変化させて、透過光パワーP1の測定を行った。この測定結果を図3の透過光パワーP1の折れ線グラフに示す。この透過光パワーP1の折れ線グラフより、透過光パワーP1が最大となる波長λmaxは、1160nmであることがわかった。
Example 1
The optical fiber A having a sample length of 2 m is set in the state of FIG. 1A, and the transmitted light power P1 is measured by changing the wavelength of the measurement light emitted from the light source 6 by 10 nm in the wavelength range of 1000 nm to 1500 nm. It was. The measurement result is shown in the line graph of the transmitted light power P1 in FIG. From the line graph of the transmitted light power P1, it is found that the wavelength λmax at which the transmitted light power P1 is maximum is 1160 nm.

次に、透過光パワーP2を測定する前に、λaを140nm、λbを40nmに設定して、透過光パワーP2を測定する波長範囲をλmax−λb=1120nm、λmax+λa=1300nmとした。そして、図1(b)に示した状態にして、光源6から照射する測定光の波長を1120nmから1300nmの波長範囲で、10nmずつ変化させて、透過光パワーP2の測定を行った。   Next, before measuring the transmitted light power P2, λa was set to 140 nm and λb was set to 40 nm, and the wavelength ranges for measuring the transmitted light power P2 were set to λmax−λb = 1120 nm and λmax + λa = 1300 nm. Then, in the state shown in FIG. 1B, the transmitted light power P2 was measured by changing the wavelength of the measurement light emitted from the light source 6 by 10 nm in the wavelength range of 1120 nm to 1300 nm.

この測定結果を図3の透過光パワーP2の折れ線グラフに示す。また、図3には、P1とP2に基づきP1−P2の数値を透過光パワー比の折れ線グラフとして示す。図3の透過光パワー比のグラフから、透過光パワー比が0.1dBとなる最長の波長を調べると、光ファイバAのカットオフ波長λcは1230nmであることがわかった。   The measurement result is shown in the line graph of the transmitted light power P2 in FIG. Further, FIG. 3 shows a numerical value of P1-P2 as a line graph of the transmitted light power ratio based on P1 and P2. From the graph of the transmitted light power ratio in FIG. 3, it was found that the cut-off wavelength λc of the optical fiber A was 1230 nm when the longest wavelength at which the transmitted light power ratio was 0.1 dB was examined.

(実施例2)
試料長2mの光ファイバBを図1(a)の状態にして、実施例1と同様の方法で、透過光パワーP1の測定を行った。この測定結果を、図4の透過光パワーP1の折れ線グラフに示す。この透過光パワーP1の折れ線グラフより、透過光パワーP1が最大となる波長λmaxは、1190nmであることがわかった。
(Example 2)
The optical fiber B having a sample length of 2 m was set in the state shown in FIG. 1A, and the transmitted light power P1 was measured by the same method as in Example 1. The measurement results are shown in the line graph of the transmitted light power P1 in FIG. From the line graph of the transmitted light power P1, it is found that the wavelength λmax at which the transmitted light power P1 is maximum is 1190 nm.

次に、透過光パワーP2を測定する前に、λaを140nm、λbを40nmに設定して、透過光パワーP2を測定する波長範囲をλmax−λb=1150nm、λmax+λa=1330nmとした。そして、図1(b)の状態にして、光源6から照射する測定光の波長を1150nmから1330nmの波長範囲で、10nmずつ変化させて、透過光パワーP2の測定を行った。   Next, before measuring the transmitted light power P2, λa was set to 140 nm and λb was set to 40 nm, and the wavelength ranges for measuring the transmitted light power P2 were set to λmax−λb = 1150 nm and λmax + λa = 1330 nm. Then, in the state of FIG. 1B, the transmitted light power P2 was measured by changing the wavelength of the measurement light emitted from the light source 6 by 10 nm in the wavelength range of 1150 nm to 1330 nm.

この測定結果を図4の透過光パワーP2の折れ線グラフに示す。また、図4には、P1とP2に基づきP1−P2の数値を透過光パワー比の折れ線グラフとして示す。図4の透過光パワー比のグラフから、透過光パワー比が0.1dBとなる最長の波長を調べると、光ファイバBのカットオフ波長λcは1290nmであることがわかった。
なお、上記したλa、λbの値は一例であり、上記の値に限られない。また、透過光パワーの波形は光ファイバの種類・製法によって大体決まっているので、それに合わせて、各々の光ファイバの種類・製法ごとに、λa、λbの値を予め決めておいてもよい。
The measurement result is shown in the line graph of the transmitted light power P2 in FIG. Further, FIG. 4 shows a numerical value of P1-P2 as a line graph of the transmitted light power ratio based on P1 and P2. From the graph of the transmitted light power ratio in FIG. 4, it was found that the cut-off wavelength λc of the optical fiber B was 1290 nm when the longest wavelength at which the transmitted light power ratio was 0.1 dB was examined.
Note that the values of λa and λb described above are examples, and are not limited to the above values. Further, since the waveform of the transmitted light power is roughly determined by the type and manufacturing method of the optical fiber, the values of λa and λb may be determined in advance for each type and manufacturing method of each optical fiber.

以上述べた実施例1及び実施例2では、図1(b)での測定において、高次モードを含まない透過光パワーP2を測定する波長範囲を狭くしたことにより、透過光パワーP1の測定と同じ波長範囲で測定していた従来の測定方法に比較して、測定時間をおよそ20%短縮することができた。   In the first and second embodiments described above, the measurement of the transmitted light power P1 is reduced by narrowing the wavelength range for measuring the transmitted light power P2 that does not include the higher-order mode in the measurement in FIG. Compared to the conventional measurement method in which measurement was performed in the same wavelength range, the measurement time could be shortened by about 20%.

1:光ファイバ、2:第1のマンドレル、3:第2のマンドレル、4,5:保持部、6:光源、7:受光部   1: optical fiber, 2: first mandrel, 3: second mandrel, 4, 5: holding unit, 6: light source, 7: light receiving unit

Claims (2)

試料長略2mの光ファイバに直径略280mmの最小曲げを加えたときの透過光パワーP1と、当該光ファイバに直径略60mmの最小曲げを加えたときの透過光パワーP2とのパワー比が略0.1dBとなる最長の波長をカットオフ波長とする光ファイバのカットオフ波長の測定方法において、
前記透過光パワーP1またはP2のいずれか一方の測定データを用い、前記透過光パワーP1またはP2のいずれか他方の測定波長範囲を決定することを特徴とする、光ファイバのカットオフ波長の測定方法。
The power ratio between the transmitted light power P1 when a minimum bend of approximately 280 mm in diameter is applied to an optical fiber having a sample length of approximately 2 m and the transmitted light power P2 when a minimum bend of approximately 60 mm in diameter is applied to the optical fiber is approximately In the measuring method of the cutoff wavelength of the optical fiber in which the longest wavelength of 0.1 dB is the cutoff wavelength,
A method for measuring a cutoff wavelength of an optical fiber, wherein either one of the transmitted light powers P1 or P2 is used to determine a measurement wavelength range of the other transmitted light power P1 or P2. .
前記透過光パワーP1またはP2のいずれか一方の前記透過光パワーが最大となる波長を基準とし、前記透過光パワーが最大となる波長より長波長側および短波長側の少なくとも一方側の所定波長までの範囲を前記透過光パワーP2とP1のいずれか他方の測定波長範囲とすることを特徴とする、請求項1に記載の光ファイバのカットオフ波長の測定方法。   With reference to the wavelength at which the transmitted light power of either one of the transmitted light powers P1 or P2 is maximized, up to a predetermined wavelength on at least one side of the long wavelength side and the short wavelength side from the wavelength at which the transmitted light power is maximized 2. The method of measuring an optical fiber cut-off wavelength according to claim 1, wherein the range is set to the measurement wavelength range of the other of the transmitted light powers P2 and P1.
JP2013015888A 2013-01-30 2013-01-30 Measuring method of cutoff wavelength of optical fiber Active JP6036345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013015888A JP6036345B2 (en) 2013-01-30 2013-01-30 Measuring method of cutoff wavelength of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013015888A JP6036345B2 (en) 2013-01-30 2013-01-30 Measuring method of cutoff wavelength of optical fiber

Publications (2)

Publication Number Publication Date
JP2014145740A JP2014145740A (en) 2014-08-14
JP6036345B2 true JP6036345B2 (en) 2016-11-30

Family

ID=51426095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013015888A Active JP6036345B2 (en) 2013-01-30 2013-01-30 Measuring method of cutoff wavelength of optical fiber

Country Status (1)

Country Link
JP (1) JP6036345B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229816A (en) * 1995-12-20 1997-09-05 Shin Etsu Chem Co Ltd Method for measuring cut-off wavelength
JP5151436B2 (en) * 2007-12-10 2013-02-27 住友電気工業株式会社 Method and apparatus for measuring cut-off wavelength
JP5227152B2 (en) * 2008-12-11 2013-07-03 日本電信電話株式会社 Method for confirming single mode transmission of optical fiber, method and apparatus for measuring cut-off wavelength
JP5770517B2 (en) * 2011-04-07 2015-08-26 株式会社フジクラ Optical fiber cut-off wavelength measurement method

Also Published As

Publication number Publication date
JP2014145740A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
US8223323B2 (en) Cutoff wavelength measuring method and optical communication system
JP6020521B2 (en) Optical fiber temperature distribution measuring device
JP6429287B2 (en) Measuring method, measuring apparatus, and measuring program
JP2012208497A (en) Multimode optical fiber
WO2006112391A1 (en) Method and device of measuring double refraction of optical fiber, method of measuring polarization mode dispersion of optical fiber and optical fiber
CN106605135B (en) Method for evaluating EMB of multimode optical fiber and method for selecting high EMB multimode optical fiber
CN101556193A (en) Device and method for calibrating a fibre optic temperature measuring system
JP5990624B1 (en) Optical fiber sensor system, optical fiber sensor and measuring method
JP6561747B2 (en) Temperature measuring device, temperature measuring method and temperature measuring program
JP6036345B2 (en) Measuring method of cutoff wavelength of optical fiber
JP6673812B2 (en) Mode field diameter measurement method
JP2012150002A (en) Cutoff wavelength measuring method, operation mode determination method and apparatus for the methods
JP5365338B2 (en) Cut-off wavelength measuring method and optical communication system
JP6791374B2 (en) Temperature measuring device, temperature measuring method and temperature measuring program
JP5770517B2 (en) Optical fiber cut-off wavelength measurement method
JP2010019814A (en) Submergence detection module and submergence detection device using the same
JP6402482B2 (en) Optical fiber cut-off wavelength measurement method
JP6484125B2 (en) Temperature measuring apparatus and temperature measuring method
JP2016176744A (en) Optical fiber temperature measuring apparatus
KR100832470B1 (en) Method and device of measuring double refraction of optical fiber, method of measuring polarization mode dispersion of optical fiber and optical fiber
JP6631175B2 (en) Temperature measuring device, temperature measuring method and temperature measuring program
Iho et al. Characterization of modal coupling of Bragg gratings in large-mode-area fibers
JP4795896B2 (en) Evaluation method and apparatus for group delay time difference of optical fiber
JP2008008710A (en) Cutoff wavelength measuring method
Ma et al. Simple and accurate detection method of Bragg wavelength in multimode POF-FBG

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6036345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250