JP6035675B2 - Mg alloy continuous casting method, Mg alloy cast material, Mg alloy cast coil material, Mg alloy wrought material, and Mg alloy structure - Google Patents

Mg alloy continuous casting method, Mg alloy cast material, Mg alloy cast coil material, Mg alloy wrought material, and Mg alloy structure Download PDF

Info

Publication number
JP6035675B2
JP6035675B2 JP2012281648A JP2012281648A JP6035675B2 JP 6035675 B2 JP6035675 B2 JP 6035675B2 JP 2012281648 A JP2012281648 A JP 2012281648A JP 2012281648 A JP2012281648 A JP 2012281648A JP 6035675 B2 JP6035675 B2 JP 6035675B2
Authority
JP
Japan
Prior art keywords
alloy
casting
atmosphere
continuous casting
cast material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012281648A
Other languages
Japanese (ja)
Other versions
JP2014124647A (en
Inventor
武志 内原
武志 内原
宮永 倫正
倫正 宮永
栄介 弘
栄介 弘
大石 幸広
幸広 大石
河部 望
望 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012281648A priority Critical patent/JP6035675B2/en
Publication of JP2014124647A publication Critical patent/JP2014124647A/en
Application granted granted Critical
Publication of JP6035675B2 publication Critical patent/JP6035675B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、Mg合金(純Mgを含む)の鋳造材を作製するMg合金の連続鋳造方法と、その方法により得られたMg合金の鋳造材、並びにそのMg合金の鋳造材を加工して得られたMg合金の鋳造コイル材・Mg合金の展伸材・Mg合金の構造体に関するものである。   The present invention provides a continuous casting method of Mg alloy for producing a cast material of Mg alloy (including pure Mg), a cast material of Mg alloy obtained by the method, and a cast material of the Mg alloy. The present invention relates to a Mg alloy cast coil material, a Mg alloy wrought material, and a Mg alloy structure.

電気機器の筐体などの素材となる板状の鋳造材は、例えば、可動鋳型を用いる双ロール法(ツインロール法)、双ベルト法(ツインベルト法)、車輪ベルト法(ベルトアンドホイール法)といった連続鋳造法で作製することができる。例えば、双ロール式連続鋳造方法は、互いに反対方向に回転する一対の鋳造ロールの間に溶湯を供給し、鋳造ロールの間で溶湯を急冷凝固させることで板状の鋳造材を得る。この双ロール式連続鋳造方法で作製された鋳造材は通常、巻き取りリールに巻き取られ、所定長となったところで切断され、巻き取りリールごと別の加工工程の現場へ運ばれたり、出荷されたりする。   The plate-shaped cast material used as a material for the housing of electrical equipment is, for example, a twin roll method (twin roll method), a twin belt method (twin belt method), a wheel belt method (belt and wheel method) using a movable mold. It can produce by the continuous casting method. For example, in the twin-roll type continuous casting method, the molten metal is supplied between a pair of casting rolls rotating in opposite directions, and the molten metal is rapidly solidified between the casting rolls to obtain a plate-shaped cast material. Cast material produced by this twin-roll continuous casting method is usually wound on a take-up reel, cut when it reaches a predetermined length, and the take-up reel is transported to another work site or shipped. Or

ところで、鋳造対象となる合金がMg合金(純Mgを含む)である場合、Mg合金は酸素と反応して酸化マグネシウムを生じ易く、その酸化マグネシウムがMg合金の鋳造材の表面性状を低下させたり、塑性加工時に割れの起点になるなどの不具合を生じさせる恐れがある。そこで、特許文献1では、鋳造雰囲気中の酸素濃度を5体積%以下の低酸素状態にすることが行なわれている。   By the way, when the alloy to be cast is an Mg alloy (including pure Mg), the Mg alloy easily reacts with oxygen to produce magnesium oxide, and the magnesium oxide reduces the surface properties of the cast material of the Mg alloy. In addition, there is a risk of causing problems such as crack starting points during plastic working. Therefore, in Patent Document 1, the oxygen concentration in the casting atmosphere is reduced to 5% by volume or less.

特開2009−174008号公報JP 2009-174008 A

近年、軽量で高強度のMg合金で電気機器の筐体などを作製することが盛んに行なわれており、その材料となるMg合金鋳造材の需要も高まっている。その需要に応じるべく、従来よりも鋳造時の酸化マグネシウムの生成が少なく、そのため欠陥の少ないMg合金鋳造材を連続的に作製することができるMg合金の連続鋳造方法が求められている。   2. Description of the Related Art In recent years, a housing for an electric device or the like has been actively produced using a lightweight and high-strength Mg alloy, and the demand for an Mg alloy casting material as a material for the housing has increased. In order to meet the demand, there is a demand for a continuous casting method of Mg alloy that can continuously produce a Mg alloy cast material with fewer defects than that of conventional production of magnesium oxide during casting.

本発明は上記事情に鑑みてなされたものであり、本発明の目的の一つは、鋳造時の酸化マグネシウムの生成を従来よりも少なくすることができるMg合金の連続鋳造方法、およびその方法により得られたMg合金の鋳造材を提供することにある。また、本発明の別の目的は、本発明のMg合金の鋳造材を巻き取ったMg合金の鋳造コイル材、本発明のMg合金の鋳造材または鋳造コイル材を圧延加工したMg合金の展伸材、並びに本発明のMg合金展伸材をプレス加工したMg合金の構造体を提供する。   The present invention has been made in view of the above circumstances, and one of the objects of the present invention is to provide an Mg alloy continuous casting method capable of reducing the production of magnesium oxide during casting as compared with the conventional method, and the method thereof. The object is to provide a cast material of the obtained Mg alloy. Another object of the present invention is to provide an Mg alloy cast coil material obtained by winding the Mg alloy cast material of the present invention, and an Mg alloy cast material obtained by rolling the Mg alloy cast material or the cast coil material of the present invention. And a Mg alloy structure obtained by press-working the Mg alloy wrought material of the present invention.

本発明者らの最近の研究から、鋳造ノズルの注湯口近傍の鋳造雰囲気における酸素濃度を一定に制御することが、欠陥の少ないMg合金の鋳造材を連続的に作製する上で重要であることが分かった。この知見に基づいて本発明を以下に規定する。   From recent studies by the present inventors, it is important to continuously control the oxygen concentration in the casting atmosphere near the pouring port of the casting nozzle in order to continuously produce a cast material of Mg alloy with few defects. I understood. Based on this finding, the present invention is defined below.

本発明は、一対の可動鋳型の間に鋳造ノズルからMg合金の溶湯を供給し、その溶湯を一対の可動鋳型の間で急冷凝固させることでMg合金の鋳造材を連続的に作製するMg合金の連続鋳造方法に係る。本発明のMg合金の連続鋳造法では、鋳造ノズルの外周を覆って、その覆った部分の内部空間の雰囲気と、覆った部分の外部空間の雰囲気とを異ならせることができる状態とする。そのような状態とした上で、本発明のMg合金の連続鋳造方法では、不活性ガスを内部空間に連続的に導入し、鋳造ノズルの注湯口近傍の鋳造雰囲気における少なくとも酸素濃度をモニターすると共に、そのモニター結果に基づいて不活性ガスの導入量を調整することで上記鋳造雰囲気を一定に制御しながら連続鋳造を実施する。なお、本発明におけるMg合金は、99.8質量%以上のMgと不可避的不純物とからなる純Mgも含む。   The present invention provides an Mg alloy in which a molten Mg alloy is supplied from a casting nozzle between a pair of movable molds, and the molten alloy is rapidly cooled and solidified between the pair of movable molds to continuously produce a cast material of Mg alloy. This relates to the continuous casting method. In the continuous casting method of the Mg alloy of the present invention, the outer periphery of the casting nozzle is covered so that the atmosphere in the inner space of the covered portion can be made different from the atmosphere in the outer space of the covered portion. In such a state, the Mg alloy continuous casting method of the present invention continuously introduces an inert gas into the internal space, and monitors at least the oxygen concentration in the casting atmosphere near the pouring port of the casting nozzle. Then, continuous casting is performed while adjusting the casting atmosphere to be constant by adjusting the amount of inert gas introduced based on the monitoring result. The Mg alloy in the present invention includes pure Mg composed of 99.8% by mass or more of Mg and inevitable impurities.

本発明のMg合金の連続鋳造方法において内部空間内に導入する不活性ガスとしては、例えばNガス、Arガスなどを挙げることができる。これら不活性ガスであれば、無用なMg合金の化学状態の変化を抑制することができる。ここで、不活性ガスの導入量(流量)は、高すぎるとMg合金の溶湯を不必要に冷却してしまうし、低すぎると内部空間内の大気の追い出しが十分でなく、鋳造ノズル近傍の鋳造雰囲気を制御することが難しい。不活性ガスの流量は、1分間あたり、内部空間の体積以下とすることが好ましい。例えば、内部空間が10Lであれば、不活性ガスの流量は10L/min以下とすることが好ましい。 Examples of the inert gas introduced into the internal space in the Mg alloy continuous casting method of the present invention include N 2 gas and Ar gas. With these inert gases, it is possible to suppress changes in the chemical state of unnecessary Mg alloys. Here, if the introduction amount (flow rate) of the inert gas is too high, the molten Mg alloy is unnecessarily cooled, and if it is too low, the air in the internal space is not sufficiently expelled, and in the vicinity of the casting nozzle. It is difficult to control the casting atmosphere. The flow rate of the inert gas is preferably equal to or less than the volume of the internal space per minute. For example, if the internal space is 10 L, the flow rate of the inert gas is preferably 10 L / min or less.

上記本発明の構成のように、鋳造ノズルの外周を覆って、その覆った部分の内部空間の雰囲気と、覆った部分の外部空間の雰囲気とを異ならせることができる状態とし、その内部空間へ連続的に不活性ガスを導入することで、鋳造雰囲気における酸素濃度を容易に管理することができる。加えて、本発明のMg合金の連続鋳造方法では、鋳造雰囲気における少なくとも酸素濃度をモニターすると共に、必要に応じて不活性ガスの導入量を調整することで、鋳造雰囲気を一定に制御しながら連続鋳造を行なっている。そのため、欠陥の少ないMg合金の鋳造材を連続的に安定して作製することができる。   As in the configuration of the present invention, the outer periphery of the casting nozzle is covered, and the atmosphere of the inner space of the covered portion can be made different from the atmosphere of the outer space of the covered portion. By continuously introducing the inert gas, the oxygen concentration in the casting atmosphere can be easily managed. In addition, in the continuous casting method of the Mg alloy of the present invention, at least the oxygen concentration in the casting atmosphere is monitored, and the amount of inert gas introduced is adjusted as necessary to continuously control the casting atmosphere. Casting. Therefore, a cast material of Mg alloy with few defects can be produced continuously and stably.

一方、本発明の構成と異なり、例えば鋳造ノズル周辺に向かって不活性ガスを吹き付けるだけでは鋳造雰囲気を一定に制御することが困難であり、また鋳造ノズル周辺を覆って不活性ガスを一旦パージするだけでは鋳造雰囲気の変化が起こる場合がある。いずれの構成であっても、欠陥の少ないMg合金の鋳造材を連続的に安定して作製することは難しい。また、先行技術として例示した上記特許文献1に記載されるMg合金の連続鋳造方法は、鋳造雰囲気中の酸素濃度を5体積%以下の低酸素状態とするとはいうものの、その酸素濃度を一定に制御する構成が欠けているため、作製する鋳造材の長さが長くなるほど、鋳造材に欠陥が発生する可能性が高くなると予想される。   On the other hand, unlike the configuration of the present invention, for example, it is difficult to control the casting atmosphere to be constant only by spraying an inert gas around the casting nozzle, and the inert gas is once purged around the casting nozzle. Only the casting atmosphere may change. In any configuration, it is difficult to continuously and stably produce a cast material of Mg alloy with few defects. Moreover, although the continuous casting method of Mg alloy described in the said patent document 1 illustrated as a prior art makes the oxygen concentration in casting atmosphere the low oxygen state of 5 volume% or less, the oxygen concentration is made constant. Since the structure to control is lacking, it is expected that the longer the length of the cast material to be produced, the higher the possibility that defects will occur in the cast material.

本発明のMg合金の連続鋳造方法の一形態として、内部空間への不活性ガスの導入により、注湯口近傍の鋳造雰囲気における酸素濃度を制御することで、Mg合金の溶湯と可動鋳型との接触位置を調整する形態を挙げることができる。   As one form of the Mg alloy continuous casting method of the present invention, by introducing an inert gas into the internal space, by controlling the oxygen concentration in the casting atmosphere in the vicinity of the pouring spout, contact between the molten Mg alloy and the movable mold The form which adjusts a position can be mentioned.

上記構成における注湯口近傍の鋳造雰囲気における酸素濃度の制御は、例えば、内部空間に導入する不活性ガスの流量によって調節することができる。鋳造雰囲気の酸素濃度を低くすれば、Mg合金の溶湯の表面に形成される酸化皮膜を薄くすることができ、その結果、溶湯の表面張力を低下させることができる。溶湯の表面張力が小さくなると、溶湯とロール(可動鋳型)との接触位置は鋳造ノズル側に移動する。ここで、双ロール式連続鋳造方法における急冷凝固においては、その凝固開始位置、即ち鋳造ノズルから吐出されるMg合金の溶湯とロールとの接触位置が、鋳造材の品質に非常に大きな影響を与える。溶湯とロールとの接触位置は、鋳造ノズルとロールとの位置関係、溶湯の送り圧、溶湯の表面張力など、様々な因子によって決定される。これらの因子のうち、位置関係の調節には限界があるし、溶湯の送り圧は精度良く制御することが難しい。これに対して、不活性ガスの導入によって鋳造雰囲気の酸素濃度を制御する本発明の構成によれば、溶湯の表面張力を比較的容易に微調整することができ、表面張力の変化に伴う溶湯とロールとの接触位置の微調整を行なうことができる。   The oxygen concentration in the casting atmosphere in the vicinity of the pouring gate in the above configuration can be adjusted by, for example, the flow rate of the inert gas introduced into the internal space. If the oxygen concentration in the casting atmosphere is lowered, the oxide film formed on the surface of the molten Mg alloy can be thinned, and as a result, the surface tension of the molten metal can be reduced. When the surface tension of the molten metal decreases, the contact position between the molten metal and the roll (movable mold) moves to the casting nozzle side. Here, in the rapid solidification in the twin roll type continuous casting method, the solidification start position, that is, the contact position between the molten Mg alloy discharged from the casting nozzle and the roll has a great influence on the quality of the cast material. . The contact position between the molten metal and the roll is determined by various factors such as the positional relationship between the casting nozzle and the roll, the feed pressure of the molten metal, and the surface tension of the molten metal. Among these factors, there is a limit to the adjustment of the positional relationship, and it is difficult to accurately control the molten metal feed pressure. On the other hand, according to the configuration of the present invention that controls the oxygen concentration of the casting atmosphere by introducing an inert gas, the surface tension of the molten metal can be finely adjusted relatively easily, and the molten metal accompanying the change in surface tension can be adjusted. Fine adjustment of the contact position between the roller and the roll can be performed.

なお、Mg合金の種類によって溶湯の表面張力が異なるため、Mg合金の種類によって溶湯表面の酸化皮膜の形成のされ方が異なる。つまり、Mg合金が純Mgであるか、あるいはどのような添加元素をどの程度含むかによって、溶湯とロールとの接触位置に差が生じてくる。そのような合金種の違いによる溶湯とロールとの接触位置の変化に対して、鋳造雰囲気の酸素濃度を制御することで対応することが可能である。既に述べたように、鋳造雰囲気の酸素濃度の制御によって、溶湯とロールとの接触位置を所望の位置に調整することが比較的容易であるからである。   In addition, since the surface tension of the molten metal differs depending on the type of Mg alloy, the way of forming an oxide film on the surface of the molten metal differs depending on the type of Mg alloy. That is, a difference occurs in the contact position between the molten metal and the roll depending on whether the Mg alloy is pure Mg or what kind of additive element is included. It is possible to cope with such a change in the contact position between the molten metal and the roll due to the difference in alloy type by controlling the oxygen concentration in the casting atmosphere. This is because, as already described, it is relatively easy to adjust the contact position between the molten metal and the roll to a desired position by controlling the oxygen concentration in the casting atmosphere.

本発明のMg合金の連続鋳造方法の一形態として、上記鋳造雰囲気を、露点8℃以下、酸素濃度15体積%以下、温度65℃〜450℃に制御する形態を挙げることができる。なお、言う迄もないが、露点とは、水蒸気を含む気体を冷却したときに凝結が始まる温度のことで、露点が低いほど乾燥した気体といえる。   As one form of the continuous casting method of Mg alloy of this invention, the form which controls the said casting atmosphere to 8 degrees C or less of dew points, 15 volume% or less of oxygen concentration, and the temperature of 65 to 450 degreeC can be mentioned. Needless to say, the dew point is a temperature at which condensation starts when a gas containing water vapor is cooled, and the lower the dew point, the more dry the gas.

本発明者らの最近の研究から、溶融したMg合金は、低酸素雰囲気下においても雰囲気中の水蒸気と反応して酸化マグネシウムを生成する可能性があることが分かった。つまり、鋳造雰囲気中の酸素濃度と湿度とを一体的に調整することが、欠陥の少ないMg合金の鋳造材を連続的に作製する上で重要であることが分かった。また、不活性ガスのフローによって酸素濃度と湿度を調整するにあたり、鋳造雰囲気の温度が高くなり過ぎたり低くなり過ぎたりしないように調整することも、欠陥の少ないMg合金の鋳造材を連続的に作製するためには重要である。   Recent studies by the present inventors have shown that molten Mg alloys may react with water vapor in the atmosphere to produce magnesium oxide even in a low oxygen atmosphere. In other words, it has been found that it is important to integrally adjust the oxygen concentration and humidity in the casting atmosphere in order to continuously produce a cast material of Mg alloy with few defects. Also, when adjusting the oxygen concentration and humidity by the flow of inert gas, it is possible to adjust the casting atmosphere temperature so that it does not become too high or too low. It is important to make.

露点8℃以下で酸素濃度15体積%以下の鋳造雰囲気中では、Mgが非常に酸化し難い。また、鋳造雰囲気の温度を65℃以上とすることで、鋳造ノズル中でMg合金の溶湯が凝固することを抑制できる。一方、鋳造雰囲気を450℃以下とすることで、鋳造ノズルから可動鋳型に吐出されたMg合金の溶湯の冷却速度を十分に確保することができる。以上、鋳造雰囲気における露点、酸素濃度、および温度を規定範囲内とすることで、欠陥の少ないMg合金の鋳造材を連続的に得ることができる。   In a casting atmosphere having a dew point of 8 ° C. or less and an oxygen concentration of 15% by volume or less, Mg is very difficult to oxidize. Moreover, it can suppress that the molten metal of Mg alloy solidifies in a casting nozzle because the temperature of casting atmosphere shall be 65 degreeC or more. On the other hand, by setting the casting atmosphere to 450 ° C. or lower, it is possible to sufficiently secure the cooling rate of the molten Mg alloy discharged from the casting nozzle to the movable mold. As described above, by setting the dew point, oxygen concentration, and temperature in the casting atmosphere within the specified ranges, a cast material of Mg alloy with few defects can be continuously obtained.

本発明のMg合金の連続鋳造方法の一形態として、内部空間内への不活性ガスの導入は、鋳造ノズルの側方で、かつ下方から行なう形態を挙げることができる。   As one form of the continuous casting method of Mg alloy of this invention, the introduction of the inert gas in internal space can mention the form performed from the side of a casting nozzle and from the downward direction.

内部空間に不活性ガスを導入する場合、その不活性ガスが直接、溶湯や鋳造ノズルに当たらないようにすることが好ましい。溶湯や鋳造ノズルが部分的に冷却されて、鋳造材に凝固ムラができる恐れがあるからである。また、内部空間は上昇気流が生じ易い環境にあるため、下方から不活性ガスを導入すれば、自然と内部空間内における不活性ガスの割合を高めることができ、その内部空間における鋳造ノズルの注湯口近傍の鋳造雰囲気を上記規定範囲内にすることができる。   When an inert gas is introduced into the internal space, it is preferable that the inert gas does not directly hit the molten metal or casting nozzle. This is because the molten metal and the casting nozzle are partially cooled and solidification unevenness may occur in the cast material. In addition, since the internal space is in an environment in which ascending airflow is likely to occur, if the inert gas is introduced from below, the ratio of the inert gas in the internal space can be naturally increased, and the casting nozzle in the internal space can be poured. The casting atmosphere in the vicinity of the gate can be set within the specified range.

本発明のMg合金の連続鋳造方法の一形態として、Mg合金は、ASTM規格のAZ91相当のMg合金である形態を挙げることができる。   As one form of the continuous casting method of Mg alloy of this invention, the Mg alloy can mention the form which is a Mg alloy equivalent to ASTM standard AZ91.

本発明におけるMg合金(純Mgを含む)は特に限定されないが、Mgに添加元素としてAlを含有させたMg−Al合金は、耐食性に優れるため、好ましい。特に、ASTM規格のAZ91相当のMg合金は、Alを8.3質量%〜9.5質量%、Znを0.5質量%〜1.5質量%含有し、非常に優れた耐食性を備える。このAZ91相当のMg合金の鋳造材は、その耐食性のために、種々の工業製品に好適に利用可能である。   The Mg alloy (including pure Mg) in the present invention is not particularly limited, but an Mg—Al alloy in which Al is added as an additive element to Mg is preferable because it has excellent corrosion resistance. In particular, an Mg alloy corresponding to ASTM standard AZ91 contains Al in an amount of 8.3 mass% to 9.5 mass% and Zn in an amount of 0.5 mass% to 1.5 mass%, and has excellent corrosion resistance. The cast material of Mg alloy corresponding to AZ91 can be suitably used for various industrial products because of its corrosion resistance.

一方、本発明のMg合金の鋳造材は、上記本発明のMg合金の連続鋳造方法で得られたことを特徴とする。   On the other hand, the cast material of the Mg alloy of the present invention is obtained by the above-described continuous casting method of the Mg alloy of the present invention.

既に述べたように、本発明のMg合金の連続鋳造方法では、Mg合金の酸化が生じ難い。そのため、本発明のMg合金の連続鋳造方法で得られた本発明のMg合金の鋳造材では、酸化マグネシウムからなる表面欠陥および内部欠陥が従来品よりも少ない。具体的には、幅が約200mm〜600mm、厚さが約3mm〜5mmのMg合金の鋳造材を連続的に作製した場合、本発明のMg合金の鋳造材の表面性状および内部性状は、鋳造直後の状態で次の数値を満たす。
[表面性状]…直径0.5mm以上の酸化マグネシウムによる表面欠陥が、鋳造材1m当たり0.1個以下。
[内部性状]…直径20μm以上の酸化マグネシウムによる内部欠陥が、鋳造材の断面1mm当たり0.1個以下。
As already described, in the Mg alloy continuous casting method of the present invention, oxidation of the Mg alloy hardly occurs. Therefore, the Mg alloy cast material of the present invention obtained by the Mg alloy continuous casting method of the present invention has fewer surface defects and internal defects made of magnesium oxide than the conventional product. Specifically, when a cast material of Mg alloy having a width of about 200 mm to 600 mm and a thickness of about 3 mm to 5 mm is continuously produced, the surface properties and internal properties of the cast material of the Mg alloy of the present invention are determined by casting. The following values are satisfied in the state immediately after.
[Surface property] The number of surface defects due to magnesium oxide having a diameter of 0.5 mm or more is 0.1 or less per 1 m of the cast material.
[Internal properties] ... Internal defects due to magnesium oxide having a diameter of 20 μm or more are 0.1 or less per 1 mm 2 in cross section of the cast material.

鋳造ノズルから可動鋳型までの間で鋳造雰囲気に触れることで生成した酸化マグネシウムは、そのまま鋳造材の表面に残ったり、ノズル内を移動中に溶湯内部に巻き込まれたり、可動鋳型で溶湯が圧縮される際に鋳造材の内部に巻き込まれたりする。内部に巻き込まれた酸化マグネシウムは、巻き込まれる際に分断されて、表面に残った酸化マグネシウムよりも小さくなる傾向にある。参考までに、Mg合金の鋳造材の断面における酸化マグネシウムからなる内部欠陥の顕微鏡写真を図4に示す。図4に示すように、鋳造材に生成した酸化マグネシウムは、タバコの焼け跡のようになっており、その周りの健全な組織とは明らかに異なるため、見た目に確認することができる。なお、鋳造材の表面に残った酸化マグネシウムは、鋳造材から脱落して、鋳造材の表面に穴を形成することがある(後述する実施形態の図2(B)を参照)。つまり、鋳造材の表面に形成された穴の存在によって、間接的に酸化マグネシウムが生成されたことを知ることもできる。   Magnesium oxide generated by touching the casting atmosphere from the casting nozzle to the movable mold remains on the surface of the cast material, or is wound inside the molten metal while moving through the nozzle, or the molten mold is compressed by the movable mold. Or get caught inside the casting. Magnesium oxide entrained inside is divided when it is entrained and tends to be smaller than magnesium oxide remaining on the surface. For reference, a micrograph of an internal defect made of magnesium oxide in a cross section of a cast material of Mg alloy is shown in FIG. As shown in FIG. 4, the magnesium oxide produced in the cast material is like a burnt trace of tobacco, which is clearly different from the healthy structure around it, and can be visually confirmed. Note that magnesium oxide remaining on the surface of the cast material may fall off the cast material and form a hole in the surface of the cast material (see FIG. 2B of the embodiment described later). That is, it can be known that magnesium oxide is indirectly generated due to the presence of holes formed on the surface of the cast material.

上述したように、本発明のMg合金の鋳造材では、酸化マグネシウムからなる表面欠陥および内部欠陥が従来に比べて少ないため、曲げたり、塑性加工したりしても鋳造材にクラックなどの欠陥が生じ難い。そのため、本発明のMg合金の鋳造材をコイル状に巻き取ることで形成されたMg合金の鋳造コイル材、本発明のMg合金の鋳造材または本発明のMg合金の鋳造コイル材を圧延加工して得られたMg合金の展伸材、本発明のMg合金の展伸材をプレス加工して得られたMg合金の構造体も、クラックなどの欠陥を殆ど有さない工業材料となる。   As described above, since the Mg alloy cast material of the present invention has fewer surface defects and internal defects made of magnesium oxide than conventional ones, defects such as cracks are present in the cast material even when bent or plastically processed. Not likely to occur. Therefore, the Mg alloy cast coil material formed by winding the Mg alloy cast material of the present invention into a coil shape, the Mg alloy cast material of the present invention or the Mg alloy cast coil material of the present invention is rolled. The Mg alloy wrought material obtained in this manner and the Mg alloy structure obtained by pressing the Mg alloy wrought material of the present invention are also industrial materials having few defects such as cracks.

本発明のMg合金の連続鋳造方法によれば、酸化マグネシウムからなる表面欠陥および内部欠陥が従来よりも少ないMg合金の鋳造材を作製することができる。   According to the Mg alloy continuous casting method of the present invention, it is possible to produce a cast material of Mg alloy having fewer surface defects and internal defects made of magnesium oxide than conventional ones.

図1(A)は、実施形態で使用した双ロール式連続鋳造装置の概略横断面図、図1(B)は当該双ロール式連続鋳造装置の概略縦断面図である。FIG. 1A is a schematic cross-sectional view of a twin-roll continuous casting apparatus used in the embodiment, and FIG. 1B is a schematic vertical cross-sectional view of the twin-roll continuous casting apparatus. 図2(A)は酸化マグネシウムによる表面欠陥が殆ど存在しないMg合金の鋳造材の表面写真を示す図であり、図2(B)は酸化マグネシウムによる表面欠陥を有するMg合金の鋳造材の表面写真を示す図である。FIG. 2 (A) is a view showing a surface photograph of a cast material of Mg alloy having almost no surface defects due to magnesium oxide, and FIG. 2 (B) is a photograph of a surface of a cast material of Mg alloy having surface defects due to magnesium oxide. FIG. 図3(A)は酸化マグネシウムによる内部欠陥が殆ど存在しないMg合金の鋳造材の断面写真を示す図であり、図3(B)は酸化マグネシウムによる内部欠陥を有するMg合金の鋳造材の断面写真を示す図である。3A is a view showing a cross-sectional photograph of a cast material of Mg alloy having few internal defects due to magnesium oxide, and FIG. 3B is a cross-sectional photograph of a cast material of Mg alloy having internal defects due to magnesium oxide. FIG. Mg合金の鋳造材の断面における酸化マグネシウムからなる内部欠陥の拡大写真を示す図である。It is a figure which shows the enlarged photograph of the internal defect which consists of magnesium oxide in the cross section of the cast material of Mg alloy.

以下、鋳造雰囲気を種々変化させてMg合金の鋳造材を作製し、そのMg合金の鋳造材における表面性状および内部性状を調べた。   Hereinafter, casting materials of Mg alloys were produced by changing the casting atmosphere in various ways, and surface properties and internal properties of the casting materials of the Mg alloys were examined.

まず、Mg合金の鋳造材の製造に用いる鋳造装置を図1に基づいて説明する。図1の鋳造装置は、対向する一対の鋳造ロール3U,3D(可動鋳型3)と、これら鋳造ロール3U,3Dの間にMg合金の溶湯4’を供給する鋳造ノズル2とを備え、水平方向に鋳造材4を製造する、いわゆる横式の双ロール式連続鋳造装置1である。   First, a casting apparatus used for manufacturing a cast material of Mg alloy will be described with reference to FIG. The casting apparatus of FIG. 1 includes a pair of opposing casting rolls 3U and 3D (movable mold 3) and a casting nozzle 2 for supplying molten alloy 4 'of Mg alloy between the casting rolls 3U and 3D. This is a so-called horizontal twin-roll continuous casting apparatus 1 for producing a cast material 4.

鋳造ロール3U,3Dは、円筒状の部材であり、所定の間隔を空けて対向配置され、図1(B)に示すように互いに反対方向に回転する。これら鋳造ロール3U,3D間の間隔は、作製する鋳造材4の厚さに応じて変更可能である。鋳造ロール3U,3Dは、溶湯4を急激に冷却して凝固させるために、冷却機構を備えている。   The casting rolls 3U and 3D are cylindrical members, are arranged to face each other at a predetermined interval, and rotate in opposite directions as shown in FIG. The distance between the casting rolls 3U and 3D can be changed according to the thickness of the cast material 4 to be produced. The casting rolls 3U and 3D have a cooling mechanism in order to rapidly cool and solidify the molten metal 4.

一方、鋳造ノズル2は、その先端に矩形状に開口した注湯口21を備え、この注湯口21が上述した鋳造ロール3U,3Dの間に差し込まれるように配置される。また、鋳造ノズル2は、その両端部に鋳造材4の幅を規定するサイド部材25を備える。このサイド部材25は、鋳造ロール3U,3Dの間に差し込まれるように配置され、鋳造ロール3U,3Dから溶湯4が漏れないようにする堰の役割も果たす。   On the other hand, the casting nozzle 2 is provided with a pouring port 21 opened in a rectangular shape at the tip thereof, and the pouring port 21 is disposed so as to be inserted between the casting rolls 3U and 3D described above. The casting nozzle 2 includes side members 25 that define the width of the cast material 4 at both ends thereof. The side member 25 is disposed so as to be inserted between the casting rolls 3U and 3D, and also serves as a weir to prevent the molten metal 4 from leaking from the casting rolls 3U and 3D.

本実施形態の鋳造装置1ではさらに、鋳造ノズル2の外周全体がカバーされており、そのカバーされた部分の内部空間の雰囲気を、カバーされた部分の外部空間の雰囲気(大気雰囲気)とは異なる状態にすることができるようになっている。カバーの状態をより詳しく説明すると、鋳造ノズル2を支持するノズル支持体2Hのうち、鋳造ノズル2の側方に位置する部分が、鋳造ロール3U,3Dを回転可能に支持する鋳型支持体3Hに接触している。一方、ノズル支持体2Hのうち、鋳造ノズル2の上方と下方に位置する部分には、鋳造ノズル2よりも幅広の板バネ材2C,2Cが取り付けられ、その板バネ材2C,2Cが鋳造ロール3U,3Dに接触している(図1(B)を参照)。板バネ材2C,2Cにおける鋳造ロール3U,3Dとの接触箇所にはフェルト材が取り付けられており、板バネ材2C,2Cが直接鋳造ロール3U,3Dに接触して鋳造ロール3U,3Dを損傷しないようになっている。このようにして、鋳造ノズル2は四方から取り囲まれた状態になっている。その取り囲まれた空間の体積(鋳造ノズル2の外周面と、ノズル支持体2Hの内周面と、鋳造ロール3U,3Dの外周面と、鋳型支持体3Hの内周面と、で囲まれる空間の体積)は、およそ10Lであった。   Further, in the casting apparatus 1 of the present embodiment, the entire outer periphery of the casting nozzle 2 is covered, and the atmosphere of the inner space of the covered portion is different from the atmosphere (air atmosphere) of the outer space of the covered portion. It can be in a state. The state of the cover will be described in more detail. Of the nozzle support 2H that supports the casting nozzle 2, the portion located on the side of the casting nozzle 2 is the mold support 3H that rotatably supports the casting rolls 3U and 3D. In contact. On the other hand, leaf spring materials 2C, 2C wider than the casting nozzle 2 are attached to portions of the nozzle support 2H located above and below the casting nozzle 2, and the leaf spring materials 2C, 2C are cast rolls. 3U and 3D are in contact (see FIG. 1B). A felt material is attached to the leaf spring materials 2C and 2C at the contact points with the casting rolls 3U and 3D, and the leaf spring materials 2C and 2C directly contact the casting rolls 3U and 3D to damage the casting rolls 3U and 3D. It is supposed not to. In this way, the casting nozzle 2 is surrounded from all sides. The volume of the enclosed space (the space surrounded by the outer peripheral surface of the casting nozzle 2, the inner peripheral surface of the nozzle support 2H, the outer peripheral surfaces of the casting rolls 3U and 3D, and the inner peripheral surface of the mold support 3H. ) Was approximately 10 L.

また、カバーされた部分の内部空間には、その内部空間に不活性ガスを導入するための導入管2P,2Pが設けられている。導入管2P,2Pは、具体的には、鋳造ノズル2の両側に一対、設けられている。この導入管2P,2Pのガス噴出口は、鋳造ロール2側に開口し、かつ若干上方に向いている。そのため、導入管2P,2Pから導入した不活性ガスは、鋳造ノズル2から鋳造ロール3U,3Dに向かう方向で、かつ鋳造ノズル2の下方から上方に向かう方向に流れ、鋳造ノズル2に直接当たらないようになっている。   In addition, in the internal space of the covered portion, introduction pipes 2P and 2P for introducing an inert gas into the internal space are provided. Specifically, a pair of introduction pipes 2 </ b> P and 2 </ b> P are provided on both sides of the casting nozzle 2. The gas outlets of the introduction pipes 2P and 2P are open to the casting roll 2 side and slightly upward. Therefore, the inert gas introduced from the introduction pipes 2P and 2P flows in the direction from the casting nozzle 2 toward the casting rolls 3U and 3D and from the lower side to the upper side of the casting nozzle 2, and does not directly hit the casting nozzle 2. It is like that.

導入管2P,2Pから内部空間への不活性ガスの導入量は、図示しない制御機構により制御される。具体的には、制御機構は、内部空間における注湯口21の幅方向端部近傍に配置した各種センサの検知結果に基づいて、不活性ガスの導入量を調整する。この制御機構によって不活性ガスの導入量を調整することで、注湯口21の近傍の鋳造雰囲気を一定に制御することができる。なお、本実施形態では、雰囲気内の露点、酸素濃度、および温度を測定するセンサを設けた。これらセンサには公知の構成を利用することができる。   The amount of inert gas introduced from the introduction pipes 2P, 2P into the internal space is controlled by a control mechanism (not shown). Specifically, the control mechanism adjusts the introduction amount of the inert gas based on the detection results of various sensors arranged in the vicinity of the width direction end of the pouring port 21 in the internal space. By adjusting the amount of inert gas introduced by this control mechanism, the casting atmosphere in the vicinity of the pouring gate 21 can be controlled to be constant. In this embodiment, a sensor for measuring the dew point, oxygen concentration, and temperature in the atmosphere is provided. A known configuration can be used for these sensors.

以上説明した構成により、カバー内の空間は完全に封止されるわけではないが、ガス導入管2P,2Pから不活性ガスを導入し続ける限り、カバーされた部分の内部空間の雰囲気は、カバーされた部分の外の大気雰囲気とは異なる状態になる。   With the configuration described above, the space in the cover is not completely sealed. However, as long as the inert gas is continuously introduced from the gas introduction pipes 2P and 2P, the atmosphere in the inner space of the covered portion is the cover. It becomes a state different from the air atmosphere outside the part.

以上説明した鋳造装置1を用いて、カバーされた部分の内部空間の雰囲気を変化させて、長さ600m、幅300mm、厚さ4mmのMg合金の鋳造材4を複数作製した。そして、得られたMg合金の鋳造材4の表面性状と内部性状を調べた。内部空間における鋳造ノズル2の注湯口21の近傍の雰囲気条件、および評価結果を表1に示す。   Using the casting apparatus 1 described above, a plurality of Mg alloy castings 4 having a length of 600 m, a width of 300 mm, and a thickness of 4 mm were produced by changing the atmosphere of the internal space of the covered portion. And the surface property and internal property of the obtained casting material 4 of Mg alloy were investigated. Table 1 shows the atmospheric conditions near the pouring port 21 of the casting nozzle 2 in the internal space and the evaluation results.

表1における流量は、内部空間に導入するNガスの流量である。流量が『0』となっているものは、Nガスを導入しなかったことを示す(つまり、大気雰囲気)。雰囲気内の露点、酸素濃度、および温度は、内部空間における注湯口の幅方向端部近傍に配置した各種センサにより測定した値である。 The flow rate in Table 1 is the flow rate of N 2 gas introduced into the internal space. A flow rate of “0” indicates that N 2 gas was not introduced (ie, atmospheric atmosphere). The dew point, oxygen concentration, and temperature in the atmosphere are values measured by various sensors arranged in the vicinity of the widthwise end of the pouring gate in the internal space.

また、表面性状は、100mの鋳造材の表面に形成された直径0.5mm以上の酸化マグネシウムによる表面欠陥を目視にてカウントし、1m当たりの当該欠陥の数で評価した。図2(A)は、酸化マグネシウムによる表面欠陥が殆ど存在しない鋳造材の表面写真を示す図であり、図2(B)は、酸化マグネシウムが脱落してできた穴状の表面欠陥を有する鋳造材の表面写真を示す図である。表面欠陥のカウントにあたっては、図2(B)に示される穴状の表面欠陥や、酸化マグネシウムそのものからなる表面欠陥をカウントする。   Further, the surface properties were evaluated by visually counting surface defects caused by magnesium oxide having a diameter of 0.5 mm or more formed on the surface of a 100 m cast material and measuring the number of defects per meter. FIG. 2 (A) is a view showing a surface photograph of a casting material in which surface defects due to magnesium oxide are almost absent, and FIG. 2 (B) is a casting having hole-like surface defects formed by dropping magnesium oxide. It is a figure which shows the surface photograph of material. In counting the surface defects, the hole-shaped surface defects shown in FIG. 2B and the surface defects made of magnesium oxide itself are counted.

一方、内部性状は、鋳造開始から10m,200m,400m,600m程度の位置で鋳造材を横断し、その横断面に形成された直径20μm以上の酸化マグネシウムからなる欠陥をSEM観察にてカウントし、1mm当たりの当該欠陥の数で評価した。観察した断面の視野の広さは4mm×15mm、視野の数は6個であった。図3(A)は、酸化マグネシウムからなる内部欠陥が殆ど存在しない鋳造材の断面写真を示す図であり、図3(B)は、図面上方、やや右寄りの位置に酸化マグネシウムからなる内部欠陥を有する鋳造材の断面写真を示す図である。内部欠陥のカウントにあたっては、図3(B)に示される酸化マグネシウムからなる内部欠陥をカウントする。 On the other hand, the internal properties crossed the cast material at a position of about 10 m, 200 m, 400 m, 600 m from the start of casting, and the defects made of magnesium oxide having a diameter of 20 μm or more formed in the cross section were counted by SEM observation, The number of defects per 1 mm 2 was evaluated. The width of the field of the observed cross section was 4 mm × 15 mm, and the number of fields was 6. FIG. 3 (A) is a view showing a cross-sectional photograph of a cast material having almost no internal defects made of magnesium oxide, and FIG. 3 (B) shows the internal defects made of magnesium oxide at a position slightly above and to the right of the drawing. It is a figure which shows the cross-sectional photograph of the casting material which has. In counting the internal defects, the internal defects made of magnesium oxide shown in FIG. 3B are counted.

表1の結果から、露点8℃以下、酸素濃度15体積%以下、温度65℃〜450℃の鋳造雰囲気で作製された試料E,F,Hにおける酸化マグネシウムの欠陥の数は、表面および断面のいずれにおいても、他の試料に比べて格段に少なかった。具体的には、試料E,F,Hの表面酸化物の個数は、0.1個/m以下、内部酸化物の個数は、0.1個/mm以下であった。このように表面にも内部にも殆ど欠陥が存在しない試料E,F,Hの鋳造材であれば、さらに曲げたり塑性加工したりしても、鋳造材にクラックなどの欠陥が生じ難いと予想される。 From the results in Table 1, the number of magnesium oxide defects in samples E, F, and H produced in a casting atmosphere having a dew point of 8 ° C. or less, an oxygen concentration of 15% by volume or less, and a temperature of 65 ° C. to 450 ° C. In any case, it was much less than other samples. Specifically, the number of surface oxides of Samples E, F, and H was 0.1 piece / m or less, and the number of internal oxides was 0.1 piece / mm 2 or less. In this way, if the specimens E, F, and H are almost free of defects on the surface and inside, it is expected that defects such as cracks will not easily occur in the cast material even if it is further bent or plastically processed. Is done.

なお、本発明は上述した実施形態に限定されるわけではなく、本発明の要旨を逸脱しない範囲で適宜変更して実施することができる。   In addition, this invention is not necessarily limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably and can implement.

本発明のMg合金の連続鋳造方法は、種々の工業製品の材料となるMg合金の鋳造材の作製に好適に利用可能である。   The continuous casting method of the Mg alloy of the present invention can be suitably used for producing a cast material of Mg alloy which is a material for various industrial products.

1 双ロール式連続鋳造装置(連続鋳造装置)
2 鋳造ノズル 21 注湯口 25 サイド部材
2H ノズル支持体 2C 板バネ材 2P 導入管
3 可動鋳型 3U,3D 鋳造ロール
3H 鋳型支持体
4 Mg合金の鋳造材 4’ Mg合金の溶湯
1 Twin roll type continuous casting equipment (continuous casting equipment)
2 Casting nozzle 21 Pouring port 25 Side member 2H Nozzle support 2C Leaf spring material 2P Introducing pipe 3 Movable mold 3U, 3D Casting roll 3H Mold support 4 Mg alloy cast material 4 'Mg alloy molten metal

Claims (4)

一対の可動鋳型の間に鋳造ノズルからMg合金の溶湯を供給し、その溶湯を前記一対の可動鋳型の間で急冷凝固させることでMg合金の鋳造材を連続的に作製するMg合金の連続鋳造方法であって、
前記鋳造ノズルの外周を覆って、その覆った部分の内部空間の雰囲気と、覆った部分の外部空間の雰囲気とを異ならせることができる状態とした上で、不活性ガスを前記内部空間に連続的に導入し、
前記鋳造ノズルの注湯口近傍の鋳造雰囲気における少なくとも酸素濃度をモニターすると共に、そのモニター結果に基づいて前記不活性ガスの導入量を調整することで前記鋳造雰囲気を露点8℃以下、酸素濃度15体積%以下、温度65℃〜450℃に制御しながら連続鋳造を実施するMg合金の連続鋳造方法。
Continuous casting of Mg alloy in which a molten alloy of Mg alloy is supplied from a casting nozzle between a pair of movable molds, and the molten metal is rapidly solidified between the pair of movable molds to continuously produce a cast material of Mg alloy. A method,
The outer circumference of the casting nozzle is covered, and the atmosphere of the inner space of the covered portion can be made different from the atmosphere of the outer space of the covered portion, and then an inert gas is continuously supplied to the inner space. Introduced
At least the oxygen concentration in the casting atmosphere in the vicinity of the pouring port of the casting nozzle is monitored, and the amount of inert gas introduced is adjusted based on the monitoring result, whereby the casting atmosphere is kept at a dew point of 8 ° C. or less and the oxygen concentration is 15 volumes. %, A continuous casting method of an Mg alloy that performs continuous casting while controlling the temperature at 65 ° C. to 450 ° C.
前記内部空間への前記不活性ガスの導入により、前記注湯口近傍の前記鋳造雰囲気における前記酸素濃度を制御することで、前記溶湯と前記可動鋳型との接触位置を調整する請求項1に記載のMg合金の連続鋳造方法。 With the introduction of the inert gas to the interior space, the watch by controlling the oxygen concentration in the casting atmosphere sprue vicinity of claim 1 for adjusting the contact position between the molten metal and the movable mold Mg alloy continuous casting method. 前記内部空間への前記不活性ガスの導入は、前記鋳造ノズルの側方で、かつ下方から行なう請求項1または請求項2に記載のMg合金の連続鋳造方法。 The inner introduction of the inert gas into the space, the lateral side of the casting nozzle, and continuous casting method of the Mg alloy according to claim 1 or claim 2 carried out from below. 前記Mg合金は、ASTM規格のAZ91相当のMg合金である請求項1から請求項3のいずれか一項に記載のMg合金の連続鋳造方法。 The Mg alloy continuous casting method according to any one of claims 1 to 3 , wherein the Mg alloy is an Mg alloy corresponding to ASTM standard AZ91.
JP2012281648A 2012-12-25 2012-12-25 Mg alloy continuous casting method, Mg alloy cast material, Mg alloy cast coil material, Mg alloy wrought material, and Mg alloy structure Expired - Fee Related JP6035675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012281648A JP6035675B2 (en) 2012-12-25 2012-12-25 Mg alloy continuous casting method, Mg alloy cast material, Mg alloy cast coil material, Mg alloy wrought material, and Mg alloy structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012281648A JP6035675B2 (en) 2012-12-25 2012-12-25 Mg alloy continuous casting method, Mg alloy cast material, Mg alloy cast coil material, Mg alloy wrought material, and Mg alloy structure

Publications (2)

Publication Number Publication Date
JP2014124647A JP2014124647A (en) 2014-07-07
JP6035675B2 true JP6035675B2 (en) 2016-11-30

Family

ID=51404612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012281648A Expired - Fee Related JP6035675B2 (en) 2012-12-25 2012-12-25 Mg alloy continuous casting method, Mg alloy cast material, Mg alloy cast coil material, Mg alloy wrought material, and Mg alloy structure

Country Status (1)

Country Link
JP (1) JP6035675B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617167A (en) * 1979-07-20 1981-02-18 Pioneer Electronic Corp Strip producing apparatus
JPS5858963A (en) * 1981-10-05 1983-04-07 Mitsubishi Keikinzoku Kogyo Kk Production of continuously cast plate
JP2003266150A (en) * 2002-03-13 2003-09-24 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for producing magnesium alloy thin sheet
JP2003266157A (en) * 2002-03-14 2003-09-24 Furukawa Electric Co Ltd:The Method for manufacturing low oxygen copper wire rod with belt and wheel type continuous casting and rolling method
JP4697657B2 (en) * 2005-03-22 2011-06-08 住友電気工業株式会社 Manufacturing method of magnesium long material
JP4613965B2 (en) * 2008-01-24 2011-01-19 住友電気工業株式会社 Magnesium alloy sheet

Also Published As

Publication number Publication date
JP2014124647A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
TWI604465B (en) Copper wire rod and magnet wire
KR101193437B1 (en) Spherical magnet alloy powder and producing method of the same
CA2947828A1 (en) Method for continuous-casting slab
JP2006502862A (en) Continuous production method of thin steel strip
JP2004001079A (en) Continuous casting method, continuous casting device, and continuously cast slab
JP6035675B2 (en) Mg alloy continuous casting method, Mg alloy cast material, Mg alloy cast coil material, Mg alloy wrought material, and Mg alloy structure
JP2005313208A (en) Copper for wire rod and producing method therefor
JP6123549B2 (en) Manufacturing method of continuous cast slab
JP2013071155A (en) Copper alloy ingot, copper alloy sheet, and method for manufacturing copper alloy ingot
CN105813778B (en) The manufacturing method of casting in bronze block, copper wires and casting in bronze block
JP4475166B2 (en) Method for continuous casting of molten metal
JP5811820B2 (en) Casting method of slab
KR101159598B1 (en) Method for estimating mold powder&#39;s viscosity
JP2003266157A (en) Method for manufacturing low oxygen copper wire rod with belt and wheel type continuous casting and rolling method
KR101277701B1 (en) Device for controlling level of molten steel in mold and method therefor
US20150122451A1 (en) Up-drawing continuous casting apparatus and up-drawing continuous casting method
JP6736029B2 (en) Method for manufacturing alloy castings
KR20150084452A (en) Manufacturing method for porous copper
KR101344896B1 (en) Device for predicting edge defect of hot-rolled steel sheet coil and method therefor
JP7273300B2 (en) METHOD FOR MANUFACTURING THIN-WALL INSTALL, AND TWIN-ROLL TYPE CONTINUOUS CASTING APPARATUS
KR101466202B1 (en) Controlling method for surface quality of slab
JP4259215B2 (en) Copper wire manufacturing method and manufacturing apparatus
JPWO2020071488A1 (en) Manufacturing method of thin-walled slabs
JPH06339752A (en) Twin roll continuous caster and continuous casting method
KR101435122B1 (en) Controlling method for surface quality of ultra low carbon steel slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161016

R150 Certificate of patent or registration of utility model

Ref document number: 6035675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees