JP6033141B2 - Aluminum alloy plate for large rectangular battery case - Google Patents

Aluminum alloy plate for large rectangular battery case Download PDF

Info

Publication number
JP6033141B2
JP6033141B2 JP2013061908A JP2013061908A JP6033141B2 JP 6033141 B2 JP6033141 B2 JP 6033141B2 JP 2013061908 A JP2013061908 A JP 2013061908A JP 2013061908 A JP2013061908 A JP 2013061908A JP 6033141 B2 JP6033141 B2 JP 6033141B2
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
less
alloy plate
battery case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013061908A
Other languages
Japanese (ja)
Other versions
JP2014185377A (en
Inventor
小林 一徳
一徳 小林
松本 剛
松本  剛
小西 晴之
晴之 小西
一正 海読
一正 海読
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013061908A priority Critical patent/JP6033141B2/en
Priority to CN201310681134.XA priority patent/CN104073700A/en
Priority to KR1020140034141A priority patent/KR101656925B1/en
Publication of JP2014185377A publication Critical patent/JP2014185377A/en
Priority to KR1020160049888A priority patent/KR20160053858A/en
Application granted granted Critical
Publication of JP6033141B2 publication Critical patent/JP6033141B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池ケース等に用いられる大型角筒電池ケース用アルミニウム合金板に関する。   The present invention relates to an aluminum alloy plate for a large rectangular battery case used for a lithium ion secondary battery case or the like.

携帯電話やノート型パソコン等の電源として、リチウムイオン二次電池が広く使用されているが、その優れた特性により、近年、電気自動車やハイブリッド車の電源としても採用され始めている。この二次電池の外装であるケース(以下、電池ケース)の材料には、従来、電池の小型化及び軽量化、そして電池ケース(主として電池ケース本体)に成形するための成形性等を満たすため、アルミニウム合金板が用いられている。   Lithium ion secondary batteries are widely used as power sources for mobile phones, notebook computers, etc., but due to their excellent characteristics, they have recently begun to be used as power sources for electric vehicles and hybrid vehicles. Conventionally, the material of the case (hereinafter referred to as the battery case) that is the exterior of the secondary battery satisfies the miniaturization and weight reduction of the battery and the formability for forming the battery case (mainly the battery case main body). Aluminum alloy plates are used.

電池ケースは、アルミニウム合金板にプレス加工(深絞り−しごき加工)を加えて製造され、電極剤(電極及び電解液)を入れた後、蓋部材とレーザ溶接される。このため、電池ケース用アルミニウム合金板には、優れた成形性が必要とされる。また、携帯電話やノート型パソコン用のリチウムイオン二次電池の場合、電池ケースには電池の膨れに対抗する強度が必要であり、車載用のリチウムイオン二次電池の場合、自動車の衝突等の外部衝撃から電極剤を保護する強度が必要である。このため、電池ケース用アルミニウム合金板には、材料としての高い強度と優れたレーザ溶接性が必要とされる。
このような成形性、材料強度、レーザ溶接性を備えるアルミニウム合金板として、JIS3003をベースにしたAl−Mn系アルミニウム合金板が多く開発されている(特許文献1〜9参照)。
The battery case is manufactured by applying press processing (deep drawing-ironing processing) to an aluminum alloy plate, and after putting an electrode agent (electrode and electrolyte), it is laser welded to the lid member. For this reason, the aluminum alloy plate for battery cases requires excellent formability. In addition, in the case of lithium ion secondary batteries for mobile phones and notebook computers, the battery case must be strong enough to resist battery swelling, and in the case of in-vehicle lithium ion secondary batteries, such as car collisions. The strength to protect the electrode agent from external impact is necessary. For this reason, the aluminum alloy plate for battery cases requires high strength as a material and excellent laser weldability.
As an aluminum alloy plate having such formability, material strength, and laser weldability, many Al-Mn aluminum alloy plates based on JIS3003 have been developed (see Patent Documents 1 to 9).

特開2000−129384号公報JP 2000-129384 A 特開2002−134069号公報JP 2002-140669 A 特開2002−339049号公報JP 2002-339049 A 特開2004−2985号公報JP 2004-2985 A 特開2005−336540号公報JP 2005-336540 A 特開2006−188744号公報JP 2006-188744 A 特開2011−38122号公報JP 2011-38122 A 特開2012−177186号公報JP2012-177186A 特開2012−197489号公報JP 2012-197489 A

車載用の電池ケースは、携帯電話やノート型パソコン用の電池ケースに比べて大型で、例えば特許文献9に記載されているように、底面の短幅10mm以上、長幅70mm以上、高さ60mm以上の有底角筒が用いられる。このような電池ケースは、大型の順送りプレス機を用い、素材となるアルミニウム合金板に順送りプレス加工(多段絞り−しごき加工)を加えて成形されるが、厳しい深絞り加工により割れや焼き付きが発生しやすいという問題がある。   The battery case for in-vehicle use is larger than the battery case for a mobile phone or a notebook computer. For example, as described in Patent Document 9, the bottom width is 10 mm or more, the width is 70 mm or more, and the height is 60 mm. The above-mentioned bottomed square tube is used. Such a battery case is formed by applying a progressive press process (multi-stage drawing-ironing process) to the aluminum alloy sheet as a raw material using a large progressive press machine. There is a problem that it is easy to do.

また、車載用の電池ケースは、外形が大型であると同時に材料の肉厚が大きく、所定の溶接強度を得るため、レーザ溶接における溶け込み深さを深くする必要がある。携帯電話やノート型パソコン用の電池ケースでは、とけ込み深さが0.2〜0.3mmであるが、車載用の電池ケースでは0.5〜1.0mm程度が望まれている。車載用の電池ケースのレーザ溶接には、深い溶け込み深さを得る必要から、主として連続発振式レーザ溶接が用いられる。しかし、溶け込み深さを深くするほど、溶接割れ、イレギュラービード、アンダーカット、溶接スパッタの付着等の溶接欠陥が発生しやすくなるという問題がある。   In addition, in-vehicle battery cases have a large outer shape and a large material thickness, and in order to obtain a predetermined welding strength, it is necessary to increase the penetration depth in laser welding. In a battery case for a mobile phone or a notebook personal computer, the penetration depth is 0.2 to 0.3 mm, but for an in-vehicle battery case, about 0.5 to 1.0 mm is desired. In laser welding of an on-vehicle battery case, continuous oscillation laser welding is mainly used because it is necessary to obtain a deep penetration depth. However, there is a problem that welding defects such as weld cracks, irregular beads, undercuts, and adhesion of weld spatter are more likely to occur as the penetration depth increases.

本発明は、車載用等の大型角筒電池ケースの製造に関わる上記の問題点を解決するためになされたもので、プレス加工の成形性に優れ、レーザ溶接性に優れ、かつ高強度の電池ケースが製造できるAl−Mn系アルミニウム合金板を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems associated with the production of large-sized rectangular battery cases for automobiles, etc., and is excellent in press workability, laser weldability, and high strength. It aims at providing the Al-Mn type aluminum alloy plate which can manufacture a case.

本発明に係る大型角型電池ケース用アルミニウム合金板は、Mn:0.5〜1.5質量%、Cu:0.4〜1.2質量%、Mg:0.2質量%未満、Si:0.6質量%未満、Fe:0.8質量%未満を含有し、Si/Fe質量比が3.0未満であり、残部Al及び不可避不純物からなる。このアルミニウム合金板は、さらにTi:0.02質量%未満、B:20質量ppm未満、Zr:0.15質量%以下、Cr:0.40質量%以下、及びZn:0.3質量%以下のいずれか1種又は2種以上を、添加元素として又は不可避不純物として含有してよい。
本発明に係るアルミニウム合金板は、O又はHの質別で大型角筒電池ケースに成形される。上記組成において、O材の耐力値は50〜110MPaとなる。H材の場合、耐力値を160〜260MPaの範囲に調整することが望ましい。
The aluminum alloy plate for a large square battery case according to the present invention has Mn: 0.5 to 1.5 mass%, Cu: 0.4 to 1.2 mass%, Mg: less than 0.2 mass%, Si: It contains less than 0.6% by mass, Fe: less than 0.8% by mass, has a Si / Fe mass ratio of less than 3.0, and consists of the balance Al and inevitable impurities. This aluminum alloy plate further includes Ti: less than 0.02 mass%, B: less than 20 mass ppm, Zr: 0.15 mass% or less, Cr: 0.40 mass% or less, and Zn: 0.3 mass% or less. Any one or two or more of these may be contained as additive elements or as inevitable impurities.
The aluminum alloy plate according to the present invention is formed into a large rectangular battery case according to the quality of O or H. In the above composition, the proof stress value of the O material is 50 to 110 MPa. In the case of H material, it is desirable to adjust the proof stress value in the range of 160 to 260 MPa.

本発明に係るアルミニウム合金板は成形性に優れ、プレス加工において割れや焼き付き等の発生がなく、大型角筒電池ケースの製造に優れている。その成形の過程で、アルミニウム合金板は加工硬化するから、高強度の大型角筒電池ケースを製造することができる。
また、このアルミニウム合金板は、レーザ溶接において溶け込み深さを深くしても、溶接欠陥の発生がなくレーザ溶接性が優れている。従って、蓋材とのレーザ溶接において溶接深さを深くし、溶接強度を高くすることができ、例えば車載用リチウムイオン二次電池等の大型角筒電池ケース用として適している。
The aluminum alloy plate according to the present invention is excellent in formability, is free from cracks and seizures in press work, and is excellent in the production of a large rectangular battery case. Since the aluminum alloy plate is work-hardened during the forming process, a large-strength large rectangular battery case can be manufactured.
Further, this aluminum alloy plate is excellent in laser weldability with no generation of welding defects even when the penetration depth is increased in laser welding. Therefore, the welding depth can be increased and the welding strength can be increased in the laser welding with the lid member, which is suitable for a large rectangular battery case such as an in-vehicle lithium ion secondary battery.

以下、本発明に係る大型角筒電池ケース用アルミニウム合金板について、より具体的に説明する。
(アルミニウム合金板の組成)
Mn:0.5〜1.5質量%
Mnは、母相内に固溶して、アルミニウム合金板の強度を高め、耐圧強度を向上させる作用効果を有する。しかし、Mnの含有量が0.5質量%未満であるとこの作用効果は小さい。一方、Mnの含有量が1.5質量%を超えると粗大な金属間化合物(Al−Fe−Mn、Al−Fe−Mn−Si系金属間化合物)が生成し、成形時の割れの起点となりやすく、アルミニウム合金板の成形性が低下する。従って、Mn含有量は0.5〜1.5質量%の範囲とし、好ましくは0.7〜1.2質量%とする。
Hereinafter, the aluminum alloy plate for a large rectangular battery case according to the present invention will be described more specifically.
(Composition of aluminum alloy plate)
Mn: 0.5 to 1.5% by mass
Mn has the effect of being dissolved in the matrix and increasing the strength of the aluminum alloy plate and improving the pressure strength. However, when the Mn content is less than 0.5% by mass, this effect is small. On the other hand, if the content of Mn exceeds 1.5% by mass, coarse intermetallic compounds (Al-Fe-Mn, Al-Fe-Mn-Si intermetallic compounds) are generated, which becomes the starting point of cracking during molding. This is easy and the formability of the aluminum alloy plate is lowered. Therefore, the Mn content is in the range of 0.5 to 1.5 mass%, preferably 0.7 to 1.2 mass%.

Mg:0.2質量%未満
Mgは、固溶強化によりアルミニウム合金板の強度を高め,耐圧強度を向上させる作用効果を有する。しかし、Mgの含有量が0.2質量%以上では、H材をプレス加工で大型角筒電池ケースに成形した場合に、加工硬化により強度が高くなりすぎ、割れが発生する。また、Mgの含有量が0.2質量%以上では、CW(連続発振式)レーザ溶接にて、溶接割れやイレギュラービードの発生による溶接ビードの形状の乱れが生じ、あるいは溶接ビードの内部に欠陥を生じやすくなる。従って、Mg含有量は0.2質量%未満(0%を含まず)とし、好ましくは0.03〜0.15質量%とする。
Mg: Less than 0.2% by mass Mg has the effect of increasing the strength of the aluminum alloy plate by solid solution strengthening and improving the pressure strength. However, when the Mg content is 0.2% by mass or more, when the H material is formed into a large rectangular battery case by press working, the strength becomes too high due to work hardening, and cracking occurs. Also, when the Mg content is 0.2 mass% or more, the weld bead shape is disturbed due to weld cracking or irregular bead generation in CW (continuous oscillation) laser welding, or inside the weld bead. Prone to defects. Therefore, the Mg content is less than 0.2% by mass (excluding 0%), preferably 0.03 to 0.15% by mass.

Cu:0.4〜1.2質量%
Cuは、固溶強化によりアルミニウム合金板の強度を高め、耐圧強度を向上させる作用効果を有する。しかし、Cuの含有量が0.4質量%未満であるとこの作用効果は小さい。一方、Cuの含有量が1.2質量%を超えると,加工硬化性が大きくなりすぎて,プレス加工で割れが発生する。また、Cuの含有量が1.2質量%を超えると、CW(連続発振式)レーザ溶接にて、溶接割れが生じる。従って、Cu含有量は0.4〜1.2質量%とし、好ましくは0.6超〜1.2質量%とし、さらに好ましくは0.7〜1.0質量%とする。
Cu: 0.4 to 1.2% by mass
Cu has the effect of increasing the strength of the aluminum alloy plate by solid solution strengthening and improving the pressure strength. However, when the Cu content is less than 0.4% by mass, this effect is small. On the other hand, if the Cu content exceeds 1.2% by mass, the work curability becomes too high, and cracking occurs during press working. On the other hand, if the Cu content exceeds 1.2% by mass, weld cracking occurs in CW (continuous oscillation) laser welding. Therefore, the Cu content is 0.4 to 1.2% by mass, preferably more than 0.6 to 1.2% by mass, and more preferably 0.7 to 1.0% by mass.

Si:0.6質量%未満
Siは、不可避不純物としてアルミニウム合金中に存在する。また、Siは、固溶強化によりアルミニウム合金板の強度を高め、耐圧強度を向上させ、さらにアルミニウム合金板の成形性を向上させる作用効果を有し、必要に応じてアルミニウム合金中に添加される。しかし、Si含有量が0.6質量%以上では、Al−Fe−Mn−Si系金属間化合物が粗大化し、これが成形加工時の割れの起点となりやすく、アルミニウム合金板の成形性が低下する。また、Si含有量が0.6質量%を超えると、溶接割れが生じやすくなる。従って、不可避不純物としてアルミニウム合金中に存在し又は必要に応じてアルミニウム合金中に添加されるSiの含有量は、0.6質量%未満とする。望ましくは、Si含有量は0.05〜0.5質量%である。
Si: Less than 0.6% by mass Si is present in the aluminum alloy as an inevitable impurity. Moreover, Si has the effect of increasing the strength of the aluminum alloy plate by solid solution strengthening, improving the pressure strength, and further improving the formability of the aluminum alloy plate, and is added to the aluminum alloy as necessary. . However, when the Si content is 0.6% by mass or more, the Al—Fe—Mn—Si intermetallic compound is coarsened, which tends to be a starting point of cracking during forming, and the formability of the aluminum alloy plate is lowered. Moreover, when Si content exceeds 0.6 mass%, it will become easy to produce a weld crack. Therefore, the content of Si present in the aluminum alloy as an inevitable impurity or added to the aluminum alloy as necessary is less than 0.6% by mass. Desirably, the Si content is 0.05 to 0.5 mass%.

Fe:0.8質量%未満
Feは、不可避不純物としてアルミニウム合金中に存在する。また、Feは、アルミニウム合金板の強度を高める作用効果を有し、必要に応じてアルミニウム合金中に添加される。しかし、Feの含有量が0.8質量%を超えると、Al−Fe−Mn、Al−Fe−Mn−Si系金属間化合物が粗大化し、これが成形時の割れの起点となりやすく、アルミニウム合金板の成形性が低下する。従って、不可避不純物としてアルミニウム合金中に存在し又は必要に応じてアルミニウム合金中に添加されるFeの含有量は、0.8質量%未満とする。望ましくは、Fe含有量は0.1〜0.6質量%である。
Fe: Less than 0.8 mass% Fe exists in an aluminum alloy as an unavoidable impurity. Fe has an effect of increasing the strength of the aluminum alloy plate, and is added to the aluminum alloy as necessary. However, when the Fe content exceeds 0.8% by mass, the Al—Fe—Mn and Al—Fe—Mn—Si intermetallic compounds are coarsened, and this tends to be the starting point of cracking during the formation of the aluminum alloy plate. The moldability of the is reduced. Therefore, the content of Fe present in the aluminum alloy as an inevitable impurity or added to the aluminum alloy as necessary is less than 0.8% by mass. Desirably, the Fe content is 0.1 to 0.6 mass%.

Si/Fe質量比<3
Si/Fe質量比が3以上のとき、Al−Fe−Si、Al−Fe−Mn−Si系金属間化合物が多く形成され、アルミニウム合金板のプレス成形においてくびれや割れが発生しやすくなる。従って、Si/Fe質量比は3未満であることが望ましい。
Si / Fe mass ratio <3
When the Si / Fe mass ratio is 3 or more, a large amount of Al—Fe—Si and Al—Fe—Mn—Si intermetallic compounds are formed, and constriction and cracking are likely to occur during press forming of an aluminum alloy sheet. Therefore, it is desirable that the Si / Fe mass ratio is less than 3.

Ti:0.02質量%未満
Tiは、アルミニウム合金鋳造組織を微細化、均質化(安定化)する効果があり、圧延用スラブの造塊時の鋳造割れ防止を目的に、通常、アルミニウム合金に0.02質量%以上添加されている。一方、Tiを過剰に添加すると粗大な金属間化合物が晶出し、成形時の割れの起点となりやすいため、Tiは0.15質量%以下の範囲内で添加されている。
しかし、Tiを含むアルミニウム合金板をCW(連続発振式)レーザ溶接する場合、溶融時(660〜750℃)に凝固ビード内にポロシティ欠陥が残留し、また、溶け込みが深く形成され、これが凝固して異常部(イレギュラービードの発生による溶接ビードの形状の乱れ)が発生しやすい。
Tiは地金(スクラップ含む)中に不可避不純物として含まれ、必要があればアルミニウム合金中に添加することもできるが、いずれにしても、本発明に係るアルミニウム合金板は、Tiの含有量を0.02質量%未満(0%を含む)に規制する必要がある。Ti含有量は少ないほど溶接性が向上し、好ましくは0.01質量%以下、さらに好ましくは0.006質量%以下である。
Ti: Less than 0.02% by mass Ti has the effect of refining and homogenizing (stabilizing) the cast structure of an aluminum alloy, and is usually used in an aluminum alloy for the purpose of preventing casting cracks during ingot formation of a rolling slab. 0.02 mass% or more is added. On the other hand, when Ti is added excessively, a coarse intermetallic compound is crystallized and tends to be a starting point of cracking during molding. Therefore, Ti is added within a range of 0.15% by mass or less.
However, when CW (continuous oscillation) laser welding is performed on an aluminum alloy plate containing Ti, porosity defects remain in the solidified beads during melting (660 to 750 ° C.), and the penetration is deeply formed, which solidifies. Abnormal parts (disorder of the shape of the weld bead due to irregular beads) are likely to occur.
Ti is included as an inevitable impurity in the metal (including scrap) and can be added to the aluminum alloy if necessary, but in any case, the aluminum alloy plate according to the present invention has a Ti content. It is necessary to regulate to less than 0.02% by mass (including 0%). The smaller the Ti content, the better the weldability, preferably 0.01% by mass or less, more preferably 0.006% by mass or less.

B:20質量ppm以下
Bは、アルミニウム合金のスラブ造塊時の鋳造割れ防止を目的に、通常、Ti−B母合金としてTiと共に積極添加されている。
しかし、アルミニウム合金板のB含有量が20質量ppmを超えると、前記のTiと同様に、CW(連続発振式)レーザ溶接において凝固ビード内にポロシティ欠陥が残留し、また、溶け込みが深く形成されることにより異常部が発生する。
Bは地金(スクラップ含む)中に不可避不純物として含まれ、必要があれば添加することもできるが、いずれにしても、本発明に係るアルミニウム合金板は、B含有量を20質量ppm未満(0%を含む)に規制する必要がある。B含有量は少ないほど溶接性が向上し、好ましくは10質量ppm以下、さらに好ましくは8質量ppm以下である。
B: 20 mass ppm or less B is usually positively added together with Ti as a Ti-B master alloy for the purpose of preventing casting cracks during slab ingot formation of an aluminum alloy.
However, when the B content of the aluminum alloy plate exceeds 20 ppm by mass, porosity defects remain in the solidified beads in CW (continuous oscillation) laser welding as in the case of Ti, and the penetration is deeply formed. An abnormal part occurs.
B is contained as an inevitable impurity in the metal (including scrap) and can be added if necessary, but in any case, the aluminum alloy plate according to the present invention has a B content of less than 20 ppm by mass ( (Including 0%). The smaller the B content, the better the weldability, preferably 10 ppm by mass or less, more preferably 8 ppm by mass or less.

Zr:0.15質量%以下
Cr:0.40質量%以下
Zr,Crは、アルミニウム合金組織を微細化、均質化(安定化)する効果がある。しかし、Zrの含有量が0.15質量%を超え又はCrの含有量が0.40質量%を超えると、粗大な金属間化合物が晶出し、成形時の割れの起点となりやすく、アルミニウム合金板の成形性が低下する。なお、Zr,Crは溶接時に再凝固した時の再結晶粒を微細化でき、溶接割れを回避できるため、Zr,Crは、それぞれ0.05質量%以上含有することが好ましい。
ZrとCrはアルミニウム合金中に不可避不純物としても含まれ、必要があれば添加することができるが、いずれにしても、本発明に係るアルミニウム合金板において、Zrの含有量は0.15質量%以下(0%を含む)、Crの含有量は0.40質量%以下(0%を含む)に限定される。
Zr: 0.15 mass% or less Cr: 0.40 mass% or less Zr and Cr have the effect of refining and homogenizing (stabilizing) the aluminum alloy structure. However, if the Zr content exceeds 0.15% by mass or the Cr content exceeds 0.40% by mass, a coarse intermetallic compound is crystallized, which tends to be a starting point of cracking during forming. The moldability of the is reduced. In addition, since Zr and Cr can refine | miniaturize the recrystallized grain when it resolidifies at the time of welding and a weld crack can be avoided, it is preferable that Zr and Cr contain 0.05 mass% or more, respectively.
Zr and Cr are also included as inevitable impurities in the aluminum alloy and can be added if necessary. In any case, in the aluminum alloy sheet according to the present invention, the Zr content is 0.15% by mass. Below (including 0%), the Cr content is limited to 0.40 mass% or less (including 0%).

Zn:0.3質量%以下
Znは、蒸気圧が低いため、レーザ溶接時に飛散し、周囲を汚染しやすく、アルミニウム合金板のレーザ溶接性を悪くする。従って、Znの含有量は0.3質量%以下(0%を含む)に規制する。
Zn: 0.3% by mass or less Since Zn has a low vapor pressure, it is scattered during laser welding, easily contaminates the surroundings, and deteriorates the laser weldability of the aluminum alloy plate. Therefore, the Zn content is restricted to 0.3% by mass or less (including 0%).

(アルミニウム合金板の製造)
本発明に係るアルミニウム合金板は、例えば次の工程で製造することができる。
所定成分のアルミニウム合金を溶解、鋳造して鋳塊を作製し、この鋳塊に面削を施した後に、480℃以上かつアルミニウム合金の融点未満の温度で均質化熱処理を施す。次に、この均質化熱処理された鋳塊を、熱間圧延及び冷間圧延して圧延板を製作する。そして、アルミニウム合金板のO材を製作する場合には、この圧延板を300〜450℃の温度域に加熱し、0.5時間以上保持する焼鈍を施す。H材を製作する場合には、O材をさらに20〜50%程度の圧延率にて冷間圧延する。
(Manufacture of aluminum alloy sheets)
The aluminum alloy plate according to the present invention can be manufactured, for example, by the following process.
An aluminum alloy having a predetermined component is melted and cast to produce an ingot, and the ingot is chamfered and then subjected to a homogenization heat treatment at a temperature of 480 ° C. or higher and lower than the melting point of the aluminum alloy. Next, the homogenized heat-treated ingot is hot-rolled and cold-rolled to produce a rolled plate. And when manufacturing O material of an aluminum alloy plate, this rolled plate is heated to the temperature range of 300-450 degreeC, and the annealing which hold | maintains for 0.5 hour or more is given. When the H material is manufactured, the O material is further cold-rolled at a rolling rate of about 20 to 50%.

(アルミニウム合金板の耐力)
本発明に係るアルミニウム合金板は、O又はHの質別で大型角筒電池ケースに成形される。上記組成において、O材の耐力値はほぼ50〜110MPaとなる。O材は軟質であるため加工しやすく、絞り及びしごき加工による大型角筒電池ケースへの成形が容易である。また、O材の耐力は低めであるが、成形加工に伴う加工硬化によって、成形後の電池ケースの強度を十分向上させることができる。
電池ケースの強度を少しでも高めるには、アルミニウム合金板の質別をHとすることが有効となる。一方で、H材は、O材と比較して成形性の低下は否めず、成形時に割れを生じやすい。H材の耐力値を160〜260MPaの範囲内に調整することにより、電池ケースの強度を向上させ、かつ成形時の割れを防止できる。
(Strength of aluminum alloy sheet)
The aluminum alloy plate according to the present invention is formed into a large rectangular battery case according to the quality of O or H. In the above composition, the proof stress value of the O material is approximately 50 to 110 MPa. Since the O material is soft, it is easy to process and can be easily formed into a large rectangular battery case by drawing and ironing. Moreover, although the proof stress of O material is low, the intensity | strength of the battery case after shaping | molding can fully be improved by the work hardening accompanying shaping | molding process.
In order to increase the strength of the battery case as much as possible, it is effective to set the quality of the aluminum alloy plate to H. On the other hand, the H material is inevitably deteriorated in formability as compared with the O material, and is likely to crack during molding. By adjusting the proof stress value of the H material within the range of 160 to 260 MPa, the strength of the battery case can be improved and cracking during molding can be prevented.

(レーザ溶接)
車載用等のリチウムイオン二次電池に適する大型角筒電池ケースは、底面の短幅10mm以上、長幅70mm以上、高さ60mm以上の有底角筒が用いられる。本発明が対象とする大型角筒電池ケースも、このサイズを有するものとする。この大型角筒電池ケースは溶接部位の厚さが0.5〜2.0mm程度あり、レーザ溶接において、0.5〜1.0mm程度の溶け込み深さが望まれている。この溶け込む深さを得るためには、連続発振(CW)式レーザ溶接が好適に用いられ、また、本発明に係るアルミニウム合金板を成形した大型角筒電池ケースは、連続発振(CW)式レーザ溶接において優れた溶接性を示す。連続発振(CW)式レーザ溶接にはキーホール型と熱伝導型があり、深い溶け込み深さが得られるキーホール型が好ましい。
なお、本発明に係るアルミニウム合金板のレーザ溶接には、パルスレーザや、パルスレーザと連続発振(CW)式レーザの併用方式も適用できる。
(Laser welding)
A large rectangular tube battery case suitable for a lithium ion secondary battery for in-vehicle use has a bottomed rectangular tube having a bottom width of 10 mm or more, a width of 70 mm or more, and a height of 60 mm or more. The large rectangular battery case targeted by the present invention also has this size. This large rectangular battery case has a welded portion thickness of about 0.5 to 2.0 mm, and a laser welding depth of about 0.5 to 1.0 mm is desired. In order to obtain this depth of penetration, continuous wave (CW) laser welding is preferably used, and the large rectangular battery case formed of the aluminum alloy plate according to the present invention is a continuous wave (CW) laser. Excellent weldability in welding. There are a keyhole type and a heat conduction type in continuous wave (CW) type laser welding, and a keyhole type capable of obtaining a deep penetration depth is preferable.
For laser welding of the aluminum alloy plate according to the present invention, a pulse laser or a combination method of a pulse laser and a continuous wave (CW) type laser can be applied.

表1に示す組成のアルミニウム合金を、溶解、鋳造して鋳塊とし、この鋳塊に面削を施した後に、550℃にて4時間の均質化熱処理を施した。この均質化した鋳塊に、熱間圧延、さらに冷間圧延を施して板厚1.0mmのアルミニウム合金板とした。冷間圧延後の圧延板を370℃に加熱して、この温度に4時間保持するバッチ式焼鈍を施して、特性評価の板材(O材)とした。また、H材については、熱間圧延、さらに冷間圧延を施して板厚1.4mmとし、O材のバッチ焼鈍と同じ条件で中間焼鈍を施した後に、さらに冷間圧延にて板厚1.0mmのアルミニウム合金板として、特性評価の板材とした。   An aluminum alloy having the composition shown in Table 1 was melted and cast into an ingot, and the ingot was chamfered and then subjected to homogenization heat treatment at 550 ° C. for 4 hours. This homogenized ingot was subjected to hot rolling and further cold rolling to obtain an aluminum alloy plate having a plate thickness of 1.0 mm. The cold-rolled rolled plate was heated to 370 ° C. and subjected to batch-type annealing that was maintained at this temperature for 4 hours to obtain a plate material (O material) for property evaluation. In addition, for the H material, hot rolling and further cold rolling are performed to obtain a sheet thickness of 1.4 mm. After performing the intermediate annealing under the same conditions as the batch annealing of the O material, the sheet thickness is further reduced by cold rolling. A plate material for characteristic evaluation was prepared as an aluminum alloy plate of 0.0 mm.

製造したアルミニウム合金板(O材、H材)を用いて、下記要領で引張試験、成形性評価試験、及び溶接性評価試験を行った。その結果を表1,2に示す。   Using the manufactured aluminum alloy plates (O material, H material), a tensile test, a formability evaluation test, and a weldability evaluation test were performed in the following manner. The results are shown in Tables 1 and 2.

(引張試験)
各評価板材から、圧延方向が長手方向となるようにJIS5号引張試験片を切り出し、JISZ2241の規定に準じて、株式会社島津製作所(SHIMADZU CORPORATION)製床置形万能引張試験機AG−Iにて引張試験を行い、耐力を求めた。クロスヘッド速度は5mm/分で、試験片が破断するまで一定の速度で行い、それぞれ5回測定して平均値で算出した。
(Tensile test)
A JIS No. 5 tensile test piece was cut out from each evaluation plate so that the rolling direction was the longitudinal direction, and tensioned with a floor-mounted universal tensile testing machine AG-I manufactured by Shimadzu Corporation in accordance with the provisions of JISZ2241. A test was conducted to determine the yield strength. The crosshead speed was 5 mm / min, and the test piece was run at a constant speed until the test piece broke.

(成形性評価試験)
各評価板材から楕円形のブランク板を長軸が圧延方向に平行になるように切り出し、順送り型のプレス機を用い、絞り及びしごき加工を全11工程にて行い、側壁のしごき加工率を30%とし、底面の縦幅が20mm、底面の横幅が200mm、高さが150mmの箱体の角型電池ケース(ケース本体)を成形した。
この際、割れがなく成形可能であり、成形後に焼き付きに起因する表面の変色や縦スジ模様のないものを成形性が優れているとして合格「◎」と評価し、割れがなく成形可能であり、わずかに表面の変色や縦スジ模様が発生したものを成形性が良好として合格「○」と評価し、成形時に割れが発生したもの、又は著しい変色や縦スジが発生したものを成形性が不良であるとして不合格「×」と評価した。
(Formability evaluation test)
An elliptical blank plate is cut out from each evaluation plate material so that the long axis is parallel to the rolling direction, and a progressive press machine is used for drawing and ironing in a total of 11 steps, and the side wall ironing rate is 30. %, A box-shaped rectangular battery case (case body) having a bottom width of 20 mm, a bottom width of 200 mm, and a height of 150 mm was formed.
At this time, it can be molded without cracking, and after molding, it is evaluated as a pass `` ◎ '' as having excellent moldability if it has no surface discoloration or vertical stripe pattern due to seizure, and it can be molded without cracking Slight surface discoloration and vertical streak patterns were evaluated as “Good” as good moldability, and cracks occurred during molding, or those with significant discoloration and vertical streaks were formed. It was evaluated as a failure “x” as being defective.

(溶接性評価試験)
各評価板材から30mm×100mmのサイズの試験片を切り出し、連続発振式ファイバーレーザ(IPGフォトニクスジャパン株式会社製、型式:YLR−10000)を熱源とした溶接加工機を用いて、90mm溶接長でビードオンプレート溶接した。溶接条件は、レーザ出力1.5〜2.0kW、溶接速度10.0m/分、前進角5deg.で、溶接部の溶け込み深さが0.7〜0.8mmとなるようにレーザ出力を調整した。
各試験片の溶接ビード部について、下記要領で溶接外観の評価と放射線透過試験を行った。
(Weldability evaluation test)
A test piece having a size of 30 mm × 100 mm was cut out from each evaluation plate, and a bead with a 90 mm weld length using a welding machine using a continuous wave fiber laser (IPG Photonics Japan Co., Ltd., model: YLR-10000) as a heat source. Welded on plate. The welding conditions were a laser output of 1.5 to 2.0 kW, a welding speed of 10.0 m / min, and a forward angle of 5 deg. Then, the laser output was adjusted so that the penetration depth of the welded portion was 0.7 to 0.8 mm.
About the weld bead part of each test piece, the welding external appearance evaluation and the radiation transmission test were done in the following way.

<溶接外観の評価>
溶接ビード部について、溶接割れの有無、溶接ビード幅の均一性、アンダーカットの有無、及び溶接スパッタ付着の有無を観察した。その結果、溶接ビード部に割れの発生無く、溶接ビード幅が均一で、溶接ビード部にアンダーカット、突沸部、及び径が1mm以上のスパッタ付着が見られなかったものを、溶接外観が良好「◎」と評価し、径が1mm以上のスパッタ付着が90mm溶接長につき1箇所のみ見られたが、割れの発生が無く、溶接ビード幅が均一で、ビード部にアンダーカットや突沸部が見られなかったものを許容範囲「○」と評価し、「◎」と「○」を合格とし、それ以外は全て溶接外観が不良であるとして不合格「×」と評価した。
<Evaluation of welding appearance>
About the weld bead part, the presence or absence of a weld crack, the uniformity of the weld bead width, the presence or absence of an undercut, and the presence or absence of welding spatter adhesion were observed. As a result, the weld bead portion has no cracks, the weld bead width is uniform, the weld bead portion has no undercut, bumped portion, and spatter adhesion with a diameter of 1 mm or more, and the weld appearance is good. ◎ ”, spatter adhesion with a diameter of 1 mm or more was observed only at one spot per 90 mm weld length, but there was no cracking, the weld bead width was uniform, and undercuts and bumping parts were seen in the bead part. Those not present were evaluated as an acceptable range “◯”, “◎” and “◯” were evaluated as acceptable, and all other cases were evaluated as rejected “X” because the weld appearance was poor.

<放射線透過試験>
この試験は溶接ビード内のキズ(ポロシティ等)を検査するものであり、JISZ3105に準拠して行った。キズ点数がJISZ3105の付属書に規定された4段階評価の1、2類に分類される溶接ビードを良好であるとして合格「○」と評価し、3,4類に分類されるものを難ありとして不合格「×」と評価した。
<Radiation transmission test>
This test inspects scratches (porosity, etc.) in the weld bead and was performed in accordance with JISZ3105. A weld bead classified as Class 1 or 2 of the four-level evaluation specified in the JISZ3105 appendix is evaluated as a pass “○” as good, and it is difficult to classify as a Class 3 or 4 As a failure, it was evaluated as “x”.

Figure 0006033141
Figure 0006033141

Figure 0006033141
Figure 0006033141

表1,2に示すように、実施例1〜21は、合金組成が本発明の規定を満たし、O材、H材の耐力値が本発明の規定範囲内で、成形性及びレーザ溶接性がO材、H材ともに優れる。Ti,B含有量のいずれか一方又は双方が他より少な目の実施例2,5,8,11,17,18,20は、レーザ溶接性が特に優れる。
一方、比較例1はMn含有量が過少なため、耐力値がO材、H材ともに低い。このため、製品である電池ケースの強度が不足する。
比較例2はMn含有量が過剰なため、O材、H材ともにプレス加工で割れが発生した。これは、Mnを含む粗大な金属間化合物が生成したためと考えられる。
比較例3はMg含有量が過剰なため、H材にプレス加工で割れが発生した。これは、加工硬化により強度が高くなりすぎたためと考えられる。また、O材、H材ともに溶接ビード部に割れが発生し、かつイレギュラービードが発生してビード幅が不均一となり、溶接ビード内にポロシティ等のキズが多く検出された。
As shown in Tables 1 and 2, in Examples 1 to 21, the alloy compositions satisfy the requirements of the present invention, the proof stress values of the O material and the H material are within the specified range of the present invention, and the formability and laser weldability are Both O and H materials are excellent. Examples 2, 5, 8, 11, 17, 18, and 20 in which either one or both of the Ti and B contents are smaller than the others are particularly excellent in laser weldability.
On the other hand, in Comparative Example 1, since the Mn content is too small, the proof stress values are low for both the O material and the H material. For this reason, the strength of the product battery case is insufficient.
In Comparative Example 2, since the Mn content was excessive, cracking occurred in press processing for both the O material and the H material. This is probably because a coarse intermetallic compound containing Mn was generated.
In Comparative Example 3, since the Mg content was excessive, the H material was cracked by press working. This is presumably because the strength became too high due to work hardening. In addition, cracks occurred in the weld bead portion in both the O material and the H material, irregular beads were generated, and the bead width became non-uniform, and many scratches such as porosity were detected in the weld bead.

比較例4はCu含有量が過剰なため、O材、H材ともにプレス加工で割れが発生した。これは、加工硬化により強度が高くなりすぎたためと考えられる。また、O材、H材ともに溶接ビード部に割れが発生し、イレギュラービードが発生してビード幅が不均一となり、ビード内にポロシティ等のキズが多く検出された。
比較例5はSi含有量が過剰なため、O材、H材ともにプレス加工で割れが発生した。これは、Siを含む粗大な金属間化合物が生成したためと考えられる。また、O材、H材ともに溶接ビード部に割れが発生し、ビード内にポロシティ等のキズが多く検出された。
In Comparative Example 4, since the Cu content was excessive, the O material and the H material both cracked during press working. This is presumably because the strength became too high due to work hardening. In addition, cracks occurred in the weld bead portion of both the O material and the H material, irregular beads were generated, the bead width was nonuniform, and many scratches such as porosity were detected in the bead.
In Comparative Example 5, since the Si content was excessive, the O material and the H material both cracked during press working. This is probably because a coarse intermetallic compound containing Si was generated. In addition, both the O material and the H material were cracked in the weld bead portion, and many scratches such as porosity were detected in the bead.

比較例6はTi及びB含有量が過剰なため、比較例7,8はB含有量が過剰なため、いずれもO材、H材ともにイレギュラービードが発生してビード幅が不均一となり、ビード内にポロシティ等のキズが多く検出された。
比較例9はZr含有量が過剰なため、比較例10,11はCr含有量が過剰なため、比較例12はFe含有量が過剰なため、いずれもO材、H材ともにプレス加工で割れが発生した。これは、いずれも粗大な金属間化合物が生成したためと考えられる。
Since Comparative Example 6 has an excessive Ti and B content, Comparative Examples 7 and 8 have an excessive B content. Therefore, irregular beads are generated in both the O and H materials, and the bead width is uneven. Many scratches such as porosity were detected in the bead.
Since Comparative Example 9 has an excessive Zr content, Comparative Examples 10 and 11 have an excessive Cr content, and Comparative Example 12 has an excessive Fe content. There has occurred. This is probably because a coarse intermetallic compound was formed.

比較例13はZn含有量が過剰なため、溶接スパッタが付着し、また、ビード内にポロシティ等のキズが多く検出された。
比較例14,15はSi/Fe含有量比が過剰なため、いずれもO材、H材ともにプレス加工で割れが発生した。これはSiを含む金属間化合物が多く形成されたためと考えられる。
In Comparative Example 13, since the Zn content was excessive, weld spatter adhered, and many scratches such as porosity were detected in the beads.
In Comparative Examples 14 and 15, since the Si / Fe content ratio was excessive, both the O material and the H material were cracked during press working. This is considered to be because many intermetallic compounds containing Si were formed.

Claims (8)

Mn:0.5〜1.5質量%(ただし、Mn:0.9質量%以下を除く)、Cu:0.4〜1.2質量%、Mg:0.2質量%未満、Si:0.6質量%未満、Fe:0.8質量%未満を含有し、Si/Fe質量比が3.0未満であり、残部Al及び不可避不純物からなるプレス加工の成形性及びレーザ溶接性に優れた大型角筒電池ケース用アルミニウム合金板。 Mn: 0.5 to 1.5 mass% (except Mn: 0.9 mass% or less) , Cu: 0.4 to 1.2 mass%, Mg: less than 0.2 mass%, Si: 0 Less than .6% by mass, Fe: less than 0.8% by mass, Si / Fe mass ratio is less than 3.0, and excellent press formability and laser weldability consisting of the balance Al and inevitable impurities Aluminum alloy plate for large rectangular battery case. Mn:0.5〜1.5質量%、Cu:0.6質量%超〜1.2質量%、Mg:0.2質量%未満、Si:0.6質量%未満、Fe:0.8質量%未満を含有し、Si/Fe質量比が3.0未満であり、残部Al及び不可避不純物からなるプレス加工の成形性及びレーザ溶接性に優れた大型角筒電池ケース用アルミニウム合金板。 Mn: 0.5 to 1.5 mass%, Cu: more than 0.6 mass% to 1.2 mass%, Mg: less than 0.2 mass%, Si: less than 0.6 mass%, Fe: 0.8 An aluminum alloy plate for a large rectangular battery case that contains less than mass%, has a Si / Fe mass ratio of less than 3.0, and is excellent in press formability and laser weldability , which comprises the balance Al and inevitable impurities . Ti:0.02質量%未満、B:20質量ppm未満を含有することを特徴とする請求項1又は2に記載された大型角筒電池ケース用アルミニウム合金板。 The aluminum alloy plate for a large rectangular battery case according to claim 1 or 2, characterized by containing Ti: less than 0.02 mass% and B: less than 20 mass ppm. Zr:0.15質量%以下、Cr:0.40質量%以下の1種以上を含有することを特徴とする請求項1〜3のいずれかに記載された大型角筒電池ケース用アルミニウム合金板。 The aluminum alloy plate for a large rectangular battery case according to any one of claims 1 to 3, comprising at least one of Zr: 0.15 mass% or less and Cr: 0.40 mass% or less. . Zn:0.3質量%以下を含有することを特徴とする請求項1〜4のいずれかに記載された大型角筒電池ケース用アルミニウム合金板。 Zn: 0.3 mass% or less is contained, The aluminum alloy plate for large sized rectangular tube battery cases described in any one of Claims 1-4 characterized by the above-mentioned. 連続発振式レーザ溶接による溶接性に優れることを特徴とする請求項1〜5のいずれかに記載された大型角筒電池ケース用アルミニウム合金板。 The aluminum alloy plate for a large rectangular battery case according to any one of claims 1 to 5, wherein the aluminum alloy plate is excellent in weldability by continuous wave laser welding. 耐力値が50〜110MPaのO材であることを特徴とする請求項1〜6のいずれかに記載された大型角筒電池ケース用アルミニウム合金板。 The aluminum alloy plate for a large rectangular battery case according to any one of claims 1 to 6, which is an O material having a proof stress of 50 to 110 MPa. 耐力値が160〜260MPaのH材であることを特徴とする請求項1〜6のいずれかに記載された大型角筒電池ケース用アルミニウム合金板。 The aluminum alloy plate for a large rectangular battery case according to any one of claims 1 to 6, which is an H material having a proof stress of 160 to 260 MPa.
JP2013061908A 2013-03-25 2013-03-25 Aluminum alloy plate for large rectangular battery case Expired - Fee Related JP6033141B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013061908A JP6033141B2 (en) 2013-03-25 2013-03-25 Aluminum alloy plate for large rectangular battery case
CN201310681134.XA CN104073700A (en) 2013-03-25 2013-12-12 Aluminium alloy plate for large-sized rectangular battery case
KR1020140034141A KR101656925B1 (en) 2013-03-25 2014-03-24 Alluminum alloy plate for large-sized rectangular battery case
KR1020160049888A KR20160053858A (en) 2013-03-25 2016-04-25 Alluminum alloy plate for large-sized rectangular battery case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013061908A JP6033141B2 (en) 2013-03-25 2013-03-25 Aluminum alloy plate for large rectangular battery case

Publications (2)

Publication Number Publication Date
JP2014185377A JP2014185377A (en) 2014-10-02
JP6033141B2 true JP6033141B2 (en) 2016-11-30

Family

ID=51595297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013061908A Expired - Fee Related JP6033141B2 (en) 2013-03-25 2013-03-25 Aluminum alloy plate for large rectangular battery case

Country Status (3)

Country Link
JP (1) JP6033141B2 (en)
KR (2) KR101656925B1 (en)
CN (1) CN104073700A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4199200A1 (en) * 2021-12-17 2023-06-21 Speira GmbH High-strength battery cell housing for large-format round battery cells from an aluminum alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105200270B (en) * 2015-09-21 2017-05-24 聊城万合工业制造有限公司 Aluminum alloy, flat micro-channel aluminum tubes, manufacturing method of flat micro-channel aluminum tubes and heat exchanger

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119784A (en) * 1998-10-08 2000-04-25 Sumitomo Light Metal Ind Ltd Aluminum alloy material excellent in high temperature creep characteristic and its production
JP2000129384A (en) * 1998-10-23 2000-05-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for secondary battery case, its manufacture, and secondary battery case
JP4244252B2 (en) * 1999-02-22 2009-03-25 古河スカイ株式会社 A method for producing an aluminum alloy case material for a sealed prismatic battery excellent in formability and creep resistance, a sealed prismatic battery case and a sealed prismatic battery.
JP3843368B2 (en) 2000-10-23 2006-11-08 古河スカイ株式会社 Aluminum alloy plate for battery case with excellent resistance to high temperature blistering and method for producing the same
JP4105404B2 (en) * 2001-05-15 2008-06-25 三菱アルミニウム株式会社 Manufacturing method of aluminum alloy plate for secondary battery case
JP3724798B2 (en) 2002-03-29 2005-12-07 株式会社神戸製鋼所 Aluminum alloy plate for secondary battery case and secondary battery case using the same
JP3867989B2 (en) 2004-03-31 2007-01-17 株式会社神戸製鋼所 Aluminum alloy plate for battery case and manufacturing method thereof
JP4347137B2 (en) * 2004-05-26 2009-10-21 三菱アルミニウム株式会社 Method for producing high-strength aluminum alloy plate for secondary battery case
JP2011038122A (en) 2009-08-06 2011-02-24 Mitsubishi Alum Co Ltd Aluminum alloy sheet for secondary battery case and method for producing the same
KR101321666B1 (en) * 2011-02-01 2013-10-23 가부시키가이샤 고베 세이코쇼 Alluminum alloy plate for battery case and battery case
JP2012158810A (en) * 2011-02-01 2012-08-23 Kobe Steel Ltd Aluminum alloy sheet for battery case, and battery case
JP5725344B2 (en) 2011-02-02 2015-05-27 日本軽金属株式会社 Aluminum alloy sheet for battery cases with excellent formability and weldability
JP5684617B2 (en) * 2011-03-22 2015-03-18 三菱アルミニウム株式会社 High strength aluminum alloy plate for secondary battery large square can excellent in laser weldability and method for producing the same
JP5936348B2 (en) * 2011-12-21 2016-06-22 三菱アルミニウム株式会社 Aluminum alloy plate for lithium ion secondary battery can

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4199200A1 (en) * 2021-12-17 2023-06-21 Speira GmbH High-strength battery cell housing for large-format round battery cells from an aluminum alloy

Also Published As

Publication number Publication date
CN104073700A (en) 2014-10-01
JP2014185377A (en) 2014-10-02
KR20140116820A (en) 2014-10-06
KR101656925B1 (en) 2016-09-12
KR20160053858A (en) 2016-05-13

Similar Documents

Publication Publication Date Title
JP5456747B2 (en) Aluminum alloy plate for battery case and battery case
JP5602445B2 (en) Aluminum alloy sheet for lithium ion battery case
KR101039206B1 (en) Aluminum alloy sheet for battery case and its manufacturing method
WO2013008314A1 (en) Aluminum alloy plate material for lithium ion battery cases
JP5684617B2 (en) High strength aluminum alloy plate for secondary battery large square can excellent in laser weldability and method for producing the same
JP2008127656A (en) Aluminum alloy sheet for battery case and production method therefor
JP5872256B2 (en) Aluminum alloy sheet for lithium ion battery sealing material and method for producing the same
KR20100109504A (en) Aluminum alloy sheet for battery case and battery case
JP6148923B2 (en) Aluminum alloy bus bar
JP6228913B2 (en) Aluminum alloy sheet for lithium ion battery and method for producing the same
JP5950497B2 (en) Aluminum alloy plate for battery case and battery case
JPWO2014192256A1 (en) Aluminum alloy plate for battery case and manufacturing method thereof
JP6087413B1 (en) Aluminum alloy plate for automobile bus bar with excellent laser weldability
JP6033141B2 (en) Aluminum alloy plate for large rectangular battery case
JP5864074B2 (en) Aluminum alloy plate for battery case and manufacturing method thereof
KR101761026B1 (en) Aluminum alloy plate for rectangular battery case
JP5599588B2 (en) Aluminum alloy plate for battery case, method for producing the same, and battery case
JP5798710B2 (en) Aluminum alloy plate and battery case with excellent irregular and bead prevention properties
JP5726554B2 (en) Aluminum alloy plate for battery case body and battery case
JP5943288B2 (en) Aluminum alloy plate and battery case with excellent irregular and bead prevention properties
JP2014227590A (en) Aluminum alloy sheet for cell case
JP5879646B2 (en) Aluminum alloy plate for battery case, method for producing the same, and battery case
KR20160042199A (en) Method for fabricating a open type bumper back beam using aluminium billet
JP2016035110A (en) Aluminum alloy sheet for battery case, method of producing the same and battery case
JP2014198904A (en) Aluminum alloy sheet for battery case and battery case

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161025

R150 Certificate of patent or registration of utility model

Ref document number: 6033141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees