JP5950497B2 - Aluminum alloy plate for battery case and battery case - Google Patents

Aluminum alloy plate for battery case and battery case Download PDF

Info

Publication number
JP5950497B2
JP5950497B2 JP2011015824A JP2011015824A JP5950497B2 JP 5950497 B2 JP5950497 B2 JP 5950497B2 JP 2011015824 A JP2011015824 A JP 2011015824A JP 2011015824 A JP2011015824 A JP 2011015824A JP 5950497 B2 JP5950497 B2 JP 5950497B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
mass
battery case
alloy plate
pulse laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011015824A
Other languages
Japanese (ja)
Other versions
JP2012082506A (en
Inventor
松本 剛
松本  剛
小林 一徳
一徳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011015824A priority Critical patent/JP5950497B2/en
Priority to CN201110267253.1A priority patent/CN102400015B/en
Priority to KR1020110091688A priority patent/KR101370087B1/en
Publication of JP2012082506A publication Critical patent/JP2012082506A/en
Application granted granted Critical
Publication of JP5950497B2 publication Critical patent/JP5950497B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池ケース等に用いられる電池ケース用アルミニウム合金板及び電池ケースに関する。   The present invention relates to an aluminum alloy plate for a battery case and a battery case used for a lithium ion secondary battery case and the like.

携帯電話やノート型パーソナルコンピュータ等の電源として、リチウムイオン二次電池が広く使用されている。この二次電池の外装であるケース(以下、適宜、電池ケースという)の材料には、従来、電池の小型化及び軽量化、そして電池ケース(主として電池ケース本体)に成形するための加工性(成形性)等を満足するためアルミニウム合金材が用いられている。   Lithium ion secondary batteries are widely used as power sources for mobile phones, notebook personal computers, and the like. The material of the case that is the exterior of the secondary battery (hereinafter referred to as the battery case as appropriate) has conventionally been made to reduce the size and weight of the battery, and workability for forming the battery case (mainly the battery case body) ( An aluminum alloy material is used to satisfy (formability) and the like.

携帯電話やノートパソコンの電池においては、電池の膨れが問題となるため、高い強度を得るためにAl−Mn系合金をベースにCu、Mgを多量に添加した合金が開発されている(特許文献1参照)。しかし、携帯電話等の電池と異なり、車両用の電池ケースは軽量化が望まれるものの、ケースの枠体等の併設によりある程度の強度が得られるため、携帯電話等の電池程の強度は求められておらず、むしろ強度を備えつつ加工性・溶接性の良い合金が求められている。   In mobile phones and laptop computers, battery swelling becomes a problem, and in order to obtain high strength, alloys in which a large amount of Cu and Mg are added based on an Al-Mn alloy have been developed (Patent Literature). 1). However, unlike batteries for mobile phones and the like, the battery case for vehicles is desired to be lighter, but a certain degree of strength can be obtained by providing a case frame and the like, so the strength of batteries such as mobile phones is required. Rather, there is a need for an alloy that has strength and good workability and weldability.

このような電池ケース用のアルミニウム合金としては、JISA3003をベースにしたAl−Mn系アルミニウム合金が知られている(特許文献2参照)。Al−Mn系アルミニウム合金はレーザー溶接性に優れており、JISA1050等の純アルミニウムに比較しても溶け込みが容易に得られ、連続レーザーと共にパルスレーザーが用いられている。パルスレーザーは連続レーザーに比較して、薄肉材の溶接に適しているという特徴があるが、溶接条件が厳しいため割れが生じたり、純アルミニウムにおいてはイレギュラービード(ビードの不揃い)が発生するという問題がある(特許文献3)。   As an aluminum alloy for such a battery case, an Al—Mn-based aluminum alloy based on JIS A3003 is known (see Patent Document 2). Al—Mn-based aluminum alloys are excellent in laser weldability, and can be easily melted in comparison with pure aluminum such as JIS A1050, and a pulsed laser is used together with a continuous laser. Compared to continuous lasers, pulsed lasers are more suitable for welding thin-walled materials. However, cracking occurs due to severe welding conditions, and irregular beads occur in pure aluminum. There is a problem (Patent Document 3).

特許第3867989号公報Japanese Patent No. 3,867,989 特開2002−134069号公報JP 2002-140669 A 特開2009−287116号公報JP 2009-287116 A

携帯電話の電池ケース用アルミニウム材のように板厚の薄い材料と異なり、自動車用の電池ケースにおいては、板厚がある程度厚いことから、所定の溶接部強度を得るためには、溶込深さを深くする必要がある。しかし、JISA3003アルミニウム合金においては、溶込深さが0.25mmを超えると著しく溶接ビードの形状安定性が低下し、イレギュラービードの発生率が急激に増加する。このイレギュラービードは、場合によっては被溶接材の裏面にまで突き抜ける溶け込みとなり、導電性及び動作電圧等の性能に悪影響を与える問題を生じる。イレギュラービードが発生した溶接部を、図1(b),図2(b)に示す。図1(b)において大径に形成されたビード、図2(b)において2箇所深く溶け込んだビードがイレギュラービードである。図1(a),図2(a)はイレギュラービードの発生がない溶接部を示す。ビードの径が揃っており、溶け込み深さがほぼ一定である   Unlike materials with a small plate thickness, such as aluminum materials for cell phone battery cases, in battery case for automobiles, since the plate thickness is somewhat thick, in order to obtain a predetermined weld strength, the penetration depth It is necessary to deepen. However, in the JIS A3003 aluminum alloy, when the penetration depth exceeds 0.25 mm, the shape stability of the weld bead is remarkably lowered, and the occurrence rate of irregular beads is rapidly increased. In some cases, this irregular bead penetrates to the back surface of the material to be welded, resulting in problems that adversely affect performance such as conductivity and operating voltage. FIGS. 1B and 2B show a welded portion where irregular beads are generated. A bead having a large diameter in FIG. 1B and a bead deeply melted in two places in FIG. 2B are irregular beads. 1 (a) and 2 (a) show a welded portion in which irregular beads are not generated. The bead diameter is uniform and the penetration depth is almost constant.

本発明は、このような従来技術の問題点に鑑みてなされたものであり、電池ケースに作製するための加工性(特に本体部)及びパルスレーザー溶接性を有する電池ケース用アルミニウム合金板、及び、この電池ケース用アルミニウム合金板を用いた電池ケースを提供することを目的とする。   The present invention has been made in view of such problems of the prior art, and has an aluminum alloy plate for a battery case having workability (particularly a main body portion) and pulse laser weldability for producing a battery case, and An object of the present invention is to provide a battery case using the aluminum alloy plate for battery case.

パルスレーザー溶接における異常部(イレギュラービード)の発生は、以下に説明するように、パルスレーザー溶融時(660〜750℃)から再凝固(660〜640℃)する間にビード内に残留するポロシティ欠陥の発生度と関連すると推測される(特許文献3参照)。   The occurrence of abnormal parts (irregular beads) in pulse laser welding is the porosity that remains in the beads during re-solidification (660 to 640 ° C.) after pulse laser melting (660 to 750 ° C.) as described below. It is presumed to be related to the degree of occurrence of defects (see Patent Document 3).

溶接時、パルスレーザー照射部は溶融状態となり、その溶融池内には、水素、シールドガス、金属蒸気等による気泡が存在する。1パルスのパルスレーザー照射が完了すると、パルスレーザー照射部は凝固過程へと移行するが、溶融池から気泡が抜けにくい場合には、そのままポロシティ欠陥として残留しやすい。パルスレーザー溶接の場合、凝固完了したビードに新たにビードが重なるように次のパルスレーザー光が照射される。そして、凝固完了したビードがパルスレーザー光の照射により再溶融した際には、残留したポロシティにパルスレーザー光が照射されることになり、ポロシティが膨張して、通常パルスレーザー光照射により形成されるキーホールが肥大化し、レーザー光が奥深くまで入り込みやすくなる。その結果、溶け込みが深く形成されて、非定常溶け込み部となる。この非定常溶け込み部が凝固して、溶接部におけるイレギュラービードが発生する。   At the time of welding, the pulse laser irradiation part is in a molten state, and bubbles due to hydrogen, shield gas, metal vapor, etc. exist in the molten pool. When the pulse laser irradiation of one pulse is completed, the pulse laser irradiation part shifts to a solidification process, but when bubbles are difficult to escape from the molten pool, they are likely to remain as porosity defects. In the case of pulse laser welding, the next pulse laser beam is applied so that the bead that has been solidified is newly overlapped. When the solidified bead is remelted by irradiation with pulsed laser light, the remaining porosity is irradiated with pulsed laser light, and the porosity expands and is usually formed by irradiation with pulsed laser light. The keyhole is enlarged and the laser beam is easy to penetrate deeply. As a result, the penetration is deeply formed and becomes an unsteady penetration portion. This unsteady penetration portion solidifies and irregular beads are generated in the welded portion.

通常のJISA3003アルミニウム合金等のAl−Mn合金板を、0.25mm以下の溶け込み深さでパルスレーザー溶接した場合は、大入熱で溶接してもイレギュラービードは発生しないが、溶け込みが0.25mmを超えた辺りで急激に発生率が高くなる。
そこで、本発明者らは、リチウムイオン電池ケース用の素材として優れているJISA3000系アルミニウム合金板の利点を生かしつつ、パルスレーザー溶接による溶け込み深さを深くした場合であっても、イレギュラービードの発生を防止できる素材を開発すべく、種々実験研究した。
When an Al—Mn alloy plate such as a normal JISA3003 aluminum alloy is pulsed laser welded at a penetration depth of 0.25 mm or less, irregular beads do not occur even when welding with high heat input, but the penetration is 0. The incidence increases rapidly around 25 mm.
Therefore, the present inventors made use of irregular beads even when the penetration depth by pulse laser welding was increased while taking advantage of the JISA 3000 series aluminum alloy plate, which is excellent as a material for a lithium ion battery case. In order to develop materials that can prevent the occurrence, various experimental studies were conducted.

その結果、本発明者らは、JISA3000系アルミニウム合金の微量成分であるTiとBの含有が、パルスレーザー溶接におけるイレギュラービードの発生に大きな影響を与えていること、及び、この合金に含まれるTiやBの含有量を適正な範囲に規制することによって、イレギュラービードの発生を防止できることを見出した。   As a result, the present inventors have found that the inclusion of Ti and B, which are minor components of the JISA 3000 series aluminum alloy, has a great influence on the generation of irregular beads in pulse laser welding, and is included in this alloy. It has been found that the occurrence of irregular beads can be prevented by regulating the content of Ti and B within an appropriate range.

すなわち、本発明に係る電池ケース用アルミニウム合金板(以下、適宜、アルミニウム合金板という)は、Mn:0.8〜1.5質量%、Cu:0.05〜0.2質量%、Si:0.05〜0.6質量%、Fe:0.05〜0.7質量%を含有し、Znが0.05質量%以下、Tiが0.04質量%未満、Bが10質量ppm未満に規制され、残部がAl及び不可避的不純物からなることを特徴とする。 That is, the aluminum alloy plate for a battery case according to the present invention (hereinafter, appropriately referred to as an aluminum alloy plate) has Mn: 0.8 to 1.5 mass%, Cu: 0.05 to 0.2 mass%, Si: 0.05-0.6 mass% , Fe: 0.05-0.7 mass% , Zn is 0.05 mass% or less, Ti is less than 0.04 mass%, B is less than 10 mass ppm. It is regulated, and the balance is made of Al and inevitable impurities.

上記アルミニウム合金板は、Mn,Cu,Siを所定量含有することによって、それぞれの元素が母相内に固溶し、アルミニウム合金板の強度が向上する。また、Mn,Si,Feを所定量含有することによって、金属間化合物の形成により成形性が向上する。さらに、Zn濃度を所定量以下に規制することによって、アルミニウム合金板のレーザー溶接時に、蒸気圧の低いZnが飛散せず、周囲を汚染することがない。そして、Ti,Bを所定量以下に規制することによって、パルスレーザー溶接照射による素材の溶融時に、凝固ビード内に気泡が残留しにくくなり、溶接部におけるイレギュラービードの発生が防止される。   When the aluminum alloy plate contains a predetermined amount of Mn, Cu, and Si, each element is dissolved in the matrix, and the strength of the aluminum alloy plate is improved. Further, by containing a predetermined amount of Mn, Si, and Fe, formability is improved by forming an intermetallic compound. Furthermore, by restricting the Zn concentration to a predetermined amount or less, Zn having a low vapor pressure is not scattered and the surroundings are not contaminated during laser welding of the aluminum alloy plate. And by restrict | limiting Ti and B to predetermined amount or less, at the time of the melting | fusing of the raw material by pulse laser welding irradiation, it becomes difficult for a bubble to remain in a solidification bead, and generation | occurrence | production of the irregular bead in a welding part is prevented.

上記電池ケース用アルミニウム合金板は、例えば自動車用の電池ケースとして用いる場合、ある程度厚い板厚(例えば0.5mm以上)のものが用いられる。上記電池ケース用アルミニウム合金板は、溶け込み深さが0.25mmを超える深さの場合でも、パルスレーザー溶接におけるイレギュラービードの発生を防止することができる。
電池ケースはケース本体と蓋材からなり、両者はパルスレーザー溶接される。上記電池ケース用アルミニウム合金板は、電池ケースのケース本体及び蓋材として用いられる。ただし、蓋材としては、JISA1050アルミニウム合金等の他のアルミニウム合金に代えることもできる。
For example, when the aluminum alloy plate for a battery case is used as a battery case for an automobile, a sheet having a certain thickness (for example, 0.5 mm or more) is used. The above-mentioned aluminum alloy plate for battery case can prevent the occurrence of irregular beads in pulse laser welding even when the penetration depth exceeds 0.25 mm.
The battery case is composed of a case body and a lid, and both are pulse laser welded. The said aluminum alloy plate for battery cases is used as a case main body and cover material of a battery case. However, the lid member can be replaced with another aluminum alloy such as JISA1050 aluminum alloy.

本発明に係る電池ケース用アルミニウム合金板は、優れたパルスレーザー溶接性を有する。具体的には、従来材ではイレギュラービードの発生を防止できなかった深い溶け込み深さ(0.25mm超)のパルスレーザー溶接であっても、イレギュラービードの発生を防止することができる。従って、パルスレーザー溶接による深い溶け込み深さを必要とする自動車用等の電池ケース材として好適である。
また、本発明に係る電池ケース用アルミニウム合金板は、従来材と同様の強度を保ち、かつ従来材と同様にケース本体を成形する際に要求される優れた成形性(しごき加工性)を有する。
The aluminum alloy plate for battery cases according to the present invention has excellent pulse laser weldability. Specifically, irregular beads can be prevented from being generated even by pulsed laser welding having a deep penetration depth (greater than 0.25 mm), which was not possible with conventional materials. Therefore, it is suitable as a battery case material for automobiles or the like that requires a deep penetration depth by pulse laser welding.
Moreover, the aluminum alloy plate for battery cases according to the present invention maintains the same strength as that of the conventional material and has excellent formability (scoring workability) required when the case body is molded as in the case of the conventional material. .

パルスレーザーによる溶接部の平面図(光学顕微鏡写真)であり、(a)は良好な溶接部、(b)はイレギュラービードが生じた溶接部を示す。It is a top view (optical micrograph) of the welding part by a pulse laser, (a) is a favorable welding part, (b) shows the welding part which the irregular bead produced. パルスレーザーによる溶接部の断面図(光学顕微鏡写真)であり、(a)は良好な溶接部、(b)はイレギュラービードが生じた溶接部を示す。(a),(b)において右下のゲージは200μmを示す。It is sectional drawing (optical micrograph) of the welding part by a pulse laser, (a) is a favorable welding part, (b) shows the welding part which the irregular bead produced. In (a) and (b), the lower right gauge indicates 200 μm.

以下、本発明に係る電池ケース用アルミニウム合金板についてより具体的に説明する。
〔アルミニウム合金板の構成〕
本発明に係るアルミニウム合金板は、Mn,Cu,Si,Feを所定量含有し、Zn,Mg,Ti,Bが所定量以下に規制され、残部がAl及び不可避的不純物からなるアルミニウム合金板である。
以下、各成分の限定理由について説明する。
Hereinafter, the aluminum alloy plate for a battery case according to the present invention will be described more specifically.
[Configuration of aluminum alloy plate]
The aluminum alloy plate according to the present invention is an aluminum alloy plate containing a predetermined amount of Mn, Cu, Si, Fe, Zn, Mg, Ti, B being regulated to a predetermined amount or less, and the balance being Al and inevitable impurities. is there.
Hereinafter, the reason for limitation of each component is demonstrated.

(Mn:0.8〜1.5質量%)
Mnは、母相内に固溶して、アルミニウム合金板の強度を高め、耐圧強度を向上させる効果があり、Mn含有量増加に伴い強度を高めることができる。また、Mnは、Al,Fe,Siと金属間化合物(Al−Fe−Mn系金属間化合物、Al−Fe−Mn−Si系金属間化合物)を形成し、これが微細に析出して電池ケースに成形加工する際の潤滑効果に寄与し、アルミニウム合金板の成形性を向上させる。しかし、Mn含有量が0.8質量%未満では、これらの効果が不十分であり、1.5質量%を超えると、粗大な金属間化合物の数が増え、成形時の割れの起点となりやすく、アルミニウム合金板の成形性が低下する。従って、Mn含有量は、0.8質量%以上、1.5質量%以下とする。好ましくは0.9質量%以上、1.3質量%以下である。
(Mn: 0.8 to 1.5% by mass)
Mn dissolves in the matrix and has the effect of increasing the strength of the aluminum alloy plate and improving the pressure strength, and the strength can be increased as the Mn content increases. In addition, Mn forms Al, Fe, Si and intermetallic compounds (Al-Fe-Mn intermetallic compounds, Al-Fe-Mn-Si intermetallic compounds), which are finely deposited to form a battery case. This contributes to the lubrication effect during forming and improves the formability of the aluminum alloy sheet. However, if the Mn content is less than 0.8% by mass, these effects are insufficient, and if it exceeds 1.5% by mass, the number of coarse intermetallic compounds increases, which tends to be the starting point of cracking during molding. The formability of the aluminum alloy plate is reduced. Accordingly, the Mn content is set to 0.8% by mass or more and 1.5% by mass or less. Preferably they are 0.9 mass% or more and 1.3 mass% or less.

(Cu:0.05〜0.2質量%)
Cuは、固溶してアルミニウム合金板の強度を高める効果がある。しかし、Cu含有量が0.05質量%未満ではこの効果が不十分であり、0.2質量%を超えると溶接割れが発生しやすくなるため好ましくない。従って、Cu含有量は0.05質量%以上、0.2質量%以下とする。好ましくは、0.1質量%以上、0.18質量%以下である。
(Cu: 0.05 to 0.2% by mass)
Cu has the effect of increasing the strength of the aluminum alloy plate by solid solution. However, if the Cu content is less than 0.05% by mass, this effect is insufficient, and if it exceeds 0.2% by mass, weld cracks are likely to occur, which is not preferable. Therefore, the Cu content is set to 0.05% by mass or more and 0.2% by mass or less. Preferably, they are 0.1 mass% or more and 0.18 mass% or less.

(Si:0.05〜0.6質量%)
Siは、母相内に固溶して、アルミニウム合金板の強度を高め、耐圧強度を向上させる効果がある。また、Siは、Al,Mn,FeとAl−Fe−Mn−Si系金属間化合物を形成し(Mnに関する先の記載参照)、アルミニウム合金板の成形性を向上させる。しかし、Si含有量が0.05質量%未満では、これらの効果が不十分であり、0.6質量%を超えると、前記金属間化合物が粗大なものとなり、成形時の割れの起点となりやすく、アルミニウム合金板の成形性が低下する。また、Si含有量が0.6質量%を超えると、溶接割れが発生しやすくなる。従って、Si含有量は0.05質量%以上、0.6質量%以下とする。好ましくは0.05質量%以上、0.2質量%以下である。
(Si: 0.05 to 0.6% by mass)
Si has the effect of being dissolved in the matrix, increasing the strength of the aluminum alloy plate, and improving the pressure resistance. Moreover, Si forms Al, Mn, Fe and an Al—Fe—Mn—Si-based intermetallic compound (see the above description regarding Mn), and improves the formability of the aluminum alloy sheet. However, when the Si content is less than 0.05% by mass, these effects are insufficient. When the Si content exceeds 0.6% by mass, the intermetallic compound becomes coarse, and tends to be a starting point of cracking during molding. The formability of the aluminum alloy plate is reduced. Moreover, when Si content exceeds 0.6 mass%, it will become easy to generate | occur | produce a weld crack. Therefore, the Si content is set to 0.05% by mass or more and 0.6% by mass or less. Preferably they are 0.05 mass% or more and 0.2 mass% or less.

(Fe:0.05〜0.7質量%)
Feは、Mn,Siと同様にAl−Fe−Mn系、Al−Fe−Mn−Si系金属間化合物を形成し(Mnに関する先の記載参照)、アルミニウム合金板の成形性を向上させる効果がある。しかし、Fe含有量が0.05質量%未満では、この効果が不十分であり、0.7質量%を超えると、粗大な前記金属間化合物の数が増え、成形時の割れの起点となりやすく、アルミニウム合金板の成形性が低下する。また、Fe含有量が0.7質量%を超えると、ポロシティが発生しやすくなる。従って、Fe含有量は0.05質量%以上、0.7質量%以下とする。好ましくは、0.4質量%以上、0.6質量%以下である。
(Fe: 0.05 to 0.7% by mass)
Fe, like Mn and Si, forms Al—Fe—Mn and Al—Fe—Mn—Si intermetallic compounds (see the above description regarding Mn), and has the effect of improving the formability of the aluminum alloy sheet. is there. However, if the Fe content is less than 0.05% by mass, this effect is insufficient, and if it exceeds 0.7% by mass, the number of coarse intermetallic compounds increases, which tends to be the starting point of cracking during molding. The formability of the aluminum alloy plate is reduced. On the other hand, if the Fe content exceeds 0.7% by mass, porosity tends to occur. Therefore, the Fe content is set to 0.05% by mass or more and 0.7% by mass or less. Preferably, it is 0.4 mass% or more and 0.6 mass% or less.

本発明に係るアルミニウム合金板の主要成分は以上のとおりで、これらの含有量は、ほぼJISA3003の組成に準じたものとなっている。Mn、Cu、Fe、Siを除く残部は、後述するTi、Bのほか、Al及び不可避的不純物からなる。不可避的不純物は、地金や中間合金に含まれている。Ti、B及び主な不可避的不純物について、以下説明する。   The main components of the aluminum alloy sheet according to the present invention are as described above, and their contents are substantially in accordance with the composition of JIS A3003. The balance other than Mn, Cu, Fe, and Si is made of Al and inevitable impurities in addition to Ti and B described later. Inevitable impurities are contained in bullion and intermediate alloys. Ti, B and main inevitable impurities will be described below.

(Ti:0.04質量%未満)
Tiは、アルミニウム合金鋳造組織を微細化、均質化(安定化)する効果があり、圧延用スラブの造塊時の鋳造割れ防止を目的に、0.02〜0.15質量%の範囲で常用されている。しかし、前記組成のアルミニウム合金の場合、Tiを0.04質量%以上含有すると、パルスレーザー照射による素材の溶融時(660〜750℃)に凝固ビード内にポロシティが残留し易くなる。このため、次のパルスレーザー照射で凝固ビードが再溶融したとき、先に説明したとおり、溶け込みが深く形成され(非定常溶け込み部)、これが凝固して溶接部に異常部(イレギュラービード)が発生する。本発明に係るアルミニウム合金において、Tiは地金(スクラップ含む)中に不可避的不純物として含まれ、又は上記効果を目的に中間合金として必要に応じて添加される元素である。いずれにしても、その含有量は0.04質量%未満(0%を含む)に規制する必要がある。
(Ti: less than 0.04% by mass)
Ti has the effect of refining and homogenizing (stabilizing) the aluminum alloy cast structure, and is commonly used in the range of 0.02 to 0.15% by mass for the purpose of preventing casting cracks during ingot formation of rolling slabs. Has been. However, in the case of the aluminum alloy having the above composition, when Ti is contained in an amount of 0.04% by mass or more, porosity tends to remain in the solidified beads when the material is melted by pulse laser irradiation (660 to 750 ° C.). For this reason, when the solidified bead is remelted by the next pulse laser irradiation, as described above, the penetration is deeply formed (unsteady penetration portion), and this solidifies and an abnormal portion (irregular bead) is formed in the welded portion. Occur. In the aluminum alloy according to the present invention, Ti is an element contained as an inevitable impurity in the metal (including scrap) or added as necessary as an intermediate alloy for the purpose of the above effect. In any case, the content needs to be regulated to less than 0.04% by mass (including 0%).

(B:10質量ppm未満)
Bは、前記のようにアルミニウム合金のスラブ造塊時の鋳造割れ防止を目的に、Ti−B母合金としてTiと共に、積極添加にて常用されている元素である。しかしながら、前記組成のアルミニウム合金の場合、B含有量が10質量ppm以上では、前記のTiと同様に、パルスレーザー照射部の凝固ビード内にポロシティが残留し易くなり、次のパルスレーザー照射で凝固ビードが再溶解したとき溶け込みが深く形成され、これが凝固して異常部(イレギュラービード)が発生する。本発明に係るアルミニウム合金において、Bは地金(スクラップ含む)中に不可避不純物として含まれ、又は上記効果を目的に中間合金として必要に応じて添加される元素である。いずれにしても、その含有量は10質量ppm未満(0ppmを含む)に規制する必要がある。好ましくは9質量ppm以下である。
(B: less than 10 mass ppm)
B is an element commonly used as a Ti-B master alloy together with Ti for positive addition for the purpose of preventing casting cracks during slab ingot formation of an aluminum alloy as described above. However, in the case of the aluminum alloy having the above composition, when the B content is 10 mass ppm or more, the porosity is likely to remain in the solidified beads of the pulse laser irradiated portion, as in the case of Ti, and solidified by the next pulse laser irradiation. When the bead is re-dissolved, a deep penetration is formed, which solidifies and an abnormal part (irregular bead) occurs. In the aluminum alloy according to the present invention, B is an element contained as an inevitable impurity in the metal (including scrap) or added as necessary as an intermediate alloy for the purpose of the above effect. In any case, the content needs to be regulated to less than 10 mass ppm (including 0 ppm). Preferably it is 9 mass ppm or less.

(不可避不純物)
主な不可避不純物として、Zn、Mg、Zr、Cr、Ga、V、Ni等が挙げられる。
このうちZnは、蒸気圧が低いため、パルスレーザー溶接時に飛散して周囲を汚染しやすく、さらにはビード割れも発生しやすく、アルミニウム合金板のパルスレーザー溶接性を悪くする。従って、Zn含有量は、0.05質量%以下に規制する。好ましくは0.04質量%以下である。Mgも同様に、0.05質量%を超えて含有すると溶接割れ(ビード割れ)が発生しやすくなる。従って、Mg含有量は、0.05質量%以下に規制する。
その他の不可避不純物であるZr、Cr、Ga、V、Ni等は、通常知られている範囲内であれば本発明の効果を妨げるものではない。これらの不可避的不純物の含有は個別に0.05質量%以下、Ti、BとZn、Mgを含めた不可避的不純物トータルとして0.15質量%の範囲内で許容される。
(Inevitable impurities)
Examples of main inevitable impurities include Zn, Mg, Zr, Cr, Ga, V, and Ni.
Among these, Zn has a low vapor pressure, so it is likely to be scattered during pulse laser welding and contaminate the surroundings. Further, bead cracking is likely to occur, which deteriorates the pulse laser weldability of the aluminum alloy plate. Therefore, the Zn content is restricted to 0.05% by mass or less. Preferably it is 0.04 mass% or less. Similarly, when Mg is contained in an amount exceeding 0.05 mass%, weld cracks (bead cracks) are likely to occur. Therefore, the Mg content is restricted to 0.05% by mass or less.
Other inevitable impurities such as Zr, Cr, Ga, V, and Ni do not hinder the effects of the present invention as long as they are within a generally known range. The inclusion of these inevitable impurities is individually allowed to be 0.05% by mass or less, and within the range of 0.15% by mass as a total of inevitable impurities including Ti, B, Zn, and Mg.

〔アルミニウム合金板の製造方法〕
次に、本発明に係るアルミニウム合金板の製造方法の一例について説明する。
まず、前記組成を有するアルミニウム合金を溶解、鋳造して鋳塊を作製し、この鋳塊に面削を施した後に、480℃以上かつ前記アルミニウム合金の融点未満の温度で均質化熱処理を施す。次に、この均質化熱処理された鋳塊を、熱間圧延及び冷間圧延して圧延板を作製する。そして、この圧延板を、100℃/分以上の加熱速度で420℃以上かつ前記アルミニウム合金の融点未満の温度域に加熱し、この温度域に0〜180秒保持した後、300℃/分以上の冷却速度で冷却することにより中間焼鈍を施す。その後、中間焼鈍された圧延板に圧下率20〜50%で最終冷間圧延を施して、アルミニウム合金板とする。なお、必要に応じて、最終冷間圧延を施した圧延板に、80〜200℃、0.5〜8時間の最終焼鈍を施してもよい。最終焼鈍により、材料が軟化し、伸びが向上するため、最終焼鈍は、成形性を向上させるために好適な工程である。
[Method for producing aluminum alloy sheet]
Next, an example of the manufacturing method of the aluminum alloy plate according to the present invention will be described.
First, an aluminum alloy having the above composition is melted and cast to produce an ingot, and the ingot is chamfered, and then subjected to a homogenization heat treatment at a temperature of 480 ° C. or higher and lower than the melting point of the aluminum alloy. Next, the homogenized heat-treated ingot is hot-rolled and cold-rolled to produce a rolled plate. Then, the rolled sheet is heated to a temperature range of 420 ° C. or higher and lower than the melting point of the aluminum alloy at a heating rate of 100 ° C./min or higher, and held in this temperature range for 0 to 180 seconds, and then 300 ° C./min or higher. Intermediate annealing is performed by cooling at a cooling rate of. Thereafter, the cold-rolled sheet subjected to intermediate annealing is subjected to final cold rolling at a rolling reduction of 20 to 50% to obtain an aluminum alloy sheet. In addition, you may give the final annealing of 80-200 degreeC and 0.5 to 8 hours to the rolled sheet which gave the final cold rolling as needed. Since the material is softened and the elongation is improved by the final annealing, the final annealing is a suitable process for improving the formability.

〔電池ケース〕
次に、本発明に係る電池ケースについて説明する。本発明に係る電池ケースは、前記アルミニウム合金板を用いて作製したものである。
以下、本発明に係るアルミニウム合金板から電池ケースおよび二次電池を作製する方法の一例を説明する。
[Battery case]
Next, the battery case according to the present invention will be described. The battery case according to the present invention is manufactured using the aluminum alloy plate.
Hereinafter, an example of a method for producing a battery case and a secondary battery from the aluminum alloy plate according to the present invention will be described.

<電池ケース及び二次電池の作製方法>
ケース本体部とする本発明に係るアルミニウム合金板は、最終冷間圧延にて0.7〜2.0mm程度の板厚とする。このアルミニウム合金板を、所定の形状に切断し、絞り加工又はしごき加工により有底筒形状に成形する。さらにこの加工を複数回繰り返して徐々に側壁面を高くして、トリミング等の加工を必要に応じて施すことで、所定の底面形状及び側壁高さに成形してケース本体部とする。ケース本体部は上面が開放された有底筒形状とする。電池ケースの形状は特に限定されるものではなく、円筒形、偏平形の直方体等、二次電池の仕様に従う。
しごき加工等によるケース本体部の側壁の板厚減少率(しごき加工率)は、トータルで30〜80%であることが好ましい。板厚減少率がこの範囲外となる場合、成形したケース本体部の側壁を所望の板厚に調整することが困難となる。
<Production method of battery case and secondary battery>
The aluminum alloy plate according to the present invention as the case main body has a thickness of about 0.7 to 2.0 mm by final cold rolling. This aluminum alloy plate is cut into a predetermined shape and formed into a bottomed cylindrical shape by drawing or ironing. Further, this processing is repeated a plurality of times to gradually increase the side wall surface, and by performing processing such as trimming as necessary, the case main body is formed into a predetermined bottom surface shape and side wall height. The case body has a bottomed cylindrical shape with an open upper surface. The shape of the battery case is not particularly limited, and conforms to the specifications of the secondary battery, such as a cylindrical or flat rectangular parallelepiped.
It is preferable that the plate thickness reduction rate (ironing rate) of the side wall of the case main body due to ironing or the like is 30 to 80% in total. When the plate thickness reduction rate is out of this range, it is difficult to adjust the side wall of the molded case body to a desired plate thickness.

また、ケース本体部と同じアルミニウム合金で、0.7〜2.0mm程度の板厚とした本発明に係るアルミニウム合金板で蓋部を作製する。このアルミニウム合金板をケース本体部の上面に対応した形状に切断し、注入口等を形成して蓋部とする。ただし、蓋部はJISA1050アルミニウム合金等、他のアルミニウム合金で作製することもできる。前記ケース本体部に二次電池材料(正極材料、負極材料、セパレータ等)を格納し、上面に前記蓋部を溶接する。ケース本体部と蓋部との溶接は、波形制御されたパルスレーザーによる溶接で行う。そして、電池ケースに注入口から電解液を注入して、注入口を封止して二次電池とする。   Moreover, a cover part is produced with the aluminum alloy plate which concerns on this invention made into the board thickness of about 0.7-2.0 mm with the same aluminum alloy as a case main-body part. The aluminum alloy plate is cut into a shape corresponding to the upper surface of the case body, and an injection port or the like is formed to form a lid. However, the lid can also be made of other aluminum alloys such as JIS A1050 aluminum alloy. A secondary battery material (positive electrode material, negative electrode material, separator, etc.) is stored in the case body, and the lid is welded to the upper surface. Welding of the case body and the lid is performed by welding with a pulsed laser whose waveform is controlled. And electrolyte solution is inject | poured into a battery case from an injection hole, an injection inlet is sealed, and it is set as a secondary battery.

以上のように、本発明に係るアルミニウム合金板は、一連の成形加工が順次に施されるトランスファープレスによって所望の形状に成形される成形品、特に、リチウムイオン二次電池の電池ケースに好適なものである。すなわち、本発明に係るアルミニウム合金板は、トランスファープレスに含まれる、多段階の絞り−しごき加工のような特に過酷な加工に対して優れた成形性(加工性)を有する。また、本発明に係るアルミニウム合金板は、例えば電池ケースに作製する際の、ケース本体部と蓋部とをパルスレーザーで確実に封止できるパルスレーザー溶接性を有する。   As described above, the aluminum alloy plate according to the present invention is suitable for a molded product formed into a desired shape by a transfer press in which a series of forming processes are sequentially performed, particularly for a battery case of a lithium ion secondary battery. Is. That is, the aluminum alloy plate according to the present invention has excellent formability (workability) for particularly severe processing such as multistage drawing-ironing processing included in a transfer press. In addition, the aluminum alloy plate according to the present invention has pulse laser weldability that can reliably seal the case body and the lid with a pulse laser when, for example, the battery case is manufactured.

以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。
(実施例1)
〔供試材作製〕
表1に示す組成のアルミニウム合金を、溶解、鋳造して鋳塊とし、この鋳塊に面削を施した後に、540℃にて4時間の均質化熱処理を施した。この均質化した鋳塊に、熱間圧延、さらに冷間圧延を施した。冷間圧延後の圧延板を500℃/分で520℃に加熱して、この温度に30秒保持した後、500℃/分で冷却して中間焼鈍を行った。最後に、圧下率30%で最終冷間圧延を行って板厚1.0mmのアルミニウム合金板とした。
Examples in which the effects of the present invention have been confirmed will be specifically described below in comparison with comparative examples that do not satisfy the requirements of the present invention.
Example 1
[Sample preparation]
An aluminum alloy having the composition shown in Table 1 was melted and cast into an ingot, and the ingot was subjected to face grinding, and then subjected to homogenization heat treatment at 540 ° C. for 4 hours. The homogenized ingot was subjected to hot rolling and further cold rolling. The cold-rolled sheet was heated to 520 ° C. at 500 ° C./min and held at this temperature for 30 seconds, and then cooled at 500 ° C./min to perform intermediate annealing. Finally, final cold rolling was performed at a reduction rate of 30% to obtain an aluminum alloy plate having a plate thickness of 1.0 mm.

〔パルスレーザー溶接性試験〕
得られたアルミニウム合金板にてパルスレーザー溶接性試験を行った。
図1に示すように、2枚の同じ組成のアルミニウム合金板を、端面同士を突き合わせて配置し、この突合せ部をパルスレーザーにより溶接した。溶接長さ(ビード長さ)は90mmとした。パルスレーザー溶接においては、1個のパルスレーザーにより溶融池が形成されて固化した円状の溶接部がレーザーの移動により、連続的に溶接線に沿って重なり合いながら形成される。溶接機は、パルス発振のYAGレーザーを使用し、溶接速度は20cm/分、最大ピーク出力4.5kW、周波数10Hz、1パルス当たりのエネルギー(入熱量)を24J/p(条件1)、25J/p(条件2)、26J/p(条件3)とし、パルス波形制御はダウンスロープで実施し、シールドガスは窒素を20リットル/分の条件で溶接を行った。なお、1パルス当たりの入熱量はダウンスロープの時間で調節した。
[Pulse laser weldability test]
A pulse laser weldability test was performed on the obtained aluminum alloy plate.
As shown in FIG. 1, two aluminum alloy plates having the same composition were placed with their end faces butted together, and the butted portions were welded by a pulse laser. The welding length (bead length) was 90 mm. In pulse laser welding, a circular weld formed by forming a molten pool with a single pulse laser and solidifying is formed while continuously overlapping along the weld line by the movement of the laser. The welding machine uses a pulsed YAG laser, the welding speed is 20 cm / min, the maximum peak output is 4.5 kW, the frequency is 10 Hz, the energy (heat input) per pulse is 24 J / p (condition 1), 25 J / p (condition 2), 26 J / p (condition 3), pulse waveform control was performed with downslope, and welding was performed under the condition that the shielding gas was nitrogen of 20 liters / minute. The amount of heat input per pulse was adjusted by the down slope time.

〔溶接性評価〕
パルスレーザー溶接性の評価については、まず、溶接割れが生じたか生じなかったかを肉眼及び光学顕微鏡にて観察し、条件1〜条件3の全てにおいて全ビード長さにわたり割れが無い健全なビードが得られたものを合格「○」、条件1〜条件3のいずれかにおいて1箇所でも割れが生じたものを不合格「×」と判定した。
また、イレギュラービード発生個数(ビード長さ90mm当たり)を光学顕微鏡にて観察した。具体的には、図1,2に示すように溶接部の平面及びビード中央部断面の光学顕微鏡写真を撮り、イレギュラービード発生個数をカウントした。その上で、条件1〜3の全てでイレギュラービードが生じなかった場合を、ビード形状が良好であるとして合格「○」、条件1〜3のどれかでイレギュラービードが1個でも生じた場合を、ビード形状が不良であるとして不合格「×」と評価した。なお、図2(b)には2個のイレギュラービードが観察される。
さらに、溶接部の断面の光学顕微鏡写真から溶け込み深さ(健常部の溶け込み深さ)を測定した。
以上の結果を表2に示す。
[Weldability evaluation]
Regarding the evaluation of pulse laser weldability, first, whether or not weld cracks occurred was observed with the naked eye and an optical microscope, and a sound bead with no cracks was obtained over the entire bead length in all conditions 1 to 3. What was obtained was determined to be a pass “◯”, and any one of the conditions 1 to 3 where a crack occurred even at one location was determined to be a reject “x”.
Further, the number of irregular beads generated (per bead length of 90 mm) was observed with an optical microscope. Specifically, as shown in FIGS. 1 and 2, optical micrographs of the weld plane and bead central section were taken, and the number of irregular beads generated was counted. In addition, when no irregular bead was generated in all of the conditions 1 to 3, the bead shape was good as “good”, and even one irregular bead was generated in any of the conditions 1 to 3. The case was evaluated as rejected “x” because the bead shape was defective. In FIG. 2B, two irregular beads are observed.
Furthermore, the penetration depth (the penetration depth of the healthy part) was measured from an optical micrograph of the cross section of the weld.
The results are shown in Table 2.

〔試験結果〕
表2に示すように、本発明で規定された成分組成を有する実施例No.1,2は、溶接割れの発生がなく、条件2、条件3の中〜大入熱条件による場合(溶け込み深さが深い場合)でもイレギュラービードの発生がないなど、パルスレーザー溶接性に優れていた。
一方、比較例No.1〜9は、ビード割れは生じていないが、Ti及び/又はBの含有量が本発明の規定を満たさないため、イレギュラービードが発生し、とりわけ条件2、条件3の中〜大入熱条件において発生頻度が大幅に増加した。また、Mg、Cu含有量の多い比較例No.10はビードに割れが発生し、健全な溶接部が得られなかった。
〔Test results〕
As shown in Table 2, Example No. having the component composition defined in the present invention was used. Nos. 1 and 2 have excellent pulse laser weldability, such as no cracking of welds, and no irregular beads even when conditions 2 and 3 are under medium to high heat input conditions (deep penetration depth). It was.
On the other hand, Comparative Example No. In Nos. 1 to 9, bead cracking occurred, but the content of Ti and / or B did not satisfy the provisions of the present invention, so irregular beads were generated. The frequency of occurrence increased significantly under the conditions. Further, Comparative Example No. with a high Mg and Cu content. In No. 10, a crack occurred in the bead, and a sound weld was not obtained.

(実施例2)
〔供試材作製〕
表3に示すアルミニウム合金に対し、実施例1と同じ製造工程を施し、板厚1.0mmのアルミニウム合金板とした。
(Example 2)
[Sample preparation]
The aluminum alloy shown in Table 3 was subjected to the same manufacturing process as in Example 1 to obtain an aluminum alloy plate having a thickness of 1.0 mm.

得られたアルミニウム合金板にて以下の試験を行った。その結果を表4に示す。
〔強度試験〕
アルミニウム合金板から、引張方向が圧延方向と平行になるようにJIS5号による引張試験片を切り出し、この試験片でJISZ2241による引張試験を実施した。0.2%耐力が130N/mm以上であるものを合格「○」と評価し、130N/mm未満のものを不合格「×」と評価した。
The following tests were performed on the obtained aluminum alloy plate. The results are shown in Table 4.
〔Strength test〕
A tensile test piece according to JIS No. 5 was cut out from the aluminum alloy plate so that the tensile direction was parallel to the rolling direction, and a tensile test according to JIS Z2241 was performed on this test piece. Those having a 0.2% proof stress of 130 N / mm 2 or more were evaluated as acceptable “◯”, and those less than 130 N / mm 2 were evaluated as rejected “x”.

〔成形性試験〕
アルミニウム合金板から、プレス加工機を使用して、側壁のしごき加工率を40%とし、底面が縦15mm×横120mm、側壁の高さ90mmの箱体の角型電池ケース本体を成形した。この際、割れがなく成形可能であり、成形後に表面の変色や縦スジ模様のないものを成形性が優れているとして合格「○」と評価し、成形時に割れが発生したもの、又は著しい変色や縦スジが発生したものを成形性が不良であるとして不合格「×」と評価した。
[Formability test]
A box-shaped rectangular battery case body having a side wall ironing rate of 40%, a bottom surface of 15 mm × width of 120 mm, and a side wall height of 90 mm was formed from an aluminum alloy plate using a press machine. At this time, it is possible to mold without cracking, and after molding, those with no surface discoloration or vertical streak pattern are evaluated as a pass “○” as excellent moldability, and cracks occurred during molding, or significant discoloration And those with vertical streaks were evaluated as rejected “x” because the moldability was poor.

〔パルスレーザー溶接性試験〕
実施例1のパルスレーザー溶接性試験と同一の試験方法及び条件(ただし、1パルス当たりのエネルギー(入熱量)を25J/pの1条件に設定)で、アルミニウム合金板のパルスレーザー溶接を行った。
〔溶接性評価〕
溶接割れ及びイレギュラービードの発生の有無について、実施例1と同一の観察方法で観察し、同一の評価方法で合格「○」及び不合格「×」を判定した。
同じく実施例1と同一の測定方法で、溶接部の断面の光学顕微鏡写真から溶け込み深さ(健常部の溶け込み深さ)を測定し、0.25mm以上の溶け込み深さが得られたものを合格「○」と判定した。
[Pulse laser weldability test]
Pulse laser welding of an aluminum alloy plate was performed with the same test method and conditions as in the pulse laser weldability test of Example 1 (however, the energy per one pulse (heat input) was set to one condition of 25 J / p). .
[Weldability evaluation]
About the presence or absence of generation | occurrence | production of a weld crack and irregular bead, it observed by the same observation method as Example 1, and the pass "(circle)" and the disqualification "x" were determined with the same evaluation method.
Similarly, the same measurement method as in Example 1 was used to measure the penetration depth (penetration depth of the healthy part) from the optical micrograph of the cross section of the welded portion, and passed the one with a penetration depth of 0.25 mm or more. It judged with "(circle)".

〔試験結果〕
表4に示すように、本発明で規定された成分組成を有する実施例No.3〜13は、全て0.25mm以上の溶け込み深さが得られ、溶接割れ及びイレギュラービードの発生がなく、パルスレーザー溶接性に優れていた。
一方、比較例No.11はMn含有量が不足で強度が劣り、比較例No.12はMn含有量が過剰で成形性が劣る。比較例No.13はCu含有量が不足で成形性が劣り、比較例No.14はCu含有量が過剰で溶接割れが発生した。比較例No.15はSi含有量が不足で強度及び成形性が劣り、比較例No.16はSi含有量が過剰で成形性が劣り、溶接割れが発生した。比較例17はFe含有量が不足で、比較例No.18はFe含有量が過剰で、いずれも成形性が劣る。比較例No.19はZn含有量が過剰で溶接割れが生じた。
比較例No.20はTi含有量が過剰で、比較例No.21,22はB含有量が過剰で、いずれもイレギュラービードが発生した。
〔Test results〕
As shown in Table 4, Example No. having the component composition defined in the present invention was used. Nos. 3 to 13 all had a penetration depth of 0.25 mm or more, were free of weld cracks and irregular beads, and were excellent in pulse laser weldability.
On the other hand, Comparative Example No. No. 11 has insufficient Mn content and poor strength. No. 12 has an excessive Mn content and is inferior in moldability. Comparative Example No. No. 13 has insufficient Cu content and has poor moldability. In No. 14, the Cu content was excessive and weld cracking occurred. Comparative Example No. No. 15 is insufficient in Si content and inferior in strength and formability. In No. 16, the Si content was excessive, the formability was inferior, and weld cracking occurred. Comparative Example 17 lacks Fe content. No. 18 has an excessive Fe content, and all have poor moldability. Comparative Example No. In No. 19, the Zn content was excessive and weld cracking occurred.
Comparative Example No. No. 20 has an excessive Ti content. 21 and 22 had an excessive B content, and irregular beads were generated in both cases.

Claims (2)

Mn:0.8〜1.5質量%、Cu:0.05〜0.2質量%、Si:0.05〜0.6質量%、Fe:0.05〜0.7質量%を含有し、Znが0.05質量%以下、Mgが0.05質量%以下、Tiが0.04質量%未満、Bが10質量ppm未満に規制され、残部がAl及び不可避的不純物からなり、肉厚が0.5mm以上である、溶け込み深さが0.25mm以上のパルスレーザー溶接に使用されるパルスレーザー溶接性に優れた電池ケース用アルミニウム合金板。 Mn: 0.8-1.5 mass%, Cu: 0.05-0.2 mass%, Si: 0.05-0.6 mass% , Fe: 0.05-0.7 mass% are contained. , Zn is 0.05 mass% or less, Mg is 0.05 mass% or less, Ti is less than 0.04 mass%, B is less than 10 massppm, the balance is made of Al and inevitable impurities, and the wall thickness Is an aluminum alloy plate for battery cases excellent in pulse laser weldability, which is used for pulse laser welding with a penetration depth of 0.25 mm or more. 請求項1に記載された電池ケース用アルミニウム合金板からなることを特徴とする電池ケース本体。 A battery case body comprising the aluminum alloy plate for a battery case according to claim 1 .
JP2011015824A 2010-09-14 2011-01-27 Aluminum alloy plate for battery case and battery case Expired - Fee Related JP5950497B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011015824A JP5950497B2 (en) 2010-09-14 2011-01-27 Aluminum alloy plate for battery case and battery case
CN201110267253.1A CN102400015B (en) 2010-09-14 2011-09-09 Aluminium Alloy Plate For Cell Box And Cell Box
KR1020110091688A KR101370087B1 (en) 2010-09-14 2011-09-09 Aluminum alloy plate for battery case and battery case

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010206113 2010-09-14
JP2010206113 2010-09-14
JP2011015824A JP5950497B2 (en) 2010-09-14 2011-01-27 Aluminum alloy plate for battery case and battery case

Publications (2)

Publication Number Publication Date
JP2012082506A JP2012082506A (en) 2012-04-26
JP5950497B2 true JP5950497B2 (en) 2016-07-13

Family

ID=46241689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015824A Expired - Fee Related JP5950497B2 (en) 2010-09-14 2011-01-27 Aluminum alloy plate for battery case and battery case

Country Status (1)

Country Link
JP (1) JP5950497B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5872256B2 (en) * 2011-11-11 2016-03-01 株式会社Uacj Aluminum alloy sheet for lithium ion battery sealing material and method for producing the same
JP2014086148A (en) * 2012-10-19 2014-05-12 Toyota Motor Corp Square lithium ion secondary battery
JP6052162B2 (en) * 2013-12-26 2016-12-27 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
CN109097636A (en) * 2018-09-10 2018-12-28 招商局铝业(重庆)有限公司 A kind of baking utensil aluminium alloy and preparation method thereof
FR3123922B1 (en) 2021-06-11 2023-12-22 Constellium Rolled Products Singen Strong aluminum alloy sheet for parallelepiped battery box
CN115842206A (en) * 2022-02-10 2023-03-24 宁德时代新能源科技股份有限公司 Aluminum alloy plate for lithium ion battery and battery shell

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3750966B2 (en) * 1998-06-10 2006-03-01 古河スカイ株式会社 Al-Mn alloy plate for battery case and method for producing the same
JP2000106153A (en) * 1998-09-28 2000-04-11 Toshiba Corp Sealed battery
JP3860939B2 (en) * 1999-11-01 2006-12-20 古河スカイ株式会社 Al-Mn-Mg alloy plate for case forming and method for producing the same
JP3843368B2 (en) * 2000-10-23 2006-11-08 古河スカイ株式会社 Aluminum alloy plate for battery case with excellent resistance to high temperature blistering and method for producing the same
JP4105404B2 (en) * 2001-05-15 2008-06-25 三菱アルミニウム株式会社 Manufacturing method of aluminum alloy plate for secondary battery case
JP2004332002A (en) * 2003-04-30 2004-11-25 Furukawa Sky Kk Anodized plate with transparent lubricating resin coating
JP2006037129A (en) * 2004-07-23 2006-02-09 Kobe Steel Ltd Aluminum alloy sheet for sealing sheet of secondary battery case
JP4601489B2 (en) * 2005-05-13 2010-12-22 独立行政法人産業技術総合研究所 Vibration solidification casting mold and casting method thereof
JP5004007B2 (en) * 2007-04-12 2012-08-22 日本軽金属株式会社 Aluminum alloy plate for battery lid and manufacturing method thereof
JP4880664B2 (en) * 2007-12-28 2012-02-22 株式会社神戸製鋼所 Aluminum alloy material and battery case for pulse laser welding
JP2009249708A (en) * 2008-04-09 2009-10-29 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material for battery case, and method for producing the same

Also Published As

Publication number Publication date
JP2012082506A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
JP5725344B2 (en) Aluminum alloy sheet for battery cases with excellent formability and weldability
KR101217428B1 (en) Aluminum alloy sheet for battery case and battery case
JP5456747B2 (en) Aluminum alloy plate for battery case and battery case
CN102628129B (en) Aluminium alloy plate used for battery housing and battery housing
KR101900581B1 (en) Aluminum alloy sheet for electric cell case, having excellent moldability, heat dissipation, and weldability
JP5950497B2 (en) Aluminum alloy plate for battery case and battery case
JP5725345B2 (en) Aluminum alloy sheet for battery cases with excellent formability and weldability
CN102206775A (en) Aluminum alloy plate for cell box and cell box
KR101370087B1 (en) Aluminum alloy plate for battery case and battery case
JP5726430B2 (en) Aluminum alloy plate for battery case body and battery case
JP2011208229A (en) Aluminum alloy sheet for battery case, and battery case
JP5798710B2 (en) Aluminum alloy plate and battery case with excellent irregular and bead prevention properties
JP2012158810A (en) Aluminum alloy sheet for battery case, and battery case
JP5599588B2 (en) Aluminum alloy plate for battery case, method for producing the same, and battery case
JP5726554B2 (en) Aluminum alloy plate for battery case body and battery case
CN104321452A (en) Aluminum alloy plate for battery cases, which has excellent moldability and weldability
JP5943288B2 (en) Aluminum alloy plate and battery case with excellent irregular and bead prevention properties
JP5872632B2 (en) Aluminum alloy plate for battery case
JP5879646B2 (en) Aluminum alloy plate for battery case, method for producing the same, and battery case
JP5887189B2 (en) Aluminum alloy plate for battery case, method for producing the same, and battery case
JP2007224423A (en) Manufacturing method of aluminum alloy sheet for rectangular cross sectional battery container
JP2016035110A (en) Aluminum alloy sheet for battery case, method of producing the same and battery case

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160607

R150 Certificate of patent or registration of utility model

Ref document number: 5950497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees