JP5726554B2 - Aluminum alloy plate for battery case body and battery case - Google Patents

Aluminum alloy plate for battery case body and battery case Download PDF

Info

Publication number
JP5726554B2
JP5726554B2 JP2011019609A JP2011019609A JP5726554B2 JP 5726554 B2 JP5726554 B2 JP 5726554B2 JP 2011019609 A JP2011019609 A JP 2011019609A JP 2011019609 A JP2011019609 A JP 2011019609A JP 5726554 B2 JP5726554 B2 JP 5726554B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
battery case
alloy plate
mass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011019609A
Other languages
Japanese (ja)
Other versions
JP2012158809A (en
Inventor
小林 一徳
一徳 小林
松本 剛
松本  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011019609A priority Critical patent/JP5726554B2/en
Priority to KR1020120009706A priority patent/KR101321666B1/en
Priority to CN201210025138.8A priority patent/CN102628129B/en
Publication of JP2012158809A publication Critical patent/JP2012158809A/en
Application granted granted Critical
Publication of JP5726554B2 publication Critical patent/JP5726554B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、自動車に搭載されるリチウム電池ケース本体用のアルミニウム合金板およびこのアルミニウム合金板を使用して成形加工された電池ケースに係り、特には、電池ケースに成形する深絞り加工における連続生産に好適な深絞り加工用のアルミニウム合金板およびこのアルミニウム合金板を使用して成形加工された電池ケースに関する。 The present invention relates to an aluminum alloy plate for a lithium battery case body mounted on an automobile and a battery case formed by using the aluminum alloy plate, and more particularly, continuous production in deep drawing for forming the battery case. In particular, the present invention relates to an aluminum alloy plate for deep drawing and a battery case molded using the aluminum alloy plate.

自動車用燃料電池としては、従来、ニッケル水素電池が主として使用されてきたが、近年、携帯電話およびパーソナルコンピュータ等で使用されているリチウムイオン電池が、軽量であること、およびエネルギー密度等が高いこと等の理由で一部に採用されている。   Conventionally, nickel-metal hydride batteries have been mainly used as fuel cells for automobiles, but in recent years, lithium-ion batteries used in mobile phones and personal computers are lightweight and have high energy density. It has been adopted for some reasons.

リチウムイオン電池は、その構成上、胴体および蓋を含めた電池ケースに電極としての作用を持たせており、電池ケース用材料には、導電性が高いアルミニウム材が使用されている。また、アルミニウム材は、深い絞り加工が可能であるため、電池ケース用としての角形または丸形の容器を成形加工にて製造することができる。   Lithium ion batteries have a structure in which a battery case including a body and a lid has an electrode function, and a highly conductive aluminum material is used as a battery case material. In addition, since the aluminum material can be deep drawn, a square or round container for a battery case can be manufactured by molding.

ここで、携帯電話等の電池を単体で使用する場合は、膨れ防止のため、電池ケースの胴体および蓋に高強度なJISA3000系アルミニウム合金が使用されている。この電池ケースは、アルミニウム合金材からなる胴体と蓋とを、蓋の周縁に沿ってレーザー溶接することにより接合されている。   Here, when a battery such as a mobile phone is used alone, a high-strength JIS A 3000 series aluminum alloy is used for the body and lid of the battery case in order to prevent swelling. This battery case is joined by laser welding a body made of an aluminum alloy material and a lid along the periphery of the lid.

例えば、特許文献1には、JISA3003アルミニウム合金からなる有底角筒形の外装缶の開口部に、JISA3003アルミニウム合金からなる蓋体をレーザー溶接により接合して、リチウムイオン二次電池を製造する方法が開示されている。なお、特許文献1には、電池ケースの材質として、JISA1050アルミニウム材も記載されている。   For example, Patent Document 1 discloses a method of manufacturing a lithium ion secondary battery by joining a lid made of JISA3003 aluminum alloy to an opening of a bottomed rectangular tube-shaped outer can made of JISA3003 aluminum alloy by laser welding. Is disclosed. Patent Document 1 also describes a JISA1050 aluminum material as a material for the battery case.

前記のごとく、従来のリチウムイオン電池は、携帯電話およびパーソナルコンピュータに使用されており、ケースの膨れ防止のために、電池ケース用材料としては、高強度のJISA3000系アルミニウム合金が使用されている。しかし、自動車用燃料電池は、複数個の燃料電池をその間に樹脂スペーサを介在させて積層するように配置されているので、高強度の素材でなくても膨れ等の問題が生じない。このため、自動車用燃料電池用のリチウムイオン電池では、JISA3000系に比べて低強度ではあるが、高導電率のJISA1000系アルミニウム材(純アルミニウム材)が使用されている。   As described above, a conventional lithium ion battery is used in a mobile phone and a personal computer, and a high-strength JISA 3000 series aluminum alloy is used as a battery case material to prevent the case from swelling. However, since the fuel cell for automobiles is arranged such that a plurality of fuel cells are laminated with a resin spacer interposed therebetween, problems such as swelling do not occur even if the material is not a high-strength material. For this reason, in a lithium ion battery for an automobile fuel cell, a high conductivity JISA1000 series aluminum material (pure aluminum material) is used although it has a lower strength than the JISA3000 series.

例えば、特許文献2には、JISA1000系のアルミニウム合金からなる電池ケース材において、Ti含有量を0.01質量%以下に規制することにより、パルスレーザー溶接により溶接した場合の局所的な異常部(イレギュラービード)の形成を防止することができる電池ケースが開示されている。また、特許文献3には、JISA1000系のアルミニウム合金からなる電池ケース材において、粘性パラメータを適性範囲とするためにB等の不純物含有量を規制することにより、同様の作用を発現できることが開示されている。   For example, in Patent Document 2, in a battery case material made of a JISA1000 series aluminum alloy, a local abnormal portion when welding by pulse laser welding is controlled by restricting the Ti content to 0.01% by mass or less ( A battery case capable of preventing the formation of (irregular beads) is disclosed. Patent Document 3 discloses that in battery case materials made of a JISA1000 series aluminum alloy, the same effect can be achieved by regulating the content of impurities such as B in order to make the viscosity parameter an appropriate range. ing.

さらに、これら特許文献2、3に記載されるJISA1000系のアルミニウム合金材は、電池封印時に内容物と局所的な異常部とが熱反応することによる爆発を回避するためのアルミニウム板の厚肉化が必要ないので、薄肉化によるコストダウン効果が得られるものと予想される。   Furthermore, the JISA1000 series aluminum alloy materials described in Patent Documents 2 and 3 are thickened aluminum plates to avoid explosion due to the thermal reaction between the contents and local abnormal parts at the time of battery sealing. Therefore, it is expected that a cost reduction effect due to the thinning will be obtained.

特開2000−123822号公報(段落0022、0051〜0061)JP 2000-123822 (paragraphs 0022, 0051 to 0061) 特開2009−127075号公報(段落0017〜0020)JP2009-127075 (paragraphs 0017 to 0020) 特開2009−287116号公報(段落0020〜0025)JP 2009-287116 A (paragraphs 0020-0025)

しかしながら、従来の電池ケース用アルミニウム合金板および電池ケースでは、以下に示す問題がある。
近年では、ハイブリッド自動車や電気自動車の需要が堅調なことから、電池ケースの生産数量も著しく増加する傾向にあり、そのため、電池ケースの大量の連続生産が行われるようになってきた。しかし、連続生産を行うと、角形または丸形の容器を成形加工(深絞り加工)にて製造する際に焼き付きが発生するという問題がある。よって、角形または丸形の容器を成形加工にて製造する際の焼き付きの発生の防止が要求されている。
However, conventional aluminum alloy plates for battery cases and battery cases have the following problems.
In recent years, the demand for hybrid vehicles and electric vehicles has been strong, and the production volume of battery cases has also been increasing significantly. For this reason, large-scale continuous production of battery cases has been performed. However, when continuous production is performed, there is a problem that seizure occurs when a rectangular or round container is manufactured by molding (deep drawing). Therefore, it is required to prevent the occurrence of seizure when a rectangular or round container is manufactured by molding.

また、携帯電話の電池ケース用アルミニウム材のように板厚の薄い材料と異なり、自動車用の電池ケースにおいては、板厚がある程度厚いことから、所定の溶接部強度を得るためには、溶け込み深さを深くする必要がある。しかし、JISA1000系アルミニウム合金においては、溶け込み深さが0.25mmを超えると著しく溶接ビードの形状安定性が低下し、パルスレーザー溶接において、イレギュラービードの発生率が急激に増加する。このイレギュラービードは、場合によっては被溶接材の裏面にまで突き抜ける溶け込みとなり、導電性および動作電圧等の性能に悪影響を与える問題を生じる。   In addition, unlike a thin battery material such as an aluminum material for mobile phone battery cases, the battery case for automobiles is thick to some extent. Therefore, in order to obtain a predetermined weld strength, the penetration depth It is necessary to deepen the depth. However, in the JIS A1000 series aluminum alloy, when the penetration depth exceeds 0.25 mm, the shape stability of the weld bead is remarkably lowered, and the occurrence rate of irregular beads is rapidly increased in pulse laser welding. In some cases, this irregular bead penetrates to the back surface of the material to be welded, resulting in problems that adversely affect performance such as conductivity and operating voltage.

本発明はかかる問題点に鑑みてなされたものであって、アルミニウム合金材を対象として、電池ケース用としての角形または丸形の容器を成形加工にて製造する際に焼き付きの発生が防止され、連続生産に好適であり、かつ優れたパルスレーザー溶接性を有する深絞り加工用の電池ケース本体用アルミニウム合金板、および、この電池ケース本体用アルミニウム合金板を用いた電池ケースを提供することを課題とする。 The present invention has been made in view of such problems, and for the aluminum alloy material, the occurrence of seizure is prevented when a rectangular or round container for a battery case is manufactured by molding, PROBLEM TO BE SOLVED: To provide an aluminum alloy plate for a battery case body for deep drawing, which is suitable for continuous production and has excellent pulse laser weldability, and a battery case using the aluminum alloy plate for the battery case body And

本発明者らは、焼き付きの発生の防止に加え、パルスレーザー溶接における異常部(イレギュラービード)の発生を防止するため、イレギュラービードの発生に関し、以下の事項について検討した。
イレギュラービードの発生は、以下に説明するように、パルスレーザー溶融時(660〜750℃)から再凝固(660〜640℃)する間にビード内に残留するポロシティ欠陥の発生度と関連すると推測される(特許文献2参照)。溶接時、パルスレーザー照射部は溶融状態となり、その溶融池内には、水素、シールドガス、金属蒸気等による気泡が存在する。1パルスのパルスレーザー照射が完了すると、パルスレーザー照射部は凝固過程へと移行するが、溶融池から気泡が抜けにくい場合には、そのままポロシティ欠陥として残留しやすい。パルスレーザー溶接の場合、凝固完了したビードに新たにビードが重なるように次のパルスレーザー光が照射される。そして、凝固完了したビードがパルスレーザー光の照射により再溶融した際には、残留したポロシティにパルスレーザー光が照射されることになり、ポロシティが膨張して、通常パルスレーザー光照射により形成されるキーホールが肥大化し、レーザー光が奥深くまで入り込みやすくなる。その結果、溶け込みが深く形成されて、非定常溶け込み部となる。この非定常溶け込み部が凝固して、溶接部におけるイレギュラービードが発生する。
In order to prevent the occurrence of abnormal parts (irregular beads) in pulse laser welding in addition to preventing the occurrence of seizure, the present inventors have examined the following matters regarding the occurrence of irregular beads.
It is assumed that the occurrence of irregular beads is related to the occurrence of porosity defects remaining in the beads during re-solidification (660 to 640 ° C.) from the time of pulse laser melting (660 to 750 ° C.), as will be described below. (See Patent Document 2). At the time of welding, the pulse laser irradiation part is in a molten state, and bubbles due to hydrogen, shield gas, metal vapor, etc. exist in the molten pool. When the pulse laser irradiation of one pulse is completed, the pulse laser irradiation part shifts to a solidification process, but when bubbles are difficult to escape from the molten pool, they are likely to remain as porosity defects. In the case of pulse laser welding, the next pulse laser beam is applied so that the bead that has been solidified is newly overlapped. When the solidified bead is remelted by irradiation with pulsed laser light, the remaining porosity is irradiated with pulsed laser light, and the porosity expands and is usually formed by irradiation with pulsed laser light. The keyhole is enlarged and the laser beam is easy to penetrate deeply. As a result, the penetration is deeply formed and becomes an unsteady penetration portion. This unsteady penetration portion solidifies and irregular beads are generated in the welded portion.

JISA1000系アルミニウム合金板を、0.25mm以下の溶け込み深さでパルスレーザー溶接した場合は、大入熱で溶接してもイレギュラービードは発生しないが、溶け込みが0.25mmを超えた辺りで急激に発生率が高くなる。そこで、本発明者らは、リチウムイオン電池ケース用の素材として優れているAl−Mn系アルミニウム合金板の利点を生かしつつ、パルスレーザー溶接による溶け込み深さを深くした場合であっても、イレギュラービードの発生を防止できる素材を開発すべく、種々実験研究した。その結果、本発明者らは、Al−Mn系アルミニウム合金に微量に含有する成分であるTiとBが、パルスレーザー溶接におけるイレギュラービードの発生に大きな影響を与えていること、および、この合金に含まれるTiやBの含有量を適正な範囲に規制することによって、イレギュラービードの発生を防止できることを見出した。   When pulse laser welding is performed on a JISA1000 series aluminum alloy plate at a penetration depth of 0.25 mm or less, irregular beads do not occur even if welding is performed with a large heat input, but the penetration rapidly increases when the penetration exceeds 0.25 mm. The incidence is high. Therefore, the present inventors are irregular even when the penetration depth by pulse laser welding is increased while taking advantage of the Al-Mn aluminum alloy plate, which is excellent as a material for a lithium ion battery case. Various experimental studies were conducted to develop materials that can prevent the occurrence of beads. As a result, the present inventors have found that Ti and B, which are components contained in a small amount in an Al—Mn-based aluminum alloy, have a great influence on the occurrence of irregular beads in pulse laser welding, and this alloy. It has been found that irregular beads can be prevented from occurring by regulating the content of Ti and B contained in a proper range.

すなわち、前記課題を解決するために、本発明に係る電池ケース本体用アルミニウム合金板(以下、適宜、電池ケース用アルミニウム合金板、あるいは、アルミニウム合金板という)は、Fe:0.1〜0.8質量%、Si:0.05〜0.5質量%、Mn:0.05〜0.5質量%(但し、0.5質量%を除く)を含有し、Ti:0.04質量%未満、B:3質量ppm以上10質量ppm未満に規制し、残部がAlおよび不可避的不純物からなる電池ケース本体用アルミニウム合金板において、前記電池ケース本体用アルミニウム合金板の耐力が56MPa以下であり、前記電池ケース本体用アルミニウム合金板の断面の板厚方向中心部において、最大長が1μm以上の金属間化合物の面積率が0.3〜3.5%であり、かつ最大長が11μm以上の金属間化合物の個数が140個/mm以下であることを特徴とする。 That is, in order to solve the above-mentioned problems, the battery case main body aluminum alloy plate according to the present invention (hereinafter, appropriately referred to as the battery case aluminum alloy plate or aluminum alloy plate) is Fe: 0.1 to 0.00 . 8 % by mass, Si: 0.05-0.5% by mass, Mn: 0.05-0.5% by mass (excluding 0.5% by mass) , Ti: less than 0.04% by mass , B: In an aluminum alloy plate for a battery case main body that is restricted to 3 mass ppm or more and less than 10 mass ppm and the balance is made of Al and inevitable impurities , the proof stress of the aluminum alloy plate for the battery case main body is 56 MPa or less in the thickness direction center portion of the cross section of the aluminum alloy plate for a battery case body, the area ratio of the maximum length 1μm or more intermetallic compounds is 0.3 to 3.5%, and the maximum length The number of the above intermetallic compound 1μm is characterized in that 140 pieces / mm 2 or less.

このような構成によれば、Fe,Si,Mnを所定量含有することによって、Al−Fe−Mn系、Al−Fe−Mn−Si系金属間化合物の形成により加工時の潤滑性が向上し、アルミニウム合金板の焼付き等が防止される。また、Si,Mnを所定量含有することによって、それぞれの元素が母相内に固溶し、アルミニウム合金板の強度(耐圧強度)が向上する。そして、Ti,Bを含有する場合に所定量未満に規制することによって、パルスレーザー溶接照射による素材の溶融時に、凝固ビード内に気泡が残留しにくくなり、溶接部におけるイレギュラービードの発生が防止される。さらに、最大長が1μm以上の金属間化合物の面積率を所定に規定することで、加工時の潤滑性が向上し、アルミニウム合金板の焼付き等が防止されると共に、成形時の割れが防止され、最大長が11μm以上の金属間化合物の個数を所定に規定することで、成形割れの起点となる原因が抑制されて、成形時の割れが防止される。   According to such a configuration, by containing a predetermined amount of Fe, Si, and Mn, the lubricity during processing is improved by the formation of Al—Fe—Mn and Al—Fe—Mn—Si intermetallic compounds. Further, seizure of the aluminum alloy plate is prevented. Moreover, by containing a predetermined amount of Si and Mn, each element is dissolved in the matrix phase, and the strength (pressure strength) of the aluminum alloy plate is improved. When Ti and B are contained, by restricting to less than a predetermined amount, bubbles are less likely to remain in the solidified beads when the material is melted by pulsed laser welding irradiation, and irregular beads are prevented from occurring in the weld. Is done. In addition, by prescribing the area ratio of intermetallic compounds with a maximum length of 1 μm or more, lubricity during processing is improved, seizure of the aluminum alloy sheet is prevented, and cracking during molding is also prevented. By prescribing a predetermined number of intermetallic compounds having a maximum length of 11 μm or more, the cause of forming cracks is suppressed, and cracks during molding are prevented.

また、本発明に係るアルミニウム合金板は、さらに、Cu:0.5質量%以下(0質量%を含まない)、Mg:1.0質量%以下(0質量%を含まない)のうち1種以上を含有することを特徴とする。
このような構成によれば、Cu,Mgのうち1種以上を所定量含有することによって、それぞれの元素が母相内に固溶し、アルミニウム合金板の強度(耐圧強度)がさらに向上する。また、Mgを所定量含有することによって、MgがSiと結び付いてMgSiが形成される。
Moreover, the aluminum alloy plate according to the present invention is further one of Cu: 0.5% by mass or less (not including 0% by mass) and Mg: 1.0% by mass or less (not including 0% by mass). It contains the above, It is characterized by the above-mentioned.
According to such a configuration, when a predetermined amount of at least one of Cu and Mg is contained, each element is dissolved in the matrix phase, and the strength (pressure strength) of the aluminum alloy plate is further improved. Further, by containing a predetermined amount of Mg, Mg is combined with Si to form Mg 2 Si.

本発明に係る電池ケースは、前記記載の電池ケース本体用アルミニウム合金板を用いたことを特徴とする。
このような電池ケースは、本発明のアルミニウム合金板を使用して成形加工されたものであるため、焼付きに起因する表面の変色や縦スジ模様がなく、また、強度、耐圧性(耐膨れ性)が向上したものとなる。
A battery case according to the present invention is characterized by using the aluminum alloy plate for a battery case body described above.
Since such a battery case is formed by using the aluminum alloy plate of the present invention, there is no surface discoloration or vertical stripe pattern due to seizure, and the strength, pressure resistance (swelling resistance) Property).

本発明に係る電池ケース本体用アルミニウム合金板によれば、電池ケースに成形される際に優れた成形性(しごき加工性)を有し、角形または丸形の容器を成形加工にて製造する際の焼き付きの発生を防止することができる。また、パルスレーザー溶接性に優れ、パルスレーザー溶接において、イレギュラービードの発生を防止することができると共に優れた耐溶接割れ性を有する。さらに、JISA1000系アルミニウム材を用いたものとしては、優れた強度、耐圧性(耐膨れ性)を有する電池ケースとすることができる。 According to the aluminum alloy plate for a battery case main body according to the present invention, when the battery case is formed into a battery case, it has excellent formability (ironing processability), and when a rectangular or round container is produced by molding. The occurrence of seizure can be prevented. Moreover, it is excellent in pulse laser weldability, can prevent the occurrence of irregular beads in pulse laser welding, and has excellent weld crack resistance. Furthermore, as a battery using a JISA1000 series aluminum material, a battery case having excellent strength and pressure resistance (swelling resistance) can be obtained.

また、本発明に係る電池ケースは、本発明の電池ケース本体用アルミニウム合金板を使用するため、焼付きに起因する表面の変色や縦スジ模様のないものとなる。また、JISA1000系アルミニウム材を用いたものとしては、優れた強度、耐圧性(耐膨れ性)を有する。 Further, the battery case according to the present invention uses the aluminum alloy plate for a battery case main body according to the present invention, and therefore does not have surface discoloration or vertical stripe pattern due to seizure. Moreover, as what uses a JISA1000 type | system | group aluminum material, it has the outstanding intensity | strength and pressure resistance (swelling resistance).

以下、本発明に係る電池ケース用アルミニウム合金板(以下、適宜、アルミニウム合金板という)を実現するための形態について説明する。   Hereinafter, an embodiment for realizing an aluminum alloy plate for a battery case according to the present invention (hereinafter, appropriately referred to as an aluminum alloy plate) will be described.

〔アルミニウム合金板の構成〕
本発明に係るアルミニウム合金板は、Fe,Si,Mnを所定量含有し、Ti,Bを所定量未満に規制し、残部がAlおよび不可避的不純物からなるアルミニウム合金板であり、アルミニウム合金板の断面の板厚方向中心部における所定の金属間化合物の面積率(占有面積率)および個数を所定に規定したものである。また、さらにCu,Mgのうち1種以上を所定量含有してもよい。
以下、各成分の限定理由および金属間化合物の分布の規定理由について説明する。
[Configuration of aluminum alloy plate]
An aluminum alloy plate according to the present invention is an aluminum alloy plate containing a predetermined amount of Fe, Si, Mn, Ti, B being less than a predetermined amount, the balance being Al and inevitable impurities, The area ratio (occupied area ratio) and the number of predetermined intermetallic compounds at the center in the plate thickness direction of the cross section are defined in a predetermined manner. Further, a predetermined amount of one or more of Cu and Mg may be contained.
Hereinafter, the reasons for limiting each component and the reasons for defining the distribution of intermetallic compounds will be described.

(Fe:0.1〜2.0質量%)
Feは、Al、Si、MnらとAl−Fe−Mn系、Al−Fe−Mn−Si系金属間化合物を形成して、微細な前記金属間化合物の数を増やせることにより電池ケースに成形加工する際の潤滑効果に寄与するため、アルミニウム合金板の成形性(耐焼付き性)を向上させる効果がある。Fe含有量が0.1質量%未満では、1μm長さ以上の前記金属間化合物の数が不足するため、前記効果が小さい。一方、Fe含有量が2.0質量%を超えると、11μm以上の粗大な前記金属間化合物の数が増え、成形時の割れの起点となりやすいため、アルミニウム合金板の成形性が低下する。したがって、Fe含有量は、0.1〜2.0質量%とし、好ましくは0.65〜2.0質量%とする。
(Fe: 0.1-2.0% by mass)
Fe is formed into a battery case by forming Al-Si-Mn and Al-Fe-Mn-Si intermetallic compounds with Al, Si, Mn, etc., and increasing the number of fine intermetallic compounds. This contributes to the lubrication effect during the process, and has the effect of improving the formability (seizure resistance) of the aluminum alloy sheet. When the Fe content is less than 0.1% by mass, the number of the intermetallic compounds having a length of 1 μm or more is insufficient, so the effect is small. On the other hand, if the Fe content exceeds 2.0% by mass, the number of coarse intermetallic compounds of 11 μm or more is increased, and the formability of the aluminum alloy plate is deteriorated because it tends to be a starting point of cracking during forming. Therefore, the Fe content is 0.1 to 2.0 mass%, preferably 0.65 to 2.0 mass%.

(Si:0.05〜0.5質量%)
Siは、母相内に固溶して、アルミニウム合金板の強度を高める効果があり、Si含有量増加に伴いその効果が向上し、電池ケースとしたときの耐圧強度を高めることができる。また、Siは、Al、Fe、MnらとAl−Fe−Mn−Si系金属間化合物を形成して、微細な前記金属間化合物の数を増やせることにより、電池ケースに成形加工する際の潤滑効果に寄与するため、アルミニウム合金板の成形性(耐焼付き性)を向上させる。Si含有量が0.05質量%未満では、1μm長さ以上の前記金属間化合物の数が不足するため、前記効果が小さい。一方、Si含有量が0.5質量%を超えると融点が低下するので、パルスレーザー溶接において、溶接割れが生じる。したがって、Si含有量は、0.05〜0.5質量%とし、好ましくは0.1〜0.4質量%とする。
(Si: 0.05-0.5% by mass)
Si dissolves in the matrix and has an effect of increasing the strength of the aluminum alloy plate. The effect is improved as the Si content is increased, and the pressure resistance when the battery case is obtained can be increased. In addition, Si forms an Al—Fe—Mn—Si intermetallic compound with Al, Fe, Mn, etc., and increases the number of fine intermetallic compounds, thereby providing lubrication when forming into a battery case. In order to contribute to the effect, the formability (seizure resistance) of the aluminum alloy plate is improved. When the Si content is less than 0.05% by mass, the number of the intermetallic compounds having a length of 1 μm or more is insufficient, so the effect is small. On the other hand, since melting | fusing point will fall when Si content exceeds 0.5 mass%, a weld crack arises in pulse laser welding. Therefore, the Si content is 0.05 to 0.5% by mass, preferably 0.1 to 0.4% by mass.

(Mn:0.05〜0.5質量%)
Mnは、母相内に固溶して、アルミニウム合金板の強度を高める効果があり、Mn含有量増加に伴いその効果が向上し、電池ケースとしたときの耐圧強度を高めることができる。また、Mnは、Al、Fe、SiらとAl−Fe−Mn系金属間化合物、Al−Fe−Mn−Si系金属間化合物を形成して、微細な前記金属間化合物の数を増やせることにより、電池ケースに成形加工する際の潤滑効果に寄与するため、アルミニウム合金板の成形性(耐焼付き性)を向上させる。Mn含有量が0.05質量%未満では、固溶強化が発揮されず、また、1μm長さ以上の前記金属間化合物の数が不足するため、前記効果が小さい。一方、Mn含有量が0.5質量%を超えると、11μm以上の粗大な前記金属間化合物の数が増え、成形時の割れの起点となりやすいため、アルミニウム合金板の成形性が低下する。したがって、Mn含有量は、0.05〜0.5質量%とし、好ましくは0.1〜0.4質量%とする。
(Mn: 0.05 to 0.5% by mass)
Mn has the effect of increasing the strength of the aluminum alloy plate by dissolving in the matrix, and the effect is improved as the Mn content is increased, and the pressure resistance when the battery case is obtained can be increased. In addition, Mn forms Al-Fe-Mn intermetallic compounds and Al-Fe-Mn-Si intermetallic compounds with Al, Fe, Si, etc., thereby increasing the number of fine intermetallic compounds. In order to contribute to the lubrication effect when the battery case is formed, the formability (seizure resistance) of the aluminum alloy plate is improved. When the Mn content is less than 0.05% by mass, the solid solution strengthening is not exhibited, and the number of the intermetallic compounds having a length of 1 μm or more is insufficient, so the effect is small. On the other hand, if the Mn content exceeds 0.5% by mass, the number of coarse intermetallic compounds of 11 μm or more is increased, and the formability of the aluminum alloy plate is deteriorated because it tends to be a starting point of cracking during forming. Therefore, the Mn content is 0.05 to 0.5% by mass, preferably 0.1 to 0.4% by mass.

(Ti:0.04質量%未満)
Tiは、アルミニウム合金鋳造組織を微細化、均質化(安定化)する効果があり、圧延用スラブの造塊時の鋳造割れ防止を目的に、0.01〜0.1質量%の範囲で常用されている。しかし、添加量が0.1質量%を超えると、それらの効果が飽和するため、鋳造組織微細化や鋳造割れ防止を目的としたそれ以上の添加は不要である。しかし、前記組成のアルミニウム合金の場合、Tiを0.04質量%以上含有すると、パルスレーザー照射による素材の溶融時(660〜750℃)に凝固ビード内にポロシティが残留し易くなる。このため、次のパルスレーザー照射で凝固ビードが再溶融したとき、先に説明したとおり、溶け込みが深く形成され(非定常溶け込み部を形成)、これが凝固して溶接部に異常部(イレギュラービード)が発生する。本発明に係るアルミニウム合金において、Tiは地金(スクラップ含む)中に不可避的不純物として含まれ、または前記効果を目的に中間合金として必要に応じて添加される元素である。いずれにしても、その含有量は0.04質量%未満(0%を含む)に規制する必要がある。
(Ti: less than 0.04% by mass)
Ti has the effect of refining and homogenizing (stabilizing) the aluminum alloy cast structure, and is commonly used in the range of 0.01 to 0.1% by mass for the purpose of preventing casting cracks during ingot formation of rolling slabs. Has been. However, if the addition amount exceeds 0.1% by mass, these effects are saturated, so that further addition for the purpose of refinement of the cast structure and prevention of casting cracks is unnecessary. However, in the case of the aluminum alloy having the above composition, when Ti is contained in an amount of 0.04% by mass or more, porosity tends to remain in the solidified beads when the material is melted by pulse laser irradiation (660 to 750 ° C.). For this reason, when the solidified bead is remelted by the next pulse laser irradiation, as described above, the penetration is deeply formed (forms an unsteady penetration portion), which solidifies and becomes an abnormal portion (irregular bead) in the welded portion. ) Occurs. In the aluminum alloy according to the present invention, Ti is an element contained as an inevitable impurity in the metal (including scrap) or added as necessary as an intermediate alloy for the purpose of the above effect. In any case, the content needs to be regulated to less than 0.04% by mass (including 0%).

(B:10質量ppm未満)
Bは、前記のようにアルミニウム合金のスラブ造塊時の鋳造割れ防止を目的に、Ti−B母合金としてTiと共に、積極添加にて常用されている元素である。しかしながら、前記組成のアルミニウム合金の場合、B含有量が10質量ppm以上では、前記のTiと同様に、パルスレーザー照射部の凝固ビード内にポロシティが残留し易くなり、次のパルスレーザー照射で凝固ビードが再溶解したとき溶け込みが深く形成され、これが凝固して異常部(イレギュラービード)が発生する。本発明に係るアルミニウム合金において、Bは地金(スクラップ含む)中に不可避的不純物として含まれ、または前記効果を目的に中間合金として必要に応じて添加される元素である。いずれにしても、その含有量は10質量ppm未満(0ppmを含む)に規制する必要がある。好ましくは9質量ppm以下、更に好ましくは4ppm未満である。
(B: less than 10 mass ppm)
B is an element commonly used as a Ti-B master alloy together with Ti for positive addition for the purpose of preventing casting cracks during slab ingot formation of an aluminum alloy as described above. However, in the case of the aluminum alloy having the above composition, when the B content is 10 mass ppm or more, the porosity is likely to remain in the solidified beads of the pulse laser irradiated portion, as in the case of Ti, and solidified by the next pulse laser irradiation. When the bead is re-dissolved, a deep penetration is formed, which solidifies and an abnormal part (irregular bead) occurs. In the aluminum alloy according to the present invention, B is an element contained as an inevitable impurity in the metal (including scrap) or added as necessary as an intermediate alloy for the purpose of the above effect. In any case, the content needs to be regulated to less than 10 mass ppm (including 0 ppm). Preferably it is 9 mass ppm or less, More preferably, it is less than 4 ppm.

(Cu:0.5質量%以下)
Cuは、母相内に固溶して、アルミニウム合金板の強度を高める効果があり、Cu含有量増加に伴いその効果が向上し、電池ケースとしたときの耐圧強度を高めることができる。しかし、Cu含有量が0.5質量%を超えると融点が低下するので、パルスレーザー溶接において、溶接割れが生じる。したがって、Cuを添加する場合は、Cu含有量は、0.5質量%以下とする。なお、前記の効果をより発揮させるため、0.1質量%以上添加することが好ましい。
(Cu: 0.5% by mass or less)
Cu has the effect of increasing the strength of the aluminum alloy plate by being dissolved in the matrix, and the effect is improved as the Cu content is increased, and the pressure resistance when the battery case is obtained can be increased. However, if the Cu content exceeds 0.5% by mass, the melting point decreases, so that weld cracking occurs in pulse laser welding. Therefore, when adding Cu, Cu content shall be 0.5 mass% or less. In addition, in order to exhibit the said effect more, it is preferable to add 0.1 mass% or more.

(Mg:1.0質量%以下)
Mgは、母相内に固溶して、アルミニウム合金板の強度を高める効果があり、Mg含有量増加に伴いその効果が向上し、電池ケースとしたときの耐圧強度を高めることができる。また、Mgは、Siと結び付いてMgSiを形成もする。しかし、Mg含有量が1.0質量%を超えると、アルミニウム合金板の加工硬化性が高くなって成形性が低下する。また、融点が低下するため、パルスレーザー溶接において、溶接割れが生じると共に、Mg原子が突発的に蒸気化飛散する割合が増加して溶接異常部が発生する。したがって、Mgを添加する場合は、Mg含有量は、1.0質量%以下とする。なお、前記の効果をより発揮させるため、0.02質量%以上添加することが好ましい。
(Mg: 1.0% by mass or less)
Mg has the effect of increasing the strength of the aluminum alloy plate by being dissolved in the matrix, and the effect is improved as the Mg content is increased, and the pressure strength when the battery case is obtained can be increased. Mg is also combined with Si to form Mg 2 Si. However, if the Mg content exceeds 1.0% by mass, the work hardenability of the aluminum alloy plate is increased and the formability is lowered. Moreover, since melting | fusing point falls, in a pulse laser welding, while a weld crack arises, the ratio that Mg atom bursts suddenly and vaporizes increases, and a welding abnormal part generate | occur | produces. Therefore, when adding Mg, Mg content shall be 1.0 mass% or less. In addition, in order to exhibit the said effect more, it is preferable to add 0.02 mass% or more.

ここで、Mg原子やZn原子は蒸気圧が高いため、突発的に蒸気化飛散する割合が増加して、同時に溶融したアルミも飛散してビードの周辺に粒状や塊状に付着したり、ビード形状がくずれたりする溶接異常部が発生することが多い。イレギュラービードはビード形状が大きく、貫通するなどの場合もある異常であるが、溶接異常部とはビード周辺部にアルミが飛散して付着する異常部(ビードの一部分がくずれた形状となる場合もある)である。   Here, since the vapor pressure of Mg atoms and Zn atoms is high, the rate of sudden vaporization and scattering increases, and at the same time, molten aluminum also scatters and adheres to the periphery of the bead in the form of particles or lumps. There are many cases where abnormal welds occur, such as cracks. Irregular beads are abnormal in that the bead shape is large and sometimes penetrates, but the abnormally welded part is an abnormal part where aluminum is scattered and adhered to the periphery of the bead (when the part of the bead is deformed) There is also.

(残部:Alおよび不可避的不純物)
アルミニウム合金板の成分は前記の他、残部がAlおよび不可避的不純物からなるものである。なお、不可避的不純物として、例えば、地金や中間合金に含まれている、通常知られている範囲内のZn、Ga、V、Ni等は、本発明の効果を妨げるものではないため、このような不可避的不純物の含有は許容される。
(Balance: Al and inevitable impurities)
In addition to the above components, the aluminum alloy plate is composed of Al and inevitable impurities. In addition, as an unavoidable impurity, for example, Zn, Ga, V, Ni, etc. within a normally known range contained in a metal or an intermediate alloy does not hinder the effect of the present invention. Such inevitable impurities are allowed to be contained.

(最大長が1μm以上の金属間化合物の面積率:0.3〜3.5%)
アルミニウム合金板の断面の板厚方向中心部における最大長が1μm以上の金属間化合物の面積率を、0.3〜3.5%とする。なお、断面の板厚方向中心部とは、具体的には、板厚方向中心を中心とした板厚の18〜50%における領域を指す。
(Area ratio of intermetallic compounds having a maximum length of 1 μm or more: 0.3 to 3.5%)
The area ratio of the intermetallic compound having a maximum length of 1 μm or more in the central portion in the thickness direction of the cross section of the aluminum alloy plate is set to 0.3 to 3.5%. In addition, the thickness direction center part of a cross section specifically refers to the area | region in 18 to 50% of plate thickness centering on a plate thickness direction center.

面積率が0.3%未満では、しごき加工時において、ポンチやダイスに凝固したアルミニウム母地を除去する潤滑効果が不足して、アルミニウム合金板に焼付き等が発生するため、アルミニウム合金板の成形性が低下する。一方、面積率が3.5%を超えると、粗大な金属間化合物が多く、成形割れの起点になりやすいため、アルミニウム合金板の成形性が低下する。
なお、前記範囲内において、1μm未満の化合物が含まれていても、これらの面積率については成形性に影響を与えるものではなく、前記範囲内にこれらの金属間化合物が含まれていてもよい。また、最大長の上限については、定めはなく、面積率には、最大長が11μm以上の金属間化合物も含まれている。
If the area ratio is less than 0.3%, during the ironing process, the lubricating effect of removing the aluminum matrix solidified in the punch or die is insufficient, and seizure or the like occurs in the aluminum alloy plate. Formability is reduced. On the other hand, if the area ratio exceeds 3.5%, there are many coarse intermetallic compounds, which are likely to become the starting point of forming cracks, so the formability of the aluminum alloy plate is lowered.
In addition, even if the compound of less than 1 micrometer is contained in the said range, these area ratios do not affect a moldability, These intermetallic compounds may be contained in the said range. . The upper limit of the maximum length is not specified, and the area ratio includes an intermetallic compound having a maximum length of 11 μm or more.

(最大長が11μm以上の金属間化合物の個数:140個/mm2以下)
アルミニウム合金板の断面の板厚方向中心部における最大長が11μm以上の金属間化合物の個数を、140個/mm2以下とする。
個数が140個/mm2を超えると、粗大な前記金属間化合物の数が多く、成形時の割れの起点となりやすいため、アルミニウム合金板の成形性が低下する。
なお、前記範囲内において、11μm未満の化合物が含まれていても、これらの個数については、成形性に影響を与えるものではなく、前記範囲内にこれらの金属間化合物が含まれていてもよい。また、最大長の上限については、定めはなく、個数については、0であってもよい。
そして、これら金属間化合物の分布は、前記Fe,Si,Mn,Cu,Mgの各含有量により制御する。また、後記するように、アルミニウム鋳塊を鋳造する鋳造条件範囲を適正化することや、均質化熱処理工程の後に、圧延用スラブを常温まで冷却し、その後、再加熱することによって、金属間化合物の面積率を増やすことができる。
(Number of intermetallic compounds with a maximum length of 11 μm or more: 140 pieces / mm 2 or less)
The number of intermetallic compounds having a maximum length of 11 μm or more at the central portion in the thickness direction of the cross section of the aluminum alloy plate is 140 pieces / mm 2 or less.
When the number exceeds 140 pieces / mm 2 , the number of coarse intermetallic compounds is large and tends to be a starting point of cracking during forming, so that the formability of the aluminum alloy plate is lowered.
In addition, even if the compound of less than 11 micrometers is contained in the said range, these numbers do not affect moldability and these intermetallic compounds may be contained in the said range. . The upper limit of the maximum length is not defined, and the number may be zero.
The distribution of these intermetallic compounds is controlled by the contents of Fe, Si, Mn, Cu and Mg. In addition, as described later, by optimizing the casting condition range for casting the aluminum ingot, and after the homogenization heat treatment step, the rolling slab is cooled to room temperature and then reheated, thereby intermetallic compounds. The area ratio can be increased.

金属間化合物の検出手段には、走査型電子顕微鏡(SEM)の適用が一例として挙げられる。最大長が1μm以上の金属間化合物はSEMの組成(COMPO)像において母相とのコントラストで識別でき、Al−Mn−Fe系、Al−Fe−Mn−Si系金属間化合物はAl母相より白く写り、Mg−Si系金属間化合物はAl母相より黒く写る。アルミニウム合金板の断面の板厚方向中心部における金属間化合物においては、アルミニウム合金板を切り出して、圧延方向と板厚方向を含む切断面を研磨して鏡面に仕上げて観察面とし、アルミニウム合金板の板厚方向中心を中心とした板厚の18〜50%における領域を観察する。この領域から好ましくは複数の視野を合計1mm以上観察、撮影し、画像処理装置等を用いて指定サイズの金属間化合物についての面積率および個数密度を測定する。 Application of a scanning electron microscope (SEM) is an example of the intermetallic compound detection means. Intermetallic compounds with a maximum length of 1 μm or more can be identified by contrast with the parent phase in the SEM composition (COMPO) image. Al—Mn—Fe and Al—Fe—Mn—Si intermetallic compounds are more It appears white, and the Mg—Si intermetallic compound appears blacker than the Al matrix. In the case of an intermetallic compound at the central portion in the plate thickness direction of the cross section of the aluminum alloy plate, the aluminum alloy plate is cut out, the cut surface including the rolling direction and the plate thickness direction is polished into a mirror surface, and used as an observation surface. A region at 18 to 50% of the plate thickness around the center in the plate thickness direction is observed. Preferably, a plurality of fields of view are observed and photographed in a total area of 1 mm 2 or more from this region, and the area ratio and number density of the intermetallic compound of a specified size are measured using an image processing apparatus or the like.

〔アルミニウム合金板の製造方法〕
次に、本発明に係るアルミニウム合金板の製造方法の一例について説明する。
まず、前記組成を有するアルミニウム合金を溶解、鋳造して鋳塊を作製し、この鋳塊に面削を施した後に、480℃以上かつ前記アルミニウム合金の融点未満の温度で均質化熱処理を施す。次に、この均質化熱処理された鋳塊を、熱間圧延および冷間圧延して圧延板を作製する。そして、この圧延板を、300〜400℃の温度範囲内で焼鈍を施すことでアルミニウム合金板を製造する。
[Method for producing aluminum alloy sheet]
Next, an example of the manufacturing method of the aluminum alloy plate according to the present invention will be described.
First, an aluminum alloy having the above composition is melted and cast to produce an ingot, and the ingot is chamfered, and then subjected to a homogenization heat treatment at a temperature of 480 ° C. or higher and lower than the melting point of the aluminum alloy. Next, the homogenized heat-treated ingot is hot-rolled and cold-rolled to produce a rolled plate. And an aluminum alloy plate is manufactured by annealing this rolled sheet within the temperature range of 300-400 degreeC.

さらに、前記本発明に係るアルミニウム合金板の製造方法の内、アルミニウム鋳塊を鋳造する鋳造条件範囲を適正化することによって、金属間化合物の面積率を増やすことが好ましく、これにより加工性が優れたものとなる。その場合の鋳造条件は、鋳造速度は60mm/min以下、鋳込み温度は710℃以下の鋳造条件で行うことが好ましい。なお、鋳込み温度は690℃以上で行うことにより、鋳造時にトラブルが発生することも防止できる。さらに、前記本発明に係るアルミニウム合金板の製造方法の内、均質化熱処理工程の後に、圧延用スラブを常温まで冷却し、その後、再加熱することによっても、金属間化合物の面積率を増やして適正化することができ、これにより加工性が優れたものとなる。その場合の鋳塊の再加熱条件は、昇温速度:1〜40℃/hr、到達温度:400〜510℃、保持時間:2時間以上の再加熱処理を行った後に、熱間圧延を行えばよい。   Furthermore, in the method for producing an aluminum alloy plate according to the present invention, it is preferable to increase the area ratio of the intermetallic compound by optimizing the casting condition range for casting the aluminum ingot, thereby improving the workability. It will be. The casting conditions in that case are preferably performed under the casting conditions of a casting speed of 60 mm / min or less and a casting temperature of 710 ° C. or less. In addition, it can prevent that a trouble generate | occur | produces at the time of casting by performing casting temperature at 690 degreeC or more. Furthermore, in the method for producing an aluminum alloy plate according to the present invention, after the homogenization heat treatment step, the rolling slab is cooled to room temperature and then reheated to increase the area ratio of the intermetallic compound. It can be optimized, and this makes the workability excellent. The reheating conditions of the ingot in that case are as follows: temperature increase rate: 1 to 40 ° C./hr, ultimate temperature: 400 to 510 ° C., holding time: 2 hours or more, followed by hot rolling. Just do it.

〔電池ケース〕
次に、本発明に係る電池ケースについて説明する。本発明に係る電池ケースは、前記アルミニウム合金板を用いて作製したものである。
以下、本発明に係るアルミニウム合金板から電池ケースおよび二次電池を作製する方法の一例を説明する。
[Battery case]
Next, the battery case according to the present invention will be described. The battery case according to the present invention is manufactured using the aluminum alloy plate.
Hereinafter, an example of a method for producing a battery case and a secondary battery from the aluminum alloy plate according to the present invention will be described.

<電池ケースおよび二次電池の作製方法>
ケース本体部とする本発明に係るアルミニウム合金板は、最終冷間圧延にて0.5〜1.5mm程度の板厚とする。このアルミニウム合金板を、所定の形状に切断し、絞り加工またはしごき加工により有底筒形状に成形する。さらにこの加工を複数回繰り返して徐々に側壁面を高くして、トリミング等の加工を必要に応じて施すことで、所定の底面形状および側壁高さに成形してケース本体部とする。電池ケースの形状は特に限定されるものではなく、円筒形、偏平形の直方体等、二次電池の仕様に従い、ケース本体部は上面が開放された有底筒形状とする。
<Production method of battery case and secondary battery>
The aluminum alloy plate according to the present invention used as the case main body has a thickness of about 0.5 to 1.5 mm by final cold rolling. The aluminum alloy plate is cut into a predetermined shape and formed into a bottomed cylindrical shape by drawing or ironing. Further, this processing is repeated a plurality of times to gradually increase the side wall surface, and perform trimming and other processing as required to form a case main body portion with a predetermined bottom shape and side wall height. The shape of the battery case is not particularly limited, and the case body has a bottomed cylindrical shape with an open upper surface according to the specifications of the secondary battery, such as a cylindrical or flat rectangular parallelepiped.

また、ケース本体部と同じアルミニウム合金で、1.0〜2.5mm程度の板厚とした本発明に係るアルミニウム合金板で蓋部を作製する。このアルミニウム合金板をケース本体部の上面に対応した形状に切断し、注入口等を形成して蓋部とする。前記ケース本体部に二次電池材料(正極材料、負極材料、セパレータ等)を格納し、上面に前記蓋部を溶接する。ケース本体部と蓋部との溶接は、波形制御されたパルスレーザーによる溶接が一般的である。そして、電池ケースに注入口から電解液を注入して、注入口を封止して二次電池とする。   Moreover, a cover part is produced with the aluminum alloy plate which concerns on this invention made into the plate | board thickness of about 1.0-2.5 mm with the same aluminum alloy as a case main-body part. The aluminum alloy plate is cut into a shape corresponding to the upper surface of the case body, and an injection port or the like is formed to form a lid. A secondary battery material (positive electrode material, negative electrode material, separator, etc.) is stored in the case body, and the lid is welded to the upper surface. The welding between the case main body and the lid is generally welding using a pulsed laser whose waveform is controlled. And electrolyte solution is inject | poured into a battery case from an injection hole, an injection inlet is sealed, and it is set as a secondary battery.

本発明の電池ケース用アルミニウム合金板は、例えば自動車用の電池ケースとして用いる場合、ある程度厚い板厚(例えば0.5mm以上)のものが用いられる。前記電池ケース用アルミニウム合金板は、溶け込み深さが0.25mmを超える深さの場合でも、パルスレーザー溶接におけるイレギュラービードの発生を防止することができる。そして前記したように、電池ケースはケース本体と蓋材からなり、両者はパルスレーザー溶接される。前記電池ケース用アルミニウム合金板は、電池ケースのケース本体および蓋材として用いられる。ただし、蓋材としては、JISA1050アルミニウム合金やJISA3003アルミニウム合金等の他のアルミニウム合金に代えることもできる。   When the aluminum alloy plate for a battery case of the present invention is used as, for example, a battery case for an automobile, a plate having a certain thickness (for example, 0.5 mm or more) is used. The aluminum alloy plate for battery case can prevent the occurrence of irregular beads in pulsed laser welding even when the penetration depth exceeds 0.25 mm. As described above, the battery case is composed of the case main body and the lid member, and both are pulse laser welded. The said aluminum alloy plate for battery cases is used as a case main body and cover material of a battery case. However, as a cover material, it can replace with other aluminum alloys, such as a JISA1050 aluminum alloy and a JISA3003 aluminum alloy.

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。   As mentioned above, although the form for implementing this invention has been described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. In addition, this invention is not limited to this Example.

〔供試材作製〕
表1に示す組成のアルミニウム合金を、溶解、鋳造(鋳込み温度:700℃、鋳造速度:50mm/min)して鋳塊とし、この鋳塊に面削を施した後に、所定温度にて4時間の均質化熱処理を施した。この均質化した鋳塊に、熱間圧延、さらに冷間圧延を施して、板厚1.0mm程度の圧延板とした。そして、この圧延板を360℃に加熱して焼鈍を行い、アルミニウム合金板を作製した。
成分組成を表1に示す。なお、表中、本発明の範囲を満たさないものは、数値等に下線を引いて示し、成分を含有しないものは、「−」で示す。また、Bが「−」の材料の微細化剤は、Al−Ti微細化剤を使用し、No.23、24、40は、Al−Ti−B微細化剤を使用した。No.39のBは不可避的不純物として含有するものである。
[Sample preparation]
An aluminum alloy having the composition shown in Table 1 is melted and cast (casting temperature: 700 ° C., casting speed: 50 mm / min) to form an ingot, and the ingot is chamfered, and then at a predetermined temperature for 4 hours. The homogenized heat treatment was performed. The homogenized ingot was subjected to hot rolling and further cold rolling to obtain a rolled plate having a thickness of about 1.0 mm. Then, the rolled plate was heated to 360 ° C. and annealed to produce an aluminum alloy plate.
The component composition is shown in Table 1. In the table, those not satisfying the scope of the present invention are indicated by underlining numerical values and the like, and those not containing a component are indicated by “−”. In addition, as a refiner for the material having B as “−”, an Al—Ti refiner is used. 23, 24 and 40 used Al-Ti-B finer. No. B in 39 is contained as an inevitable impurity.

Figure 0005726554
Figure 0005726554

〔金属間化合物の分布〕
次に、金属間化合物の分布を以下の方法により測定した。
まず、アルミニウム合金板を切り出して樹脂埋めし、圧延方向と板厚方向を含む面を観察面となるように研磨して鏡面とし、この鏡面化された面を走査型電子顕微鏡(SEM)にて、加速電圧20KV,倍率500倍の組成(COMPO)像で20視野(合計1mm)観察した。観察視野は、板厚方向中心を中心として板厚方向に、厚み方向の両側(上方向および下方向)を合わせて、0.19mmの範囲内とした。母相より白く写る部分をAl−Mn−Fe系金属間化合物またはAl−Fe−Mn−Si系金属間化合物と見なし、母相より黒く写る部分をMg−Si系金属間化合物と見なして、画像処理により最大長が1μm以上の金属間化合物の面積の合計を求め、面積率を算出した。また、最大長が11μm以上の金属間化合物の個数をカウントし、単位面積当たりの個数(個数密度)を算出した。アルミニウム合金板の断面の板厚中心部における金属間化合物の面積率および個数密度を表2に示す。
[Distribution of intermetallic compounds]
Next, the distribution of intermetallic compounds was measured by the following method.
First, an aluminum alloy plate is cut out and filled with resin, and the surface including the rolling direction and the plate thickness direction is polished to be a mirror surface to be a mirror surface, and this mirror-finished surface is scanned with a scanning electron microscope (SEM) Then, 20 fields of view (total 1 mm 2 ) were observed with a composition (COMPO) image at an acceleration voltage of 20 KV and a magnification of 500 times. The observation field of view was within a range of 0.19 mm, with both sides (upward and downward) in the thickness direction being centered on the center in the thickness direction and both sides in the thickness direction (upward and downward). A portion that appears whiter than the parent phase is regarded as an Al-Mn-Fe intermetallic compound or an Al-Fe-Mn-Si intermetallic compound, and a portion that appears blacker than the parent phase is regarded as an Mg-Si intermetallic compound. The total area of intermetallic compounds having a maximum length of 1 μm or more was determined by the treatment, and the area ratio was calculated. In addition, the number of intermetallic compounds having a maximum length of 11 μm or more was counted, and the number per unit area (number density) was calculated. Table 2 shows the area ratio and number density of the intermetallic compound at the center of the thickness of the cross section of the aluminum alloy plate.

〔評価〕
得られたアルミニウム合金板にて以下の評価を行い、結果を表2に示す。なお、表中、金属間化合物の分布が本発明の範囲を満たさないものは、数値に下線を引いて示す。
(強度)
アルミニウム合金板から、引張方向が圧延方向と平行になるようにJIS5号による引張試験片を切り出した。この試験片で、JISZ2241による引張試験を実施し、引張強さ、耐力(0.2%耐力)、および伸びを測定した。
[Evaluation]
The following evaluation was performed on the obtained aluminum alloy plate, and the results are shown in Table 2. In the table, those whose distribution of intermetallic compounds does not satisfy the scope of the present invention are indicated by underlining the numerical values.
(Strength)
A tensile test piece according to JIS No. 5 was cut out from the aluminum alloy plate so that the tensile direction was parallel to the rolling direction. A tensile test according to JISZ2241 was performed on this test piece, and tensile strength, yield strength (0.2% yield strength), and elongation were measured.

(成形性)
アルミニウム合金板から、プレス加工機を使用して、側壁のしごき加工率を20%として、底面が縦15mm×横120mm、側壁の高さ90mmの箱体の角型電池ケース本体を成形した。この際、割れがなく成形可能であり、成形後に焼付きに起因する表面の変色や縦スジ模様のないものを成形性が優れているとして「◎」、割れがなく成形可能であり、わずかに変色や縦スジが発生したものを成形性が良好であるとして「○」、成形時に割れが発生したもの、または著しい変色や縦スジが発生したものを成形性が不良であるとして「×」と評価した。
(Formability)
A box-shaped rectangular battery case body having a bottom surface of 15 mm × width of 120 mm and a side wall height of 90 mm was molded from an aluminum alloy plate using a press machine with a side wall ironing rate of 20%. At this time, it is possible to mold without cracking, and after molding, the surface without discoloration or vertical streak pattern caused by seizure is excellent as the moldability is `` ◎ '', it can be molded without cracking, slightly “○” indicates discoloration and vertical streaks as good moldability, “×” indicates that cracks occurred during molding, or remarkably discoloration and vertical streaks indicate poor moldability. evaluated.

(パルスレーザー溶接性(耐溶接割れ性および耐イレギュラービード))
板厚1.0mmのアルミニウム合金板の表面上にレーザー照射を移動させ、連続的に溶融させる、いわゆるビードオンプレート溶接を行った。1個のパルスレーザーにより溶融池が形成されて固化した円状の溶接部がレーザーの移動により、連続的に溶接線に沿って重なり合いながら形成される。溶接機は、パルス発振のYAGレーザーを使用し、ピーク出力4000w、溶接速度10mm/秒にて行った。
(Pulse laser weldability (weld crack resistance and irregular bead resistance))
Laser irradiation was moved onto the surface of an aluminum alloy plate having a plate thickness of 1.0 mm, and so-called bead-on-plate welding was performed in which melting was continuously performed. A circular weld is formed by forming a molten pool with one pulse laser and solidifying it, and is continuously overlapped along the weld line by the movement of the laser. The welding machine used a pulse oscillation YAG laser, and the peak output was 4000 w and the welding speed was 10 mm / second.

評価については、溶接割れの有無を肉眼および光学顕微鏡にて観察し、割れの無い健全なビードが得られたものを「○」、割れが生じたものを「×」と判定した。また、イレギュラービード発生個数(ビード長さ90mm当たり)を光学顕微鏡にて観察し、イレギュラービードが発生しなかった場合を、ビード形状が良好であるとして「○」、イレギュラービードが1個でも発生した場合を、ビード形状が不良であるとして「×」と評価した。そして、耐溶接割れ性および耐イレギュラービードの両方が「○」のものをパルスレーザー溶接性が良好であるとして総合「○」、いずれか一方あるいは両方が「×」のものをパルスレーザー溶接性が不良であるとして総合「×」と評価した。   Regarding the evaluation, the presence or absence of weld cracking was observed with the naked eye and an optical microscope, and “◯” was determined when a healthy bead without cracking was obtained, and “X” was determined when cracking occurred. Also, the number of irregular beads generated (per bead length of 90 mm) was observed with an optical microscope. If no irregular beads were generated, “○” indicates that the bead shape was good, and one irregular bead. However, when it occurred, it was evaluated as “x” because the bead shape was defective. If the weld crack resistance and irregular bead resistance are both “◯”, the pulse laser weldability is good as “good”, and one or both are “×” as pulse laser weldability. As a result, it was evaluated as an overall “x”.

Figure 0005726554
Figure 0005726554

表2に示すように、実施例あるいは参考例であるNo.1〜24は、本発明の範囲を満たすため、あるいは参考例のため、成形性、パルスレーザー溶接性のいずれにおいても優れていた。 As shown in Table 2, No. 1 as an example or reference example . Nos. 1 to 24 were excellent in both formability and pulse laser weldability in order to satisfy the scope of the present invention or for reference examples .

一方、比較例であるNo.25〜40は、本発明の範囲を満たさないため、以下の結果となった。
No.25は、Fe含有量が下限値未満のため、金属間化合物が不足して、成形性に劣った。No.26は、Fe含有量が上限値を超えるため、金属間化合物が多発かつ粗大化して、成形性に劣った。
On the other hand, No. which is a comparative example. Since 25-40 did not satisfy the scope of the present invention, the following results were obtained.
No. No. 25 was inferior in moldability because the Fe content was less than the lower limit, resulting in a shortage of intermetallic compounds. No. In No. 26, since the Fe content exceeded the upper limit, the intermetallic compound was frequently and coarsened, and the moldability was poor.

No.27は、Si含有量が下限値未満のため、金属間化合物が不足して、成形性に劣った。No.28は、Si含有量が上限値を超えるため、ビードに割れが生じ、パルスレーザー溶接性に劣った。No.29は、Cu含有量が上限値を超えるため、ビードに割れが生じ、パルスレーザー溶接性に劣った。No.30は、Mn含有量が下限値未満のため、金属間化合物が不足して、成形性に劣った。   No. In No. 27, since the Si content was less than the lower limit, the intermetallic compound was insufficient and the formability was poor. No. In No. 28, since the Si content exceeded the upper limit value, cracking occurred in the bead and the pulse laser weldability was poor. No. In No. 29, since the Cu content exceeded the upper limit value, cracking occurred in the bead and the pulse laser weldability was poor. No. In No. 30, since the Mn content was less than the lower limit, the intermetallic compound was insufficient and the formability was poor.

No.31は、Mn含有量が上限値を超えるため、金属間化合物が多発かつ粗大化して、成形性に劣った。No.32は、Mg含有量が上限値を超えるため、ビードに割れが生じ、パルスレーザー溶接性に劣った。また、成形性に劣った。No.33は、Mn含有量、Mg含有量が上限値を超えるため、金属間化合物が多発かつ粗大化したこと等により、成形性に劣り、またビードに割れが生じ、パルスレーザー溶接性に劣った。No.34は、Ti含有量が上限値を超えるため、イレギュラービードが発生し、パルスレーザー溶接性に劣った。   No. In No. 31, since the Mn content exceeded the upper limit, the intermetallic compound was frequently and coarsened, and the formability was poor. No. No. 32 was inferior in pulse laser weldability because the Mg content exceeded the upper limit, causing cracks in the beads. Moreover, it was inferior to the moldability. No. In No. 33, since the Mn content and the Mg content exceeded the upper limit values, the intermetallic compound was frequently and coarsened, resulting in poor formability, cracks in the beads, and poor pulse laser weldability. No. In No. 34, since the Ti content exceeded the upper limit, irregular beads were generated and the pulse laser weldability was poor.

No.35は、Fe含有量が上限値を超えるため、金属間化合物が多発かつ粗大化して、成形性に劣った。No.36、37は、Si含有量が上限値を超えるため、ビードに割れが生じ、パルスレーザー溶接性に劣った。No.38、39は、Mnを含有していないため、金属間化合物が不足して、成形性に劣った。No.40は、B含有量が上限値を超えるため、イレギュラービードが発生し、パルスレーザー溶接性に劣った。   No. In No. 35, since the Fe content exceeded the upper limit, the intermetallic compound was frequently and coarsened, and the moldability was poor. No. In Nos. 36 and 37, since the Si content exceeded the upper limit, the beads were cracked, and the pulse laser weldability was poor. No. Since 38 and 39 did not contain Mn, the intermetallic compound was insufficient and the moldability was inferior. No. In No. 40, since the B content exceeded the upper limit value, irregular beads were generated and the pulse laser weldability was poor.

なお、No.38、39のアルミニウム合金板は、それぞれ特許文献2、特許文献3に記載された従来のアルミニウム合金板を想定したものである。本実施例で示すように、これら従来のアルミニウム合金板は、前記の評価において一定の水準を満たさないものである。従って、本実施例によって、本発明に係るアルミニウム合金板が従来のアルミニウム合金板と比較して、優れていることが客観的に明らかとなった。   In addition, No. The aluminum alloy plates 38 and 39 are assumed to be the conventional aluminum alloy plates described in Patent Document 2 and Patent Document 3, respectively. As shown in the present embodiment, these conventional aluminum alloy plates do not satisfy a certain level in the above evaluation. Therefore, this example objectively revealed that the aluminum alloy plate according to the present invention is superior to the conventional aluminum alloy plate.

以上、本発明に係る電池ケース用アルミニウム合金板および電池ケースについて実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて改変・変更等することができることはいうまでもない。   As described above, the aluminum alloy plate for a battery case and the battery case according to the present invention have been described in detail with reference to the embodiments and examples, but the gist of the present invention is not limited to the above-described contents, It should be interpreted based on the description of the claims. Needless to say, the contents of the present invention can be modified and changed based on the above description.

Claims (3)

Fe:0.1〜0.8質量%、Si:0.05〜0.5質量%、Mn:0.05〜0.5質量%(但し、0.5質量%を除く)を含有し、Ti:0.04質量%未満、B:3質量ppm以上10質量ppm未満に規制し、残部がAlおよび不可避的不純物からなる電池ケース本体用アルミニウム合金板において、
前記電池ケース本体用アルミニウム合金板の耐力が56MPa以下であり、
前記電池ケース本体用アルミニウム合金板の断面の板厚方向中心部において、最大長が1μm以上の金属間化合物の面積率が0.3〜3.5%であり、かつ最大長が11μm以上の金属間化合物の個数が140個/mm以下であることを特徴とする電池ケース本体用アルミニウム合金板。
Fe: 0.1 to 0.8 mass%, Si: 0.05 to 0.5 mass%, Mn: 0.05 to 0.5 mass% (excluding 0.5 mass%) , Ti: less than 0.04 mass%, B: 3 mass ppm or more and less than 10 mass ppm, the balance is aluminum alloy plate for battery case body consisting of Al and inevitable impurities,
The proof stress of the aluminum alloy plate for the battery case body is 56 MPa or less,
Metal having an area ratio of an intermetallic compound having a maximum length of 1 μm or more at a central portion in the thickness direction of a cross section of the aluminum alloy plate for the battery case body of 0.3 to 3.5% and a maximum length of 11 μm or more. An aluminum alloy plate for a battery case body , wherein the number of intermetallic compounds is 140 / mm 2 or less.
さらに、Cu:0.5質量%以下(0質量%を含まない)、Mg:1.0質量%以下(0質量%を含まない)のうち1種以上を含有することを特徴とする請求項1に記載の電池ケース本体用アルミニウム合金板。 Furthermore, Cu: 0.5% by mass or less (not including 0% by mass) , Mg: 1.0% by mass or less (not including 0% by mass) , one or more kinds are contained. The aluminum alloy plate for battery case main bodies according to 1. 請求項1または請求項2に記載の電池ケース本体用アルミニウム合金板を用いたことを特徴とする電池ケース。 A battery case using the aluminum alloy plate for a battery case body according to claim 1.
JP2011019609A 2011-02-01 2011-02-01 Aluminum alloy plate for battery case body and battery case Active JP5726554B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011019609A JP5726554B2 (en) 2011-02-01 2011-02-01 Aluminum alloy plate for battery case body and battery case
KR1020120009706A KR101321666B1 (en) 2011-02-01 2012-01-31 Alluminum alloy plate for battery case and battery case
CN201210025138.8A CN102628129B (en) 2011-02-01 2012-02-01 Aluminium alloy plate used for battery housing and battery housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011019609A JP5726554B2 (en) 2011-02-01 2011-02-01 Aluminum alloy plate for battery case body and battery case

Publications (2)

Publication Number Publication Date
JP2012158809A JP2012158809A (en) 2012-08-23
JP5726554B2 true JP5726554B2 (en) 2015-06-03

Family

ID=46839580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011019609A Active JP5726554B2 (en) 2011-02-01 2011-02-01 Aluminum alloy plate for battery case body and battery case

Country Status (1)

Country Link
JP (1) JP5726554B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158810A (en) * 2011-02-01 2012-08-23 Kobe Steel Ltd Aluminum alloy sheet for battery case, and battery case
JP6148923B2 (en) * 2013-07-24 2017-06-14 株式会社Uacj Aluminum alloy bus bar

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244252B2 (en) * 1999-02-22 2009-03-25 古河スカイ株式会社 A method for producing an aluminum alloy case material for a sealed prismatic battery excellent in formability and creep resistance, a sealed prismatic battery case and a sealed prismatic battery.
JP4053181B2 (en) * 1999-05-27 2008-02-27 古河スカイ株式会社 Aluminum alloy case material for sealed prismatic battery and method of manufacturing aluminum alloy case for sealed prismatic battery
JP4936357B2 (en) * 2006-03-30 2012-05-23 住友軽金属工業株式会社 Aluminum alloy plate for battery case lid with excellent laser weldability
JP5019374B2 (en) * 2007-08-29 2012-09-05 住友軽金属工業株式会社 Aluminum alloy plate for battery case lid with excellent laser weldability
JP4880664B2 (en) * 2007-12-28 2012-02-22 株式会社神戸製鋼所 Aluminum alloy material and battery case for pulse laser welding
JP2010285688A (en) * 2009-05-14 2010-12-24 Fujikura Ltd Al ALLOY AND Al ALLOY CONDUCTIVE WIRE
JP2012158810A (en) * 2011-02-01 2012-08-23 Kobe Steel Ltd Aluminum alloy sheet for battery case, and battery case

Also Published As

Publication number Publication date
JP2012158809A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
KR101321666B1 (en) Alluminum alloy plate for battery case and battery case
KR101217428B1 (en) Aluminum alloy sheet for battery case and battery case
KR101460407B1 (en) Aluminum alloy plate for battery case and battery case
JPWO2019111970A1 (en) Aluminum alloy plate for battery lid for forming integral explosion-proof valve and method of manufacturing the same
KR101306515B1 (en) Aluminum alloy plate for battery case, and battery case
CA2871843C (en) Aluminum alloy sheet for battery case use excellent in formability, heat dissipation, and weldability
JP2008127656A (en) Aluminum alloy sheet for battery case and production method therefor
JP5950497B2 (en) Aluminum alloy plate for battery case and battery case
JP2020050889A (en) Aluminum alloy sheet for battery lid for molding united type explosion protection valve, and manufacturing method therefor
KR20200023270A (en) Aluminum alloy plate for battery cover for forming integral explosion-proof valve and manufacturing method thereof
JP2011208229A (en) Aluminum alloy sheet for battery case, and battery case
JP5726430B2 (en) Aluminum alloy plate for battery case body and battery case
KR20200023277A (en) Aluminum alloy plate for battery cover for forming integral explosion-proof valve and manufacturing method thereof
KR101370087B1 (en) Aluminum alloy plate for battery case and battery case
JP5726554B2 (en) Aluminum alloy plate for battery case body and battery case
JP2012158810A (en) Aluminum alloy sheet for battery case, and battery case
JP5599588B2 (en) Aluminum alloy plate for battery case, method for producing the same, and battery case
JP5798710B2 (en) Aluminum alloy plate and battery case with excellent irregular and bead prevention properties
JP2020050890A (en) Aluminum alloy sheet for battery lid for molding united type explosion protection valve, and manufacturing method therefor
JP5943288B2 (en) Aluminum alloy plate and battery case with excellent irregular and bead prevention properties
JP5872632B2 (en) Aluminum alloy plate for battery case
JP5879646B2 (en) Aluminum alloy plate for battery case, method for producing the same, and battery case
JP5887189B2 (en) Aluminum alloy plate for battery case, method for producing the same, and battery case
JP2016035110A (en) Aluminum alloy sheet for battery case, method of producing the same and battery case

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150401

R150 Certificate of patent or registration of utility model

Ref document number: 5726554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150