JP6027564B2 - Method and apparatus for measuring oil content in water to be treated - Google Patents

Method and apparatus for measuring oil content in water to be treated Download PDF

Info

Publication number
JP6027564B2
JP6027564B2 JP2014040101A JP2014040101A JP6027564B2 JP 6027564 B2 JP6027564 B2 JP 6027564B2 JP 2014040101 A JP2014040101 A JP 2014040101A JP 2014040101 A JP2014040101 A JP 2014040101A JP 6027564 B2 JP6027564 B2 JP 6027564B2
Authority
JP
Japan
Prior art keywords
oil
oil content
solvent
water
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014040101A
Other languages
Japanese (ja)
Other versions
JP2015165199A (en
Inventor
加藤 宗
加藤  宗
穣 森田
穣 森田
照井 茂樹
茂樹 照井
中山 善雄
善雄 中山
真人 大西
真人 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014040101A priority Critical patent/JP6027564B2/en
Publication of JP2015165199A publication Critical patent/JP2015165199A/en
Application granted granted Critical
Publication of JP6027564B2 publication Critical patent/JP6027564B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、水処理現場における被処理水の水質、特に、随伴水あるいは排水等に残留する油分、すなわち、残油分を計測する油分測定方法及び油分測定装置に関する。   The present invention relates to the quality of water to be treated at a water treatment site, in particular, an oil content measuring method and an oil content measuring device for measuring oil content remaining in accompanying water or waste water, that is, residual oil content.

油分を測定するものとして、例えば、特開2013−24562号公報(特許文献1)が知られている。特許文献1では、水晶振動子マイクロバランス(Quartz Cryystal Microbalance:以下、QCMと称す)を用い、測定対象である水溶性インクをインクジェットにより水晶振動子上にその液滴を滴下させ、液滴滴下前の水晶振動子の共振周波数(基本周波数)と、液滴滴下後に測定される共振周波数の変化量により水晶振動子上の付着物、すなわち、水溶性インクの質量を測定するものである。換言すれば、共振周波数(固有振動数とも言う)の変化とその表面上の付着量の特性を用いて、微量な試料水中の油分を測定するものである。   As what measures oil content, Unexamined-Japanese-Patent No. 2013-24562 (patent document 1) is known, for example. In Patent Document 1, a quartz crystal microbalance (hereinafter referred to as “QCM”) is used, and water-soluble ink as a measurement target is dropped on a crystal resonator by inkjet, before droplet dropping. The mass of the adhering substance on the crystal unit, that is, the water-soluble ink is measured based on the resonance frequency (basic frequency) of the crystal unit and the amount of change in the resonance frequency measured after dropping the droplet. In other words, a minute amount of oil in the sample water is measured using the change in the resonance frequency (also referred to as the natural frequency) and the characteristics of the amount of adhesion on the surface.

特開2013−24562号公報JP2013-24562A

しかしながら、特許文献1の構成では、測定対象である水溶性インクを水晶振動子上に直接滴下し、水溶性インク中の油分の質量を測定するものであり、そもそもインク成分である油分が多量に含まれるものを測定対象としている。   However, in the configuration of Patent Document 1, the water-soluble ink to be measured is directly dropped onto the crystal resonator, and the mass of the oil in the water-soluble ink is measured. Inclusion is included in the measurement.

従って、例えば、Oil&Gasの現場における極微量の油分が含まれる随伴水、あるいは、生活廃水または工業用排水に含まれる微量の油分の測定については何ら考慮されていない。すなわち、公定法(水質汚濁防止法)により定められる被処理水中に含まれる油分の測定に適用することは困難である。   Therefore, for example, no consideration is given to the measurement of the accompanying water containing a very small amount of oil at the site of Oil & Gas, or the small amount of oil contained in domestic wastewater or industrial wastewater. That is, it is difficult to apply to the measurement of oil contained in the water to be treated, which is defined by the official method (Water Pollution Control Act).

本発明は、水処理現場における被処理水中に残留する油分を高精度に計測することが可能な油分測定方法及び油分測定装置を提供することにある。   An object of the present invention is to provide an oil content measuring method and an oil content measuring device capable of measuring the oil content remaining in the water to be treated at a water treatment site with high accuracy.

上記課題を解決するため、本発明の油分測定方法は、油分を含む被処理水を溶媒と混合し、前記油分を前記溶媒に抽出する溶媒抽出工程と、前記油分抽出後の溶媒を水晶振動子上に所定量微量供給し、記水晶振動子の共振周波数を所定の周期で複数回測定する共振周波数測定工程と、前記複数回測定された共振周波数の変化量が所定値以下のときの共振周波数に基づいて、前記溶媒が蒸発した後に前記水晶振動子上に残留する油分を測定する工程と、を備えたことを特徴とする。 In order to solve the above-described problems, an oil content measurement method of the present invention includes a solvent extraction step of mixing water to be treated containing oil with a solvent, and extracting the oil into the solvent, and the solvent after the oil extraction is a crystal resonator. a predetermined amount trace amount supplied to the upper, front Stories and resonant frequency measuring step of measuring a plurality of times the resonance frequency of the crystal oscillator with a predetermined period, the resonance when the change amount of the plurality of times measured resonance frequency is less than a predetermined value And a step of measuring an oil content remaining on the crystal resonator after the solvent evaporates based on the frequency .

また、本発明の油分測定装置は、油分を含む被処理水を溶媒と混合し前記油分を前記溶媒に抽出する流体デバイスと、前記流体デバイスに接続され、前記油分抽出後の溶媒を水晶振動子上に所定量微量供給する分注ノズルと、記水晶振動子の共振周波数を測定するセンサ回路と、少なくとも前記流体デバイスおよび前記センサ回路を制御するコントローラと、前記分注ノズルより前記所定量の油分抽出後の溶媒が微量供給された前記水晶振動子の共振周波数を前記センサ回路より所定の周期で複数回受信し、当該複数回受信した共振周波数の変化量が所定値以下のときの共振周波数に基づいて、前記溶媒が蒸発した後に前記水晶振動子上に残留する油分を測定する演算部と、を備えたことを特徴とする。 Further, the oil content measuring apparatus of the present invention includes a fluid device that mixes water to be treated containing oil with a solvent and extracts the oil into the solvent, and is connected to the fluid device, and the solvent after the oil extraction is used as a crystal resonator. a predetermined amount trace supply dispensing nozzle above, a sensor circuit for measuring the resonant frequency before Symbol crystal oscillator, a controller for controlling at least the fluid device and the sensor circuit, the predetermined amount from the dispensing nozzle Resonance frequency when the resonance frequency of the crystal unit to which a small amount of solvent after oil extraction is supplied is received from the sensor circuit a plurality of times at a predetermined cycle, and the amount of change in the resonance frequency received a plurality of times is equal to or less than a predetermined value And an arithmetic unit that measures oil remaining on the quartz resonator after the solvent evaporates.

本発明によれば、例えば、Oil&Gas等の水処理現場における被処理水中に残留する油分を高精度に計測することが可能な油分測定方法及び油分測定装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the oil content measuring method and oil content measuring apparatus which can measure the oil content which remains in the to-be-processed water in water treatment field | areas, such as Oil & Gas, can be provided with high precision, for example.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の一実施例に係る油分測定装置の全体構成図である。It is a whole lineblock diagram of the oil content measuring device concerning one example of the present invention. 図1に示す油分測定装置を構成する流体デバイスの縦断面図である。It is a longitudinal cross-sectional view of the fluid device which comprises the oil content measuring apparatus shown in FIG. ヘキサンに被処理水中の油分が浸透、抽出される原理の説明図である。It is explanatory drawing of the principle by which the oil component in to-be-processed water osmose | permeates and is extracted in hexane. 図2に示す流体デバイスの動作シーケンスの説明図である。It is explanatory drawing of the operation | movement sequence of the fluid device shown in FIG. 図1に示す水晶振動子の概略構成図である。It is a schematic block diagram of the crystal oscillator shown in FIG. 図1に示すセンサ回路及びコントローラの機能ブロック図である。It is a functional block diagram of the sensor circuit and controller shown in FIG. 溶媒抽出工程後の油分測定工程の状態を表す説明図である。It is explanatory drawing showing the state of the oil content measurement process after a solvent extraction process. 本発明の一実施例に係る油分測定装置による全体処理フロー図である。It is a whole processing flow figure by the oil content measuring device concerning one example of the present invention. 溶媒抽出工程における繰り返し回数決定フロー図である。It is a flowchart of the repetition frequency determination in a solvent extraction process. 溶媒抽出工程における繰り返し回数と油分濃度との関係を示す図である。It is a figure which shows the relationship between the repetition frequency in a solvent extraction process, and oil concentration. 図1に示す油分測定装置により測定される共振周波数の時間的変化を示す図である。It is a figure which shows the time change of the resonant frequency measured by the oil content measuring apparatus shown in FIG. 本発明の他の実施例に係る油分測定装置により測定される共振周波数の時間的変化を示す図である。It is a figure which shows the time change of the resonant frequency measured by the oil content measuring apparatus which concerns on the other Example of this invention.

本明細書における被処理水とは、Oil&Gasの現場における随伴水、あるいは、生活廃水または工業用排水等を含み、被処理水は場合によっては、試料水と呼ばれることもある。また、以下では、QCM法による測定値を共振周波数と称するが、固有振動数でも同様の意味を有するものである。   The treated water in this specification includes accompanying water at the site of Oil & Gas, domestic wastewater, industrial wastewater, or the like, and the treated water is sometimes called sample water. In the following, the measured value by the QCM method is referred to as a resonance frequency, but the natural frequency has the same meaning.

先ず、被処理水の油分分析は公定法(水質汚濁防止法)で定められており、その分析方法ではn−ヘキサン(以下、単にヘキサンと称す)に抽出される物質が被処理水中の油分と定義されている。従って、公定法ではまず、被処理水から油分を溶媒であるヘキサンに全て抽出し、そのヘキサンを蒸発させたのちに残留する物質の質量からもとの被処理水の油分濃度を測定する。   First, the oil content analysis of the water to be treated is defined by the official method (Water Pollution Control Law). In the analysis method, the substance extracted into n-hexane (hereinafter simply referred to as hexane) is the oil content in the water to be treated. Is defined. Therefore, in the official method, first, oil is extracted from the water to be treated into hexane as a solvent, and after evaporating the hexane, the oil concentration of the original water to be treated is measured from the mass of the substance remaining.

質量の測定には高精度、高感度な電子天秤等が用いられるが、希釈濃度の被処理水を測定する場合には電子天秤でも検出可能な十分な油分をヘキサンに抽出しなければならないため、被処理水及びヘキサンとも多くの容量を要する。そのため、より短時間で多容量のヘキサンを蒸発させるために高温・減圧環境下を必要とし、Oil&Gasの水処理現場等で要求される迅速なin-situ分析には向かない。   A high-precision, high-sensitivity electronic balance, etc. is used to measure the mass, but when measuring the water to be treated at a diluted concentration, sufficient oil that can be detected by the electronic balance must be extracted into hexane. Both water to be treated and hexane require a large volume. Therefore, in order to evaporate a large volume of hexane in a shorter time, a high temperature / depressurized environment is required, and it is not suitable for a rapid in-situ analysis required at a water treatment site of Oil & Gas.

公定法に代わる分析方法として分光分析を応用した機器が実用化されており、屋外でも使用可能なハンディータイプのものも製品化されている。しかし、固形物の除去処理や溶媒抽出等の試料の前処理は事前に行っておかなければならなく、また、コントロール試料等をつかって濃度と吸光度間の検量線を分析対象ごとに作成する必要がある。   Instruments that apply spectroscopic analysis have been put to practical use as an alternative to official methods, and handy-type devices that can be used outdoors have also been commercialized. However, sample pretreatment such as solid removal and solvent extraction must be performed in advance, and a calibration curve between concentration and absorbance must be created for each analyte using a control sample. There is.

このように、公定法に基づく溶媒抽出法・重量法、分光計測等では、いずれも水処理現場で十分な精度で油分を分析することはこれまでは不可能であった。   As described above, in the solvent extraction method / gravimetric method, spectroscopic measurement, and the like based on the official method, it has been impossible to analyze the oil component with sufficient accuracy at the water treatment site.

本発明の実施形態に係る被処理水中の油分測定方法では、公定法に基づき、まず、被処理水中の油分を全てヘキサンに移動させる(ヘキサン抽出)。そして、そのヘキサンを水晶振動子上に微量供給し、ヘキサンのみを蒸発させる。ヘキサン蒸発後の水晶振動子上に残留・付着した物質(ヘキサン抽出物質(油分))の質量を水晶振動子の共振周波数の変化量から測定する。そして測定されたヘキサン抽出物質の質量、微量供給したヘキサン及びもとの被処理水の体積量から、被処理水に含まれていた油分濃度を計測する。   In the method for measuring oil content in water to be treated according to an embodiment of the present invention, first, all oil content in water to be treated is transferred to hexane based on the official method (hexane extraction). Then, a small amount of the hexane is supplied onto the crystal resonator to evaporate only the hexane. Measure the mass of the substance (hexane extract material (oil)) that remains and adheres to the crystal unit after evaporation of hexane from the amount of change in the resonance frequency of the crystal unit. Then, the concentration of oil contained in the water to be treated is measured from the measured mass of the hexane extract substance, a small amount of hexane and the volume of the original water to be treated.

このような一連の分析プロセス、すなわち、油分のヘキサンへの抽出、油分を含有するヘキサンの水晶振動子上での蒸発、水晶振動子上の残留付着物の質量測定を簡素な装置構成で実現する。   Such a series of analysis processes, that is, extraction of oil into hexane, evaporation of hexane containing oil on a quartz crystal, and mass measurement of residual deposits on the crystal are realized with a simple device configuration. .

なお、このような水晶振動子の共振周波数の変化量から水晶振動子表面上の付着量(質量)を求める計測方法はQCM法と呼ばれ、薄膜形成プロセスにおける膜厚モニター等に実用化されている。実用化されているQCM用水晶振動子は、例えば、直径10mm、厚みが数百μm、数MHz帯域の共振周波数を有する。数ngから数十μgオーダーのレンジで表面上の付着物質の質量を測定することができる。   A measurement method for determining the amount of adhesion (mass) on the surface of the crystal unit from the amount of change in the resonance frequency of the crystal unit is called the QCM method, and has been put to practical use for film thickness monitoring in the thin film formation process. Yes. The crystal resonator for QCM that has been put into practical use has, for example, a resonance frequency of 10 mm in diameter, several hundred μm in thickness, and several MHz band. The mass of the adhered substance on the surface can be measured in the range of several ng to several tens of μg.

本発明の実施形態に係る被処理水中の油分測定方法は、凝集磁気分離等の水/油分離処理プロセス等の残油分モニターとして水処理プラントに適用でき、プラントの運転状況や性能の監視にも適用することができる。   The method for measuring oil content in water to be treated according to an embodiment of the present invention can be applied to a water treatment plant as a residual oil content monitor for water / oil separation treatment processes such as coagulation magnetic separation, and also for monitoring the operation status and performance of the plant. Can be applied.

以下、本発明の実施例について図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に、本発明の一実施例に係る油分測定装置の全体構成図を示す。本発明の油分測定装置1は、被処理水中の油分を溶媒であるヘキサンに抽出させ、なおかつ抽出した油分を送液するためのシリンジ型の流体デバイス101、シリンジ101内のピストンを駆動するためのモータ102、油分を抽出したヘキサンを蒸発させ、さらに残留したヘキサン抽出物質(油分)の質量を測定するQCMセンサ用の水晶振動子103、水晶振動子103を発振させ、共振周波数を計測するためのセンサ回路104、計測結果を表示する表示部109を有し、油分測定装置1全体を制御するコントローラ105から構成される。   FIG. 1 is an overall configuration diagram of an oil content measuring apparatus according to an embodiment of the present invention. The oil content measuring apparatus 1 of the present invention extracts the oil content in the water to be treated into hexane as a solvent, and drives the piston in the syringe type fluid device 101 for feeding the extracted oil content and the syringe 101. The motor 102 evaporates the hexane from which the oil has been extracted, and further oscillates the crystal oscillator 103 for the QCM sensor and the crystal oscillator 103 for measuring the mass of the remaining hexane extract material (oil), and measures the resonance frequency. The sensor circuit 104 includes a display unit 109 that displays the measurement result, and includes a controller 105 that controls the entire oil content measuring apparatus 1.

なお、図示しないが、これらの機器を駆動するための電源も備えられている。特に、Oil & Gas等の水処理現場である屋外で使用する際には、繰り返し充電が可能なバッテリーを用いるとよい。   Although not shown, a power source for driving these devices is also provided. In particular, when used outdoors, such as Oil & Gas, a battery that can be repeatedly charged may be used.

流体デバイス101では、流入パイプ106より被処理水及び溶媒であるヘキサン110を吸引し、モータ102により内部のピストンを駆動して、ヘキサンに被処理水中の油分を抽出させる(詳細は後述する)。そして、ほぼ完全に被処理水中の油分をヘキサンに抽出させた後に、流出パイプ107を介して分注ノズル108より抽出した油分を含有する抽出後のヘキサン111を水晶振動子103上に微量供給する。   In the fluid device 101, water to be treated and hexane 110 as a solvent are sucked from the inflow pipe 106, and an internal piston is driven by the motor 102 to cause the hexane to extract oil in the water to be treated (details will be described later). Then, after the oil in the water to be treated is almost completely extracted into hexane, a small amount of the extracted hexane 111 containing the oil extracted from the dispensing nozzle 108 is supplied onto the crystal unit 103 via the outflow pipe 107. .

次に、流体デバイス101の内部構造、動作及び機能を、図2から図4を用いて説明する。図2は、図1に示す油分測定装置1を構成する流体デバイス101の縦断面図であり、図3は、ヘキサンに被処理水中の油分が浸透、抽出される原理の説明図であり、図4は、流体デバイス101の動作シーケンスの説明図である。   Next, the internal structure, operation, and function of the fluidic device 101 will be described with reference to FIGS. 2 is a longitudinal sectional view of the fluid device 101 constituting the oil content measuring apparatus 1 shown in FIG. 1, and FIG. 3 is an explanatory diagram of the principle that the oil content in the water to be treated permeates and is extracted from hexane. 4 is an explanatory diagram of an operation sequence of the fluidic device 101. FIG.

図2に示されるように、流体デバイス101は、外観が略円筒状のシリンジ201、シリンジ201内を上昇又は下降するピストン208、ピストン208に連結されモータ102からの駆動力によりピストン208を上下に直動させるピストンロッド211から構成される。また、シリンジ201の内部には、シリンジ201の内部空間を長手方向に沿って上下に2つの室に分割する仕切り部204を有する。図2に示すように、仕切り部204の上面は円錐状の窪みを有する円柱状の部材で構成され、仕切り部204の略中央部に形成されシリンジ201の長手方向に沿って貫通する第1の貫通孔である連通孔203(以下、連通孔と称す)、連通孔203の周囲に形成されシリンジ201の長手方向に沿って貫通する第2の貫通孔である小径ノズル202(以下、小径ノズルと称す)が複数配置されている。連通孔203の孔径は小径ノズル202の孔径より大きく、連通孔203にはそれを塞ぐのに十分な大きさの直径を有する球体205が備えられている。なお、本実施例では連通孔203を塞ぐものとして球体を用いたが、円錐体でも良く、更には仕切り部204を境に連通孔203を通じて上の室から下の室への流れを阻止する逆止弁機能を持つ部材を配置しても良い。   As shown in FIG. 2, the fluid device 101 includes a syringe 201 having a substantially cylindrical appearance, a piston 208 that moves up and down in the syringe 201, and a piston 208 that is connected to the piston 208 and moved up and down by a driving force from the motor 102. It is composed of a piston rod 211 that is linearly moved. In addition, the syringe 201 includes a partition unit 204 that divides the internal space of the syringe 201 into two chambers in the vertical direction along the longitudinal direction. As shown in FIG. 2, the upper surface of the partition portion 204 is formed of a cylindrical member having a conical depression, and is formed at a substantially central portion of the partition portion 204 and penetrates along the longitudinal direction of the syringe 201. A small-diameter nozzle 202 (hereinafter referred to as a small-diameter nozzle) that is a second through-hole that is formed around the communication hole 203 and that extends through the longitudinal direction of the syringe 201. Multiple) are arranged. The hole diameter of the communication hole 203 is larger than the hole diameter of the small-diameter nozzle 202, and the communication hole 203 is provided with a sphere 205 having a diameter large enough to close it. In this embodiment, a sphere is used to block the communication hole 203, but it may be a conical body. Further, it is the reverse of blocking the flow from the upper chamber to the lower chamber through the communication hole 203 with the partition 204 as a boundary. A member having a stop valve function may be arranged.

また、シリンジ201の上面には、それぞれ図1に示す流入パイプ106、流出パイプ107と接続され得る流入口206、流出口207が形成されている。流入パイプ106を介した流入口206からのヘキサンおよび被処理水の吸引、流出口207から流出パイプ107への抽出後のヘキサンの吐出は、ピストン208の矢印210の方向への下降および、矢印209の方向への上昇によって実現される。ピストン208の中心部にはメネジが形成されており(図示せず)、ピストンロッド211に形成されたネジ山(図示せず)を介して連結している。さらにピストンロッド211は、図1に示すモータ102とカップリングしており、モータ102を回転させることでピストンロッド211を回し、その回転変位はピストン208の上昇または下降の直線変位に変換される。   Further, an inlet port 206 and an outlet port 207 that can be connected to the inflow pipe 106 and the outflow pipe 107 shown in FIG. 1 are formed on the upper surface of the syringe 201, respectively. The suction of hexane and treated water from the inflow port 206 through the inflow pipe 106 and the discharge of hexane after extraction from the outflow port 207 to the outflow pipe 107 are the downward movement of the piston 208 in the direction of the arrow 210 and the arrow 209. Realized by rising in the direction of A female screw (not shown) is formed at the center of the piston 208 and is connected via a screw thread (not shown) formed on the piston rod 211. Further, the piston rod 211 is coupled to the motor 102 shown in FIG. 1, and the piston rod 211 is rotated by rotating the motor 102, and the rotational displacement is converted into a linear displacement of the piston 208 ascending or descending.

なお、図示しないがこのような回転変位から直線変位に変換するため、ピストン208がピストンロッド211の回転に伴って回されないよう、回転変位を拘束する機構が備えられている。通常のネジ規格に基づいて設計すれば、ピストンロッド211が図2中右回りの方向212に回転しているときピストン208は矢印210の方向に下降し、左回りの方向213に回転しているときは矢印209の方向に上昇する。   Although not shown, in order to convert such rotational displacement into linear displacement, a mechanism for restraining the rotational displacement is provided so that the piston 208 is not rotated with the rotation of the piston rod 211. If designed based on the normal screw standard, when the piston rod 211 rotates in the clockwise direction 212 in FIG. 2, the piston 208 descends in the direction of the arrow 210 and rotates in the counterclockwise direction 213. When it rises in the direction of arrow 209.

また、ピストンロッド211に加わる矢印209の方向への上昇力の調整は、図1に示すコントローラ105により、モータ102の駆動電圧、電流等を調整し、モータ102の回転軸により生じるトルクを制御することで行われる。   Further, the adjustment of the upward force in the direction of the arrow 209 applied to the piston rod 211 is performed by adjusting the driving voltage, current, etc. of the motor 102 by the controller 105 shown in FIG. Is done.

次に流体デバイス101中でどのようにして、被処理水からヘキサンに油分を抽出させるかを説明する。溶媒であるヘキサンの一般的な特性として油は溶解するが疎水性であるために水とは混合しない。上述の公定法に従って、油分を測定する場合、被処理水とヘキサンを容器の中に入れ両者を振動させながら被処理水側の油分をヘキサンに抽出させる。その際、ヘキサン215は、図3に示すように被処理水214中に細かな液滴となって分散した状態となる。このヘキサン215の分散状態では、被処理水214とヘキサン215の界面の総面積が増大し、図3に示すように界面を介して被処理水側の油分216が矢印に示すように効率よくヘキサン215側に移動する。   Next, how oil is extracted from the water to be treated into hexane in the fluid device 101 will be described. As a general characteristic of hexane as a solvent, oil dissolves but is not mixed with water because it is hydrophobic. When the oil content is measured in accordance with the official method described above, the water to be treated and hexane are put into a container and the oil on the water to be treated side is extracted into hexane while both are vibrated. At that time, the hexane 215 is dispersed as fine droplets in the water to be treated 214 as shown in FIG. In this dispersed state of hexane 215, the total area of the interface between the water to be treated 214 and hexane 215 is increased, and the oil component 216 on the water to be treated 216 is efficiently passed through the interface as shown by the arrow in FIG. Move to 215 side.

本実施例では、被処理水214とヘキサン215を容器ごと振動させるのではなく、ノズルを用いた流体的な操作によって図3のようなヘキサン215の分散状態を形成することを特徴とする。図4に示されるように、小径ノズル202のような細い流路を速い流速で流体が通過するとき、小径ノズル202の出口では噴流が発生する。噴流内部の流れ場では強いせん断応力が発生しているため、小径ノズル202の出口付近では2相(本実施例発明では被処理水214とヘキサン215)の液体のうち一方は分裂を繰り返し、さらに細かな液滴へと分裂する。このような2相流体の特性を利用し、被処理水214中に細かいヘキサン215の液滴が分散した状態を発生させ、被処理水214中の油分のヘキサン215の相への抽出を促進させた。   This embodiment is characterized in that the water to be treated 214 and hexane 215 are not vibrated together with the container, but a dispersed state of hexane 215 as shown in FIG. 3 is formed by a fluid operation using a nozzle. As shown in FIG. 4, when a fluid passes through a narrow flow path such as the small diameter nozzle 202 at a high flow rate, a jet is generated at the outlet of the small diameter nozzle 202. Since strong shear stress is generated in the flow field inside the jet, one of the liquids of two phases (treated water 214 and hexane 215 in the present embodiment) repeats splitting near the outlet of the small diameter nozzle 202, and Breaks up into fine droplets. Utilizing such characteristics of the two-phase fluid, a state in which fine hexane 215 droplets are dispersed in the water to be treated 214 is generated, and the extraction of the oil in the water to be treated 214 into the hexane 215 phase is promoted. It was.

図4の左図に示されるようにピストン208が停止状態のとき、ヘキサン215と被処理水214は分離した状態となる。これは、ヘキサン215が被処理水214より低密度のため、両者の分離状態では常にヘキサン215が上側になる。図4の中央図のようにピストン208を速く下降させると球体205が連通孔203を塞ぎ、仕切り部204を境に上の室から下の室へと連通する流路は複数の小径ノズル202のみとなる。このとき、十分な速度でピストン208を下降させれば、各小径ノズルの202の出口付近では噴流が形成され、ヘキサン215の相がこの小径ノズル202を通過する際に、被処理水214の相に細かな液滴となって分散する。このようにヘキサン215の相を被処理水214の相に分散させることで、両者の界面の総面積を増大させることができ、ヘキサンによる油分の抽出が進行する。   As shown in the left diagram of FIG. 4, when the piston 208 is in a stopped state, the hexane 215 and the treated water 214 are separated. This is because the hexane 215 has a lower density than the water to be treated 214, so that the hexane 215 is always on the upper side in the separated state. When the piston 208 is rapidly lowered as shown in the central view of FIG. 4, the sphere 205 closes the communication hole 203, and the flow path communicating from the upper chamber to the lower chamber with the partition portion 204 as a boundary is only a plurality of small diameter nozzles 202. It becomes. At this time, if the piston 208 is lowered at a sufficient speed, a jet is formed in the vicinity of the outlet of each small-diameter nozzle 202, and the phase of the water 214 to be treated is passed when the hexane 215 phase passes through the small-diameter nozzle 202. Disperse as fine droplets. Thus, by dispersing the phase of hexane 215 in the phase of water to be treated 214, the total area of the interface between the two can be increased, and the extraction of oil with hexane proceeds.

次にこの分散状態で、図4の右図のように球体205がわずかに浮上する程度の速度でピストン208を緩速上昇させると、分散状態又は油分を抽出したヘキサンを含む液体が上の室内で矢印217に示す流れを形成し、ヘキサン215の液滴と被処理水214を混合させながら上の室に移動する。この混合によってヘキサンの界面近傍の油分濃度が均一化され、油分のヘキサンへの移動はさらに促進される。   Next, in this dispersed state, when the piston 208 is slowly raised at a speed at which the sphere 205 slightly floats as shown in the right diagram of FIG. 4, the liquid containing hexane from which the dispersed state or oil has been extracted is placed in the upper chamber. Then, a flow indicated by an arrow 217 is formed, and the hexane 215 droplet and the water to be treated 214 are mixed and moved to the upper chamber. By this mixing, the oil concentration near the interface of hexane is made uniform, and the movement of oil to hexane is further promoted.

本実施例の油分測定装置1における被処理水214の前処理に相当する油分のヘキサンへの抽出工程(以下、溶媒抽出工程と称す)では、図4の中央図と右図に示すとおりピストン208の下降210と上昇209を繰り返し218実行する。これにより、被処理水214とヘキサン215間の界面の面積増大と両相の混合が行われ、容器全体を振動させることなく抽出できる。この界面の総面積の増大化と分散液の混合は油分がほぼ完全にヘキサン215側に移動し終わるまで繰り返される。   In the extraction process of oil to hexane (hereinafter referred to as a solvent extraction process) corresponding to the pretreatment of the water to be treated 214 in the oil content measuring apparatus 1 of the present embodiment, the piston 208 is shown in the center and right diagrams of FIG. 218 and 209 are repeatedly executed 218. Thereby, the area increase of the interface between the to-be-processed water 214 and hexane 215 and mixing of both phases are performed, and it can extract, without vibrating the whole container. This increase in the total area of the interface and mixing of the dispersion are repeated until the oil has almost completely moved to the hexane 215 side.

被処理水214中の油分216がほぼ完全にヘキサン215の相に抽出された段階で、一度ピストン208を停止状態とし、図4の左図に示すように静置し再び両者を分離状態にする。その後に、流入口206を図示しない制御バルブまたはピンチバルブ等で塞いでおき、ピストン208を緩速上昇(分離状態を維持した状態で上昇)させながら流出口207及び図1に示す流出パイプ107を介して分注ノズル108より水晶振動子103上に、油分抽出後のヘキサン215を微量供給させる。   When the oil component 216 in the water to be treated 214 is almost completely extracted to the hexane 215 phase, the piston 208 is once stopped, and is left still as shown in the left diagram of FIG. . Thereafter, the inlet 206 is closed with a control valve or a pinch valve (not shown), and the outlet 208 and the outlet pipe 107 shown in FIG. Then, a minute amount of hexane 215 after oil extraction is supplied from the dispensing nozzle 108 onto the quartz crystal vibrator 103.

次に、溶媒抽出工程後の油分の測定工程について説明する。図5に図1に示す水晶振動子103の概略構成を示す。QCM法では、水晶振動子103の厚みすべり方向の電気-機械的振動(厚みすべり振動:Thickness−shear−mode resonator)を利用するため、ATカットとよばれる方位に切り出された水晶板の両面に表面電極301(分注ノズル108と対向する側)、裏面電極302(水晶板を挟み表面電極301と反対側)を設ける。図5の左図では、裏面電極302は水晶振動子103の裏面側のため破線で示している。このような水晶振動子103を電気的振動素子の一部として発振回路を構成し、発振させたときの共振周波数を測定する。なお、これら表面電極301及び裏面電極302の構成材材料としては、例えば、金(Au)、プラチナ(Pt)またはCr等を用いれば良い。   Next, the oil measurement process after the solvent extraction process will be described. FIG. 5 shows a schematic configuration of the crystal unit 103 shown in FIG. The QCM method uses electro-mechanical vibration in the thickness-slip direction of the crystal unit 103 (Thickness-shear-mode resonator), so that both sides of the crystal plate cut in an orientation called AT cut are used. A front surface electrode 301 (side facing the dispensing nozzle 108) and a back surface electrode 302 (side opposite to the front surface electrode 301 with the crystal plate interposed therebetween) are provided. In the left diagram of FIG. 5, the back electrode 302 is indicated by a broken line because it is on the back side of the crystal unit 103. An oscillation circuit is configured with such a crystal resonator 103 as a part of an electric vibration element, and the resonance frequency when the oscillation circuit is oscillated is measured. For example, gold (Au), platinum (Pt), Cr, or the like may be used as a constituent material of the front electrode 301 and the back electrode 302.

図5の右図に示すように、片側の電極表面(表面電極301)に付着物303がある場合、厚みすべり方向の振動特性が変化するためその共振周波数が変化する(付着物の質量に応じて共振周波数が低い方向にシフトする)。このときの共振周波数の低下量から電極表面の付着物の質量が測定される。この共振周波数の変化量と質量の関係は水晶振動子103の形状、電極の面積等をパラメータとして、Sauerbeyの式(以下の式(1))によって与えられる。   As shown in the right diagram of FIG. 5, when the deposit 303 is present on the electrode surface (surface electrode 301) on one side, the resonance frequency changes because the vibration characteristics in the thickness-slip direction change (according to the mass of the deposit). The resonance frequency shifts in the lower direction). The mass of the deposit on the electrode surface is measured from the amount of decrease in the resonance frequency at this time. The relationship between the amount of change in the resonance frequency and the mass is given by the Sauerbey equation (the following equation (1)) with the shape of the crystal resonator 103, the area of the electrode, etc. as parameters.

Δf=−2×f ×{Δm/(A×(ρq×μq)1/2)}・・・(1)
ここで、Δfは共振周波数変化量(Hz)、Δmは質量変化量(g)、fは基本共振周波数(Hz)、ρqは水晶の密度(g/cm)、μqはATカット水晶のせん断応力(g/cm.s)、Aは電極面積(cm)であり、ρq=2.648g/cm、μq=2.947×1011g/cm.s
本実施例では、このようなQCM用の水晶振動子103を質量センサとして、被処理水中の油分の質量測定に用いている。
Δf = −2 × f 0 2 × {Δm / (A × (ρq × μq) 1/2 )} (1)
Here, Δf is a resonance frequency change amount (Hz), Δm is a mass change amount (g), f 0 is a basic resonance frequency (Hz), ρq is a crystal density (g / cm 3 ), and μq is an AT-cut crystal. Shear stress (g / cm.s 2 ), A is electrode area (cm 2 ), ρq = 2.648 g / cm 3 , μq = 2.947 × 10 11 g / cm 2 s 2
In this embodiment, such a quartz crystal vibrator 103 for QCM is used as a mass sensor for measuring the mass of oil in the water to be treated.

図7に溶媒抽出工程後の油分測定工程の状態を示す。図7に示されるように、図4にて説明した前処理に相当する溶媒抽出工程後のヘキサン、すなわち被処理水中の油分を抽出したヘキサンは流体デバイス101から流出パイプ107を介して分注ノズル108より抽出後のヘキサン111として、水晶振動子103の表面電極301上の略中央部にマイクロリッターレベルのボリュームで微量供給される。一回あたりの供給量は、0.001μL〜0.1μLが好適である。ヘキサンも他の有機溶媒同様親水性が高いため液滴は表面電極301上に濡れ拡がり、濡れ拡がり後の液滴305は数秒から数十秒程度で蒸発する。ヘキサンが完全に蒸発した後、ヘキサンに抽出されていた油分306のみが表面電極301上に付着して残留する。この付着した残留物(油分306)、すなわち公定法で油分と定義されているヘキサン抽出物質(油分306)の質量(m)と分注ノズル108より微量供給した油分抽出後のヘキサンの体積(V1)に基づき油分抽出後のヘキサン中の油分濃度が得られる。また、上述の溶媒抽出工程においてそのヘキサンに油分を抽出したときの被処理水の体積(V2)及びヘキサン抽出物質(油分306)の質量(m)に基づき、被処理水中の油分濃度を得ることができる。   FIG. 7 shows the state of the oil content measurement step after the solvent extraction step. As shown in FIG. 7, the hexane after the solvent extraction step corresponding to the pretreatment described in FIG. 4, that is, the hexane from which oil in the water to be treated has been extracted is dispensed from the fluid device 101 via the outflow pipe 107. A small amount of hexane 111 extracted from 108 is supplied to the substantially central portion of the surface electrode 301 of the quartz crystal vibrator 103 at a microliter level volume. The supply amount per time is preferably 0.001 μL to 0.1 μL. Since hexane is also highly hydrophilic like other organic solvents, the droplets wet and spread on the surface electrode 301, and the droplets 305 after wetting and spreading evaporate in about several seconds to several tens of seconds. After the hexane is completely evaporated, only the oil component 306 extracted into the hexane adheres to the surface electrode 301 and remains. The adhering residue (oil content 306), that is, the mass (m) of the hexane extraction substance (oil content 306) defined as the oil content in the official method, and the volume of hexane after the oil content extraction supplied from the dispensing nozzle 108 (V1) ), The oil concentration in hexane after oil extraction is obtained. In addition, the oil concentration in the water to be treated is obtained based on the volume (V2) of the water to be treated when the oil is extracted into the hexane in the solvent extraction step and the mass (m) of the hexane extract material (oil 306). Can do.

なお、例えば、被処理水がOil & Gasにおける随伴水のとき、随伴水中の油分濃度が極めて低い場合がある。このような場合、溶媒抽出工程においてヘキサンには極微量の油分しか抽出されず、数μLレベルの油分抽出後のヘキサンを一回微量供給するのみでは十分な量の残留付着物を得られない場合がある。このような場合には、図7に示すように、表面電極301上の同一の位置に複数回微量供給してQCMで検出可能な質量に達するまで微量供給と蒸発を繰り返す。   For example, when the water to be treated is associated water in Oil & Gas, the oil concentration in the associated water may be extremely low. In such a case, only a very small amount of oil is extracted into hexane in the solvent extraction step, and a sufficient amount of residual deposits cannot be obtained by supplying a small amount of hexane once after extracting oil of several μL level. There is. In such a case, as shown in FIG. 7, a minute amount is supplied to the same position on the surface electrode 301 a plurality of times, and the minute amount supply and evaporation are repeated until the mass that can be detected by the QCM is reached.

ここで、図1に示すセンサ回路104及びコントローラ105の構成について説明する。図6に、センサ回路104及びコントローラ105の機能ブロックを示す。センサ回路104は、水晶振動子103を基本共振周波数fにて振動させるための発振回路104c、表面電極301上の略中央部に被処理水中の油分が抽出されたヘキサン微量供給後の水晶振動子103の共振周波数を、所定の周期で測定する周波数測定部104a及び記憶部104bを備えている。また、コントローラ105は、予め記憶部105bに記憶された各種プログラムを読み出し実行する演算部105a、図1に示すモータ102の駆動電圧、電流等を調整しモータ102の回転軸に生じるトルクを制御する制御部105c、演算部105aによる演算結果、すなわち、上述の被処理水中の油分濃度を表示部109へ表示するための表示制御部105dから構成される。なお、演算部105a及び制御部105cを一体で実現しても良い。また、制御部105cは、上述のモータ102の制御の他、センサ回路104内の発振回路104cの動作タイミングの制御、分注ノズル108による表面電極301への油分抽出後のヘキサンの微量供給タイミングの制御等も行う。 Here, the configuration of the sensor circuit 104 and the controller 105 shown in FIG. 1 will be described. FIG. 6 shows functional blocks of the sensor circuit 104 and the controller 105. Sensor circuit 104, a crystal oscillation after the oscillation circuit 104c, hexane trace supply oil in the for-treatment water is extracted at a substantially central portion on the surface electrodes 301 for vibrating the crystal resonator 103 at the fundamental resonant frequency f 0 A frequency measurement unit 104a and a storage unit 104b that measure the resonance frequency of the child 103 at a predetermined period are provided. The controller 105 reads out and executes various programs stored in the storage unit 105b in advance, adjusts the driving voltage and current of the motor 102 shown in FIG. 1 and controls the torque generated on the rotating shaft of the motor 102. The control part 105c and the calculation part 105a are comprised from the display control part 105d for displaying the calculation result, ie, the oil content density | concentration in the to-be-processed water mentioned above, on the display part 109. FIG. Note that the arithmetic unit 105a and the control unit 105c may be realized integrally. In addition to the control of the motor 102, the control unit 105c controls the operation timing of the oscillation circuit 104c in the sensor circuit 104, and the timing of supplying a small amount of hexane after oil extraction to the surface electrode 301 by the dispensing nozzle 108. Control is also performed.

これらセンサ回路104及びコントローラ105により実行される油分測定装置1の全体処理フローを図8に示す。上述の図2から図4にて説明した流体デバイス101を動作させ被処理水中の油分を溶媒であるヘキサンに移動させて抽出する溶媒抽出工程(ステップS1)後、油分抽出後の溶媒であるヘキサンを分注ノズル108より表面電極301上の略中央部に微量供給(1回目)する(ステップS2)。このときコントローラ105の制御部105cは、分注ノズル108より微量供給される油分抽出後のヘキサンが所定量(例えば、数μL)となるよう、モータ102の駆動電圧等を調整し、流体デバイス101内のピストン208を緩速上昇させる。また、このステップS2の動作開始前に、予めセンサ回路104内の発信回路に104cにより水晶振動子103を共振状態とし、その時の共振周波数を基本共振周波数fとし、記憶部104b及び記憶部105bに格納する。 An overall processing flow of the oil content measuring apparatus 1 executed by the sensor circuit 104 and the controller 105 is shown in FIG. After the solvent extraction step (step S1) in which the fluid device 101 described in FIGS. 2 to 4 is operated to move and extract the oil in the water to be treated to hexane as the solvent, hexane as the solvent after oil extraction Is supplied to the substantially central portion on the surface electrode 301 from the dispensing nozzle 108 (first time) (step S2). At this time, the control unit 105c of the controller 105 adjusts the driving voltage of the motor 102 and the like so that the amount of hexane after oil extraction supplied in a minute amount from the dispensing nozzle 108 becomes a predetermined amount (for example, several μL). The inner piston 208 is slowly raised. The operation begins before the step S2, the crystal oscillator 103 to the resonant state by 104c in the outgoing circuit in advance sensor circuit 104, the resonant frequency when the fundamental resonance frequency f 0, the storage unit 104b and the storage unit 105b To store.

次に、ステップS2にて、表面電極301上にヘキサンが微量供給された状態での水晶振動子103の共振周波数を、センサ回路104内の周波数測定部104aにて所定の周期で測定する(ステップS3)。これにより、時間(測定周期毎)と共に変化する水晶振動子103の共振周波数の変動が得られる。この共振周波数の変動は、図7において説明した溶媒であるヘキサンの蒸発に起因する。   Next, in step S2, the resonance frequency of the crystal unit 103 in a state where a small amount of hexane is supplied onto the surface electrode 301 is measured at a predetermined cycle by the frequency measurement unit 104a in the sensor circuit 104 (step S2). S3). Thereby, the fluctuation | variation of the resonant frequency of the crystal oscillator 103 which changes with time (every measurement period) is obtained. The fluctuation of the resonance frequency is caused by evaporation of hexane which is the solvent described in FIG.

センサ回路104内の記憶部104bには、予め共振周波数の変動の閾値(Th)が記憶されており、ステップS3にて計測される現在の共振周波数と前回値との差分である共振周波数変動が所定値(閾値Th)以下か、周波数測定部104aが判定する(ステップS4)。ステップS4にて共振周波数の変動が所定値(閾値Th)より大きい場合、ステップS3に戻り次の周期での共振周波数が測定される。また、ステップS4による判定の結果、共振周波数の変動が所定値以下と判定された場合、ステップS5へ進む。ここで、閾値Thとして、例えば1Hz等適宜設定すれば良い。なお、このステップS4における共振周波数変動の所定値との比較は、図7で説明したように、表面電極301上の油分抽出後のヘキサンから、ヘキサンが完全に蒸発した後は、表面電極301上には油分のみが付着する状態となるため、その後に各周期で測定される共振周波数の変動は外乱による変動を除けば、ほぼ無くなることに着目したものである。   The storage unit 104b in the sensor circuit 104 stores a resonance frequency fluctuation threshold value (Th) in advance, and a resonance frequency fluctuation that is a difference between the current resonance frequency measured in step S3 and the previous value. The frequency measurement unit 104a determines whether it is equal to or less than a predetermined value (threshold value Th) (step S4). When the fluctuation of the resonance frequency is larger than the predetermined value (threshold value Th) in step S4, the process returns to step S3 and the resonance frequency in the next cycle is measured. On the other hand, as a result of the determination in step S4, when it is determined that the resonance frequency fluctuation is equal to or less than the predetermined value, the process proceeds to step S5. Here, the threshold Th may be set as appropriate, for example, 1 Hz. In addition, the comparison with the predetermined value of the resonance frequency fluctuation in this step S4 is, as explained in FIG. 7, after the hexane is completely evaporated from the hexane after oil extraction on the surface electrode 301, It is noted that since only the oil component is attached to, the fluctuation of the resonance frequency measured in each period thereafter is almost eliminated except for the fluctuation due to the disturbance.

ステップS5では、ステップS4にて所定値以下と判定された共振周波数を、センサ回路104内の記憶部104bに記憶する。このとき記憶部104bに記憶された共振周波数は、コントローラ105へ送信され、コントローラ105内の記憶部105bに記憶される。   In step S5, the resonance frequency determined to be equal to or less than the predetermined value in step S4 is stored in the storage unit 104b in the sensor circuit 104. At this time, the resonance frequency stored in the storage unit 104 b is transmitted to the controller 105 and stored in the storage unit 105 b in the controller 105.

続いて、次の測定をすべきか否か判定する(ステップS6)。次の測定をすべきか否かの判定は、ステップS5にて、コントローラ105内の記憶部105bに記憶された共振周波数と予め格納された基本共振周波数fとを比較することで行われる。すなわち、上述のとおり随伴水等被処理水中の油分濃度が極めて低い場合があり、1回目微量供給後のヘキサンが例え完全に蒸発した場合であっても十分な量の残留付着物を得られない場合が生じ得るからである。 Subsequently, it is determined whether or not the next measurement should be performed (step S6). It determines whether to the next measurement, at step S5, is carried out by comparing the fundamental resonance frequency f 0 which has previously been stored and the resonance frequency stored in the storage unit 105b of the controller 105. That is, as described above, the concentration of oil in the water to be treated such as associated water may be extremely low, and even if the hexane after the first minute supply is completely evaporated, a sufficient amount of residual deposits cannot be obtained. This is because cases may arise.

ステップS6にて、次の測定有りと判定された場合はステップS7へ進み、分注ノズル108より油分抽出後のヘキサンを表面電極301へ微量供給(2回目)する。そしてステップS3へ戻り、以降のステップを繰り返し実行する。   If it is determined in step S6 that the next measurement is present, the process proceeds to step S7, and a small amount of hexane after oil extraction is supplied from the dispensing nozzle 108 to the surface electrode 301 (second time). Then, the process returns to step S3, and the subsequent steps are repeatedly executed.

また、ステップS6にて、次の測定なしと判定された場合、ステップS8へ進む。ステップS8では、コントローラ105内の演算部105aが、上記式(1)に基づき表面電極301上の残留付着物である油分の質量(m)を求める。ステップS1にてヘキサンに油分を抽出したときの被処理水の体積(V2)と求めた油分の質量(m)から被処理水中の油分濃度を求める。すなわち、求めた油分の質量(m)を被処理水中の油分濃度に換算する(ステップS8)。ステップS8にて得られた被処理水中の油分濃度を記憶部105bに格納し(ステップS9)、処理を終了する。   If it is determined in step S6 that there is no next measurement, the process proceeds to step S8. In step S8, the calculation part 105a in the controller 105 calculates | requires the mass (m) of the oil component which is a residual deposit on the surface electrode 301 based on said Formula (1). In step S1, the concentration of oil in the water to be treated is obtained from the volume (V2) of the water to be treated when the oil is extracted into hexane and the mass (m) of the obtained oil. That is, the determined mass (m) of oil is converted to the oil concentration in the water to be treated (step S8). The oil concentration in the for-treatment water obtained in step S8 is stored in the storage unit 105b (step S9), and the process is terminated.

本実施例では、ステップS4にて所定値以下と判定された共振周波数を、記憶部104b及び記憶部105cに記憶するよう構成したが、これに限らず、ステップS3にて、所定の周期で測定される共振周波数を、その都度、記憶部104b及び記憶部105bに記憶する構成としても良い。この場合、表示制御部105bにより表示部109へ測定された共振周波数と測定時間との関係を表示することが可能となる。また、ステップS4による判定を、周波数測定部104aに替えて演算部105aが実行するよう構成しても良い。   In this embodiment, the resonance frequency determined to be equal to or lower than the predetermined value in step S4 is stored in the storage unit 104b and the storage unit 105c. However, the present invention is not limited to this, and is measured at a predetermined cycle in step S3. The resonance frequency may be stored in the storage unit 104b and the storage unit 105b each time. In this case, it is possible to display the relationship between the measured resonance frequency and the measurement time on the display unit 109 by the display control unit 105b. Moreover, you may comprise so that the determination by step S4 may be performed by the calculating part 105a instead of the frequency measurement part 104a.

次に、図8中の溶媒抽出工程(ステップS1)における繰り返し動作回数の決定について説明する。図9に、溶媒抽出工程における繰り返し回数決定フローを示す。ステップS10では、図4で説明した流体デバイス101による溶媒抽出の繰り返し回数Mを初期値N(自然数)に設定する。なお、後述する図10ではこの初期値Nを10回とした場合を例示している。また、ここで溶媒抽出の繰り返し回数とは、図4の中央図に示されるピストン208を速く下降させる工程と、その後の図4の右図に示されるピストン208を緩速上昇させる工程を含め1回とし、このピストン208の下降と緩速上昇の組み合わせの回数を意味する。このステップS10において設定される初期値Nは、コントローラ105内の記憶部105bに格納される。 Next, determination of the number of repeated operations in the solvent extraction step (step S1) in FIG. 8 will be described. FIG. 9 shows a flow for determining the number of repetitions in the solvent extraction step. In step S10, the repetition number M of solvent extraction by the fluidic device 101 described in FIG. 4 is set to an initial value N 0 (natural number). Incidentally, it illustrates a case where the initial value N 0 in FIG. 10 described later was 10 times. Here, the number of repetitions of solvent extraction is 1 including the step of rapidly lowering the piston 208 shown in the center diagram of FIG. 4 and the step of slowly raising the piston 208 shown in the right diagram of FIG. Means the number of combinations of lowering and slow raising of the piston 208. The initial value N 0 set in step S 10 is stored in the storage unit 105 b in the controller 105.

制御部105cは、記憶部105b内に格納された繰り返し回数M(ここでは、初期値N)を読み出し、モータ102の駆動電圧等を調整しピストン208の下降及び緩速上昇を制御する。すなわち、溶媒抽出工程における繰り返し動作をM回(ここでは、N回)実行する(ステップS11)。 The control unit 105c reads the number of repetitions M (in this case, the initial value N 0 ) stored in the storage unit 105b, adjusts the driving voltage of the motor 102, and controls the lowering and slowing up of the piston 208. That is, the repetitive operation in the solvent extraction step is executed M times (here, N 0 times) (step S11).

制御部105cは、溶媒抽出工程M回実行後の油分が溶媒へと抽出されたヘキサンを、分注のノズル108より表面電極301へ微量供給(1回目)するよう制御する(ステップS12)。微量供給する油分抽出後のヘキサンの液滴は数μLであり、この値は予めコントローラ105の記憶部105bに格納されている。また、制御部105cは、油分抽出後のヘキサンを微量供給する前に、センサ回路104内の発信回路104cを制御し、水晶振動子103を共振状態とし、その時の共振周波数を基本共振周波数fとし、記憶部104b及び記憶部105bに格納する。 The control unit 105c controls to supply a small amount (first time) of hexane, from which oil has been extracted into the solvent after the solvent extraction step M has been performed, to the surface electrode 301 from the dispensing nozzle 108 (step S12). The amount of hexane droplets after extraction of a small amount of oil to be supplied is several μL, and this value is stored in the storage unit 105 b of the controller 105 in advance. Further, before supplying a small amount of hexane after oil extraction, the control unit 105c controls the transmission circuit 104c in the sensor circuit 104 to bring the crystal unit 103 into a resonance state, and the resonance frequency at that time is the basic resonance frequency f 0. And stored in the storage unit 104b and the storage unit 105b.

次に、表面電極301上に油分抽出後のヘキサンが付着した後、センサ回路104内の周波数測定部104aは、所定の周期で周波数測定を開始する(ステップS13)。所定の周期毎に測定される共振周波数は、記憶部104b及び記憶部105bに格納される(ステップS14)。なお、図9中では省略しているが、図8におけるステップS4と同様の処理、すなわち、センサ回路104内の記憶部104bには、予め共振周波数の変動の閾値(Th)が記憶されており、ステップS3にて計測される現在の共振周波数と前回値との差分である共振周波数変動が所定値(閾値Th)以下か、周波数測定部104aが判定する。共振周波数変動が所定値(閾値Th)以下の場合、ステップS15へ進む。   Next, after oil-extracted hexane adheres to the surface electrode 301, the frequency measurement unit 104a in the sensor circuit 104 starts frequency measurement at a predetermined cycle (step S13). The resonance frequency measured every predetermined period is stored in the storage unit 104b and the storage unit 105b (step S14). Although omitted in FIG. 9, the threshold value (Th) of the resonance frequency fluctuation is stored in advance in the processing similar to step S4 in FIG. 8, that is, the storage unit 104b in the sensor circuit 104. The frequency measurement unit 104a determines whether the resonance frequency fluctuation, which is the difference between the current resonance frequency measured in step S3 and the previous value, is equal to or less than a predetermined value (threshold value Th). When the resonance frequency fluctuation is equal to or smaller than the predetermined value (threshold value Th), the process proceeds to step S15.

ステップS15では、図8で説明したステップS8と同様に、コントローラ105内の演算部105aが、上記式(1)に基づき表面電極301上の残留付着物である油分の質量(m)を求める。ステップS11にてヘキサンに油分を抽出したときの被処理水の体積(V2)と求めた油分の質量(m)から被処理水中の油分濃度を求める。すなわち、求めた油分の質量(m)を被処理水中の油分濃度に換算する。   In step S15, as in step S8 described with reference to FIG. 8, the calculation unit 105a in the controller 105 obtains the mass (m) of oil that is a residual deposit on the surface electrode 301 based on the above equation (1). In step S11, the concentration of oil in the water to be treated is obtained from the volume (V2) of the water to be treated when the oil is extracted into hexane and the mass (m) of the obtained oil. That is, the determined mass (m) of oil is converted into the oil concentration in the water to be treated.

前回の油分濃度とステップS15にて換算された油分濃度とを比較し、収束しているかをコントローラ105内の演算部105aが判定する(ステップS16)。収束しているとの判定結果の場合、繰り返し動作回数としてM回をコントローラ105内の記憶部105bに格納し(ステップS18)終了する。また、収束していないとの判定結果の場合(初期値N設定段階では前回値は存在せず、ステップS17へ進むことになる)、ステップS17へ進み、流体デバイス101による溶媒抽出の繰り返し回数Mを現在のMにN(自然数)を加算し、上述のステップS11からステップS16までを同様に実行する。この際、表面電極301に付着する残留付着物である油分を洗浄し、ステップS12からステップS16までを実行する。なお、上記N加算後の繰り返し回数Mは、コントローラ105内の記憶部105bに格納される。上記初期値N及び加算回数Nは、ユーザにより適宜設定すれば良く、後述の図10に示す例では、初期値N及び加算回数N共に10回とした場合を例示している。 The previous oil concentration is compared with the oil concentration converted in step S15, and the calculation unit 105a in the controller 105 determines whether the oil concentration has converged (step S16). In the case of the determination result that it has converged, M times are stored as the number of repeated operations in the storage unit 105b in the controller 105 (step S18), and the process ends. Further, in the case of the determination result that it has not converged (the previous value does not exist at the initial value N 0 setting stage, the process proceeds to step S17), the process proceeds to step S17, and the number of times the fluid device 101 repeats the solvent extraction. M is added to the current M and N (natural number) is added, and the above-described steps S11 to S16 are similarly executed. At this time, the oil component that is a residual deposit adhering to the surface electrode 301 is washed, and Steps S12 to S16 are executed. Note that the number M of repetitions after the N addition is stored in the storage unit 105 b in the controller 105. The initial value N 0 and the number of additions N may be set as appropriate by the user. In the example shown in FIG. 10 described later, the case where both the initial value N 0 and the number of additions N are 10 is illustrated.

ステップS15における演算部105aによる収束判定は、例えば、共振周波数変動の判定における場合と同様に、所定の閾値を設定し、記憶部105bに格納することで実現できる。   The convergence determination by the calculation unit 105a in step S15 can be realized by setting a predetermined threshold value and storing it in the storage unit 105b, for example, as in the case of determination of resonance frequency fluctuation.

図10に、溶媒抽出工程における繰り返し回数と油分濃度の関係を示す。図9において説明した溶媒抽出工程の詳細フローにおいて、図10では、図9のステップS10にて繰り返し回数Mに設定する初期値Nを10、更に、ステップS17にて現在の繰り返し回数Mに加算する加算回数Nを10と設定した場合を示している。 FIG. 10 shows the relationship between the number of repetitions in the solvent extraction step and the oil concentration. In the detailed flow of the solvent extraction process described with reference to FIG. 9, in FIG. 10, the initial value N 0 set to the number of repetitions M in step S10 of FIG. 9 is added to 10, and further added to the current number of repetitions M in step S17. The case where the number N of additions to be performed is set to 10 is shown.

図10に示されるとおり、初期値Nを10に設定し、上述の図9に示すステップS11からステップS15を実行することにより、繰り返し回数10回における油分濃度が求まり、グラフ中その油分濃度に対応する位置にドット表示される。この段階では、初期値であるため、図9に示すステップS16での判定においては、前回値は存在せず、ステップS17に進むこととなり、現在の繰り返し回数10回(M)に加算回数10回(N)が加えられ、ステップS11において、更に10回繰り返し動作が実行される。その後、表面電極301に付着する残留付着物である油分を洗浄した後、ステップS12からステップS15を実行することにより、繰り返し回数20回における油分濃度が求まり、グラフ中その油分濃度に対応する位置にドット表示される。 As shown in FIG. 10, the initial values N 0 to 10, by executing the step S15 from the step S11 shown in FIG. 9 described above, Motomari is the oil content in the repeating 10 times, during the oil concentration graph Dots are displayed at the corresponding positions. At this stage, since it is an initial value, in the determination in step S16 shown in FIG. 9, the previous value does not exist and the process proceeds to step S17. The number of additions is 10 times the current number of repetitions 10 (M). (N) is added, and in step S11, the operation is further repeated 10 times. Then, after washing the oil component that is a residual deposit adhering to the surface electrode 301, the oil concentration at the number of repetitions of 20 is obtained by executing steps S12 to S15, and the oil concentration at the position corresponding to the oil concentration in the graph is obtained. Dots are displayed.

次に、図9のステップS16において、繰り返し回数10回における油分濃度と繰り返し回数20回における油分濃度が比較され、収束判定が実行される。上述のとおり、収束判定においては、予め記憶部105bに格納された所定の閾値と両油分濃度の差分とが比較され、図10に示す例では、収束していないとの判定がなされ、ステップS17にて現在の繰り返し回数20回(M)に加算回数10回(N)が加算され、同様の処理が実行される。図10においては、繰り返し回数60回まで実行した時の油分濃度がドット表示された状態を示している。   Next, in step S16 of FIG. 9, the oil concentration at the number of repetitions of 10 is compared with the oil concentration at the number of repetitions of 20, and the convergence determination is executed. As described above, in the convergence determination, the predetermined threshold value stored in advance in the storage unit 105b is compared with the difference between the two oil component concentrations, and in the example illustrated in FIG. The number of additions 10 (N) is added to the current number of repetitions 20 (M), and the same processing is executed. FIG. 10 shows a state in which the oil concentration when the repetition is performed up to 60 times is displayed in dots.

図10に示されるように、繰り返し回数40回、50回及び60回での油分濃度は、真値に収束している。図10より繰り返し回数が増えるに従い、被処理水中の油分が溶媒であるヘキサンに移動し、ある回数以上繰り返した後は、被処理水中の油分は完全に溶媒であるヘキサンに移動することで抽出されるため、その後に測定される油分濃度は同一の値(真値)となる。   As shown in FIG. 10, the oil concentration at the number of repetitions of 40, 50, and 60 converges to a true value. As the number of repetitions increases from FIG. 10, the oil content in the water to be treated moves to hexane, which is a solvent, and after repeating a certain number of times, the oil content in the water to be treated is completely extracted by moving to hexane, which is a solvent. Therefore, the oil concentration measured after that becomes the same value (true value).

図9及び図10にて説明したように、予め溶媒抽出工程における繰り返し回数(M)を求めておくことにより、異なる性状の被処理水であっても、当該被処理水中の油分濃度を高精度に測定することが可能となる。これは、被処理水の性状により当該被処理水中の油分が溶媒に完全に抽出されるまでの繰り返し回数が異なることに起因する。   As described with reference to FIGS. 9 and 10, by obtaining the number of repetitions (M) in the solvent extraction step in advance, even if the water to be treated has a different property, the oil concentration in the water to be treated is highly accurate. It becomes possible to measure. This is because the number of repetitions until the oil in the water to be treated is completely extracted into the solvent depends on the properties of the water to be treated.

以上のとおり、図8及び図9に示すフローはコントローラ105の制御により実行されるものであるため、油分測定装置1を自動化することが可能となる。   As described above, since the flows shown in FIGS. 8 and 9 are executed under the control of the controller 105, the oil content measuring apparatus 1 can be automated.

また、油水分離処理プラント等の開発では、事前に図9にて説明した溶媒抽出工程における繰り返し回数を求めておけば、プラントの開発現場で迅速に被処理水の油分濃度の変動を検出することが可能となる。   In the development of an oil / water separation treatment plant or the like, if the number of repetitions in the solvent extraction process described in FIG. 9 is obtained in advance, the fluctuation of the oil concentration in the treated water can be detected quickly at the plant development site. Is possible.

図11に、図1に示す油分測定装置1により測定される共振周波数の時間的変化を示す。図11では、横軸に時間、縦軸をセンサ回路104内の周波数測定部104aにより測定される共振周波数とし、油分抽出後の溶媒であるヘキサンを分注プローブ108より、水晶振動子103の表面電極301の略中央部の同一位置に三回滴下した場合を示している。   FIG. 11 shows a temporal change in the resonance frequency measured by the oil content measuring apparatus 1 shown in FIG. In FIG. 11, the horizontal axis represents time, the vertical axis represents the resonance frequency measured by the frequency measuring unit 104 a in the sensor circuit 104, and hexane, which is a solvent after oil extraction, is dispensed from the dispensing probe 108 to the surface of the crystal unit 103. The case where it dripped 3 times to the same position of the approximate center part of the electrode 301 is shown.

本実施例では、上述のとおり図9に示すフローにより求められた溶媒抽出工程における繰り返し回数(M)をコントローラ105内の記憶部105bに格納し溶媒抽出工程を実行し、センサ回路104及びコントローラ105(特に、演算部105a)により、溶媒抽出工程により油分が抽出された後の共振周波数を測定したものである。   In the present embodiment, as described above, the number of repetitions (M) in the solvent extraction process obtained by the flow shown in FIG. 9 is stored in the storage unit 105b in the controller 105, and the solvent extraction process is executed. (Especially, the resonance frequency after the oil is extracted by the solvent extraction step by the calculation unit 105a) is measured.

図11に示されるように、一回目の微量供給直後に測定される共振周波数は低い値を示し、その後所定の周期で測定される共振周波数は、時間と共に表面電極301上に付着するヘキサンの蒸発に伴い高い値へと変化し、ヘキサンが完全に蒸発した後は、測定される共振周波数はほぼ一定の値に収束する。このときの水晶振動子103の基本共振周波数fとの差分はΔf1(共振周波数の変化量)となる。続いて、一回目と同量を、表面電極301上の同じ位置に微量供給(二回目)し、同様に共振周波数を測定すると、ほぼ一定の値に収束後の共振周波数と基本共振周波数fとの差分はΔf2、更に、三回目の微量供給後に測定される共振周波数においては、基本共振周波数fとの差分はΔf3となる。 As shown in FIG. 11, the resonance frequency measured immediately after the first minute supply shows a low value, and then the resonance frequency measured at a predetermined period is the evaporation of hexane adhering to the surface electrode 301 with time. As the hexane is completely evaporated, the measured resonance frequency converges to a substantially constant value. The difference between the fundamental resonant frequency f 0 of the crystal oscillator 103 in this case is .DELTA.f1 (amount of change in the resonant frequency). Subsequently, when the same amount as the first time is supplied in a small amount (second time) to the same position on the surface electrode 301 and the resonance frequency is measured similarly, the resonance frequency after convergence to a substantially constant value and the basic resonance frequency f 0. the difference between the .DELTA.f2, further, in the resonance frequency measured after trace supply third time, the difference between the fundamental resonant frequency f 0 becomes .DELTA.f3.

図11に示すように、一回ごとの微量供給量を一定とした場合、供給回数と供給毎の共振周波数の変化量Δf1、Δf2、Δf3は直線的な関係を示しており、基本共振周波数fに対する変化量は十分な差分となり、より高精度の被処理水中の油分濃度を求めることが可能となる。 As shown in FIG. 11, when the minute supply amount for each time is constant, the number of times of supply and the change amounts Δf1, Δf2, and Δf3 of the resonance frequency for each supply show a linear relationship, and the basic resonance frequency f The amount of change with respect to 0 is a sufficient difference, and the oil concentration in the water to be treated can be determined with higher accuracy.

また、上記共振周波数の変化量の関係を最小二乗法等で導くことにより、被処理水中の油分濃度を求めるよう構成しても良い。   Moreover, you may comprise so that the oil content density | concentration in to-be-processed water may be calculated | required by guide | inducing the relationship of the variation | change_quantity of the said resonant frequency by the least squares method.

本実施例によれば、水処理現場における被処理水中に残留する油分を高精度に計測することが可能となる。   According to the present embodiment, it is possible to measure the oil remaining in the water to be treated at the water treatment site with high accuracy.

また、本実施例によれば、溶媒であるヘキサンに被処理水中の油分を効果的に移動させることができ、その後の油分抽出後のヘキサンをQCM法により油分濃度を測定するものであるため、低濃度の油分濃度の場合であっても計測することが可能となる。   In addition, according to this example, the oil content in the water to be treated can be effectively transferred to hexane as a solvent, and the hexane after subsequent oil extraction is measured for oil concentration by the QCM method. Even when the oil concentration is low, it is possible to measure.

また、油分濃度の測定の自動化を可能とでき、従来のように分析室の検査技師に依頼することなくOil&Gasの水処理現場で開発者が自ら油分濃度計測を行うことも可能となる。また、ヘキサンへの油分抽出において振動を利用しないため、振動による障害を回避できるという特徴がある。   In addition, it is possible to automate the measurement of oil concentration, and it is also possible for a developer to perform oil concentration measurement on the Oil & Gas water treatment site without requesting an inspection engineer in the laboratory as in the past. Moreover, since vibration is not used in the extraction of oil into hexane, there is a feature that a failure due to vibration can be avoided.

図12に、本発明の他の実施例に係る油分測定装置により測定される共振周波数の時間的変化を示す。実施例1では油分抽出後のヘキサン微量供給毎に測定される共振周波数に基づいて被処理水中の油分濃度を求めたのに対し、ヘキサン微量供給毎に測定される共振周波数を、複数回供給分で平均化し、被処理水中の油分濃度を求めるようにした点が異なる。その他の点は、実施例1と同様であるため説明を省略する。   FIG. 12 shows a temporal change in the resonance frequency measured by the oil content measuring apparatus according to another embodiment of the present invention. In Example 1, the concentration of oil in the water to be treated was obtained based on the resonance frequency measured every time a small amount of hexane was supplied after oil extraction, whereas the resonance frequency measured every time a small amount of hexane was supplied The difference is that the oil concentration in the water to be treated is obtained by averaging. Since other points are the same as those of the first embodiment, description thereof is omitted.

図12に示されるように一回目の油分抽出後のヘキサン供給では、測定される共振周波数と基本共振周波数fとの差分には優位差が得られない。複数回、油分抽出後のヘキサン供給毎に測定される水晶振動子103の共振周波数の時間的変化は、図12に示されるようになる。これは油分が希薄な被処理水を測定する場合に起こり得るものであり、一回の油分抽出後のヘキサンの微量供給量を実施例1と比較し多くしてある。そのため、水晶振動子103の表面電極301上に滴下されたヘキサンが蒸発するまでに時間を要し、ヘキサンで電極が覆われているあいだ、すなわち、ヘキサンが蒸発していない期間では、所定の周期で測定される共振周波数に変化が現れず、図12に示されるように、測定される共振周波数の時間変化が断続的となる。 FIG The hexane feed after the first round of oil extraction as shown in 12, no significant difference is obtained in the difference between the resonant frequency and the fundamental resonant frequency f 0 to be measured. FIG. 12 shows a temporal change in the resonance frequency of the crystal resonator 103 measured for each hexane supply after oil extraction a plurality of times. This can occur when measuring the water to be treated with a thin oil content, and the amount of trace amount of hexane after one oil extraction is increased as compared with Example 1. Therefore, it takes time for hexane dropped on the surface electrode 301 of the crystal unit 103 to evaporate, and while the electrode is covered with hexane, that is, during a period in which hexane is not evaporated, a predetermined cycle is required. No change appears in the resonance frequency measured at, and the time change of the resonance frequency measured becomes intermittent as shown in FIG.

このような場合には、複数回の供給から断続的な共振周波数の時間的変化を、コントローラ105内の記憶部105b内に格納する。そして、コントローラ105内の演算部105aにより、有意差の認められない断片データ毎にグループ化し、そのグループ内の各共振周波数の平均値を求めると共に、求めた平均値と基本共振周波数fとの差分ΔF1(共振周波数の平均変化量)、ΔF2を求め、記憶部105b内に格納する。演算部105aは、グループ毎の総供給量(体積)と共振周波数の平均変化量ΔF1、ΔF2から、実施例1と同様に、被処理水中の油分濃度を求める。 In such a case, the temporal change in the intermittent resonance frequency from a plurality of times of supply is stored in the storage unit 105 b in the controller 105. Then, the calculating section 105a in the controller 105, and grouped by unrecognized fragment data a significant difference, with an average value of the resonance frequencies in the group, the average value and the fundamental resonant frequency f 0 obtained The difference ΔF1 (average change in resonance frequency) and ΔF2 are obtained and stored in the storage unit 105b. The computing unit 105a obtains the oil concentration in the water to be treated from the total supply amount (volume) for each group and the average change amounts ΔF1 and ΔF2 of the resonance frequency, as in the first embodiment.

本実施例によれば、実施例1による効果に加え、油分が希薄な被処理水であっても、当該被処理水中に残留する油分を高精度に計測することが可能となる。   According to the present embodiment, in addition to the effects of the first embodiment, even when the water to be treated is thin, the oil remaining in the water to be treated can be measured with high accuracy.

以上、実施例1及び実施例2に係る油分測定装置1によれば、分注(微量供給)、蒸発、残留付着物の質量測定の操作を繰り返すことで、被処理水中に油分が含まれている限り、いくらでも油分濃度が低濃度の場合でも原理的には測定可能となる。しかし、より短時間で精度よく油分濃度を測定するためには最適な一回あたりの分注量が存在し、その条件はヘキサンの蒸発に影響を及ぼす油分測定装置1の動作環境毎に異なる。   As mentioned above, according to the oil content measuring apparatus 1 which concerns on Example 1 and Example 2, oil content is contained in to-be-processed water by repeating operation of dispensing (a trace amount supply), evaporation, and mass measurement of a residual deposit. As long as the oil concentration is as low as possible, it can be measured in principle. However, in order to accurately measure the oil concentration in a shorter time, there is an optimal one-time dispensing amount, and the conditions differ depending on the operating environment of the oil content measuring apparatus 1 that affects the evaporation of hexane.

また、逆に高油分濃度の被処理水を測定する場合、例えば、流体デバイス101による溶媒抽出工程後のヘキサンを、分注ノズル108により水晶振動子103の表面電極301上に微量供給できる最小分注量(0.1μLレベル)で、既に数百μグラムの油分が水晶振動子103の表面電極301上に残留する場合を想定する。この場合、水晶振動子103の共振周波数の動作範囲を超え、油分測定装置1による油分濃度測定が困難となる場合が生じ得る。このような場合には、油分測定装置1に被処理水を投入する前に、予め被処理水を適当に希釈し、希釈後の被処理水中の油分濃度を求めた後に、希釈倍率を用いて求めた油分濃度を補正すればよい。   Conversely, when measuring water to be treated having a high oil concentration, for example, the minimum amount that can supply a small amount of hexane after the solvent extraction step by the fluid device 101 onto the surface electrode 301 of the crystal unit 103 by the dispensing nozzle 108. It is assumed that an oil amount of several hundred μg already remains on the surface electrode 301 of the crystal unit 103 at the injection amount (0.1 μL level). In this case, the operation range of the resonance frequency of the crystal unit 103 may be exceeded, and it may be difficult to measure the oil concentration by the oil content measuring device 1. In such a case, before introducing the water to be treated into the oil content measuring apparatus 1, the water to be treated is appropriately diluted in advance, and after determining the oil concentration in the water to be treated after dilution, the dilution factor is used. What is necessary is just to correct | amend the calculated | required oil concentration.

なお、上述の実施例1及び実施例2の説明では、日本の公定法(水質汚濁防止法)において採用している油分抽出溶媒としてヘキサンを用いたが、これに限らず例えばアセトン、ジクロロメタン等、同様な機能・効果が得られる溶媒であれば用いることができる。   In the description of Example 1 and Example 2 above, hexane was used as the oil extraction solvent employed in the official method of Japan (Water Pollution Prevention Law), but not limited thereto, for example, acetone, dichloromethane, etc. Any solvent can be used as long as similar functions and effects can be obtained.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace the configurations of other embodiments with respect to a part of the configurations of the embodiments.

1・・・油分測定装置、101・・・流体デバイス、102・・・モータ、103・・・水晶振動子、104・・・センサ回路、104a・・・周波数測定部、104b・・・記憶部、104c・・・発振回路、105・・・コントローラ、105a・・・演算部、105b・・・記憶部、105c・・・制御部、105d・・・表示制御部、106・・・流入パイプ、107・・・流出パイプ、108・・・分注ノズル、109・・・表示部、111・・・抽出後のヘキサン、201・・・シリンジ、202・・・小径ノズル、203・・・連通孔、204・・・仕切り部、205・・・球体、206・・・流入口、207・・・流出口、208・・・ピストン、211・・・ピストンロッド、214・・・被処理水、215・・・ヘキサン、216・・・被処理水中の油分、301・・・表面電極、302・・・裏面電極、303・・・付着物、306・・・溶媒蒸発後の油分 DESCRIPTION OF SYMBOLS 1 ... Oil content measuring apparatus, 101 ... Fluid device, 102 ... Motor, 103 ... Crystal oscillator, 104 ... Sensor circuit, 104a ... Frequency measuring part, 104b ... Memory | storage part 104c ... Oscillator circuit 105 ... Controller 105a ... Calculation unit 105b ... Storage unit 105c ... Control unit 105d ... Display control unit 106 ... Inflow pipe 107 ... Outflow pipe, 108 ... Dispensing nozzle, 109 ... Display, 111 ... Hexane after extraction, 201 ... Syringe, 202 ... Small diameter nozzle, 203 ... Communication hole , 204 ... partition part, 205 ... sphere, 206 ... inlet, 207 ... outlet, 208 ... piston, 211 ... piston rod, 214 ... treated water, 215 ... Hexa , 216 ... treatment water in oil, 301 ... surface electrode, 302 ... back electrode, 303 ... deposits, 306 ... oil after solvent evaporation

Claims (15)

油分を含む被処理水を溶媒と混合し、前記油分を前記溶媒に抽出する溶媒抽出工程と、
前記油分抽出後の溶媒を水晶振動子上に所定量微量供給し、記水晶振動子の共振周波数を所定の周期で複数回測定する共振周波数測定工程と、
前記複数回測定された共振周波数の変化量が所定値以下のときの共振周波数に基づいて、前記溶媒が蒸発した後に前記水晶振動子上に残留する油分を測定する工程と、を備えたことを特徴とする油分測定方法。
A solvent extraction step of mixing water to be treated containing oil with a solvent, and extracting the oil into the solvent;
The resonance frequency measurement step of measuring a plurality of times in said solvent after oil extraction predetermined amount trace amount supplied onto the quartz oscillator to a predetermined period the resonance frequency before Symbol crystal oscillator,
Measuring the oil remaining on the crystal unit after the solvent has evaporated, based on the resonance frequency when the amount of change in the resonance frequency measured a plurality of times is equal to or less than a predetermined value. A characteristic oil content measuring method.
請求項1に記載の油分測定方法において、
前記溶媒抽出工程は、複数の貫通孔を有する仕切り部を内部に有し、前記仕切り部により長手方向に2つの空間が形成されたシリンジを用い、前記シリンジ内で前記油分を含む被処理水と溶媒とを前記複数の貫通孔を上下に通流させ、前記油分を前記溶媒に抽出することを特徴とする油分測定方法。
The oil content measuring method according to claim 1,
The solvent extraction step uses a syringe having a partition portion having a plurality of through holes therein, and two spaces are formed in the longitudinal direction by the partition portion, and water to be treated containing the oil in the syringe; An oil content measuring method, wherein a solvent is caused to flow up and down through the plurality of through holes, and the oil content is extracted into the solvent.
請求項2に記載の油分測定方法において、
前記油分を含む被処理水と溶媒とを前記複数の貫通孔を所定回数上下に通流させることを特徴とする油分測定方法。
In the oil content measuring method according to claim 2,
An oil content measuring method, wherein the water to be treated and the solvent containing the oil content are passed through the plurality of through holes up and down a predetermined number of times.
請求項3に記載の油分測定方法において、
前記貫通孔を所定回数上下に通流することにより前記油分が抽出された溶媒と前記被処理水を、静置させて分離し、
前記分離後の前記油分が抽出された溶媒を前記水晶振動子上に所定量微量供給することを特徴とする油分測定方法。
In the oil content measuring method according to claim 3,
The solvent from which the oil has been extracted and the water to be treated are separated by allowing the oil to be extracted by passing the through-hole up and down a predetermined number of times,
A method for measuring an oil content, wherein a predetermined amount of a solvent from which the oil content after the separation is extracted is supplied onto the crystal resonator.
請求項4に記載の油分測定方法において、
前記共振周波数測定工程により測定される前記所定の周期毎の共振周波数のうち、前回値との差分が所定値以下となるときの共振周波数と、前記油分抽出後の溶媒が微量供給される前に測定される前記水晶振動子の基本共振周波数との差分を前記共振周波数の変化量とし、当該変化量に基づき油分の質量を求めることを特徴とする油分測定方法。
In the oil content measuring method according to claim 4,
Among the resonance frequencies measured at the resonance frequency measurement step, the resonance frequency when the difference from the previous value is equal to or less than a predetermined value, and a small amount of the solvent after oil extraction is supplied. An oil content measuring method characterized in that a difference from the fundamental resonance frequency of the crystal resonator to be measured is a change amount of the resonance frequency, and a mass of the oil content is obtained based on the change amount.
請求項5に記載の油分測定方法において、
前記求めた油分の質量と、前記溶媒抽出工程における前記油分を含む被処理水の体積に基づき、前記油分を含む被処理水中の油分濃度を求めることを特徴とする油分測定方法。
In the oil content measuring method according to claim 5,
An oil content measuring method, wherein the oil concentration in the water to be treated containing the oil content is obtained based on the mass of the oil content obtained and the volume of the water to be treated containing the oil content in the solvent extraction step.
油分を含む被処理水を溶媒と混合し、前記油分を前記溶媒に抽出する流体デバイスと、
前記流体デバイスに接続され、前記油分抽出後の溶媒を水晶振動子上に所定量微量供給する分注ノズルと、
記水晶振動子の共振周波数を測定するセンサ回路と、
少なくとも前記流体デバイスおよび前記センサ回路を制御するコントローラと、
前記分注ノズルより前記所定量の油分抽出後の溶媒が微量供給された前記水晶振動子の共振周波数を前記センサ回路より所定の周期で複数回受信し、当該複数回受信した共振周波数の変化量が所定値以下のときの共振周波数に基づいて、前記溶媒が蒸発した後に前記水晶振動子上に残留する油分を測定する演算部と、を備えたことを特徴とする油分測定装置。
A fluid device for mixing water to be treated containing oil with a solvent, and extracting the oil into the solvent;
A dispensing nozzle connected to the fluidic device for supplying a predetermined amount of the solvent after the oil extraction onto the crystal unit;
And a sensor circuit for measuring the resonance frequency of the previous Symbol crystal oscillator,
A controller for controlling at least the fluidic device and the sensor circuit;
The resonance frequency of the crystal resonator to which a small amount of the solvent after extraction of the predetermined amount of oil is supplied from the dispensing nozzle is received a plurality of times from the sensor circuit at a predetermined cycle, and the amount of change in the resonance frequency received a plurality of times. An oil content measuring apparatus comprising: an arithmetic unit that measures oil content remaining on the crystal resonator after the solvent evaporates based on a resonance frequency when is less than or equal to a predetermined value .
請求項7に記載の油分測定装置において、
前記流体デバイスは、
複数の貫通孔を有する仕切り部を内部に有し、前記仕切り部により長手方向に2つの空間が形成された略円筒形状のシリンジと、
前記シリンジの内部であって、前記仕切り部より下方に配置され前記シリンジ内を上下に移動可能なピストンと、を備え、
前記ピストンの上下動により、前記シリンジ内で前記油分を含む被処理水と溶媒とを前記複数の貫通孔を上下に通流させ、前記油分を前記溶媒に抽出することを特徴とする油分測定装置。
In the oil content measuring device according to claim 7,
The fluidic device is:
A substantially cylindrical syringe having a partition part having a plurality of through-holes and having two spaces formed in the longitudinal direction by the partition part;
A piston inside the syringe and disposed below the partition and movable up and down in the syringe, and
An oil content measuring apparatus characterized by causing the water to be treated and the solvent containing the oil content in the syringe to flow up and down through the plurality of through holes and extracting the oil content into the solvent by the vertical movement of the piston. .
請求項8に記載の油分測定装置において、
前記仕切り部は、円柱状をなし、横断面略中央部に前記シリンジの長手方向に沿って貫通する第1の貫通孔と、前記第1の貫通孔の周囲に形成され前記シリンジの長手方向に沿って貫通する複数の第2の貫通孔を有し、
前記第1の貫通孔の孔径は、前記第2の貫通孔の孔径よりも大きいことを特徴とする油分測定装置。
In the oil content measuring apparatus according to claim 8,
The partition portion has a columnar shape, and is formed around a first through hole penetrating along the longitudinal direction of the syringe at a substantially central portion in a cross section, and is formed around the first through hole in the longitudinal direction of the syringe. A plurality of second through holes penetrating along,
The oil content measuring apparatus, wherein a hole diameter of the first through hole is larger than a hole diameter of the second through hole.
請求項9に記載の油分測定装置において、
前記コントローラは、前記ピストンを所定回数上下動させ、前記油分を含む被処理水と溶媒とを、少なくとも前記第1の貫通孔及び第2の貫通孔のうち何れか一方を上下に通流させることを特徴とする油分測定装置。
In the oil content measuring apparatus according to claim 9,
The controller moves the piston up and down a predetermined number of times, and causes the water to be treated and the solvent containing the oil to flow up and down at least one of the first through hole and the second through hole. Oil content measuring device characterized by.
請求項10に記載の油分測定装置において、
前記コントローラは、
前記ピストンの上下動を停止することにより、前記油分が抽出された溶媒と前記被処理水を分離し、
前記分離後の前記油分が抽出された溶媒を、前記ピストンを緩速上昇させることにより、前記分注ノズルを介して前記水晶振動子上に所定量微量供給することを特徴とする油分測定装置。
In the oil content measuring device according to claim 10,
The controller is
By stopping the vertical movement of the piston, the solvent from which the oil has been extracted and the water to be treated are separated,
An oil content measuring apparatus, wherein a small amount of a solvent from which the oil content after separation is extracted is supplied to the crystal resonator through the dispensing nozzle by slowly raising the piston.
請求項7に記載の油分測定装置において、
前記演算部は、前記センサ回路より受信される前記所定の周期毎の共振周波数のうち、前回値との差分が所定値以下となるときの共振周波数と、前記油分抽出後の溶媒が微量供給される前に測定される前記水晶振動子の基本共振周波数との差分を前記共振周波数の変化量とし、当該変化量に基づき油分の質量を求めることを特徴とする油分測定装置。
In the oil content measuring device according to claim 7,
The calculation unit is supplied with a small amount of the resonance frequency when the difference from the previous value is equal to or less than a predetermined value among the resonance frequencies received from the sensor circuit and the solvent after oil extraction. The oil content measuring apparatus is characterized in that a difference from the fundamental resonance frequency of the crystal resonator measured before measurement is used as a change amount of the resonance frequency, and a mass of the oil content is obtained based on the change amount.
請求項12に記載の油分測定装置において、
前記演算部は、前記求めた油分の質量と、前記流体デバイスにより前記油分を前記溶媒に抽出したときの前記油分を含む被処理水の体積に基づき、前記油分を含む被処理水中の油分濃度を求めることを特徴とする油分測定装置。
In the oil content measuring device according to claim 12,
The computing unit calculates the oil concentration in the water to be treated containing the oil based on the mass of the oil to be obtained and the volume of the water to be treated containing the oil when the oil is extracted into the solvent by the fluid device. An oil content measuring device characterized by being obtained.
請求項9に記載の油分測定装置において、
前記仕切り部の前記ピストンとの対向面と反対側の面は、略円錐状の窪みを有し、
前記第1の貫通孔の孔径よりも大きい直径を有する球体を、前記略円錐状の窪みを有する前記仕切り部の面の上方に配し、
前記コントローラによる前記ピストンの下降により、前記球体が前記第1の貫通孔を閉塞することを特徴とする油分測定装置。
In the oil content measuring apparatus according to claim 9,
The surface of the partition portion opposite to the surface facing the piston has a substantially conical recess.
A sphere having a diameter larger than the diameter of the first through hole is arranged above the surface of the partition portion having the substantially conical depression,
The oil content measuring apparatus, wherein the spherical body closes the first through-hole when the piston is lowered by the controller.
請求項9に記載の油分測定装置において、
前記溶媒が前記第2の貫通孔を上下に通流することにより、前記シリンジ内で微細な液滴に分散されることを特徴とする油分測定装置。
In the oil content measuring apparatus according to claim 9,
The oil content measuring apparatus, wherein the solvent is dispersed into fine droplets in the syringe by flowing up and down through the second through hole.
JP2014040101A 2014-03-03 2014-03-03 Method and apparatus for measuring oil content in water to be treated Expired - Fee Related JP6027564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014040101A JP6027564B2 (en) 2014-03-03 2014-03-03 Method and apparatus for measuring oil content in water to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014040101A JP6027564B2 (en) 2014-03-03 2014-03-03 Method and apparatus for measuring oil content in water to be treated

Publications (2)

Publication Number Publication Date
JP2015165199A JP2015165199A (en) 2015-09-17
JP6027564B2 true JP6027564B2 (en) 2016-11-16

Family

ID=54187734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014040101A Expired - Fee Related JP6027564B2 (en) 2014-03-03 2014-03-03 Method and apparatus for measuring oil content in water to be treated

Country Status (1)

Country Link
JP (1) JP6027564B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004456A (en) * 2016-07-01 2018-01-11 株式会社日立製作所 Oil content analyzer and oil content measurement method
CN114167035B (en) * 2021-12-14 2024-02-27 西安石油大学 Oil displacement efficiency measuring method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3784443B2 (en) * 1995-12-27 2006-06-14 冷化工業株式会社 Mixing device and stirring filtration device using the same
JP4459791B2 (en) * 2004-11-24 2010-04-28 株式会社堀場製作所 Oil concentration measuring method and oil concentration measuring apparatus

Also Published As

Publication number Publication date
JP2015165199A (en) 2015-09-17

Similar Documents

Publication Publication Date Title
EP3262395B1 (en) Vibronic sensor
JP6915215B2 (en) Devices and methods for measuring fluid properties using electromechanical resonators
US10794865B2 (en) Ultrasonic in-situ water-cut measurement using ultrasonic oil-water separation for affecting sound speed calibration
KR20150060908A (en) Method and device for measuring fluid body physical properties
JP2018523768A5 (en)
JP2017026560A (en) Oil content measuring device
JP6027564B2 (en) Method and apparatus for measuring oil content in water to be treated
Burg et al. Nonmonotonic energy dissipation in microfluidic resonators
Bhattacharjee et al. Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting
Li et al. Turning on/off satellite droplet ejection for flexible sample delivery on digital microfluidics
JP4956439B2 (en) Method and apparatus for dispensing and mixing small amounts of liquid
KR20150122570A (en) Method, program, and device for determining shear rate of fluid
WO2017130430A1 (en) Chromatograph device
CN103454438A (en) Sampling method
JP5725471B2 (en) Liquid-liquid extraction method of sample and liquid-liquid extraction apparatus of sample
CN110064452B (en) Method for producing micro-droplets
WO2015029183A1 (en) Method for evaluating range of shear rate acting on fluid, and program and device for same
US7096710B2 (en) Method for monitoring the operational capability of a transport device and liquid transport device
Mackley et al. Inkjet fluid characterization
KR102545163B1 (en) Dissolution monitoring method and apparatus
JPH01311250A (en) Method and device for measuring fluid viscosity
KR102011569B1 (en) Device for measuring viscosity of minute volume liquids and method thereof
JP2012047504A (en) Automatic analyzer
WO2015071681A1 (en) Dry mass detection
JP2008128743A (en) Stirring method of liquid material using quartz oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160418

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160418

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161014

R150 Certificate of patent or registration of utility model

Ref document number: 6027564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees