JP6027349B2 - Insulated wire and coil using the same - Google Patents

Insulated wire and coil using the same Download PDF

Info

Publication number
JP6027349B2
JP6027349B2 JP2012142085A JP2012142085A JP6027349B2 JP 6027349 B2 JP6027349 B2 JP 6027349B2 JP 2012142085 A JP2012142085 A JP 2012142085A JP 2012142085 A JP2012142085 A JP 2012142085A JP 6027349 B2 JP6027349 B2 JP 6027349B2
Authority
JP
Japan
Prior art keywords
repeating unit
insulated wire
polyimide resin
conductor
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012142085A
Other languages
Japanese (ja)
Other versions
JP2014007065A (en
Inventor
秀太 鍋島
秀太 鍋島
祐樹 本田
祐樹 本田
剛真 牛渡
剛真 牛渡
菊池 英行
英行 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012142085A priority Critical patent/JP6027349B2/en
Publication of JP2014007065A publication Critical patent/JP2014007065A/en
Application granted granted Critical
Publication of JP6027349B2 publication Critical patent/JP6027349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、絶縁電線及びそれを用いたコイルに関する。さらに詳しくは、高い部分放電開始電圧、優れた溶接性及び優れた長期熱劣化後の可とう性を有する絶縁電線及びそれを用いたコイルに関する。   The present invention relates to an insulated wire and a coil using the same. More specifically, the present invention relates to an insulated wire having a high partial discharge starting voltage, excellent weldability, and excellent flexibility after long-term thermal deterioration, and a coil using the same.

近年、産業用モータは、小型・軽量で高出力なものが望まれていることから、インバータ制御にて駆動されることが増えつつある。この高電圧駆動化に対して、インバータサージの重畳と相俟って、モータの絶縁電線に部分放電が発生するリスクが高まり、インバータサージ絶縁の対応が急務となっている。   In recent years, industrial motors are being driven by inverter control because they are desired to be small, light and have high output. For this high voltage drive, combined with inverter surge superposition, the risk of partial discharge occurring in the insulated wire of the motor is increased, and countermeasures for inverter surge insulation are urgently needed.

これまでの部分放電開始電圧(PDIV:Partial Discharge Inception Voltage)が低い絶縁電線は、部分放電が発生しやすく、これにより皮膜が徐々に侵食され、最終的には絶縁破壊に至る。従って、産業用モータのコイル等に十分に適するものではなかった。この部分放電に対する耐性を向上させる手法として、ポリイミド絶縁塗料(ポリイミド樹脂前駆体絶縁塗料)から形成されたポリイミド樹脂からなる絶縁皮膜(絶縁層)の誘電率を低下させて、部分放電を発生しにくくし、耐性を向上させる方法等が提案されている(例えば、特許文献1及び2参照)。   Insulated wires having a low partial discharge acceptance voltage (PDIV) so far tend to generate partial discharge, which gradually erodes the film and eventually leads to dielectric breakdown. Therefore, it has not been adequately suited for coils of industrial motors. As a technique to improve the resistance against partial discharge, the dielectric constant of the insulating film (insulating layer) made of polyimide resin formed from polyimide insulating paint (polyimide resin precursor insulating paint) is lowered to make it difficult to generate partial discharge. However, methods for improving resistance have been proposed (see, for example, Patent Documents 1 and 2).

特開2010−067408号公報JP 2010-0667408 A 特開2010−153099号公報JP 2010-153099 A

従来の絶縁電線では、極性基の割合が多く、誘電率が高いため、十分な部分放電開始電圧は得られない。特許文献1に記載の方法では、従来に比べ部分放電開始電圧は向上するものの、可とう性等機械的特性に弊害をもたらすおそれがある。また、近年、絶縁電線は、例えば、モータ作製時のコイルとして使用される場合、高温環境下での使用も想定されており、高長期の耐熱劣化性(皮膜の可とう性)や、溶接性が重要となっている。しかし、これまで、上述したような耐部分放電性、耐熱劣化性、溶接性を満足するような絶縁電線はなく、開発が急務となっていた。   In the conventional insulated wire, since the ratio of polar groups is large and the dielectric constant is high, a sufficient partial discharge start voltage cannot be obtained. In the method described in Patent Document 1, although the partial discharge start voltage is improved as compared with the prior art, there is a risk of adverse effects on mechanical properties such as flexibility. In recent years, insulated wires are also expected to be used in high-temperature environments when used, for example, as coils for motor production, and have long-term heat deterioration (film flexibility) and weldability. Is important. However, until now, there has been no insulated wire that satisfies the above-mentioned partial discharge resistance, heat deterioration resistance, and weldability, and development has been an urgent task.

上述の問題を解決するため、本発明は、高い部分放電開始電圧、優れた溶接性及び優れた長期熱劣化後の可とう性を有する絶縁電線、及びそれを用いたコイルを提供することを目的とする。   In order to solve the above-mentioned problems, the present invention aims to provide an insulated wire having a high partial discharge start voltage, excellent weldability and excellent flexibility after long-term thermal deterioration, and a coil using the same. And

上記目的を達成するために、本発明者等は、特定の構造を導入したポリイミド樹脂からなる絶縁層を用いることで、高いPDIV、優れた高温での溶接性及び優れた長期耐熱劣化を有する、モーターのコイル等の用途に適した絶縁電線を実現するに至った。   In order to achieve the above object, the present inventors have high PDIV, excellent high temperature weldability and excellent long-term heat deterioration by using an insulating layer made of a polyimide resin into which a specific structure is introduced. Insulated wires suitable for applications such as motor coils have been realized.

すなわち、ピロメリット酸二無水物(PMDA)と4,4’−ジアミノジフェニルエーテル(ODA)とから構成されるポリイミド樹脂に、ジアミン部分の構成成分として、長鎖ジアミンである2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)を導入して、得られるポリイミド樹脂を絶縁電線の絶縁層に用いることによって、絶縁電線の比誘電率が低下し、高いPDIVを有する絶縁電線が達成される。   That is, a polyimide resin composed of pyromellitic dianhydride (PMDA) and 4,4′-diaminodiphenyl ether (ODA) is added to 2,2-bis [4 which is a long-chain diamine as a constituent component of the diamine portion. By introducing-(4-aminophenoxy) phenyl] propane (BAPP) and using the resulting polyimide resin for the insulating layer of the insulated wire, the dielectric constant of the insulated wire is reduced, and an insulated wire having a high PDIV is obtained. Achieved.

また、2種の繰返し単位(A)と繰返し単位(B)とを差別化する、それぞれのジアミン部分の構成成分であるODAとBAPPとの割合(モル比)を、(ODA)/(BAPP)=50/50以上及び90/10以下の範囲とすることが好ましく、このように構成することで、従来のポリイミド樹脂に比べ、高いPDIVと、高温での溶接性及び長期の耐熱劣化性を満足する絶縁電線を実現することができる。従って、具体的には、上記目的を達成するため、本発明によれば、以下の絶縁電線及びそれを用いたコイルが提供される。   Further, the ratio (molar ratio) between ODA and BAPP, which are constituent components of each diamine moiety, which differentiates between the two types of repeating units (A) and (B), is (ODA) / (BAPP). = 50/50 or more and 90/10 or less is preferable, and by configuring in this way, high PDIV, high temperature weldability and long-term heat deterioration resistance are satisfied as compared with conventional polyimide resins. An insulated wire can be realized. Therefore, specifically, in order to achieve the above object, according to the present invention, the following insulated wire and a coil using the same are provided.

[1]導体と、前記導体の外周に設けられた、下記式(A)で表される繰返し単位と、下記式(B)で表される繰返し単位とを、モル比(繰返し単位(A)/繰返し単位(B))で、80/20以上及び90/10以下(ただし、前記繰返し単位(B)が12モル%以下の場合を除く)の範囲でN−メチル−2−ピロリドン(NMP)からなる溶剤中に溶解されて含有されたポリミド樹脂前駆体絶縁塗料を前記導体上に塗布し、焼付けすることによって得られるとともに、300℃における貯蔵弾性率が、1000MPa以上であるポリイミド樹脂からなる絶縁層と、を備え、前記ポリイミド樹脂の融点よりも高い熱が前記絶縁層に加わるように溶接されるのに用いられる絶縁電線。 [1] A molar ratio of a conductor and a repeating unit represented by the following formula (A) and a repeating unit represented by the following formula (B) provided on the outer periphery of the conductor (repeating unit (A)) N-methyl-2-pyrrolidone (NMP) in the range of 80/20 or more and 90/10 or less (except for the case where the repeating unit (B) is 12 mol% or less). the is dissolved in a solvent of poly Lee bromide resin precursor insulating paint contained consisting applied onto the conductor, together with the obtained by baking, the storage elastic modulus at 300 ° C., a polyimide resin is more than 1000MPa And an insulating wire that is used for welding so that heat higher than the melting point of the polyimide resin is applied to the insulating layer.

[2]前記ポリイミド樹脂は、前記繰返し単位(A)及び繰返し単位(B)のテトラカルボン酸二無水物部分の構成成分であるピロメリット酸二無水物(PMDA)と、ジアミン部分の構成成分である4,4'−ジアミノジフェニルエーテル(ODA)及び2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)とが、N−メチル−2−ピロリドン(NMP)からなる溶剤中に溶解されて含有されたポリミド樹脂前駆体絶縁塗料を、皮膜化することによって得られるものである前記[1]に記載の絶縁電線。 [2] The polyimide resin is composed of pyromellitic dianhydride (PMDA), which is a component of the tetracarboxylic dianhydride part of the repeating unit (A) and the repeating unit (B), and a component of a diamine part. A certain 4,4′-diaminodiphenyl ether (ODA) and 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) in a solvent composed of N-methyl-2-pyrrolidone (NMP) insulated wire according poly Lee bromide resin precursor insulating varnish that is contained is dissolved, the is obtained by coating of [1].

[3]前記[1]又は[2]に記載の絶縁電線を用いたコイル。 [3] A coil using the insulated wire according to [1] or [2].

本発明によれば、高い部分放電開始電圧、優れた溶接性及び優れた長期熱劣化後の可とう性を有する絶縁電線、及びそれを用いたコイルを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the insulated wire which has a high partial discharge start voltage, the outstanding weldability, and the flexibility after the long-term thermal deterioration, and a coil using the same can be provided.

[実施の形態の要約]
本実施の形態の絶縁電線は、導体と、導体の外周に設けられたポリイミド樹脂からなる絶縁層とを備えた絶縁電線において、前記絶縁層は、上記式(A)で表される繰返し単位と、上記式(B)で表される繰返し単位とを、モル比(繰返し単位(A)/繰返し単位(B))で、50/50以上及び90/10以下の範囲で含有するとともに、300℃における貯蔵弾性率が、1000MPa以上であるポリイミド樹脂からなるものである。
[Summary of embodiment]
The insulated wire of the present embodiment is an insulated wire comprising a conductor and an insulating layer made of polyimide resin provided on the outer periphery of the conductor, wherein the insulating layer is a repeating unit represented by the above formula (A) And the repeating unit represented by the above formula (B) in a molar ratio (repeating unit (A) / repeating unit (B)) in the range of 50/50 or more and 90/10 or less, and 300 ° C. The storage elastic modulus is made of a polyimide resin having a viscosity of 1000 MPa or more.

以下、本発明の絶縁電線の好適な一の実施の形態について説明する。   Hereinafter, a preferred embodiment of the insulated wire of the present invention will be described.

本実施の形態の絶縁電線は、上述のように、導体と、前記導体の外周に設けられた、上記式(A)で表される繰返し単位と、上記式(B)で表される繰返し単位とを、モル比(繰返し単位(A)/繰返し単位(B))で、50/50以上及び90/10以下の範囲で含有するとともに、300℃における貯蔵弾性率が、1000MPa以上であるポリイミド樹脂からなる絶縁層と、を備えて構成される。   As described above, the insulated wire of the present embodiment includes a conductor, a repeating unit represented by the above formula (A), and a repeating unit represented by the above formula (B) provided on the outer periphery of the conductor. And a molar ratio (repeating unit (A) / repeating unit (B)) in the range of 50/50 or more and 90/10 or less, and a polyimide resin having a storage elastic modulus at 300 ° C. of 1000 MPa or more. And an insulating layer.

ポリイミド樹脂を構成する繰返し単位(B)が、モル比で50を超えると、高温環境下で長時間曝された場合、皮膜化した時に、皮膜が脆化する。また、高温での弾性率が低下し、加工した際に、皮膜の変形や膨れのリスクを生じる。   When the repeating unit (B) constituting the polyimide resin exceeds 50 in terms of molar ratio, the film becomes brittle when formed into a film when exposed for a long time in a high temperature environment. In addition, the elastic modulus at high temperatures is lowered, and there is a risk of deformation or swelling of the film when processed.

繰返し単位(B)が、モル比で10未満であると、誘電率が大きくなり、高PDIV化の効果が期待できない。従って、繰返し単位(B)は、モル比で10〜50であることが必要である。   When the repeating unit (B) is less than 10 in terms of molar ratio, the dielectric constant increases and the effect of increasing PDIV cannot be expected. Accordingly, the repeating unit (B) needs to be 10 to 50 in molar ratio.

ポリイミド樹脂の300℃の弾性率は、加工性を考慮すると、1000MPa以上であることが必要である。これは、導体の外周に形成された絶縁層が、繰返し単位(A)及び繰返し単位(B)を含有し、300℃における弾性率が1000MPa以上であるポリイミド樹脂からなることによって、長期的に絶縁層に熱が加わっても、絶縁層が劣化しにくく、また、瞬間的に絶縁層にポリイミド樹脂の融点よりも高い熱が加わっても、劣化しにくいからである。このような絶縁層を備えた構成とすることによって、高温での溶接性、長期耐熱劣化性に優れた絶縁電線とすることができる。特に、長期の耐熱劣化性を考慮すると、繰返し単位(B)は、モル比で、10〜30であることが好ましい。   The elastic modulus at 300 ° C. of the polyimide resin needs to be 1000 MPa or more in consideration of workability. This is because the insulating layer formed on the outer periphery of the conductor is made of a polyimide resin containing a repeating unit (A) and a repeating unit (B) and having an elastic modulus at 300 ° C. of 1000 MPa or more, so that insulation is achieved for a long time. This is because even if heat is applied to the layer, the insulating layer is not easily deteriorated, and even if heat higher than the melting point of the polyimide resin is instantaneously applied to the insulating layer, the insulating layer is not easily deteriorated. By setting it as the structure provided with such an insulating layer, it can be set as the insulated wire excellent in the weldability in high temperature and long-term heat-resistant deterioration. In particular, considering long-term heat deterioration resistance, the repeating unit (B) is preferably 10 to 30 in terms of molar ratio.

また、前記ポリイミド樹脂は、後述するように、例えば、前記繰返し単位(A)及び繰返し単位(B)のテトラカルボン酸二無水物部分の構成成分であるピロメリット酸二無水物(PMDA)と、ジアミン部分の構成成分である4,4'−ジアミノジフェニルエーテル(ODA)及び2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)とが、所定の溶剤中に溶解されて含有されたポリミド樹脂前駆体絶縁塗料を、皮膜化することによって得られるものである。 In addition, as described later, the polyimide resin, for example, pyromellitic dianhydride (PMDA) that is a constituent component of the tetracarboxylic dianhydride part of the repeating unit (A) and the repeating unit (B), Containing constituents of the diamine part, 4,4′-diaminodiphenyl ether (ODA) and 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) dissolved in a predetermined solvent poly Lee bromide resin precursor insulating paint, it is obtained by coating of.

本実施の形態に用いられるポリイミド樹脂は、上述の特性を損なわない範囲において、繰返し単位(A)及び繰返し単位(B)以外の繰返し単位を含んでもよい。以下に、本実施の形態に使用することができる化合物の例を示す。   The polyimide resin used in the present embodiment may contain a repeating unit other than the repeating unit (A) and the repeating unit (B) as long as the above-described properties are not impaired. Examples of compounds that can be used in this embodiment are shown below.

「テトラカルボン酸二無水物成分」
テトラカルボン酸二無水物成分としては、例えば、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’−オキシジフタル酸二無水物(ODPA)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)等を挙げることができる。
"Tetracarboxylic dianhydride component"
Examples of the tetracarboxylic dianhydride component include 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA) and 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride. Product (DSDA), 4,4′-oxydiphthalic dianhydride (ODPA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 4,4 ′-(2,2- And hexafluoroisopropylidene) diphthalic dianhydride (6FDA).

「ジアミン成分」
ジアミン成分としては、例えば、4,4’−ジアミノジフェニルエーテル(ODA)、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)、ビス[4−(4−アミノフェノキシ)フェニル]スルホン(BAPS)、ビス[4−(4−アミノフェノキシ)フェニル]エーテル(BAPE)、4,4’−ビス(4−アミノフェノキシ)ビフェニル(BAPB)、1,4−ビス(4−アミノフェノキシ)ベンゼン、9,9−ビス(4−アミノフェニル)フルオレン(FDA)、1,4−ジアミノベンゼン、2,4−ジアミノトルエン、4,4’−ジアミノジフェニルメタン、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、4,4’−ジアミノベンゾフェノン、4,4’−ビス(4−アミノフェニル)スルフィド、4,4’−ジアミノジフェニルスルホン等、又はそれらの異性体を挙げることができる。
"Diamine component"
Examples of the diamine component include 4,4′-diaminodiphenyl ether (ODA), 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), and bis [4- (4-aminophenoxy) phenyl. Sulfone (BAPS), bis [4- (4-aminophenoxy) phenyl] ether (BAPE), 4,4′-bis (4-aminophenoxy) biphenyl (BAPB), 1,4-bis (4-aminophenoxy) ) Benzene, 9,9-bis (4-aminophenyl) fluorene (FDA), 1,4-diaminobenzene, 2,4-diaminotoluene, 4,4′-diaminodiphenylmethane, 2,2′-dimethyl-4, 4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 4,4'-diaminoben Phenone, 4,4'-bis (4-aminophenyl) sulfide, 4,4'-diaminodiphenyl sulfone, or can be given their isomers.

本実施の形態に用いられるポリイミド樹脂を得る手法としては、例えば、テトラカルボン酸二無水物と、上述の2種の繰返し単位(繰返し単位(A)及び繰返し単位(B))を構成する成分であるODA及びBAPPを含むジアミンとを共重合させる手法が挙げられる。また、繰返し単位(A)を有するポリイミド樹脂を所定の溶剤に溶解させたものと、繰返し単位(B)を有するポリイミド樹脂を所定の溶剤に溶解させたものとを、それぞれ混合することによっても得ることができるが、これに限定されるわけではない。   As a method for obtaining the polyimide resin used in the present embodiment, for example, tetracarboxylic dianhydride and the above-described two types of repeating units (repeating unit (A) and repeating unit (B)) are used. There is a method of copolymerizing a diamine containing ODA and BAPP. Alternatively, the polyimide resin having the repeating unit (A) is dissolved in a predetermined solvent and the polyimide resin having the repeating unit (B) is dissolved in a predetermined solvent. However, it is not limited to this.

本実施の形態に用いられるポリイミド樹脂では、テトラカルボン酸二無水物と、ODA及びBAPPを含むジアミンとの配合比(モル比)を100:100からずらしてもよい。テトラカルボン酸二無水物やジアミンのいずれかを過剰に配合し(例えば、103:100)、分子量制御を行うことで作業の改善を図ってもよい。要するに、上記特性を損なわない範囲であれば特に制限はない。   In the polyimide resin used in this embodiment, the compounding ratio (molar ratio) of tetracarboxylic dianhydride and diamine containing ODA and BAPP may be shifted from 100: 100. Either tetracarboxylic dianhydride or diamine may be added in excess (for example, 103: 100), and molecular weight control may be performed to improve work. In short, there is no particular limitation as long as the above characteristics are not impaired.

溶剤としては、N−メチル−2−ピロリドン(NMP)、γ−ブチロラクトン、N、N−ジメチルアセトアミド(DMAc)、N、N−ジメチルホルムアミド(DMF)、ジメチルイミダゾリジノン(DMI)、シクロヘキサノン、メチルシクロヘキサノン等のポリイミド樹脂の合成反応を阻害しない溶剤を併用して合成してもよいし、希釈してもよい。また、希釈用途として、芳香族アルキルベンゼン類等を併用してもよい。但し、ポリイミド樹脂の溶解性を低下させるおそれがある場合は考慮する必要がある。   Solvents include N-methyl-2-pyrrolidone (NMP), γ-butyrolactone, N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), dimethylimidazolidinone (DMI), cyclohexanone, methyl It may be synthesized in combination with a solvent that does not inhibit the synthesis reaction of polyimide resin such as cyclohexanone, or may be diluted. In addition, aromatic alkylbenzenes and the like may be used in combination for dilution purposes. However, it is necessary to consider when there is a possibility of lowering the solubility of the polyimide resin.

本実施の形態の絶縁電線としては、例えば、断面が、丸形状若しくは四角形状の導体の外周、又は他の皮膜の外周に、ポリイミド樹脂層、例えば、ポリイミド樹脂前駆体絶縁塗料を、絶縁層(皮膜)として、塗布・焼付けによって皮膜化したもの、を形成したものを挙げることができる。   As an insulated wire of the present embodiment, for example, a polyimide resin layer, for example, a polyimide resin precursor insulating paint is applied to the outer periphery of a conductor having a round or square cross section, or other coating, and an insulating layer ( Examples of the film) include those formed by coating and baking.

また、例えば、絶縁層(皮膜)の外周に、潤滑性を付与するための潤滑付与層、耐傷性を付与する耐傷性付与層、及び可とう性付与層、また、絶縁層(皮膜)の内周と導体の外周との間に、密着性付与層等を塗布焼付け等により形成してもよい。   In addition, for example, a lubricant imparting layer for imparting lubricity, a scratch resistance imparting layer for imparting scratch resistance, a flexibility imparting layer, and an insulating layer (skin) on the outer periphery of the insulating layer (skin). An adhesion providing layer or the like may be formed between the circumference and the outer circumference of the conductor by coating and baking.

また、導体は、銅導体からなり、主に無酸素銅や低酸素銅等が使用される。なお導体にはこれに限定されるものではなく、例えば、銅の外周にニッケル等の金属めっきを施した導体も使用可能である。   Moreover, a conductor consists of a copper conductor and an oxygen-free copper, a low oxygen copper, etc. are mainly used. Note that the conductor is not limited to this, and for example, a conductor obtained by performing metal plating such as nickel on the outer periphery of copper can also be used.

本発明の絶縁電線を用いたコイルとしては、特に制限はなく、本発明の絶縁電線を用い、汎用の方法によって製造することができる。   There is no restriction | limiting in particular as a coil using the insulated wire of this invention, It can manufacture by a general purpose method using the insulated wire of this invention.

以下に、本発明の絶縁電線を、実施例を用いてさらに具体的に説明する。但し、実施例1,3,4は参考例である。なお、本発明は、以下の実施例によって、いかなる制限を受けるものではない。 Below, the insulated wire of this invention is demonstrated more concretely using an Example. However, Examples 1 , 3, and 4 are reference examples. Note that the present invention is not limited in any way by the following examples.

(実施例1)
4,4’−ジアミノジフェニルエーテル(ODA)を360.9g、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)を82.2g、NMP3120gに溶解した後、ピロメリット酸二無水物(PMDA)436.9gを溶解させ、窒素中、室温で12時間撹拌し、ポリアミック酸塗料(ポリイミド樹脂前駆体絶縁塗料)を得た。また、得られたポリイミド樹脂前駆体絶縁塗料を、直径が0.8mmの導体上に塗布、焼付けを繰り返し皮膜厚40μmのポリイミド樹脂からなる絶縁層を有する絶縁電線を得た。この場合、繰返し単位(A)と繰返し単位(B)とのモル比(繰返し単位(A)/繰返し単位(B))=90/10とした。
Example 1
After dissolving 360.9 g of 4,4′-diaminodiphenyl ether (ODA), 82.2 g of 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) and 3120 g of NMP, pyromellitic acid 2 436.9 g of anhydride (PMDA) was dissolved and stirred in nitrogen at room temperature for 12 hours to obtain a polyamic acid paint (polyimide resin precursor insulating paint). The obtained polyimide resin precursor insulating coating was applied on a conductor having a diameter of 0.8 mm and baked repeatedly to obtain an insulated wire having an insulating layer made of a polyimide resin having a film thickness of 40 μm. In this case, the molar ratio of the repeating unit (A) to the repeating unit (B) (repeating unit (A) / repeating unit (B)) = 90/10.

(実施例2)
4,4’−ジアミノジフェニルエーテル(ODA)を306.2g、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)を156.8g、NMP3120gに溶解した後、ピロメリット酸二無水物(PMDA)417.0gを溶解させ、窒素中、室温で12時間撹拌し、ポリアミック酸塗料(ポリイミド樹脂前駆体絶縁塗料)を得た。また、得られたポリイミド樹脂前駆体絶縁塗料を直径が0.8mmの導体上に塗布、焼付けを繰り返し皮膜厚40μmのポリイミド樹脂からなる絶縁層を有する絶縁電線を得た。この場合、繰返し単位(A)と繰返し単位(B)とのモル比(繰返し単位(A)/繰返し単位(B))=80/20とした。
(Example 2)
After dissolving 4,4′-diaminodiphenyl ether (ODA) in 306.2 g, 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) in 156.8 g, and NMP3120 g, pyromellitic acid 2 417.0 g of anhydride (PMDA) was dissolved and stirred in nitrogen at room temperature for 12 hours to obtain a polyamic acid paint (polyimide resin precursor insulating paint). Moreover, the obtained polyimide resin precursor insulating coating was applied onto a conductor having a diameter of 0.8 mm and baked repeatedly to obtain an insulated wire having an insulating layer made of a polyimide resin having a film thickness of 40 μm. In this case, the molar ratio of the repeating unit (A) to the repeating unit (B) (repeating unit (A) / repeating unit (B)) = 80/20.

(実施例3)
4,4’−ジアミノジフェニルエーテル(ODA)を256.2g、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)を225.0g、NMP3120gに溶解した後、ピロメリット酸二無水物(PMDA)398.8gを溶解させ、窒素中、室温で12時間撹拌し、ポリアミック酸塗料(ポリイミド樹脂前駆体絶縁塗料)を得た。また、得られたポリイミド樹脂前駆体絶縁塗料を直径が0.8mmの導体上に塗布、焼付けを繰り返し皮膜厚40μmのポリイミド樹脂からなる絶縁層を有する絶縁電線を得た。この場合、繰返し単位(A)と繰返し単位(B)とのモル比(繰返し単位(A)/繰返し単位(B))=70/30とした。
(Example 3)
After dissolving 256.2 g of 4,4′-diaminodiphenyl ether (ODA), 225.0 g of 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) and 3120 g of NMP, pyromellitic acid 2 398.8 g of anhydride (PMDA) was dissolved and stirred in nitrogen at room temperature for 12 hours to obtain a polyamic acid paint (polyimide resin precursor insulating paint). Moreover, the obtained polyimide resin precursor insulating coating was applied onto a conductor having a diameter of 0.8 mm and baked repeatedly to obtain an insulated wire having an insulating layer made of a polyimide resin having a film thickness of 40 μm. In this case, the molar ratio of the repeating unit (A) to the repeating unit (B) (repeating unit (A) / repeating unit (B)) = 70/30.

(実施例4)
4,4’−ジアミノジフェニルエーテル(ODA)を168.3g、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)を344.9g、NMP3120gに溶解した後、ピロメリット酸二無水物(PMDA)366.8gを溶解させ、窒素中、室温で12時間撹拌し、ポリアミック酸塗料(ポリイミド樹脂前駆体絶縁塗料)を得た。また、得られたポリイミド樹脂前駆体絶縁塗料を直径が0.8mmの導体上に塗布、焼付けを繰り返し皮膜厚40μmのポリイミド樹脂からなる絶縁層を有する絶縁電線を得た。この場合、繰返し単位(A)と繰返し単位(B)とのモル比(繰返し単位(A)/繰返し単位(B))=50/50とした。
Example 4
After dissolving 168.3 g of 4,4′-diaminodiphenyl ether (ODA), 344.9 g of 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) and 3120 g of NMP, pyromellitic acid 2 366.8 g of anhydride (PMDA) was dissolved and stirred in nitrogen at room temperature for 12 hours to obtain a polyamic acid paint (polyimide resin precursor insulating paint). Moreover, the obtained polyimide resin precursor insulating coating was applied onto a conductor having a diameter of 0.8 mm and baked repeatedly to obtain an insulated wire having an insulating layer made of a polyimide resin having a film thickness of 40 μm. In this case, the molar ratio of the repeating unit (A) to the repeating unit (B) (repeating unit (A) / repeating unit (B)) = 50/50.

(比較例1)
4,4’−ジアミノジフェニルエーテル(ODA)を390.3g、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)を42.1g、NMP3120gに溶解した後、ピロメリット酸二無水物(PMDA)447.6gを溶解させ、窒素中、室温で12時間撹拌し、ポリアミック酸塗料(ポリイミド樹脂前駆体絶縁塗料)を得た。また、得られたポリイミド樹脂前駆体絶縁塗料を直径が0.8mmの導体上に塗布、焼付けを繰り返し皮膜厚40μmのポリイミド樹脂からなる絶縁層を有する絶縁電線を得た。この場合、繰返し単位(A)と繰返し単位(B)とのモル比(繰返し単位(A)/繰返し単位(B))=95/5とした。
(Comparative Example 1)
After dissolving 390.3 g of 4,4′-diaminodiphenyl ether (ODA), 42.1 g of 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) and 3120 g of NMP, pyromellitic acid 2 447.6 g of anhydride (PMDA) was dissolved and stirred in nitrogen at room temperature for 12 hours to obtain a polyamic acid paint (polyimide resin precursor insulating paint). Moreover, the obtained polyimide resin precursor insulating coating was applied onto a conductor having a diameter of 0.8 mm and baked repeatedly to obtain an insulated wire having an insulating layer made of a polyimide resin having a film thickness of 40 μm. In this case, the molar ratio of the repeating unit (A) to the repeating unit (B) (repeating unit (A) / repeating unit (B)) = 95/5.

(比較例2)
4,4’−ジアミノジフェニルエーテル(ODA)を129.5g、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)を397.9g、NMP3120gに溶解した後、ピロメリット酸二無水物(PMDA)352.6gを溶解させ、窒素中、室温で12時間撹拌し、ポリアミック酸塗料(ポリイミド樹脂前駆体絶縁塗料)を得た。また、得られたポリイミド樹脂前駆体絶縁塗料を直径が0.8mmの導体上に塗布、焼付けを繰り返し皮膜厚40μmのポリイミド樹脂からなる絶縁層を有する絶縁電線を得た。この場合、繰返し単位(A)と繰返し単位(B)とのモル比(繰返し単位(A)/繰返し単位(B))=40/60とした。
(Comparative Example 2)
After dissolving 129.5 g of 4,4′-diaminodiphenyl ether (ODA), 397.9 g of 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) and 3120 g of NMP, pyromellitic acid 2 352.6 g of anhydride (PMDA) was dissolved and stirred in nitrogen at room temperature for 12 hours to obtain a polyamic acid paint (polyimide resin precursor insulating paint). Moreover, the obtained polyimide resin precursor insulating coating was applied onto a conductor having a diameter of 0.8 mm and baked repeatedly to obtain an insulated wire having an insulating layer made of a polyimide resin having a film thickness of 40 μm. In this case, the molar ratio of the repeating unit (A) to the repeating unit (B) (repeating unit (A) / repeating unit (B)) = 40/60.

(絶縁電線の特性評価)
実施例1〜4及び比較例1〜2で得られた絶縁電線の特性(長期熱劣化試験、溶接性及び部分放電開始電圧(PDIV))を以下のようにして評価した。
(Characteristic evaluation of insulated wires)
The characteristics (long-term thermal deterioration test, weldability and partial discharge start voltage (PDIV)) of the insulated wires obtained in Examples 1 to 4 and Comparative Examples 1 to 2 were evaluated as follows.

「部分放電開始電圧(PDIV(Vp))」
JIS記載の方法により、ツイストペアの絶縁電線のサンプルを作製し、端部から10mmの位置まで絶縁皮膜を削って端末処理部を形成した。測定は耐圧モードで行い端末処理部に電極を接続し、23℃×50%RH雰囲気で50Hzの電圧を10〜30V/sで昇圧させながら、ツイストペアの絶縁電線に100pCの放電が1秒間に50回発生する電圧まで昇圧して行った。これを3回繰返し、それぞれの値の平均値を部分放電開始電圧とした。皮膜厚40μmで、920Vp以上を○、920Vp未満を×とした。
"Partial discharge start voltage (PDIV (Vp))"
A twisted pair insulated wire sample was prepared by the method described in JIS, and the terminal treatment part was formed by scraping the insulating film from the end to a position of 10 mm. The measurement is performed in a withstand voltage mode, an electrode is connected to the terminal processing section, and a 100 pC discharge is applied to the insulated wire of the twisted pair for 50 seconds per second while increasing the voltage of 50 Hz at 10 to 30 V / s in an atmosphere of 23 ° C. × 50% RH. The voltage was raised to the voltage generated twice. This was repeated three times, and the average value of each value was taken as the partial discharge start voltage. With a film thickness of 40 μm, 920 Vp or more was rated as ◯, and less than 920 Vp was rated as x.

「長期熱劣化試験(可とう性)」
得られた絶縁電線を、220℃の恒温槽に投入し、500hr熱劣化試験を行った。熱劣化試験後の皮膜の可とう性試験を行い、5倍径で割れが生じないもの(5d以上の場合)を合格(○)とし、5倍径で割れが生じた(5d未満の場合)を×とした。
"Long-term thermal degradation test (flexibility)"
The obtained insulated wire was put into a constant temperature bath at 220 ° C., and a 500 hr thermal deterioration test was conducted. The film was subjected to a flexibility test after the thermal degradation test, and a crack that did not occur at 5 times diameter (5d or more) passed (○), and a crack occurred at 5 times diameter (if less than 5d). Was marked with x.

「溶接性」
得られた絶縁電線を、ティグ(Tig)溶接した際、外観良好なもの(皮膜の膨れ等外観に異常がない場合)を○、膨れ等が生じ外観が悪化する場合を×とした。
"Weldability"
When the obtained insulated wire was Tig welded, the one with good appearance (when there was no abnormality in the appearance such as film swelling) was marked with ○, and the case where the appearance deteriorated due to blistering was marked with ×.

なお、「貯蔵弾性率」は、各絶縁塗料を用いて、5mm×20mm×25μm(厚さ)のシート状の評価用絶縁皮膜を作製した。次に、動的粘弾性測定装置(アイティー計測制御(株)製DVA−200)を用いて、室温から400℃まで10℃/minで昇温し、1Hz振動時の評価用絶縁皮膜の貯蔵弾性率を測定した。   As for the “storage modulus”, a sheet-like insulating coating for evaluation of 5 mm × 20 mm × 25 μm (thickness) was prepared using each insulating paint. Next, using a dynamic viscoelasticity measuring apparatus (DVA-200 manufactured by IT Measurement Control Co., Ltd.), the temperature is raised from room temperature to 400 ° C. at 10 ° C./min, and the insulating coating for evaluation during 1 Hz vibration is stored. The elastic modulus was measured.

最後に、実施例1〜4及び比較例1〜2において用いられたポリイミド樹脂の繰返し単位(A)と繰返し単位(B)とのモル比及び貯蔵弾性率、並びに特性評価の結果を、表1にまとめて示す。   Finally, the molar ratio and storage elastic modulus of the repeating units (A) and the repeating units (B) of the polyimide resins used in Examples 1 to 4 and Comparative Examples 1 to 2 and the results of property evaluation are shown in Table 1. It summarizes and shows.

(1)貯蔵弾性率:300℃で1000MPa以上を○、1000MPa未満を×
(2)長期熱劣化:220℃で500hr加熱後の可とう性試験で、5d以上を○、5d未満を×
(3)溶接性:溶接性試験後の溶接部近傍の皮膜に膨れ等の発生がないものを○、発生のあるものを×
(4)PDIV:23℃×50%RHの環境下で、920Vp以上を○、920Vp未満を×
(1) Storage modulus: 1000 MPa or more at 300 ° C., less than 1000 MPa x
(2) Long-term thermal deterioration: In a flexibility test after heating at 220 ° C. for 500 hr, 5d or more is indicated as ◯, and 5d or less
(3) Weldability: ○ indicates that there is no blistering in the film near the weld after the weldability test.
(4) PDIV: In an environment of 23 ° C. × 50% RH, 920 Vp or more is ○, and less than 920 Vp is ×

表1に示すように、実施例1〜4に係る絶縁電線は、部分放電開始電圧(PDIV)が高く、かつ、高温での溶接性、長期耐熱劣化に優れることが分かる。   As shown in Table 1, it can be seen that the insulated wires according to Examples 1 to 4 have a high partial discharge start voltage (PDIV) and are excellent in weldability at high temperatures and long-term heat deterioration.

他方、比較例1に係る絶縁電線は、高温での溶接性、長期耐熱劣化に優れるものの、部分放電開始電圧(PDIV)が低い結果であった。また、比較例2に係る絶縁電線は、部分放電開始電圧(PDIV)が高いものの、高温での溶接性、長期耐熱劣化が劣る結果であった。   On the other hand, the insulated wire according to Comparative Example 1 was excellent in weldability at high temperatures and long-term heat deterioration, but had a low partial discharge start voltage (PDIV). Moreover, although the insulated wire which concerns on the comparative example 2 had high partial discharge start voltage (PDIV), it was a result inferior in the weldability in high temperature and long-term heat-resistant deterioration.

以上、本発明の実施の形態及び実施例を説明したが、上記した実施の形態及び実施例は、特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組み合わせの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments and examples of the present invention have been described above, the above-described embodiments and examples do not limit the invention according to the claims. In addition, it should be noted that not all the combinations of features described in the embodiments and examples are essential to the means for solving the problems of the invention.

Claims (3)

導体と、
前記導体の外周に設けられた、下記式(A)で表される繰返し単位と、下記式(B)で表される繰返し単位とを、モル比(繰返し単位(A)/繰返し単位(B))で、80/20以上及び90/10以下(ただし、前記繰返し単位(B)が12モル%以下の場合を除く)の範囲でN−メチル−2−ピロリドン(NMP)からなる溶剤中に溶解されて含有されたポリミド樹脂前駆体絶縁塗料を前記導体上に塗布し、焼付けすることによって得られるとともに、300℃における貯蔵弾性率が、1000MPa以上であるポリイミド樹脂からなる絶縁層と、を備え、
前記ポリイミド樹脂の融点よりも高い熱が前記絶縁層に加わるように溶接されるのに用いられる絶縁電線。
Conductors,
The repeating unit represented by the following formula (A) and the repeating unit represented by the following formula (B) provided on the outer periphery of the conductor are in a molar ratio (repeating unit (A) / repeating unit (B). ) And dissolved in a solvent composed of N-methyl-2-pyrrolidone (NMP) in the range of 80/20 or more and 90/10 or less (except when the repeating unit (B) is 12 mol% or less). is poly Lee bromide resin precursor insulating varnish that is contained is applied onto the conductor, together with the obtained by baking, storage elastic modulus at 300 ° C. is an insulating layer made of a polyimide resin is more than 1000 MPa, the Prepared,
An insulated wire used for welding so that heat higher than the melting point of the polyimide resin is applied to the insulating layer.
前記ポリイミド樹脂は、前記繰返し単位(A)及び繰返し単位(B)のテトラカルボン酸二無水物部分の構成成分であるピロメリット酸二無水物(PMDA)と、ジアミン部分の構成成分である4,4'−ジアミノジフェニルエーテル(ODA)及び2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)とが、N−メチル−2−ピロリドン(NMP)からなる溶剤中に溶解されて含有されたポリミド樹脂前駆体絶縁塗料を、皮膜化することによって得られるものである請求項1に記載の絶縁電線。 The polyimide resin is composed of pyromellitic dianhydride (PMDA), which is a constituent of the tetracarboxylic dianhydride part of the repeating unit (A) and the repeating unit (B), and a constituent of the diamine part. 4′-diaminodiphenyl ether (ODA) and 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) are dissolved in a solvent composed of N-methyl-2-pyrrolidone (NMP). the insulated wire according to claim 1 poly Lee bromide resin precursor insulating varnish that is contained, those obtained by coating of. 請求項1又は2に記載の絶縁電線を用いたコイル。

The coil using the insulated wire of Claim 1 or 2.

JP2012142085A 2012-06-25 2012-06-25 Insulated wire and coil using the same Active JP6027349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012142085A JP6027349B2 (en) 2012-06-25 2012-06-25 Insulated wire and coil using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012142085A JP6027349B2 (en) 2012-06-25 2012-06-25 Insulated wire and coil using the same

Publications (2)

Publication Number Publication Date
JP2014007065A JP2014007065A (en) 2014-01-16
JP6027349B2 true JP6027349B2 (en) 2016-11-16

Family

ID=50104606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012142085A Active JP6027349B2 (en) 2012-06-25 2012-06-25 Insulated wire and coil using the same

Country Status (1)

Country Link
JP (1) JP6027349B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221126A (en) * 1987-03-09 1988-09-14 Kanegafuchi Chem Ind Co Ltd Polyimide resin of excellent water absorption characteristic
JP2013253124A (en) * 2012-06-05 2013-12-19 Sumitomo Electric Wintec Inc Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same

Also Published As

Publication number Publication date
JP2014007065A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5931654B2 (en) Insulated wire and coil using the same
JP6019809B2 (en) Insulated wire and coil using the same
JP5609732B2 (en) Insulating paint and insulated wire using the same
JP5761151B2 (en) Insulated wires and coils
WO2012102121A1 (en) Polyimide resin varnish, and insulated electrical wire, electrical coil, and motor using same
JP2013131423A (en) Electrically insulated electric wire and coil
JP6394697B2 (en) Insulated wires and coils
JP2012184416A (en) Polyamideimide resin insulation coating and insulated electric wire formed by using the same
JP2012224697A (en) Polyimide resin varnish, and electric insulated wire, electric appliance coil and motor using the same
JP2013191356A (en) Insulation electric wire and coil formed by using the same
JP2013253124A (en) Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same
JP2013051030A (en) Insulated wire and armature coil using the same, motor
WO2020203193A1 (en) Insulated electrical wire, coil, and electrical/electronic appliance
JP2012233123A (en) Polyimide resin varnish, insulated electric wire using the same, electric machine coil, and motor
JP2012234625A (en) Insulation wire, electric machine coil using the same, and motor
JP2015108062A (en) Branched polyamic acid, polyamic acid coating material, and insulated electric wire using the same
JP2013101759A (en) Insulation wire, electric machine coil using the same, and motor
JP6865592B2 (en) Manufacturing method of resin varnish, insulated wire and insulated wire
JP6027349B2 (en) Insulated wire and coil using the same
JP2013155281A (en) Insulating coating, insulated wire using the insulating coating, and coil using the insulated wire
JP5837397B2 (en) Insulated wire and electric coil and motor using the same
JP2013028695A (en) Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same
JP6964412B2 (en) Insulated wire and its manufacturing method
JP5712901B2 (en) Insulated wire and coil
JP7179132B2 (en) insulated wire

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160120

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161014

R150 Certificate of patent or registration of utility model

Ref document number: 6027349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350