JP6026160B2 - 振り子角度を用いる制御弁 - Google Patents

振り子角度を用いる制御弁 Download PDF

Info

Publication number
JP6026160B2
JP6026160B2 JP2012155184A JP2012155184A JP6026160B2 JP 6026160 B2 JP6026160 B2 JP 6026160B2 JP 2012155184 A JP2012155184 A JP 2012155184A JP 2012155184 A JP2012155184 A JP 2012155184A JP 6026160 B2 JP6026160 B2 JP 6026160B2
Authority
JP
Japan
Prior art keywords
pendulum
spool
load port
land
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012155184A
Other languages
English (en)
Other versions
JP2014016011A (ja
Inventor
勝美 佐々木
勝美 佐々木
加代 中川
加代 中川
昭人 風戸
昭人 風戸
隆行 遠竹
隆行 遠竹
広道 福井
広道 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
West Japan Railway Co
Pneumatic Servo Controls Ltd
Original Assignee
Railway Technical Research Institute
West Japan Railway Co
Pneumatic Servo Controls Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, West Japan Railway Co, Pneumatic Servo Controls Ltd filed Critical Railway Technical Research Institute
Priority to JP2012155184A priority Critical patent/JP6026160B2/ja
Publication of JP2014016011A publication Critical patent/JP2014016011A/ja
Application granted granted Critical
Publication of JP6026160B2 publication Critical patent/JP6026160B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Safety Valves (AREA)

Description

本発明は、振り子角度を用いる制御弁に係り、特に、車体傾斜制御気体圧を発生させるために用いられる振り子角度を用いる制御弁に関する。
通常、鉄道車両の曲線軌道にはカントが設けられているが、カント量から定まる均衡速度よりも高速で車両が曲線を走行すると、カントで相殺できない超過遠心加速度が発生して乗り心地が悪くなる。そこで、超過遠心加速度と重力との合力が車体床面に垂直に働くように、車体をさらに傾斜できるような車体傾斜制御が行われる。そのような車体傾斜を可能にしたものとして、振り子式車両が知られている。
例えば、特許文献1には、振り子式車両の車体傾斜装置として、台車状にコロ装置を設けると共に、車体に空気バネ等のバネ装置を介して曲面形状の振り子梁をコロ装置に結合させて設け、振り子梁と台車の間に設けたシリンダを作動制御器からの信号で作動させて車体を傾斜させることが述べられている。
ここでは、作動制御器への制御信号として、速度検出器によって速度を検知し、予め収集し記憶されている走行路線の曲線形状情報から最適な傾斜角度を演算器で算出して与えられるとされている。
また、特許文献2には、鉄道車両の車体姿勢制御装置として、乗客の増減等に対応して台車に対する車体の高さである車高を自動的に調整する自動高さ調整機構(LV)を車体に対し回転可能に支持し、このLVに重りを設ける構造が開示されている。ここで鉄道車両が曲線を高速で走行して超過遠心加速度が作用するときは、重りによってLVが車体に対し回転し、これによって、外軌側の空気ばねに空気を供給して外軌側の車高を高くすることが述べられている。
特開2002−67944号公報 特開2010−137622号公報
直線区間が多い走行路線のときは、演算器で一々最適傾斜角度を算出しなくても、超過遠心加速度がある程度の大きさになったことで車体を傾斜させることで足りる。そのような場合に、超過遠心加速度に応じて振れる振り子を用い、振り子角度に基づいて車体を傾斜させるための制御気体圧を発生させることにすれば、構造が簡単になることが考えられる。
しかし、車両の振動によって振り子運動には振動成分が重畳するので、振り子角度をそのままで車体を傾斜させる制御気体圧を発生するために用いることができない。また、予め定めた設定振り子角度以上のときに車体を傾斜させるための制御気体圧を発生させるものとするには、振り子角度に対し所定の不感帯を設けることが必要になる。このように、振り子角度を利用して車体傾斜のための制御気体圧を発生させるためには、課題が残されている。なお、特許文献2は、自動高さ調整装置自体を振り子として用いることに相当するが、自動高さ調整装置の内部の軸の回転抵抗が大きいので、超過遠心加速度で回転させるには相当大きな重りが必要となる。
本発明の目的は、車体傾斜制御気体圧を適切に出力することができる振り子角度を用いる制御弁を提供することである。
本発明に係る振り子角度を用いる制御弁は、加速度を受けて予め定められた回転中心の周りに振り子運動をする振り子と、振り子の振り子角度に応じて駆動され、ステムの軸方向に沿って第1ランドと第2ランドが設けられるスプールと、スプールを軸方向移動可能に支持し、供給気体圧を有する気体を供給する供給ポート、第1ランドに対応して設けられる第1負荷ポートと第2ランドに対応して設けられる第2負荷ポート、外部に排気する排気ポートとを有するスリーブと、スプールの軸方向変位に対し、所定のバネ定数を有する弾性力を与えるバネ部と、スプールの軸方向変位に対し、所定の減衰定数を有する減衰力を与えるダンパ部と、を備え、スリーブに対してスプールが中立位置にあるときに、第1負荷ポートと第2負荷ポートは共に排気ポートに連通する位置関係にあり、振り子角度に応じて中立位置からスリーブの第2負荷ポートの側に向かってスプールが変位するときには第1負荷ポートが第1ランドによって一旦遮断状態とされた後、さらに予め定めた第1不感帯変位量を超えて変位をすることで第1負荷ポートが供給ポートと連通する位置関係にあり、振り子角度に応じて中立位置からスリーブの第1負荷ポート側に向かってスプールが変位するときには第2負荷ポートが第2ランドによって一旦遮断状態とされた後、さらに予め定めた第2不感帯変位量を超えて所定の変位をすることで第2負荷ポートが供給ポートと連通する位置関係にあることが好ましい。
また、本発明に係る振り子角度を用いる制御弁において、ダンパ部とは別に、振り子の自由振動を抑制する振り子ダンパを備えることが好ましい。
また、本発明に係る振り子角度を用いる制御弁において、スリーブを含む筐体部に設けられる振り子の回転中心と、振り子の回転中心を挟んで振り子の反対側に振り子と一体的に設けられるスプール側先端部と、スプール側先端部に設けられるバネ座と、を備え、バネ部は、スプールの第1ランド側の端部とバネ座との間に設けられる第1コイルバネ、スプールの第2ランド側の端部とバネ座との間に設けられる第2コイルバネを含み、ダンパ部は、スプールの第1ランド側の端部とスリーブの第1負荷ポート側の端部内壁との間の第1気体空間と、スプールの第2ランド側の端部とスリーブの第2負荷ポート側の端部内壁との間の第2気体空間との間を、絞り部を介して連通路で連通して用いることが好ましい。
上記構成により、振り子角度を用いる制御弁は、振り子角度に応じて駆動されるスプールを有するスプール・スリーブ機構を用い、スプールの軸方向変位に対し、所定のバネ定数を有する弾性力を与えるバネ部と、スプールの軸方向変位に対し、所定の減衰定数を有する減衰力を与えるダンパ部と、を備える。バネ定数と減衰定数を適切に設定することで、回転中心に対し振動が加わったときでも、振り子運動に対するその振動の影響を抑制することができ、振り子角度を制御に用いることが可能になる。
また、スプールのランド位置とスリーブの負荷ポート位置について、中立位置では2つの負荷ポートが共に排気ポートに連通し、第1不感帯変位量を超えてスプールが変位すると第1負荷ポートに供給気体圧が出力され、第2不感帯変位量を超えてスプールが変位すると第2負荷ポートに供給気体圧が出力されるように設定される。このように設定されることで、振り子角度がある程度の大きさとなって、第1不感帯変位量または第2不感帯変位量を超えるときに、初めて車両傾斜制御気体圧を発生させるものとできる。
また、ダンパ部とは別に、振り子の自由振動を抑制する振り子ダンパを備えるので、振り子の自由振動の影響を受けない振り子角度を用いて、車両の傾斜制御を適切に行うことができる。
また、振り子角度を用いる制御弁において、振り子の回転中心を挟んで振り子の反対側に振り子と一体的に設けられるスプール側先端部にバネ座が設けられる。このバネ座とスプールとの間にバネ部を設け、スプール端部とスリーブ端部との間に形成される空間をダンパ部とすることで、小型でありながら適切な減衰特性を有する振り子角度を用いる制御弁とすることができる。また、第1気体空間と第2気体空間とを接続する連通路に絞り部が設けられるので、ダンパ部の減衰定数の設定自由度が増す。
本発明に係る実施の形態の振り子角度を用いる制御弁の構成図である。 本発明に係る実施の形態の振り子角度を用いる制御弁の中立状態の断面図である。 本発明に係る実施の形態の振り子角度を用いる制御弁において、振り子が回転したときを示す断面図である。 本発明に係る実施の形態の振り子角度を用いる制御弁において、振り子角度等と負荷ポートの出力の関係を示す図である。 本発明に係る実施の形態の振り子角度を用いる制御弁の振動モデルを示す図である。
以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下では、スプール・スリーブ機構においてスプールとスリーブとの間の空間をダンパ部として用いるものとして説明するが、外付けのダンパ部を設けるものであってもよい。
以下で説明する振動数、角度等は説明のための例示であり、振り子角度を用いる制御弁の仕様に応じ適宜変更が可能である。
以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。
図1は、振り子角度を用いる制御弁10の構成図である。振り子角度を用いる制御弁10は、振り子12と、筐体部14の中に設けられる振り子ダンパ30とスプール・スリーブ機構50を含んで構成される。振り子角度を用いる制御弁10は、筐体部14に設けられる回転中心16を中心として回転可能な振り子12の振り子運動を利用して、スプール・スリーブ機構50のスプール56の軸方向駆動を行い、スリーブ54の2つの負荷ポートである第1負荷ポート104と第2負荷ポート108の出力を制御するものである。
振り子角度を用いる制御弁10は、例えば、これを鉄道車両の車体等に設けるものとできる。その場合、鉄道車両が曲線区間を走行するときに生じる超過遠心加速度の大きさを振り子12の回転角度である振り子角度で検出し、この検出に応じて、第1負荷ポート104と第2負荷ポート108の出力を制御する。
振り子12は、回転中心16周りに回転運動をする質量体である錘である。図1では、振り子12は球形形状として示されるが、球形形状以外の形状であってもよい。例えば、円板形状であってもよく、矩形板形状、楕円板形状等であってもよい。振り子12は、その質量に作用する加速度を受けると、回転中心16周りに回転する。図1では、振り子12が受ける加速度をαとし、振り子12の回転中心16周りの回転角度である振り子角度をθとして示した。
筐体部14は、振り子角度を用いる制御弁10の本体を構成するケースである。筐体部14には、回転中心16と、振り子ダンパ30と、スプール・スリーブ機構50が設けられる。
回転中心16は、筐体部14に設けられる回転支持軸で、振り子12を軸の周りに回転自在に支持する機能を有する。回転中心16を筐体部14に設けられる回転支持穴とし、振り子12をこの回転支持穴の周りに回転自在に支持するものとしてもよい。
接続軸20は、振り子12と回転中心16と振り子ダンパ30とスプール・スリーブ機構50を接続し、振り子12の回転中心16周りの運動を振り子ダンパ30とスプール・スリーブ機構50に伝達する機能を有する部材である。接続軸20は、回転中心16に対応して設けられる中心円板24と、振り子ダンパ30に対応して設けられる球体32と、スプール・スリーブ機構50に対応して設けられる球体52を有し、これらを振り子側アーム22とスプール側アーム26で接続した細長い軸体である。
中心円板24は、回転中心16の回転支持軸に対応する穴が設けられる回転円板である。上記のように、回転中心16を回転支持穴とするときは、回転支持穴に対応する回転軸が設けられる。振り子側アーム22は、中心円板24と振り子12の間を接続する。
スプール側アーム26は、回転中心16を挟んで振り子12と反対側に振り子側アーム22が延長された形で設けられる。スプール側アーム26の中間に設けられる球体32は、振り子12の回転中心16周りの運動を振り子ダンパ30の移動体36に伝達する部材である。スプール側アーム26の先端部に設けられる球体52は、回転中心16周りの振り子12の運動をスプール・スリーブ機構50のスプール56に伝達する機能を有する部材である。
振り子ダンパ30は、内部空間を有するダンパ筐体34と、ダンパ筐体34の内部空間内に配置される移動体36を備える。ダンパ筐体34の内部空間は円筒状空洞で、移動体36は、その円筒状空洞内を摺動する円筒体である。図1に示されるダンパ空間38,40は、ダンパ筐体34の内部空間の軸方向両端の内壁と移動体36の両端との間に形成される空間である。連通路42は、ダンパ空間38,40を接続し、絞り部44は連通路42に設けられ、ダンパ空間38,40の間の気体の流通を制限する機能を有する。
振り子ダンパ30は、接続軸20の球体32に対して摺動可能な円筒部33を備える。球体32と円筒部33は、振り子12の回転中心16周りの回転運動を移動体36の直進運動に変換する機能を有する。図1に示すように、振り子12が回転中心16周りにθ方向に回転するときは、接続軸20のスプール側アーム26も球体32も回転中心16周りにθ方向に回転する。球体32が回転中心16周りにθの円弧運動をすると、球体32は、円筒部33に対し回転摺動または摺動しながら、図1に示すX方向に円筒部33を移動させる。X方向は振り子ダンパ30の軸方向である。なお、球体32の円筒部33に対する摺動方向はX方向に対し垂直な方向である。このようにして、振り子12の回転中心16周りのθ方向の回転運動は、振り子ダンパ30において移動体36のX方向の直進運動に変換される。
振り子ダンパ30において移動体36がX方向に移動すると、ダンパ空間38,40の容積が変化する。上記の場合では、移動体36がX方向に移動するので、ダンパ空間38の容積が減少し、ダンパ空間40の容積が増加する。ダンパ空間38,40は、絞り部44を介して連通路42によって連通しているので、これによって、移動体36のX方向の移動は、減衰力を受け、振り子ダンパ30は、振り子12の運動に対しダンパとして作用する。
振り子ダンパ30のダンパとしての役割は、振り子12の自由振動を抑制するものである。すなわち、振り子12に加わる加速度αを振り子角度θで検出しようとするとき、振り子14が自由振動しては困る。振り子14が自由振動すると、振り子角度θは、加速度αによるものと、自由振動によるものとが重複するからである。したがって、振り子14の自由振動を抑制して、振り子角度θが加速度αを正確に反映するように、絞り部44の絞り量が設定される。
なお、振り子14の自由振動が振り子ダンパ30によって適切に抑制されたとして、振り子角度を用いる制御弁10には、筐体部14に対するノイズ振動NAが加わる。ノイズ振動NAは振り子12の自由振動に対するものでなく、筐体部14が取り付けられる対象物の振動によるものである。ノイズ振動NAの抑制は、振り子ダンパ30によっても一部行われるが、主には、スプール・スリーブ機構50に設けられるバネ部とダンパ部によって行われる。これについては後述する。
図1において、スプール側アーム26の先端間に設けられる球体52は、振り子12の回転中心16周りの運動を、スプール・スリーブ機構50のスプール56に伝達する。図1に示されるように、振り子12が回転中心16周りにθ回転すると、球体52も回転中心16周りにθ回転する。
筐体部14に組み込まれるスプール・スリーブ機構50は、スプール56とスリーブ54で構成される。スリーブ54は、筐体部14に固定される。スプール・スリーブ機構50の詳細な構成と作用を図2から図4を用いて説明する。
図2は、スプール・スリーブ機構50の中立状態を示す図である。中立状態は、振り子12が自然状態で回転中心16からぶら下がっている状態で、振り子側アーム22とスプール側アーム26の中心線が重力方向に平行な状態である。この中立状態では、球体52は、スプール・スリーブ機構50の長手方向についての中心位置で、短手方向についての中心位置にある。この状態がスリーブ54に対しスプール56が中立位置にある状態である。なお、スプール・スリーブ機構50の長手方向はX方向である。したがって、中立状態では、θ=0で、球体52の位置はX=0である。
スプール56は、内部に空洞空間を有し、長手方向を軸方向とする円筒状の部材である。スリーブ54も、内部に空洞空間を有し、長手方向を軸方向とする円筒状の部材である。スリーブ54の空洞空間の内壁は、スプール56の軸方向移動を摺動自在に支持する機能を有する。
スリーブ54の空洞空間の軸方向の長さは、スプール56の外径の軸方向長さよりも長く設定される。すなわち、スリーブ54の空洞空間にスプール56が配置されて、中立状態のときに、スリーブ54の空洞空間の軸方向の両端部と、スプール56の外径の軸方向の両端部との間にそれぞれ気体空間が形成される。この両端の気体空間は、スプール56が軸方向に移動するときに、ダンパ空間として作用する。2つの気体空間を区別して、紙面の右側の気体空間を第1気体空間80、紙面の左側でX方向側の気体空間を第2気体空間82と呼ぶことができる。
連通路84は、第1気体空間80と第2気体空間82を接続し、絞り部86は連通路84に設けられ、第1気体空間80と第2気体空間82の間の気体の流通を制限する機能を有する。第1気体空間80と第2気体空間82を絞り部86を介して連通路84で接続したものがダンパ部として機能する。
スプール56は、長手方向を軸方向とし、短手方向を径方向として、軸方向に沿って径方向の寸法が小さいステムと径方向の大きいランドとを有する。ランドは、軸方向の両端にそれぞれ設けられる端部ランド58,64と、端部ランド58,64の間にステムの軸方向に沿って設けられる第1ランド60と第2ランド62の合計4つである。第1ランド60側の端部ランドを第1端部ランド58、第2ランド62側の端部ランドを第2端部ランド64と呼ぶと、図2では、スプール56の軸方向に沿って、紙面の右側から紙面の左側のX方向に向かって、第1端部ランド58、第1ランド60、第2ランド62、第2端部ランド64の順に配置される。
スプール56の内部には空洞空間が設けられる。この内部の空洞空間は、軸方向に沿った円筒状空間である。その円筒状空間の中に設けられるバネ座70,72は、スプール側アーム26の先端に設けられた球体52を回転自在に支持することができる部材である。バネ座70,72は、図3で後述するようにスプール側アーム26が回転中心16の周りに回転するときに、その回転に応じて、スプール側アーム26の先端の球体52をその円筒面で支持する。
このような構造によって、回転中心16に対し、振り子12がθ方向に回転し、球体52がθ方向に回転するとき、バネ座70,72は、図2に示すX方向に移動する。X方向とは、第1ランド60から第2ランド62に向かう方向である。逆に、回転中心16に対し、振り子12がθ方向とは反対の方向に回転するとき、バネ座70,72は、第2ランド62から第1ランド60に向かう方向に移動する。
スプール56の内部の円筒状空間の両端内壁と、バネ座70,72との間にはそれぞれバネ部が設けられる。2つのバネ部を区別するため、紙面の右側のバネ部を第1コイルバネ76、紙面の左側でX方向側のバネ部を第2コイルバネ78と呼ぶことができる。スプール56について、紙面の右側の端部を第1端部、紙面の左側でX方向の端部を第2端部とすると、第1コイルバネ76は、一方端がスプール56の第1端部に接続され、他方端がバネ座70に接続される。第2コイルバネ78は、他方端がスプール56の第2端部に接続され、一方端がバネ座72に接続される。
スプール・スリーブ機構50の中立状態のとき、第1コイルバネ76と第2コイルバネ78の軸方向の長さは同じで、予め定めた圧縮状態にある。
スリーブ54は、スプール56の軸方向移動を摺動自在に支持する内壁を有する。スリーブ54の内壁には、軸方向に沿って5つの開口部が設けられる。5つの開口部は、紙面の右側から紙面の左側のX方向に向かって、第1供給口90、第1負荷口92、排気口94、第2負荷口96、第2供給口98の順に配置される。第1供給口90と第2供給口98とは連通路100によって互いに接続される。
第1負荷口92は、第1負荷ポート104としてスリーブ54の外部に開口する。第2負荷口96は、第2負荷ポート108としてスリーブ54の外部に開口する。第1負荷ポート104と第2負荷ポート108は、2つの負荷に対し、それぞれ制御気体圧を有する気体を供給するポートとして用いられる。図2では、第1負荷ポート104にQ1、第2負荷ポート108にQ2とそれぞれ示されているが、Q1,Q2は、そこを流れる気体流量を表わしている。
連通路100によって互いに接続されている第1供給口90と第2供給口98はスリーブ54の外部に開口する。図2では第1供給口90に対応して第1供給ポート102、第2供給口98に対応して第2供給ポート110が示されているが、いずれか一方がスリーブ54の外部に開口すれば足りる。以下では、第1供給ポート102がスリーブ54の外部に開口するものとして説明を続ける。第1供給ポート102は、図示されていない気体供給源に接続され、予め定めた供給気体圧PSを有する気体が供給される。図2では、第1供給ポート102、第2供給ポート110をPSとして示し、そのことを表わした。排気口94は、排気ポート106としてスリーブ54の外部に開口する。排気ポート106は大気に開放される。図2では排気ポート106をEXとして示し、そのことを表わした。
スプール56の第1ランド60、第2ランド62と、スリーブ54の5つの開口部の間の配置関係は、次のように設定される。すなわち、スリーブ54に対してスプール56が中立位置にあるときに、第1負荷口92は、排気口94と連通する位置にあり、第2負荷口96も、排気口94と連通する位置にあるように設定される。
すなわち、中立位置にある状態では、第1ランド60は、第1負荷口92を完全に閉じず、第1負荷口92と第1供給口90との間は遮断されるが、第1負荷口92と排気口94が連通する。また、第2ランド62は、第2負荷口96を完全に閉じず、第2負荷口96と第2供給口98との間は遮断されるが、第2負荷口96と排気口94が連通する。
そのときの気体の流れを、図2において、第1負荷ポート104から第1負荷口92へ、第1負荷口92から第1ランド60と第2ランド62の間のステムへ、ステムから排気口94を経て排気ポート106に向かう矢印で示した。同様に、第2負荷ポート108から第2負荷口96へ、第2負荷口96から第2ランド62と第1ランド60の間のステムへ、ステムから排気口94を経て排気ポート106に向かう方向に気体が流れることを矢印で示した。
図3は、振り子12が回転中心16に対してθ方向に回転し、球体52が回転中心16に対してθ方向に回転したときの状態を示す図である。このとき、バネ座70,72は、球体52のθ方向の回転運動によって、X方向に移動駆動される。バネ座70,72がX方向に移動駆動されることで、第2コイルバネ78がより圧縮され、第1コイルバネ76の圧縮力が弱められる。これによって、スプール56は、第2気体空間82の容積を少なくし、一方で第1気体空間80の容積を大きくするように働く。
したがって、バネ座70,72がX方向に移動するとき、2つのバネ部である第1コイルバネ76、第2コイルバネ78の弾性力と、第1気体空間80、第2気体空間82を含んで構成されるダンパ部の減衰力を受けながら、スプール56がX方向に移動することになる。
スプール56が中立位置からX方向に移動するときについて、スプール56の第1ランド60、第2ランド62と、スリーブ54の5つの開口部の間の配置関係は、図4に示されるように、以下のように設定される。ここで、図4の縦軸は第1負荷ポート104に流れる流量Q1で、正方向は供給ポート102側から第1負荷ポート104に向かって流れる気体の流量で、負方向は第1負荷ポート104から排気ポート106に向かって流れる気体の流量である。横軸は、振り子12の振り子角度θと、振り子角度θに対応するスプール56のX方向の位置である。
すなわち、第1負荷口92と第1ランド60の重なりは、中立位置のとき排気口94に向けて一部開口している状態であるが、スプール56がX=X11まで移動駆動されることで、一旦、第1負荷口92が第1ランド60によって完全に遮蔽される状態となる。そして、X方向にさらにある程度変位するまで、遮蔽状態が継続する。X=X12になるまで遮蔽状態が継続すると、ΔX1=(X12−X11)の間は、第1負荷口92に接続される第1負荷ポート104の出力状態が変化しない。ΔX1を第1負荷ポート104における不感帯変位量と呼ぶことにすると、X=X11から不感帯変位量ΔX1を超えた位置であるX=X12まで変位するときに初めて、第1負荷ポート104の気体圧が第1制御気体圧PC1となる。
これを振り子12の振り子角度θと関連して説明すると、以下のようである。すなわち、振り子12が中立位置のときは、第1負荷ポート104は排気ポート106に連通しているので、第1負荷ポート104の気体圧は大気圧である。振り子12が中立位置のθ=0からθ=θ11まで回転すると、第1負荷口92が第1ランド60によって一旦遮蔽される。θ11はX11に対応する回転角度である。したがって、θ11の量は、中立位置における第1ランド60と第1負荷口92の間の開口部分の軸方向の長さの設定で決まる。中立位置における開口部分の軸方向の長さの値が大きいほど、θ11は大きくなる。
そして、振り子12がさらにθ=θ12に回転するまでの間は、第1負荷ポート104の気体圧は変化しない。つまり、振り子12の回転がθ=θ11からθ=θ12まで変化しても、第1負荷ポート104の気体圧は変化しない。その意味で、この間のΔθ1=(θ12−θ11)を、振り子12の回転に対し、第1負荷ポート104の気体圧が変化しない不感帯振り子角度と呼ぶことができる。Δθ1はΔX1に対応するものである。したがって、Δθ1の大きさは、第1ランド60の軸方向の長さと、第1負荷口92の軸方向の長さの差の値の設定で決まる。{(第1ランド60の軸方向の長さ)−(第1負荷口92の軸方向の長さ)}の値が大きいほど、不感帯振り子角度Δθ1は大きくなる。
したがって、振り子12がθ=θ11から不感帯振り子角度Δθ1を超えたθ=θ12まで回転すると、第1負荷ポート104の気体圧が制御気体圧PC1となる。そのときの気体の流れを、図3において、第1供給ポート102から第1供給口90、第1供給口90から第1端部ランド58と第1ランド60の間のステムへ、ステムから第1負荷口92へ、第1負荷口92から第1負荷ポート104へ向かう矢印で示した。
なお、中立位置からバネ座70,72がX方向に移動駆動されるとき、第2負荷ポート108は、常に排気ポート106に連通している。そのことを、図3において、第2負荷ポート108と排気ポート106との間の双方向の矢印で示した。この矢印は単に連通を示すものである。第2負荷ポート108の状態はもともと排気ポートに連通しているので、中立位置からバネ座70,72がX方向に移動駆動されたからといって、第2負荷ポート108から排気ポート106に気体が流れ始めるわけでない。
このように、振り子角度θが中立状態から増加すると、θ=0からθ=θ11まで第1負荷ポート104は排気ポート106に連通する。したがって、この間は、第1負荷ポート104は排気状態である。θ=θ11からθ=θ12の不感帯振り子角度Δθ1の期間は、第1負荷ポート104は遮蔽状態である。そして、θ=θ12を超えると、第1負荷ポート104は供給ポート102と連通し、制御気体圧が発生する。したがって、振り子角度θがθ12以上となって初めて、第1負荷ポート104に、車体傾斜のための制御気体圧が供給されることになる。
振り子角度θがθ12以上の状態からθが減少していく場合は、振り子角度θ=θ12で第1負荷ポート104には気体が流れなくなる。しかし、振り子角度θ=θ12からθ11までの不感帯振り子角度Δθ1の期間は、第1負荷ポート104は遮蔽状態であって、排気状態になるわけではない。排気状態となるのは、不感帯振り子角度Δθ1の期間を超えて、θ=θ11となったときである。このように、不感帯振り子角度Δθ1の期間は、ヒステリシス期間でもある。つまり、振り子角度θが増加するときは、θ=θ12まで供給ポート102から第1負荷ポート104に気体を供給しない。また、振り子角度θが減少するときは、θ=θ11まで第1負荷ポート104を排気状態にしない。
したがって、不感帯振り子角度Δθ1の大きさを適切に設定することで、振動ノイズ等があっても、第1負荷ポート104に供給ポート102から確実に安定して気体を供給でき、また、第1負荷ポート104を確実に安定して排状態とすることができる。このように、不感帯振り子角度Δθ1の大きさは、振動ノイズの大きさや、車体制御のための制御マージン等を考慮して設定することができる。
図3では、振り子角度θが紙面上で反時計方向に振れ、スプール56の位置Xが紙面上で右側から左側に移動する場合を説明した。スプール・スリーブ機構50は、左右対称の構造を有しているので、振り子角度θが紙面上で時計方向に振れ、スプール56の位置Xが紙面上で左側から右側に移動する場合にも、図3の移動方向を逆にしただけで、同様の作用を行う。図4でいえば、Q1をQ2に置き換えたものとなる。
勿論、スプール・スリーブ機構50の構造を左右対称としないこともでき、その場合には、第1負荷ポート104についてのθ11,θ12,Δθ1,X11,X12,ΔX1と異なるように、第2負荷ポート108に対するそれぞれの値を設定できる。例えば、第1負荷ポート104の不感帯変位量ΔX1と異なる不感帯変位量ΔX2を第2負荷ポート108に対して設定することができる。このように不感帯変位量を第1負荷ポート104と第2負荷ポート108とで異ならせるときに、これらを区別して、前者を第1不感帯変位量、後者を第2不感帯変位量と呼ぶことができる。
不感帯振り子角度Δθ1の設定の際に、考慮すべきことは、振り子14の自由振動の影響と、筐体部14が受けるノイズ振動NAである。
振り子14の自由振動を抑制するために振り子ダンパ30が設けられる。振り子ダンパ30について説明したように、絞り部44を適切に設定することで、ノイズ振動NAに対する振り子角度θの感応を小さくし、かつ、振り子12の自由振動を抑制することができる。
また、ノイズ振動NAの影響を抑制するために、スプール・スリーブ機構50に、バネ部とダンパ部が設けられる。図2に関連して説明したように、振り子12の振り子運動は、球体52によってバネ座70,72の直進運動に変換される。バネ座70,72の直進運動はスプール56に伝えられるが、その際に、バネ座70,72はスプール56を直動駆動するのではなく、バネ部を用いて駆動し、ダンパ部でその動きを抑制する。バネ部は、バネ座70,72とスプール56との間に設けられ、ダンパ部はスプール56とスリーブ54との間に設けられる。スプールの軸方向変位に対し、バネ部は、所定のバネ定数を有する弾性力を与え、ダンパ部は、所定の減衰定数を有する減衰力を与える。したがって、振り子12の振り子運動は、バネ部の所定のバネ定数kとダンパ部の所定の減衰定数cと、振り子12とスプール56を含めた質量mで定まる減衰振動系の下で、スプール56に伝達されることになる。
図5は、バネ部とダンパ部を含めた振り子角度を用いる制御弁10の振動モデルを示す図である。ここでは、第1コイルバネ76と第2コイルバネ78をまとめて、バネ定数kを有する1つのバネモデルとし、第1気体空間80と第2気体空間82等をまとめて、減衰定数cを有するダンパモデルとし、振り子12からスプール56に至る系の質量をまとめて、質量mが振り子12に集中するモデルとして示されている。このように、スプール56の質量は、振り子12の質量に対し、ごく小さい値となるように設定される。
ノイズ振動NAの抑制は、図5の減衰振動系において、バネ定数kと減衰定数cと質量mの関係を適切に設定することで行うことができる。
本発明に係る振り子角度を用いる制御弁は、鉄道車両の傾斜制御に用いることができる。
10 振り子角度を用いる制御弁、12 振り子、14 筐体部、16 回転中心、20 接続軸、22 振り子側アーム、24 中心円板、26 スプール側アーム、30 振り子ダンパ、32,52 球体、33 円筒部、34 ダンパ筐体、36 移動体、38,40 ダンパ空間、42,84,100 連通路、44,86 絞り部、50 スプール・スリーブ機構、54 スリーブ、56 スプール、58,64 端部ランド、60 第1ランド、62 第2ランド、70,72 バネ座、76 第1コイルバネ、78 第2コイルバネ、80 第1気体空間、82 第2気体空間、90 第1供給口、92 第1負荷口、94 排気口、96 第2負荷口、98 第2供給口、102 第1供給ポート、104 第1負荷ポート、106 排気ポート、108 第2負荷ポート、110 第2供給ポート。

Claims (3)

  1. 加速度を受けて予め定められた回転中心の周りに振り子運動をする振り子と、
    振り子の振り子角度に応じて駆動され、ステムの軸方向に沿って第1ランドと第2ランドが設けられるスプールと、
    スプールを軸方向移動可能に支持し、供給気体圧を有する気体を供給する供給ポート、第1ランドに対応して設けられる第1負荷ポートと第2ランドに対応して設けられる第2負荷ポート、外部に排気する排気ポートとを有するスリーブと、
    スプールの軸方向変位に対し、所定のバネ定数を有する弾性力を与えるバネ部と、
    スプールの軸方向変位に対し、所定の減衰定数を有する減衰力を与えるダンパ部と、
    を備え、
    スリーブに対してスプールが中立位置にあるときに、第1負荷ポートと第2負荷ポートは共に排気ポートに連通する位置関係にあり、振り子角度に応じて中立位置からスリーブの第2負荷ポートの側に向かってスプールが変位するときには第1負荷ポートが第1ランドによって一旦遮断状態とされた後、さらに予め定めた第1不感帯変位量を超えて変位をすることで第1負荷ポートが供給ポートと連通する位置関係にあり、振り子角度に応じて中立位置からスリーブの第1負荷ポート側に向かってスプールが変位するときには第2負荷ポートが第2ランドによって一旦遮断状態とされた後、さらに予め定めた第2不感帯変位量を超えて所定の変位をすることで第2負荷ポートが供給ポートと連通する位置関係にあることを特徴とする振り子角度を用いる制御弁。
  2. 請求項1に記載の振り子角度を用いる制御弁において、
    ダンパ部とは別に、振り子の自由振動を抑制する振り子ダンパを備えることを特徴とする振り子角度を用いる制御弁。
  3. 請求項1に記載の振り子角度を用いる制御弁において、
    スリーブを含む筐体部に設けられる振り子の回転中心と、
    振り子の回転中心を挟んで振り子の反対側に振り子と一体的に設けられるスプール側先端部と、
    スプール側先端部に設けられるバネ座と、
    を備え、
    バネ部は、スプールの第1ランド側の端部とバネ座との間に設けられる第1コイルバネ、スプールの第2ランド側の端部とバネ座との間に設けられる第2コイルバネを含み、
    ダンパ部は、スプールの第1ランド側の端部とスリーブの第1負荷ポート側の端部内壁との間の第1気体空間と、スプールの第2ランド側の端部とスリーブの第2負荷ポート側の端部内壁との間の第2気体空間との間を、絞り部を介して連通路で連通して用いることを特徴とする振り子角度を用いる制御弁。
JP2012155184A 2012-07-11 2012-07-11 振り子角度を用いる制御弁 Expired - Fee Related JP6026160B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012155184A JP6026160B2 (ja) 2012-07-11 2012-07-11 振り子角度を用いる制御弁

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012155184A JP6026160B2 (ja) 2012-07-11 2012-07-11 振り子角度を用いる制御弁

Publications (2)

Publication Number Publication Date
JP2014016011A JP2014016011A (ja) 2014-01-30
JP6026160B2 true JP6026160B2 (ja) 2016-11-16

Family

ID=50110881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155184A Expired - Fee Related JP6026160B2 (ja) 2012-07-11 2012-07-11 振り子角度を用いる制御弁

Country Status (1)

Country Link
JP (1) JP6026160B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828882A (ja) * 1971-08-16 1973-04-17
JPS5316070B2 (ja) * 1971-12-09 1978-05-29
US4210344A (en) * 1979-01-26 1980-07-01 Charles Curnutt Controlled shock absorber
JPS63164604U (ja) * 1986-11-17 1988-10-26
WO1994002767A1 (en) * 1992-07-22 1994-02-03 Philip Di Maria Vehicle suspension system and control valve therefor
JP2002240530A (ja) * 2001-02-16 2002-08-28 Tokico Ltd 車両用サスペンション装置

Also Published As

Publication number Publication date
JP2014016011A (ja) 2014-01-30

Similar Documents

Publication Publication Date Title
US9694727B2 (en) Device for damping an upper suspension part in at least one spatial direction with respect to a lower suspension part movable relative thereto
JP6646681B2 (ja) リーン車両
JP2020079087A (ja) リーン車両
JP5194019B2 (ja) 車両用アクティブ・サスペンション装置
JPH06106938A (ja) 車両のサスペンション装置
JP2008195382A (ja) アクチュエータを稼動するための方法、特にスタビライザ装置内の電気アクチュエータを稼動するための方法
JP2008254577A (ja) 車体傾斜制御方法及び装置
JP6026160B2 (ja) 振り子角度を用いる制御弁
JP2017019315A (ja) 減揺装置、および、船舶
JP5662033B2 (ja) 気体圧アクチュエータシステム
JP4698290B2 (ja) 鉄道車両の車体傾斜制御システム
ES2785040T3 (es) Motocicleta con amortiguador de dirección electrónico de actuación mejorada
JP5570852B2 (ja) 可変絞り装置
JP5616856B2 (ja) 鉄道車両の車体傾斜制御装置
CN103158476A (zh) 改变车辆悬架刚度的悬架系统和方法
JP2007045315A (ja) 車両の姿勢制御装置
JP6794244B2 (ja) 鉄道車両の制振装置
JP4779832B2 (ja) 鉄道車両の車体傾斜制御装置及び制御方法
JP2008239043A (ja) 車体傾斜制御方法及び装置
JP2006336713A (ja) ショックアブソーバ
WO2015060233A1 (ja) ダンパ装置
JP2011162156A (ja) 車両用空気ばね装置
JP5646185B2 (ja) 車両用空気ばねシステム
JP4844500B2 (ja) サスペンション
JP2004231036A (ja) ステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161012

R150 Certificate of patent or registration of utility model

Ref document number: 6026160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees