JP6024123B2 - Permanent magnet rotating electric machine - Google Patents

Permanent magnet rotating electric machine Download PDF

Info

Publication number
JP6024123B2
JP6024123B2 JP2012041796A JP2012041796A JP6024123B2 JP 6024123 B2 JP6024123 B2 JP 6024123B2 JP 2012041796 A JP2012041796 A JP 2012041796A JP 2012041796 A JP2012041796 A JP 2012041796A JP 6024123 B2 JP6024123 B2 JP 6024123B2
Authority
JP
Japan
Prior art keywords
stator
loss
coil
permanent magnet
rotating electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012041796A
Other languages
Japanese (ja)
Other versions
JP2013179759A (en
Inventor
大志 島田
大志 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012041796A priority Critical patent/JP6024123B2/en
Publication of JP2013179759A publication Critical patent/JP2013179759A/en
Application granted granted Critical
Publication of JP6024123B2 publication Critical patent/JP6024123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、永久磁石式回転電機に関し、詳しくは低損失化の現を図る最適設計技術に係わる。The present invention relates to a permanent magnet type rotating electrical machine, and more particularly related to the Optimization for achieving realization of low loss Shitsuka.

周知のように、永久磁石式回転電機には、表面磁石形(SPM形),埋込磁石形(IPM形)の二種類のタイプがある。
ここで、IPM形回転電機は、固定子に空隙を隔てて対向する回転子のコア内部に複数の永久磁石を周方向に配列して埋設し、永久磁石から発生する磁束が固定子コイルとの鎖交磁束量に応じて発生するマグネットトルクに加えて、回転子における磁気回路の突極性によるリラクタンストルクも利用するようにした回転電機であり、小形高出力の回転電機として現在では各種用途に広く採用されている。
As is well known, there are two types of permanent magnet type rotating electrical machines: surface magnet type (SPM type) and embedded magnet type (IPM type).
Here, in the IPM type rotating electrical machine, a plurality of permanent magnets are arranged and embedded in the circumferential direction in the core of the rotor facing the stator with a gap, and the magnetic flux generated from the permanent magnets is connected to the stator coil. In addition to the magnet torque generated according to the amount of flux linkage, this is a rotating electrical machine that uses the reluctance torque due to the saliency of the magnetic circuit in the rotor. It has been adopted.

次に、IPM形回転電機の構成例として、回転子の磁極数が4極,固定子のコイルスロット数が12スロットである永久磁石式回転電機の略示断面図(回転軸と垂直方向の断面図)を図1に示す。図において、1は固定子、2は回転子、3は回転軸、4は外囲フレームである。また、5は固定子コアのヨーク、6はヨーク5の内周側に沿って配列形成したティース、7はティース6の相互間に形成したコイルスロット、8はコイルスロット7に収容してティース6に巻装した固定子コイル、9は回転子コアの周方向に配列して軸方向に穿設した磁石スロット、10は磁石スロット9に嵌挿した永久磁石であり、図示構造ではは各磁極あたり2個の永久磁石10(同極性)を図示のように回転軸3の中心に向けてV字状に組み合わせ、周方向に隣り合う磁極の間では永久磁石10が交互に異極性となるように配置されている。   Next, as a configuration example of the IPM type rotating electrical machine, a schematic sectional view of a permanent magnet type rotating electrical machine in which the number of magnetic poles of the rotor is 4 and the number of coil slots of the stator is 12 slots (cross section perpendicular to the rotating shaft) Figure) is shown in FIG. In the figure, 1 is a stator, 2 is a rotor, 3 is a rotating shaft, and 4 is an enclosing frame. Further, 5 is a yoke of the stator core, 6 is teeth arranged along the inner peripheral side of the yoke 5, 7 is a coil slot formed between the teeth 6, and 8 is received in the coil slot 7 and stored in the teeth 6. A stator coil 9 is wound around the rotor core, 9 is a magnet slot arranged in the circumferential direction of the rotor core, and 10 is a permanent magnet fitted into the magnet slot 9. Two permanent magnets 10 (the same polarity) are combined in a V shape toward the center of the rotating shaft 3 as shown in the figure so that the permanent magnets 10 are alternately different in polarity between the magnetic poles adjacent in the circumferential direction. Has been placed.

一方、前記のIPM形回転電機の運転時に発生する損失は、大別して鉄損,銅損,磁石損,機械損である。このうち、鉄損と銅損に着目すると、鉄損は主に電磁鋼板内の磁束量とその変化に応じて生ずる渦電流損とヒステリシス損であり、銅損は固定子1のコイルスロット7に収めてティース6に巻装した固定子コイル8に発生するジュール損である。   On the other hand, the loss generated during the operation of the IPM rotary electric machine is roughly divided into iron loss, copper loss, magnet loss, and mechanical loss. Of these, focusing on iron loss and copper loss, iron loss is mainly eddy current loss and hysteresis loss caused by the amount of magnetic flux in the magnetic steel sheet and changes thereof, and copper loss is in the coil slot 7 of the stator 1. This is a Joule loss that occurs in the stator coil 8 that is housed and wound around the teeth 6.

ここで、固定子1のコアに形成したコイルスロット7の開口面積と損失の関係に着目すると、同体格の機体についてコイルスロット7が占める開口面積の総和を大きくすると銅損は減少する(太い導体を素線として所定巻回数のコイル8を巻装できる)ものの、コイルスロット7の開口面積を広げた分だけ磁束が通る磁路(ティース6,ヨーク5)の幅が縮小するために、磁路の磁束密度が高くなって鉄損が増加する。   Here, when attention is paid to the relationship between the opening area of the coil slot 7 formed in the core of the stator 1 and the loss, the copper loss is reduced when the sum of the opening area occupied by the coil slot 7 is increased for a similar body (thick conductor) However, the width of the magnetic path (teeth 6, yoke 5) through which the magnetic flux passes is reduced by the amount of the opening area of the coil slot 7 increased. The magnetic flux density increases and the iron loss increases.

このように永久磁石式回転電機に発生する鉄損の増加(減少)量,および銅損の増加(減少)量は固定子コアに形成したコイルスロット7の開口面積によって変わることから、機体の設計に当たっては鉄損,銅損の合計損失が最小となるコイルスロットの最適な開口面積が存在する。   Since the amount of increase (decrease) in iron loss and the amount of increase (decrease) in copper loss generated in the permanent magnet type rotating electric machine varies depending on the opening area of the coil slot 7 formed in the stator core, the design of the fuselage In this case, there is an optimum opening area of the coil slot that minimizes the total loss of iron loss and copper loss.

ところで、機体の形状を決定する固定子コアの外径,内径,ティース幅等の諸元をパラメータとして固定子コアに形成するコイルスロットの開口面積を考えた場合に、機体の設計で取り得るコイルスロットの開口面積は、図1における固定子1の外径寸法C,内径寸法Dによって制限される。すなわち、同体格の機体についてコイルスロットの開口面積を大きく取るように固定子1の内径Dを小さくすると、空隙gを隔てて固定子1の内周側に対向する回転子2の経寸法,表面積が必然的に小さくなって回転電機の出力トルクが減少するため、所要の出力を得るには固定子コイル8に流す電流を増加するか、もしくは回転子2に設けた永久磁石10の磁石量を増加して磁束密度を高くする必要があるが、その結果として前記した銅損と鉄損の割合が変化することになり、固定子コアの内径Dに応じて最適なコイルスロット7の総面積も変化する。   By the way, when considering the opening area of the coil slot formed in the stator core using parameters such as the outer diameter, inner diameter, and teeth width of the stator core that determine the shape of the fuselage, the coil that can be taken in the design of the fuselage The opening area of the slot is limited by the outer diameter C and the inner diameter D of the stator 1 in FIG. That is, when the inner diameter D of the stator 1 is made small so that the coil slot has a large opening area in the same body size, the warp dimension and surface area of the rotor 2 facing the inner peripheral side of the stator 1 with a gap g therebetween. Inevitably becomes smaller and the output torque of the rotating electrical machine decreases. To obtain a required output, the current flowing through the stator coil 8 is increased or the amount of the permanent magnet 10 provided on the rotor 2 is increased. It is necessary to increase the magnetic flux density and increase the ratio of the copper loss and the iron loss as a result. As a result, the optimum total area of the coil slot 7 depends on the inner diameter D of the stator core. Change.

一方、永久磁石式回転電機における損失低減策として、次記のように固定子コアの形状を変更したり、電磁鋼板の加工方法を工夫することで鉄損を低減するようにした施策が従来提案されている(例えば、特許文献1,特許文献2参照)。   On the other hand, as a measure to reduce loss in permanent magnet type rotating electrical machines, measures that have been proposed to reduce iron loss by changing the shape of the stator core as described below or by devising the processing method of the electromagnetic steel sheet (For example, see Patent Document 1 and Patent Document 2).

すなわち、特許文献1では、固定子のヨークに対してその幅方向に延在するスリットを設け、ティースを経由してヨークに流れる磁束の偏りを抑制して磁路の磁気飽和を緩和するようにしている。   That is, in Patent Document 1, a slit extending in the width direction is provided to the yoke of the stator so as to reduce the magnetic saturation of the magnetic path by suppressing the bias of the magnetic flux flowing through the teeth to the yoke. ing.

また、特許文献2では、電磁鋼板の積層体になる固定子コアにエッチング加工法を採用してティース,コイルスロットを形成し、一般的なパンチング加工に伴う電磁鋼板の残留歪に起因する磁気特性の低下を抑制して鉄損を低減するようにしている。   In Patent Document 2, teeth and coil slots are formed on a stator core that is a laminated body of electromagnetic steel sheets to form teeth and coil slots, and magnetic characteristics resulting from residual strain of the electromagnetic steel sheets associated with general punching processing. The iron loss is reduced by suppressing the decrease of the iron.

特開2008−22631号公報JP 2008-22631 A 特開2010−115095号公報JP 2010-115095 A

ところで、前記した特許文献1,特許文献2は、いずれも永久磁石式回転電機に発生する各種損失のうち、鉄損に着目してその損失低減を図るもので、先述のように銅損と鉄損の合計損失を同時に低減するという観点からすると必ずしも最適な施策とは言えない。   By the way, the above-mentioned Patent Document 1 and Patent Document 2 are intended to reduce the loss by paying attention to the iron loss among the various losses generated in the permanent magnet type rotating electrical machine. From the standpoint of simultaneously reducing the total loss, it is not necessarily an optimal measure.

また、昨今では回転電機の省エネ化推進が重要テーマになっており、永久磁石式回転電機についてもIEC規格の4IEクラス(スーパープレミアム効率)に準拠した高効率化が目標に挙げられている。   In recent years, the promotion of energy saving in rotating electrical machines has become an important theme, and the efficiency of permanent magnet rotating electrical machines has been raised as a goal in accordance with IEC standard 4IE class (super premium efficiency).

そこで、本発明の目的は、回転電機の機体形状を決定する固定子の外径,内径およびコイルスロットの開口面積などのパラメータに応じて変化する銅損と鉄損との関係に着目し、機体の設計にあたってその諸元寸法を最適に規定して低損失化が容易に達成できるようにした永久磁石式回転電機を提供することにある。Accordingly, an object of the present invention is to focus on the relationship between the copper loss and the iron loss that change according to parameters such as the outer diameter and inner diameter of the stator and the opening area of the coil slot that determine the machine shape of the rotating electrical machine. one design when optimally define the feature dimensions of to provide a permanent magnet type rotary electric machine as a low loss Shitsuka can be easily achieved.

上記目的を達成するために、本発明によれば、固定子コアにヨーク,複数のティース,およびティースの相互間にコイルスロットを形成し、該コイルスロットにコイルを収めて巻装した固定子と、該固定子に空隙を隔てて対向する回転子からなり、回転子コアには所定の極数に対応する複数の永久磁石を周方向に配列して軸方向に貫通する磁石スロットに挿入した埋込磁石形の永久磁石式回転電機において,
前記固定子の外径から算出される軸方向直断面積をA、固定子コアに形成したコイルスロットの開口面積の総和をB、固定子外径をC、固定子内径をDとして、機体の設計指標EをE=(B/A)+1.2(D/C)と定義した上で、
前記設計指標Eの値が0.94≦E≦1.02の範囲に収まるように機体の諸元寸法を設定するものとする。
In order to achieve the above object, according to the present invention, a stator core is formed by forming a coil slot between a yoke, a plurality of teeth, and teeth, and encasing a coil in the coil slot. The rotor comprises a rotor facing the stator with a gap, and the rotor core is embedded with a plurality of permanent magnets corresponding to a predetermined number of poles arranged in the circumferential direction and inserted into magnet slots penetrating in the axial direction. In the permanent magnet type rotating electrical machine
An axial vertical Chokudan area calculated from the outer diameter of the stator A, the sum of the opening area of the coil slots formed in the stator core B, and the stator outer diameter C, and a stator inner diameter as D, After defining the design index E of the aircraft as E = (B / A) +1.2 (D / C),
The dimensions of the aircraft are set so that the value of the design index E is within the range of 0.94 ≦ E ≦ 1.02.

上記のように、永久磁石式回転電機の新規設計に際して、固定子の外径,内径およびコイルスロットの開口面積などをパラメータとして定義した設計指標E=(A/B)+1.2(D/C)の値が0.94≦E≦1.02の範囲に収まるように諸元寸法を設定して回転電機の機体を設計することにより、小形体格で銅損,鉄損の合計損失を最小化した高効率,高出力の永久磁石式回転電機を得ることかできる。   As described above, the design index E = (A / B) +1.2 (D / C) that defines the outer diameter and inner diameter of the stator, the opening area of the coil slot, and the like as parameters in the new design of the permanent magnet type rotating electrical machine. ) Is designed to reduce the total loss of copper loss and iron loss with a compact body by designing the dimensions of the rotating electrical machine by setting the dimensions so that the value is within the range of 0.94 ≦ E ≦ 1.02. A high output permanent magnet type rotating electrical machine can be obtained.

本発明の実施例に係わる永久磁石式回転電機の略示断面図である。1 is a schematic cross-sectional view of a permanent magnet type rotating electrical machine according to an embodiment of the present invention. 図1の永久磁石式回転電機について、固定子コアの内径/外径比、およびコイルスロット総面積/機体断面積比をパラメータとして解析,算出した銅損と鉄損の合計損失が最小となる相間関係をグラフ化して表した図である。For the permanent magnet type rotating electrical machine shown in FIG. 1, the interphase between which the total loss of copper loss and iron loss is analyzed and calculated using the inner diameter / outer diameter ratio of the stator core and the total coil slot area / machine cross-sectional area ratio as parameters. It is the figure which represented the relationship as a graph. 図2における条件1の設計モデルについて、損失算出結果と設計指標値との相間関係を表す図である。It is a figure showing the correlation between a loss calculation result and a design index value about the design model of condition 1 in FIG. 図2における条件2の設計モデルについて、損失算出結果と設計指標値との相間関係を表す図である。It is a figure showing the correlation between a loss calculation result and a design index value about the design model of condition 2 in FIG.

以下、本発明による永久磁石式回転電機の最適効率化を図る機体設計の手法について説明する。
まず、図1のIPM形永久磁石式回転電機について、銅損,鉄損の合計損失が最小となる最適な設計条件を見出すべく、発明者は磁極数,コイルスロット数の組み合わせを様々に変えた設計モデルを想定し、その固定子1の外径,内径、およびコイルスロット7の開口総面積の諸元をパラメータとして、各設計モデルにおける銅損,鉄損を解析し、その算出結果を基に図2のようにグラフ化した相間関係の図表を得た。
Hereinafter, a method of airframe design for achieving optimum efficiency of the permanent magnet type rotating electrical machine according to the present invention will be described.
First, for the IPM type permanent magnet type rotating electric machine shown in FIG. 1, the inventor changed the combination of the number of magnetic poles and the number of coil slots in various ways in order to find the optimum design condition that minimizes the total loss of copper loss and iron loss. Assuming a design model, the parameters of the outer diameter and inner diameter of the stator 1 and the total opening area of the coil slot 7 are analyzed as parameters, and the copper loss and iron loss in each design model are analyzed. Based on the calculation results The graph of the interphase relationship graphed like FIG. 2 was obtained.

図2において、横軸は固定子1の内径/外径比、縦軸はコイルスロット7の総面積/機体断面積比を表しており、ここで磁極数,コイルスロット数の組み合わせを変えた条件1〜条件4(例えば、条件1は磁極数:6,コイルスロット数:36、条件2は磁極数:8,コイルスロット数:48)の機体モデルについて、その固定子の内径,コイルスロットの総面積を様々に変えて発生する銅損,鉄損を解析し、その損失算出値が最小となる固定子の内径/外径比、およびコイルスロットの総面積/機体断面積比を図の上にプロットしてグラフ化したものである。そして、その相関関係をそれぞれ直線近似法にて数式化して次記の数式(1)を得た。In FIG. 2, the horizontal axis represents the inner diameter / outer diameter ratio of the stator 1, and the vertical axis represents the total area / machine cross-sectional area ratio of the coil slot 7, where the combination of the number of magnetic poles and the number of coil slots is changed. 1 to condition 4 (for example, condition 1 is the number of magnetic poles: 6, number of coil slots: 36, condition 2 is the number of magnetic poles: 8, and the number of coil slots: 48). Analyze the copper loss and iron loss generated by changing the area, and the stator inner diameter / outer diameter ratio and the total coil slot area / machine cross-sectional area ratio that minimize the calculated loss are shown in the figure. Plotted and graphed. Then, the correlations were respectively expressed by a linear approximation method to obtain the following expression (1).

y+1.2x≒1・・・・(1)
但し、y:コイルスロット総面積[mm2]/機体断面積[mm2],
x:固定子内径[mm]/固定子外径[mm]
回転電機の機体断面積=π×((固定子外径)/2)2
これにより、上記手法で求めた数式(1)を基に、(y+1.2x)の値が略1となるようにy(機体断面積に対するコイルスロット総面積の比率),およびx(固定子外径に対する固定子内径の比率)の諸元寸法を規定すれば、銅損と鉄損の合計損失が最小となる最適設計の機体を得ることができる。

y + 1.2x ≒ 1 ... (1)
However, y: Coil slot total area [mm2] / Aircraft cross-sectional area [mm2],
x: Stator inner diameter [mm] / Stator outer diameter [mm]
Machine cross-sectional area of rotating electrical machine = π × ((stator outer diameter) / 2) 2
Thus, based on the formula (1) obtained by the above method, y (ratio of the coil slot total area to the fuselage cross-sectional area) and x (external to the stator) so that the value of (y + 1.2x) is approximately 1. If the specification dimension of the ratio of the stator inner diameter to the diameter is specified, an optimally designed machine body that minimizes the total loss of copper loss and iron loss can be obtained.

また、発明者は前記式のy+1.2xを設計指標Eと定義した上で、前記条件1,2の設計モデルについて得た損失算出結果を基に、図3,図4に示す損失算出値と設計指標Eの値との相間関係を検証した。図3は先記した設計条件1、図4は設計条件2に対応する検証結果を表し、いずれの場合でも機体の諸元寸法が前記した設計指標Eの値が0.94≦E≦1.02の範囲内にあれば銅損と鉄損の合計損失が十分に低減されているのが確認できた。なお、図3,図4における縦軸の損失〔p.u〕は単位法(Per Unit 単位系)で表しており、鉄損,銅損およびその他の損失を考慮しても、IEC規格のIE4クラスを十分に満足できる損失値にて規格化している。   Further, the inventor defines y + 1.2x of the above formula as a design index E, and based on the loss calculation results obtained for the design models of the conditions 1 and 2, the calculated loss values shown in FIGS. The interrelationship with the value of the design index E was verified. FIG. 3 shows the verification result corresponding to the design condition 1 and FIG. 4 shows the verification result corresponding to the design condition 2. In either case, the dimensions of the aircraft are within the range of 0.94 ≦ E ≦ 1.02 It was confirmed that the total loss of copper loss and iron loss was sufficiently reduced. 3 and FIG. 4, the vertical axis loss [p. u] is expressed in a unit method (Per Unit unit system), and is normalized by a loss value that can sufficiently satisfy the IE4 class of the IEC standard even when iron loss, copper loss and other losses are taken into consideration.

以上の説明で明らかなように、前記の設計指標値Eが、0.94≦E≦1.02の範囲に収まるようにyとxを規定、つまり固定子内径,コイルスロット総面積などの諸元を設定して回転電機の機体を設計することにより、損失が最小となる最適設計の永久磁石式回転電機を得ることができる。すなわち、永久磁石式回転電機を新規に設計する場合の設計手順として、まず所望の基本仕様(出力,回転数等)に応じて固定子1のコア外径C,内径Dを決定する。次に、先記数式(y+1.2x≒1)を設計支援の指標として、所定の磁極数,コイルスロット数に合わせてティース6の周方向幅,コイルスロット7の開口幅,およびヨーク5の径方向幅などを調整し、前記設計指標Eの値が本発明の請求項1で定めた最適範囲(0.94≦E≦1.02)に収まるようにコイルスロットの総面積を設定する。   As is clear from the above description, y and x are defined so that the design index value E falls within the range of 0.94 ≦ E ≦ 1.02, that is, specifications such as stator inner diameter and coil slot total area are set. By designing the rotating electrical machine body, it is possible to obtain an optimally designed permanent magnet type rotating electrical machine that minimizes the loss. That is, as a design procedure when a permanent magnet type rotating electrical machine is newly designed, first, the core outer diameter C and inner diameter D of the stator 1 are determined according to desired basic specifications (output, rotational speed, etc.). Next, using the above mathematical formula (y + 1.2x≈1) as an index for design support, the circumferential width of the teeth 6, the opening width of the coil slot 7, and the diameter of the yoke 5 according to the predetermined number of magnetic poles and the number of coil slots. The total area of the coil slots is set by adjusting the direction width and the like so that the value of the design index E falls within the optimum range (0.94 ≦ E ≦ 1.02) defined in claim 1 of the present invention.

これにより、機体の新規設計に多くの時間と手間を掛けずに銅損,鉄損の合計損失を最小に抑えたに最適設計の永久磁石式回転電機を簡単に得ることができる。   As a result, it is possible to easily obtain a permanent magnet type rotating electrical machine having an optimal design that minimizes the total loss of copper loss and iron loss without taking much time and effort for new design of the airframe.

1 固定子
2 回転子
3 回転軸
5 ヨーク
6 ティース
7 コイルスロット
8 固定子コイル
9 磁石スロット
10 永久磁石
DESCRIPTION OF SYMBOLS 1 Stator 2 Rotor 3 Rotating shaft 5 Yoke 6 Teeth 7 Coil slot 8 Stator coil 9 Magnet slot 10 Permanent magnet

Claims (1)

固定子コアにヨーク,複数のティース,およびティースの相互間にコイルスロットを形成し、該コイルスロットにコイルを収めて巻装した固定子と、該固定子に空隙を隔てて対向する回転子からなり、回転子コアには所定の極数に対応する複数の永久磁石を周方向に配列して軸方向に貫通する磁石スロットに挿入した埋込磁石形の永久磁石式回転電機において,
前記固定子の外径から算出される軸方向直断面積をA、固定子コアに形成したコイルスロットの開口面積の総和をB、固定子外径をC、固定子内径をDとして、機体の設計指標EをE=(B/A)+1.2(D/C)と定義した上で、
前記設計指標Eの値が0.94≦E≦1.02の範囲に収まるように機体の諸元寸法を設定したことを特徴とする永久磁石式回転電機。
A stator core is formed with a yoke, a plurality of teeth, and a coil slot formed between the teeth, and a stator that is wound with the coil placed in the coil slot, and a rotor that faces the stator with a gap therebetween. In the embedded permanent magnet type rotating electrical machine, in the rotor core, a plurality of permanent magnets corresponding to a predetermined number of poles are arranged in a circumferential direction and inserted into a magnet slot penetrating in the axial direction.
An axial vertical Chokudan area calculated from the outer diameter of the stator A, the sum of the opening area of the coil slots formed in the stator core B, and the stator outer diameter C, and a stator inner diameter as D, After defining the design index E of the aircraft as E = (B / A) +1.2 (D / C),
A permanent magnet type rotating electrical machine characterized in that the dimensions of the airframe are set so that the value of the design index E falls within a range of 0.94 ≦ E ≦ 1.02.
JP2012041796A 2012-02-28 2012-02-28 Permanent magnet rotating electric machine Active JP6024123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041796A JP6024123B2 (en) 2012-02-28 2012-02-28 Permanent magnet rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041796A JP6024123B2 (en) 2012-02-28 2012-02-28 Permanent magnet rotating electric machine

Publications (2)

Publication Number Publication Date
JP2013179759A JP2013179759A (en) 2013-09-09
JP6024123B2 true JP6024123B2 (en) 2016-11-09

Family

ID=49270895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041796A Active JP6024123B2 (en) 2012-02-28 2012-02-28 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JP6024123B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6285216B2 (en) * 2014-03-05 2018-02-28 株式会社荏原製作所 Induction motor
JP6981153B2 (en) * 2017-09-29 2021-12-15 日本製鉄株式会社 Stator core design index determination method, stator core design index determination device, and stator core manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039352A (en) * 1983-08-12 1985-03-01 Hitachi Ltd Core for small-sized capacitor induction motor
JP4469187B2 (en) * 2004-01-30 2010-05-26 アイチエレック株式会社 Permanent magnet motor

Also Published As

Publication number Publication date
JP2013179759A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5774081B2 (en) Rotating electric machine
EP2490319B1 (en) Axial gap motor
JP5472200B2 (en) Rotating electrical machine rotor
JP5202455B2 (en) Permanent magnet embedded rotor and vacuum cleaner
EP2456048B1 (en) Rotor structure for a fault-tolerant permanent magnet electromotive machine and corresponding method
JP2008104323A (en) Permanent magnet-assisted reluctance rotary electric machine
EP1786085A3 (en) Permanent magnet rotating electric machine
JP6048191B2 (en) Multi-gap rotating electric machine
JP5649566B2 (en) Magnetic circuit structure
US8222787B2 (en) Electric machine
JP6630690B2 (en) Rotating electric machine rotor
JP6356391B2 (en) Permanent magnet rotating electric machine
JP2017169419A (en) Stator of rotary electric machine
JP5066820B2 (en) Magnet structure
JP6024123B2 (en) Permanent magnet rotating electric machine
JP5582149B2 (en) Rotor, rotating electric machine and generator using the same
JP2009254030A (en) Motor
JP2017112687A (en) Induction motor
JP2018129938A (en) Rotary electric machine
JP5884464B2 (en) Rotating electric machine
JP5740250B2 (en) Permanent magnet rotating electric machine
JP2010045870A (en) Rotating machine
JP2010045872A (en) Permanent magnet rotary machine
JP5608377B2 (en) Rotating electric machine
JP6032998B2 (en) Motor fastening structure and motor equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6024123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250