JP6024022B2 - Filtration method using ceramic filter and ceramic filter - Google Patents

Filtration method using ceramic filter and ceramic filter Download PDF

Info

Publication number
JP6024022B2
JP6024022B2 JP2013059365A JP2013059365A JP6024022B2 JP 6024022 B2 JP6024022 B2 JP 6024022B2 JP 2013059365 A JP2013059365 A JP 2013059365A JP 2013059365 A JP2013059365 A JP 2013059365A JP 6024022 B2 JP6024022 B2 JP 6024022B2
Authority
JP
Japan
Prior art keywords
stock solution
wear
ceramic filter
inflow hole
functional layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013059365A
Other languages
Japanese (ja)
Other versions
JP2014184362A (en
Inventor
小谷 和司
和司 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2013059365A priority Critical patent/JP6024022B2/en
Publication of JP2014184362A publication Critical patent/JP2014184362A/en
Application granted granted Critical
Publication of JP6024022B2 publication Critical patent/JP6024022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

本発明は、セラミックフィルタを用いたろ過方法およびセラミックフィルタに関するものである。   The present invention relates to a filtration method using a ceramic filter and a ceramic filter.

高分子膜に比較して耐圧性、耐久性に優れるセラミックフィルタを用いたろ過方法は、現在、各種の工業分野において採用されている。   Filtration methods using ceramic filters that are superior in pressure resistance and durability compared to polymer membranes are currently used in various industrial fields.

セラミックフィルタは、一般に、ろ過性能、流体透過量(即ち処理能力)の双方を向上させるために、原液流入孔を形成したセラミック多孔体を基材(支持体)として、原液流入孔の内表面にセラミックからなるろ過膜を形成した構造を有している(例えば、特許文献1)。   In general, a ceramic filter has a ceramic porous body having a stock solution inflow hole formed as a base material (support) on the inner surface of the stock solution inflow hole in order to improve both filtration performance and fluid permeation amount (that is, processing capacity). It has a structure in which a filter membrane made of ceramic is formed (for example, Patent Document 1).

しかし、ろ過処理前の原液に硬質な粒子(例えば、食品化学の合成工程で生じるシュウ酸カルシウム等の結晶や、シリコンウエハの研磨排水に含有される金属シリコン粒子や、セラミック粒子等)が含有される場合に、前記構造を有する従来のセラミックフィルタを用いてろ過処理を行うと、原液の流入側において、ろ過膜の損傷が発生し、使用開始から数か月後には、原液が、ろ過処理を経た濾液側に混入するトラブルが発生しやすいという問題がある。   However, the undiluted solution before filtration contains hard particles (for example, crystals of calcium oxalate, etc. produced in the synthesis process of food chemistry, metal silicon particles contained in silicon wafer polishing wastewater, ceramic particles, etc.). If the conventional ceramic filter having the above structure is used for filtration, the filtration membrane is damaged on the inflow side of the stock solution, and the stock solution is filtered after a few months from the start of use. There is a problem that troubles mixed into the filtrate side that has passed are likely to occur.

特開2008−173601号公報JP 2008-173601 A

本発明の目的は前記の問題を解決し、ろ過処理前の原液中に上記したような硬質な粒子が含有されている場合にも、原液の流入側におけるろ過膜の損傷を防止することができる技術を提供することである。   The object of the present invention is to solve the above-mentioned problems and to prevent damage to the filtration membrane on the inflow side of the stock solution even when hard particles as described above are contained in the stock solution before the filtration treatment. Is to provide technology.

本発明者は、ろ過膜の損傷部位が、原液流入孔の入口部から数センチの範囲に限定される点に着目し、その理由を追及した結果、原液流入孔内を流れる流体が、限界レイノルズ数よりも低いレイノルズ数をとる層流条件にあっても、原液流入孔の入口部では縮流に伴うカルマン渦が発生しており、原液中に含有される硬質な粒子(以下、摩耗粒子という)がカルマン渦に乗って旋回運動を行い、原液流入孔の内表面に形成されたろ過膜を損傷していることを見出した。また、セラミックフィルタは、一般に、ケーシング内に収容され、O−リングとシール材を用いて、基材外周面側と、基材端面側とを気密的に隔離したクロスフロー型の膜ろ過装置として使用されるが、本発明者は、前記のシール材部分は、摩耗粒子による摩耗を受けないことを見出した。   The present inventor paid attention to the fact that the damaged portion of the filtration membrane is limited to a range of several centimeters from the inlet portion of the stock solution inflow hole, and as a result of pursuing the reason, the fluid flowing in the stock solution inflow hole is Even under laminar flow conditions with a Reynolds number lower than the number, Karman vortices accompanying the contraction flow are generated at the inlet of the stock solution inflow hole, and hard particles contained in the stock solution (hereinafter referred to as wear particles) ) Swirled on the Karman vortex and found that the filtration membrane formed on the inner surface of the stock solution inlet was damaged. Further, the ceramic filter is generally housed in a casing, and is a cross-flow type membrane filtration device in which an O-ring and a sealing material are used to hermetically separate a base material outer peripheral surface side and a base material end surface side. Although used, the inventor has found that the sealing material portion is not subject to wear by wear particles.

本発明は上記した知見に基づいてなされたものであって、本発明のセラミックフィルタを用いたろ過方法は、アルミナ多孔質体に原液流入孔を形成したセラミックフィルタを用いたろ過方法であって、前記原液流入孔は、入口部から、該入口部で発生する縮流に伴うカルマン渦が整流化されて層流域となるまでの範囲である前記原液流入孔の口径の2〜5倍の長さに渡って、その内表面に、前記アルミナ多孔質体よりも緻密質からなり、原液中に含有される摩耗粒子に対する耐摩耗機能を有する耐摩耗機能層を備え、該原液流入孔に、原液を、限界レイノルズ数よりも低いレイノルズ数をとる層流条件で流すことを特徴とするものである。 The present invention has been made on the basis of the above-described knowledge, and the filtration method using the ceramic filter of the present invention is a filtration method using a ceramic filter in which a stock solution inflow hole is formed in an alumina porous body, The stock solution inflow hole is 2 to 5 times as long as the diameter of the stock solution inflow hole, which is a range from the inlet part to the rectification of the Karman vortex accompanying the contracted flow generated at the inlet part. The inner surface is provided with a wear-resistant functional layer that is more dense than the alumina porous body and has a wear-resistant function against wear particles contained in the stock solution, and the stock solution is introduced into the stock solution inflow hole. The laminar flow conditions are such that the Reynolds number is lower than the critical Reynolds number.

また、本発明のセラミックフィルタは、アルミナ多孔質体に原液流入孔を形成したセラミックフィルタにおいて、原液流入孔の入口部から、原液流入孔の口径の2〜5倍の長さの範囲に渡って、原液流入孔の内表面に、前記アルミナ多孔質体よりも緻密質からなり、原液中に含有される摩耗粒子に対する耐摩耗機能を備えた耐摩耗機能層を備えたことを特徴とするものである。 The ceramic filter of the present invention is a ceramic filter in which a stock solution inflow hole is formed in an alumina porous body, and extends from the inlet of the stock solution inflow hole to a length of 2 to 5 times the diameter of the stock solution inflow hole. The inner surface of the stock solution inflow hole is provided with a wear-resistant functional layer that is more dense than the alumina porous body and has a wear-resistant function against wear particles contained in the stock solution. is there.

本発明のように、円柱状のアルミナ多孔質体に原液流入孔を形成したセラミックフィルタを用いたろ過方法において、前記原液流入孔は、入口部から、該入口部で発生する縮流に伴うカルマン渦が整流化されて層流域となるまでの範囲である前記原液流入孔の口径の2〜5倍の長さに渡って、内表面に、前記アルミナ多孔質体よりも緻密質からなり、原液中に含有される摩耗粒子に対する耐摩耗機能を有する耐摩耗機能層を備え、該原液流入孔に、原液を、限界レイノルズ数よりも低いレイノルズ数をとる層流条件で流すことにより、ろ過処理前の原液中に上記したような硬質な粒子が含有されている場合にも、原液の流入側における原液流入孔の内面損傷を防止することができる。 In the filtration method using a ceramic filter in which a stock solution inflow hole is formed in a cylindrical alumina porous body as in the present invention, the stock solution inflow hole is formed from the inlet portion to the Kalman accompanying the contraction generated at the inlet portion. Over the length of 2 to 5 times the diameter of the stock solution inflow hole, which is the range from the vortex to the laminar flow region, the inner surface is made denser than the alumina porous body. A wear-resistant functional layer having a wear-resistant function against the wear particles contained therein, and by flowing the stock solution into the stock solution inlet hole under laminar flow conditions having a Reynolds number lower than the critical Reynolds number, before filtration treatment Even when hard particles such as those described above are contained in this stock solution, it is possible to prevent damage to the inner surface of the stock solution inflow hole on the inflow side of the stock solution.

セラミックフィルタの入口部で発生する縮流とカルマン渦の説明図である。It is explanatory drawing of the contracted flow and Karman vortex which generate | occur | produce at the entrance part of a ceramic filter. ろ過膜損傷の説明図である。It is explanatory drawing of filtration membrane damage. 本実施形態のセラミックフィルタおよび、このセラミックフィルタを用いたクロスフロー型の膜ろ過装置の説明図である。It is explanatory drawing of the ceramic filter of this embodiment, and the crossflow type membrane filtration apparatus using this ceramic filter. 本実施形態のセラミックフィルタの要部を示す断面図である。It is sectional drawing which shows the principal part of the ceramic filter of this embodiment. 摩耗再現試験に用いた試験装置の概略図である。It is the schematic of the testing apparatus used for the abrasion reproduction test. 試験Aの結果を示す図である。It is a figure which shows the result of the test A. 試験Bの結果を示す図である。FIG. 6 is a diagram showing the results of test B. 試験Cの結果を示す図である。FIG. 6 is a diagram showing the results of test C.

以下に本発明の実施形態を説明するが、最初に縮流について説明する。縮流とは、流体がオリフィスなどを通過して噴流となるとき、オリフィスなどの開口部の面積より噴流の断面積が狭くなる現象を意味する。狭くなった噴流の断面積はその後回復するが、縮流の外側と管内壁との間隙に小さい渦(カルマン渦)が発生する。   Hereinafter, embodiments of the present invention will be described. First, contraction will be described. The contracted flow means a phenomenon in which when a fluid passes through an orifice or the like and becomes a jet, the cross-sectional area of the jet becomes narrower than the area of an opening such as the orifice. The cross-sectional area of the narrowed jet then recovers, but a small vortex (Kalman vortex) is generated in the gap between the outside of the contracted flow and the inner wall of the pipe.

図1に示すように、セラミックフィルタ1においても、原液の流れが原液流入孔2の入口部4で圧縮されて縮流となるため、原液流入孔2内を流れる流体が、前記の原液流入孔2の入口部4から近い部分でカルマン渦が発生する。このため、原液中に硬質な粒子(以下、摩耗粒子という)が含有される場合、この摩耗粒子がカルマン渦に乗って旋回運動を行い、原液流入孔2の内表面を損傷させてしまう現象が生じる。なお、レイノルズ数による層流範囲での循環線速を守れば、縮流の渦は次第に整流化されるが、原液流入孔2の内表面の摩耗が進行し、内径が広がるにつれて、整流化が遅くなり、図2に示すように、摩耗がセラミックフィルタの内部にまで進行してしまう。本発明は、このような摩耗を回避することを目的とするものである。   As shown in FIG. 1, in the ceramic filter 1 as well, since the flow of the stock solution is compressed at the inlet 4 of the stock solution inflow hole 2 to become a contracted flow, the fluid flowing in the stock solution inflow hole 2 is A Karman vortex is generated at a portion close to the inlet portion 4 of the second. For this reason, when hard particles (hereinafter referred to as wear particles) are contained in the stock solution, the wear particles ride on the Karman vortex to cause a swiveling motion and damage the inner surface of the stock solution inflow hole 2. Arise. If the circulation linear velocity in the laminar flow range according to the Reynolds number is observed, the vortex of the contracted flow is gradually rectified. As shown in FIG. 2, the wear progresses to the inside of the ceramic filter. The object of the present invention is to avoid such wear.

本実施形態のセラミックフィルタ1は、図3に示すように円柱状のアルミナ多孔質体に多数の原液流入孔2を形成したモノリス型のフィルタである。各原液流入孔2は円柱状のアルミナ多孔質体の下端面から上端面まで貫通し、原液流入孔2の内表面には、ろ過膜3が形成されている点や、セラミックフィルタ1が、ケーシング10内に収容され、O−リング11と緻密質のセラミック等からなるシール材9(ろ過膜と同等以下の細孔径を有するものであり、例えば、ホウケイ酸ガラスや長石質ガラス等のガラス状物質などからなる)を用いて、基材外周面12側と、基材端面7側とを気密的に隔離したクロスフロー型の膜ろ過装置として使用される点は、従来と同様であるが、本発明では、セラミックフィルタ1の原液流入孔2の所定範囲に耐摩耗機能層6を備えている。以下、耐摩耗機能層6について詳述する。   The ceramic filter 1 of this embodiment is a monolith type filter in which a large number of stock solution inflow holes 2 are formed in a cylindrical alumina porous body as shown in FIG. Each undiluted solution inflow hole 2 penetrates from the lower end surface to the upper end surface of the cylindrical alumina porous body. On the inner surface of the undiluted solution inflow hole 2, a filter membrane 3 is formed, and the ceramic filter 1 is connected to the casing. 10 is a sealing material 9 (having a pore diameter equal to or smaller than that of a filtration membrane, such as a borosilicate glass or a feldspar glass, and made of an O-ring 11 and a dense ceramic or the like. Is used as a cross-flow type membrane filtration device in which the base material outer peripheral surface 12 side and the base material end surface 7 side are hermetically separated from each other. In the present invention, the wear resistant functional layer 6 is provided in a predetermined range of the stock solution inflow hole 2 of the ceramic filter 1. Hereinafter, the wear-resistant functional layer 6 will be described in detail.

本実施形態のセラミックフィルタ1では、図4に示すように、原液流入孔2の入口部4から、入口部4で発生する縮流に伴うカルマン渦が整流化されて層流域となるまでの範囲に渡って、原液流入孔2の内表面5に、基材であるアルミナ多孔質体よりも緻密質からなり、かつ、原液中に含有される摩耗粒子に対する耐摩耗機能を有する耐摩耗機能層6を備えている。耐摩耗機能層6の材質は、摩耗粒子に対する耐摩耗機能を有するものであれば、特に限定されない。   In the ceramic filter 1 of the present embodiment, as shown in FIG. 4, the range from the inlet portion 4 of the stock solution inflow hole 2 to the rectification of Karman vortices accompanying the contracted flow generated at the inlet portion 4 into a laminar flow region. Over the inner surface 5 of the stock solution inflow hole 2, the wear resistant functional layer 6 is made of a denser material than the alumina porous body as a base material and has a wear resistance function against wear particles contained in the stock solution. It has. The material of the wear-resistant functional layer 6 is not particularly limited as long as it has a wear-resistant function against wear particles.

本実施形態では、原液がセラミックフィルタの基材端面7から基材内部8に侵入することを防ぐために基材端面7に使用されるシール材9と、耐摩耗機能層6とを同一部材として、製造工程の複雑化を回避しているが、原液の性状や、摩耗粒子の性状に応じて、各々、最適な部材から構成することもできる。具体的には、pHが高い場合はナイロンやポリテトラフルオロエチレン系の樹脂を使用し、pHが低く磨耗物の硬度が高い場合はガラス系の材料を使う等の選定をすることでより寿命を延ばすことが可能となる。   In the present embodiment, the sealant 9 used for the base material end surface 7 in order to prevent the stock solution from entering the base material inside surface 8 from the base material end surface 7 of the ceramic filter, and the wear-resistant functional layer 6 as the same member, Although complication of the manufacturing process is avoided, it can be configured from optimum members, respectively, according to the properties of the stock solution and the properties of the wear particles. Specifically, nylon or polytetrafluoroethylene resin is used when pH is high, and glass material is used when pH is low and wear material hardness is high. It can be extended.

前記の「入口部4から、入口部4で発生する縮流に伴うカルマン渦が整流化されて層流域となるまでの範囲」は、原液流入孔2の口径や、原液の性状や流入速度で変動するが、このうち、原液の流入速度は、原液流入孔2内を流れる原液が「層流」となる条件を満足するものとして規定される。このように、「入口部4から、入口部4で発生する縮流に伴うカルマン渦が整流化されて層流域となるまでの範囲」に、原液中に含有される摩耗粒子に対する耐摩耗機能を有する耐摩耗機能層を備えた上で、原液を、限界レイノルズ数よりも低いレイノルズ数をとる層流条件で流すことにより、ろ過処理前の原液中に上記したような硬質な粒子が含有されている場合にも、原液の流入側におけるセラミックフィルタの内面損傷を防止することができる。   The above-mentioned “range from the inlet portion 4 until the Karman vortex associated with the contracted flow generated at the inlet portion 4 is rectified to become a laminar flow area” is determined by the diameter of the stock solution inflow hole 2, the properties of the stock solution, and the inflow speed. Of these, the inflow rate of the stock solution is defined as satisfying the condition that the stock solution flowing in the stock solution inflow hole 2 becomes “laminar flow”. In this way, the “anti-wear function for wear particles contained in the undiluted solution” is provided in the “range from the inlet portion 4 until the Karman vortex accompanying the contracted flow generated at the inlet portion 4 is rectified and becomes a laminar flow region”. The hard solution as described above is contained in the undiluted solution before the filtration treatment by flowing the undiluted solution under laminar flow conditions having a Reynolds number lower than the limit Reynolds number. Even in this case, damage to the inner surface of the ceramic filter on the inflow side of the stock solution can be prevented.

本発明者は、各種検討の結果、この層流条件を前提とした場合「原液流入孔の入口部から、原液流入孔の口径の1倍以上」の距離を過ぎると、「入口部で発生する縮流に伴うカルマン渦が、ほぼ整流化されて層流域となる」ことを見出した。当該知見によれば、耐摩耗機能層6の形成長さは、「原液流入孔の入口部から、原液流入孔の口径の2倍以上」とすれば、より確実にカルマン渦の整流化を、耐摩耗機能層6内で完了することができる。一方、耐摩耗機能層6が過剰に長くなると、ろ過膜面積が小さくなりろ過効率が低下するため、耐摩耗機能層6の形成長さは、「原液流入孔の入口部から、原液流入孔の口径の4倍以内」とすることが好ましく、最長で「原液流入孔の入口部から、原液流入孔の口径の5倍以内」とする。 As a result of various studies, the present inventor, when this laminar flow condition is premised, when the distance “from the inlet portion of the stock solution inlet hole is equal to or more than one times the diameter of the stock solution inlet hole” passes, The Karman vortex accompanying the contraction flow is almost rectified to become a laminar basin. " According to the knowledge, if the formation length of the wear-resistant functional layer 6 is “ more than twice the diameter of the stock solution inflow hole from the entrance portion of the stock solution inflow hole”, the rectification of the Karman vortex is more reliably performed. It can be completed in the wear resistant functional layer 6. On the other hand, if the wear-resistant functional layer 6 is excessively long, the filtration membrane area is reduced and the filtration efficiency is lowered. Therefore, the formation length of the wear-resistant functional layer 6 is “from the inlet portion of the stock solution inlet hole to the stock solution inlet hole. It is preferable that the diameter is within 4 times the diameter, and the maximum length is within 5 times the diameter of the stock solution inflow hole from the inlet portion of the stock solution inflow hole.

本実施形態では、セラミックフィルタ1をモノリス型のフィルタとして説明したが、フィルタ形状はこれに限定されるものではなく、チューブ型としてもよい。また、ろ過膜3の孔径は、特に限定されず、例えば、0.1μm、0.2μm、0.5μm、1μm、2μm等、適宜必要な孔径を選択することができる。   In the present embodiment, the ceramic filter 1 is described as a monolith type filter, but the filter shape is not limited to this, and may be a tube type. Moreover, the pore diameter of the filtration membrane 3 is not specifically limited, For example, required pore diameters, such as 0.1 micrometer, 0.2 micrometer, 0.5 micrometer, 1 micrometer, 2 micrometers, can be selected suitably.

図5に示す試験装置を用いて、摩耗粒子としてアルミナ粉末を添加したスラリーを、循環線速2m/sで、1000時間循環させて、セラミックフィルタの摩耗再現試験を行った。なお、層流範囲は、レイノルズ数を2310とすると、流速(m/s)=2310×動粘性係数(m2/s)÷内径(m)で計算され、10%アルミナスラリーでは、内径3mmの場合には流速14m/s、内径4mmの場合には11m/sとなり、前記の循環線速2m/sは、レイノルズ数による層流範囲内にある。すなわち、この循環線速を守れば、セラミックフィルタの原液流入孔の入口部で発生する縮流の渦は、後段で整流化されていく。 Using the test apparatus shown in FIG. 5, a slurry to which alumina powder was added as wear particles was circulated at a circulation linear velocity of 2 m / s for 1000 hours to perform a wear reproduction test of the ceramic filter. Note that the laminar flow range is calculated as follows: Reynolds number is 2310, flow rate (m / s) = 2310 × kinematic viscosity coefficient (m 2 / s) ÷ inner diameter (m), and 10% alumina slurry has an inner diameter of 3 mm. In this case, the flow velocity is 14 m / s, and the inner diameter of 4 mm is 11 m / s, and the circulation linear velocity 2 m / s is within the laminar flow range according to the Reynolds number. In other words, if this circulation linear velocity is observed, the vortex of the contracted flow generated at the inlet portion of the stock solution inflow hole of the ceramic filter is rectified in the subsequent stage.

スラリーは、粒度20μmのアルミナ粒子を、水に対して10wt%添加して調整したものを使用し、1000時間の循環後、セラミックフィルタの断面観察により磨耗状況を確認した。内部の磨耗評価は、下記の手法によって行った。
(1)端面から、2mm単位でセラミックフィルタを研磨し、各位置における断面写真を撮影。
(2)拡大した写真から、穴の長辺と短辺を測定して平均値を算出し、30個の穴の平均値をその深さ断面の磨耗深さとする。
(3)磨耗量(mm)=循環前の断面積 − 1000時間の循環後の断面積
The slurry was adjusted by adding 10 wt% of alumina particles having a particle size of 20 μm to water, and after 1000 hours of circulation, the state of wear was confirmed by observing the cross section of the ceramic filter. Internal wear evaluation was performed by the following method.
(1) The ceramic filter is polished from the end face in units of 2 mm, and cross-sectional photographs are taken at each position.
(2) From the enlarged photograph, the long side and the short side of the hole are measured to calculate the average value, and the average value of the 30 holes is defined as the wear depth of the depth cross section.
(3) Amount of wear (mm 2 ) = cross-sectional area before circulation −cross-sectional area after 1000 hours of circulation

図5に示す試験装置において、セラミックフィルタは、円筒状のケーシング10に収容されている。原液として使用するスラリーは原液タンク13からポンプ14で圧送され、ケーシングの下部からセラミックフィルタの原液流入孔内に流入し、ケーシングの上部のから排出される。この間に原液流入孔の内表面に形成されたろ過膜によってろ過が行われ、ろ過液は多孔質のセラミックフィルタの内部を通じて外周側へ流れ、ケーシングの側面に接続されたろ過液排出口から取り出される。なおケーシング10の上部のから排出された原液は再び原液タンク13へ返送され、クロスフローろ過が行われる。   In the test apparatus shown in FIG. 5, the ceramic filter is accommodated in a cylindrical casing 10. The slurry used as the stock solution is pumped from the stock solution tank 13 by a pump 14, flows into the stock solution inflow hole of the ceramic filter from the lower part of the casing, and is discharged from the upper part of the casing. During this time, filtration is performed by a filtration membrane formed on the inner surface of the stock solution inflow hole, and the filtrate flows to the outer peripheral side through the inside of the porous ceramic filter and is taken out from the filtrate discharge port connected to the side surface of the casing. . In addition, the undiluted | stock solution discharged | emitted from the upper part of the casing 10 is again returned to the undiluted solution tank 13, and crossflow filtration is performed.

(試験A)
アルミナを原料としたφ30mm、φ3mmの原液流入孔を37個形成した長さ1mの基材(FS−15(日本ガイシ))の内周壁面には、0.5μm相当の孔径を有するろ過膜(膜厚200μm)を形成した。ろ過膜形成後のセラミックフィルタを、100mm長さに切断し、流動浸漬用ナイロン11(デュポン社)を用いて、耐摩耗機能層6を形成した。
(Test A)
A filtration membrane having a pore diameter equivalent to 0.5 μm is formed on the inner peripheral wall surface of a 1 m long substrate (FS-15 (NGK)) with 37 stock solution inflow holes of φ30 mm and φ3 mm made of alumina as a raw material (FS-15). A film thickness of 200 μm) was formed. The ceramic filter after the formation of the filtration membrane was cut to a length of 100 mm, and the wear-resistant functional layer 6 was formed using nylon 11 for fluid immersion (DuPont).

耐摩耗機能層6の形成は、前記のセラミックフィルタを乾燥炉にて250℃で30分間予熱した後、このセラミックフィルタの端面を、ナイロン11を充填した流動槽に10秒浸漬し、流動槽から取り出したセラミックフィルタを200℃の乾燥炉で15分保持することにより行った。流動槽への浸漬深さを制御することで耐摩耗機能層6の形成距離を制御することができる。   The wear resistant functional layer 6 is formed by preheating the ceramic filter in a drying furnace at 250 ° C. for 30 minutes, and then immersing the end face of the ceramic filter in a fluid tank filled with nylon 11 for 10 seconds. The removed ceramic filter was held in a drying furnace at 200 ° C. for 15 minutes. The formation distance of the wear-resistant functional layer 6 can be controlled by controlling the immersion depth in the fluidized tank.

本試験では、耐摩耗機能層6を形成しないもの(比較例1)の他、原液流入孔3の入口部から、1.5mm(比較例2)、3mm(比較例11)、6mm(実施例2)、9mm(実施例3)、15mm(実施例4)の範囲に、各々、耐摩耗機能層6を形成した、計6種のセラミックフィルタを用意して、上記の摩耗再現試験を行った。 In this test, in addition to the layer not forming the wear-resistant functional layer 6 (Comparative Example 1), 1.5 mm (Comparative Example 2), 3 mm ( Comparative Example 11 ), 6 mm (Example) 2), 9 mm (Example 3), and 15 mm (Example 4), in each case, a total of six types of ceramic filters having the wear-resistant functional layer 6 were prepared, and the above wear reproduction test was performed. .

図6には、摩耗再現試験の結果を図示している。図6に示すように、原液流入孔の入口部から、原液流入孔の口径(φ3mm)の2倍以上の長さの範囲に渡って、原液流入孔の内表面に耐摩耗機能層を備えた実施例2〜4では、何れも、比較例1、2と比べて、磨耗量が顕著に抑制された。特に、原液流入孔の入口部から、原液流入孔の口径(φ3mm)の3倍以上の範囲に渡って、原液流入孔の内表面に耐摩耗機能層を備えた実施例3、4では、摩耗が完全に抑制された。 FIG. 6 shows the result of the wear reproduction test. As shown in FIG. 6, a wear resistant functional layer was provided on the inner surface of the stock solution inflow hole from the inlet portion of the stock solution inflow hole over a range that is at least twice the diameter of the stock solution inflow hole (φ3 mm). In each of Examples 2 to 4 , the wear amount was significantly suppressed as compared with Comparative Examples 1 and 2. In particular, in Examples 3 and 4 in which the wear resistant functional layer is provided on the inner surface of the stock solution inflow hole from the inlet portion of the stock solution inflow hole over a range of 3 times the diameter (φ3 mm) of the stock solution inflow hole, Was completely suppressed.

(試験B)
アルミナを原料としたφ30mm、φ4mmの原液流入孔を19個形成した長さ1mの基材(FS−15C(日本ガイシ))の内周壁面には、1.0μm相当の孔径を有するろ過膜(膜厚150μm)を形成した。ろ過膜形成後のセラミックフィルタを、100mm長さに切断し、PTAポリテトラフルオロエチレンを用いて、耐摩耗機能層6を形成した。
(Test B)
A filtration membrane having a pore diameter equivalent to 1.0 μm is formed on the inner peripheral wall surface of a 1 m long base material (FS-15C (Nippon Gaishi)) having 19 φ30 mm and φ4 mm stock solution inflow holes made of alumina as a raw material ( A film thickness of 150 μm) was formed. The ceramic filter after the filtration membrane was formed was cut to a length of 100 mm, and the wear-resistant functional layer 6 was formed using PTA polytetrafluoroethylene.

耐摩耗機能層6の形成は、PTAポリテトラフルオロエチレン粉末をイソプロピルアルコールに対して5%添加して混合液を作成した後、この混合液に前記のセラミックフィルタの端面を浸漬し、浸漬後のセラミックフィルタを350℃の乾燥炉で30分保持することにより行った。混合液への浸漬深さを制御することで耐摩耗機能層6の形成距離を制御することができる。   The wear resistant functional layer 6 is formed by adding 5% of PTA polytetrafluoroethylene powder to isopropyl alcohol to prepare a mixed solution, and then immersing the end face of the ceramic filter in the mixed solution. The ceramic filter was held in a drying furnace at 350 ° C. for 30 minutes. The formation distance of the wear resistant functional layer 6 can be controlled by controlling the immersion depth in the mixed liquid.

本試験では、耐摩耗機能層6を形成しないもの(比較例3)の他、原液流入孔3の入口部から、2mm(比較例4)、4mm(比較例12)、8mm(実施例6)の範囲に、各々、耐摩耗機能層6を形成した、計4種のセラミックフィルタを用意して、上記の摩耗再現試験を行った。 In this test, in addition to the layer that does not form the wear-resistant functional layer 6 (Comparative Example 3), 2 mm (Comparative Example 4), 4 mm ( Comparative Example 12 ), and 8 mm (Example 6) from the inlet portion of the stock solution inflow hole 3 In total, four types of ceramic filters each having the wear resistant functional layer 6 formed thereon were prepared, and the above wear reproduction test was performed.

図7には、摩耗再現試験の結果を図示している。図7に示すように、原液流入孔の入口部から、原液流入孔の口径(φ4mm)の2倍以上の長さの範囲に渡って、原液流入孔の内表面に耐摩耗機能層を備えた実施例6では、何れも、比較例3、4、12と比べて、磨耗量が顕著に抑制された。特に、原液流入孔の入口部から、原液流入孔の口径(φ4mm)の2倍の範囲に渡って、原液流入孔の内表面に耐摩耗機能層を備えた実施例6では、摩耗が完全に抑制された。 FIG. 7 shows the result of the wear reproduction test. As shown in FIG. 7, the wear resistant functional layer was provided on the inner surface of the stock solution inflow hole from the inlet portion of the stock solution inflow hole over a range that is twice or more the diameter of the stock solution inflow hole (φ4 mm). In Example 6, the amount of wear was remarkably suppressed as compared with Comparative Examples 3, 4, and 12 . In particular, in Example 6 in which the wear resistant functional layer was provided on the inner surface of the stock solution inflow hole over the range twice the diameter of the stock solution inflow hole (φ4 mm) from the inlet portion of the stock solution inflow hole, the wear was completely eliminated. Suppressed.

(試験C)
アルミナを原料としたφ30mm、φ3mmの原液流入孔を37個形成した長さ1mの基材(FS−15(日本ガイシ))の内周壁面には、0.5μm相当の孔径を有するろ過膜(膜厚200μm)を形成した。ろ過膜形成後のセラミックフィルタを、100mm長さに切断し、ガラスフリットSG−3(日本フリット製)を用いて、耐摩耗機能層6を形成した。
(Test C)
A filtration membrane having a pore diameter equivalent to 0.5 μm is formed on the inner peripheral wall surface of a 1 m long substrate (FS-15 (NGK)) with 37 stock solution inflow holes of φ30 mm and φ3 mm made of alumina as a raw material (FS-15). A film thickness of 200 μm) was formed. The ceramic filter after the filter membrane was formed was cut to a length of 100 mm, and the wear-resistant functional layer 6 was formed using glass frit SG-3 (manufactured by Nippon Frit).

耐摩耗機能層6の形成は、ガラスフリット30に対し水100を加えボールミルにて粉砕し平均粒度1μmのガラススラリーを作成し、このガラススラリーに、前記のセラミックフィルタの端面を浸漬し、浸漬後のセラミックフィルタを80℃で5時間乾燥後 900℃で2時間焼成することにより行った。ガラススラリーへの浸漬深さを制御することで耐摩耗機能層6の形成距離を制御することができる。   The wear-resistant functional layer 6 is formed by adding water 100 to the glass frit 30 and pulverizing it with a ball mill to prepare a glass slurry having an average particle size of 1 μm, and immersing the end face of the ceramic filter in this glass slurry. The ceramic filter was dried at 80 ° C. for 5 hours and then fired at 900 ° C. for 2 hours. The formation distance of the wear-resistant functional layer 6 can be controlled by controlling the immersion depth in the glass slurry.

本試験では、耐摩耗機能層6を形成しないもの(比較例5)の他、原液流入孔3の入口部から、1.5mm(比較例6)、3mm(比較例13)、6mm(実施例8)、9mm(実施例9)、15mm(実施例10)の範囲に、各々、耐摩耗機能層6を形成した、計6種のセラミックフィルタを用意して、上記の摩耗再現試験を行った。 In this test, in addition to those not forming the wear-resistant functional layer 6 (Comparative Example 5), 1.5 mm (Comparative Example 6), 3 mm ( Comparative Example 13 ), 6 mm (Example) 8), 9 mm (Example 9), and 15 mm (Example 10), respectively, a total of 6 types of ceramic filters each having an abrasion-resistant functional layer 6 were prepared, and the above wear reproduction test was performed. .

図8には、摩耗再現試験の結果を図示している。図8に示すように、原液流入孔の入口部から、原液流入孔の口径(φ3mm)の2倍以上の長さの範囲に渡って、原液流入孔の内表面に耐摩耗機能層を備えた実施例8〜10では、何れも、比較例5、6、13と比べて、磨耗量が顕著に抑制された。特に、原液流入孔の入口部から、原液流入孔の口径(φ3mm)の3倍以上の範囲に渡って、原液流入孔の内表面に耐摩耗機能層を備えた実施例9、10では、摩耗が完全に抑制された。 FIG. 8 shows the results of the wear reproduction test. As shown in FIG. 8, a wear resistant functional layer is provided on the inner surface of the stock solution inflow hole from the inlet portion of the stock solution inflow hole over a range that is at least twice the diameter of the stock solution inflow hole (φ3 mm). In each of Examples 8 to 10 , the wear amount was remarkably suppressed as compared with Comparative Examples 5, 6, and 13 . In particular, in Examples 9 and 10 in which the wear resistant functional layer is provided on the inner surface of the stock solution inflow hole from the inlet portion of the stock solution inflow hole over a range of 3 times the diameter (φ3 mm) of the stock solution inflow hole, Was completely suppressed.

1 セラミックフィルタ
2 原液流入孔
3 ろ過膜
4 入口部
5 内表面
6 耐摩耗機能層
7 基材端面
8 基材内部
9 シール材
10 ケーシング
11 O−リング
12 基材外周面
13 原液タンク
14 ポンプ
DESCRIPTION OF SYMBOLS 1 Ceramic filter 2 Stock solution inflow hole 3 Filtration membrane 4 Inlet part 5 Inner surface 6 Wear-resistant functional layer 7 Base material end surface 8 Base material inside 9 Sealing material 10 Casing 11 O-ring 12 Base material outer peripheral surface 13 Stock solution tank 14 Pump

Claims (4)

アルミナ多孔質体に原液流入孔を形成したセラミックフィルタを用いたろ過方法であって、
前記原液流入孔は、入口部から、該入口部で発生する縮流に伴うカルマン渦が整流化されて層流域となるまでの範囲である前記原液流入孔の口径の2〜5倍の長さに渡って、その内表面に、前記アルミナ多孔質体よりも緻密質からなり、原液中に含有される摩耗粒子に対する耐摩耗機能を有する耐摩耗機能層を備え、
該原液流入孔に、原液を、限界レイノルズ数よりも低いレイノルズ数をとる層流条件で流すことを特徴とするセラミックフィルタを用いたろ過方法。
A filtration method using a ceramic filter in which a stock solution inflow hole is formed in an alumina porous body,
The stock solution inflow hole is 2 to 5 times as long as the diameter of the stock solution inflow hole, which is a range from the inlet part to the rectification of Karman vortices accompanying the contracted flow generated at the inlet part to become a laminar flow region. Over the inner surface, comprising a wear-resistant functional layer that is more dense than the alumina porous body and has a wear-resistant function against wear particles contained in the stock solution,
A filtration method using a ceramic filter, wherein the stock solution is caused to flow through the stock solution inflow hole under a laminar flow condition having a Reynolds number lower than a critical Reynolds number.
前記耐摩耗機能層が、樹脂又はガラス系材料からなることを特徴とする請求項1記載のセラミックフィルタを用いたろ過方法。The filtration method using a ceramic filter according to claim 1, wherein the wear-resistant functional layer is made of a resin or a glass-based material. アルミナ多孔質体に原液流入孔を形成したセラミックフィルタであって、A ceramic filter in which a stock solution inflow hole is formed in an alumina porous body,
原液流入孔の入口部から、原液流入孔の口径の2〜5倍の長さの範囲に渡って、原液流入孔の内表面に、前記アルミナ多孔質体よりも緻密質からなり、原液中に含有される摩耗粒子に対する耐摩耗機能を有する耐摩耗機能層を備えたことを特徴とするセラミックフィルタ。From the inlet portion of the stock solution inlet hole to the inner surface of the stock solution inlet hole over a range of 2 to 5 times the diameter of the stock solution inlet hole, it is more dense than the alumina porous body, A ceramic filter comprising a wear-resistant functional layer having a wear-resistant function against contained wear particles.
前記耐摩耗機能層が、樹脂又はガラス系材料からなることを特徴とする請求項3記載のセラミックフィルタ。The ceramic filter according to claim 3, wherein the wear-resistant functional layer is made of a resin or a glass-based material.
JP2013059365A 2013-03-22 2013-03-22 Filtration method using ceramic filter and ceramic filter Active JP6024022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013059365A JP6024022B2 (en) 2013-03-22 2013-03-22 Filtration method using ceramic filter and ceramic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013059365A JP6024022B2 (en) 2013-03-22 2013-03-22 Filtration method using ceramic filter and ceramic filter

Publications (2)

Publication Number Publication Date
JP2014184362A JP2014184362A (en) 2014-10-02
JP6024022B2 true JP6024022B2 (en) 2016-11-09

Family

ID=51832467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013059365A Active JP6024022B2 (en) 2013-03-22 2013-03-22 Filtration method using ceramic filter and ceramic filter

Country Status (1)

Country Link
JP (1) JP6024022B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235210A1 (en) 2017-06-21 2018-12-27 エム・テクニック株式会社 Filtration membrane module and filtration method
KR20220058987A (en) 2020-11-02 2022-05-10 채충헌 Monopod
CN112973296A (en) * 2021-03-24 2021-06-18 单西芳 Dust collecting equipment with filter high rigidity raise dust
WO2024203193A1 (en) * 2023-03-30 2024-10-03 日本碍子株式会社 Operation method for separation device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628588U (en) * 1985-06-28 1987-01-19
JP3113673B2 (en) * 1990-10-04 2000-12-04 東芝セラミックス株式会社 Filtration method by ceramic filter
JPH05105420A (en) * 1991-03-29 1993-04-27 Ngk Insulators Ltd Synthetic film of zeolite crystalline body and its production
JP2002210314A (en) * 2001-01-16 2002-07-30 Ngk Insulators Ltd Ceramic filter
JP4748730B2 (en) * 2007-01-22 2011-08-17 日本碍子株式会社 Ceramic filter and end face sealing method thereof
WO2009113715A1 (en) * 2008-03-12 2009-09-17 日本碍子株式会社 Method for manufacturing a structure provided with a ddr zeolite membrane
FR2938199B1 (en) * 2008-11-07 2011-11-25 Technlologies Avancees Et Membranes Ind FILTRATION MEMBRANE HAVING ENHANCED ABRASION RESISTANCE

Also Published As

Publication number Publication date
JP2014184362A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP6024022B2 (en) Filtration method using ceramic filter and ceramic filter
CN103249474B (en) Alumina ceramic membrane
Xu et al. Hydrophilic SiC hollow fiber membranes for low fouling separation of oil-in-water emulsions with high flux
JP4195824B2 (en) Filtration method
WO2018235210A1 (en) Filtration membrane module and filtration method
KR100900091B1 (en) Metal element for high purity line and filter including the same
JP2012178418A (en) Method and apparatus for collecting polishing agent
JP2020509929A (en) Marker-based direct integrity testing system and method for membranes
JP2013188711A (en) Membrane filtration apparatus and membrane filtration method
US20110290715A1 (en) Fluid filter and filter system
US20210107838A1 (en) Inorganic membrane filtration articles and methods thereof
JP7412510B2 (en) ceramic filter
JP6579281B2 (en) Adsorbing member and manufacturing method thereof
JP6197760B2 (en) Oil deterioration suppressing device for internal combustion engine
US9669362B2 (en) Filtration membrane having improved resistance to abrasions
JP2002231668A (en) Slurry transfer device
JP2007237053A (en) Filter and its backwashing method
KR102700869B1 (en) Manufacturing method for polishing slurry and polishing method using the same
JP2016093794A (en) Ceramic filter
JP7099688B2 (en) Membrane filter adapter and CMP slurry regeneration device
JPWO2018143250A1 (en) Hollow fiber membrane module
US10814281B2 (en) Separation element with improved channelling of the filtrate
US20220411686A1 (en) Particulate slurries and methods of making the same
JP2017094310A (en) Separation treatment method of treatment object fluid
JP2017000981A (en) Separation membrane support, separation membrane structure and separation membrane structure module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160916

R150 Certificate of patent or registration of utility model

Ref document number: 6024022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150