JP6023074B2 - Aluminum member joining method - Google Patents

Aluminum member joining method Download PDF

Info

Publication number
JP6023074B2
JP6023074B2 JP2013545987A JP2013545987A JP6023074B2 JP 6023074 B2 JP6023074 B2 JP 6023074B2 JP 2013545987 A JP2013545987 A JP 2013545987A JP 2013545987 A JP2013545987 A JP 2013545987A JP 6023074 B2 JP6023074 B2 JP 6023074B2
Authority
JP
Japan
Prior art keywords
joining
aluminum
aluminum member
members
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013545987A
Other languages
Japanese (ja)
Other versions
JPWO2013077455A1 (en
Inventor
細川俊之
枝義弥
諸井努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Publication of JPWO2013077455A1 publication Critical patent/JPWO2013077455A1/en
Application granted granted Critical
Publication of JP6023074B2 publication Critical patent/JP6023074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • B23K20/2336Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer both layers being aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Description

本発明は、アルミニウム部材同士を接合する方法、ならびに、当該接合方法によって接合されたアルミニウム構造体に関する。   The present invention relates to a method for joining aluminum members together, and an aluminum structure joined by the joining method.

金属製の部材の接合方法には、従来から様々な方法が採用されている。非特許文献1には、金属の接合方法が材質的接合法、化学的接合法及び機械的接合法に大きく分類されている。アルミニウム部材の接合も、これらいずれかの方法が用いられ、具体的には、溶接法、ハンダ付け法、ロウ付法等の材質的接合法が用いられてきた。   Conventionally, various methods have been employed for joining metal members. In Non-Patent Document 1, metal joining methods are roughly classified into material joining methods, chemical joining methods, and mechanical joining methods. Any of these methods is used for joining aluminum members, and specifically, material joining methods such as a welding method, a soldering method, and a brazing method have been used.

溶接法は、接合部を電気又は炎により加熱して溶融、合金化して接合を成すものである。接合部の隙間が大きい場合や接合強度が必要な場合は、接合時に溶加材を同時に溶融させて隙間を充填する。このように、接合部が溶融するため確実な接合がなされる。一方で、接合部を溶融して接合するため、接合部近傍の形状が大きく変形し、金属組織も局所的に大きく変化して別組織となり局所的な脆弱化が生じることがある。また、接合部のみを局所的に加熱していく必要があるために、同時に多点を接合するのが困難となるなどの問題もある。未接合部が残って残留応力が生じてしまうことや、溶加材を加えることによる重量増などの問題があった。   In the welding method, the joint is heated by electricity or flame to be melted and alloyed to form a joint. When the gap between the joints is large or when bonding strength is required, the filler material is simultaneously melted at the time of joining to fill the gap. Thus, since a junction part melts, reliable joining is made. On the other hand, since the joint portion is melted and joined, the shape in the vicinity of the joint portion is greatly deformed, and the metal structure is also greatly changed locally to become another structure, which may cause local weakening. In addition, since it is necessary to locally heat only the joint portion, there is a problem that it is difficult to join multiple points at the same time. There existed problems, such as an unjoined part remaining and a residual stress producing, and the weight increase by adding a filler material.

また、ロウ付け法では、ロウ材の溶融による流動で形状変化が生じるなどの問題があった。被接合部材の他にロウ材を使用する場合でも、或いは、被接合材にロウ材をクラッドして一体化する場合でも、ある一定程度のロウ材が必要になるので、例えば、狭い流路が存在する場合などでも、その隙間を埋めてしまうなどの問題があった。また、ロウ材を別途用意する場合は組み立てが面倒となり、クラッド材では材料費が高くなるという問題もあった。   Further, the brazing method has a problem that a shape change occurs due to a flow caused by melting of the brazing material. Even when a brazing material is used in addition to the member to be joined, or when the brazing material is clad and integrated with the joining material, a certain amount of brazing material is required. Even if it exists, there was a problem of filling the gap. Further, when a brazing material is prepared separately, the assembly is troublesome, and the clad material has a problem that the material cost becomes high.

これに対して、特許文献1に示すしみ出し接合は、良好な接合性と、接合時の材料の流動による変形が殆どない、信頼性の高い新規な接合方法である。被接合部材自体が溶融により大きく流動することがなく、ハンダ材やロウ材、溶化材等を用いないため、接合による寸法変化が小さく殆ど形状変化を生じないという特徴を有する。特に、微細な流路を備えた部材の接合においても、液相の流れ込みや変形によって流路が塞がれることなく良好な接合を行える。また、拡散接合のように接合面同士の強い加圧が必要でないため、平坦な板状のものに限らず、部材同士の端部を突き合せた接合も可能である。素材自体で接合できるので、ロウ材を使用するロウ付けのように組み立てが煩雑でなく、ロウ材のクラッド材ように材料費が高くなることもない。   On the other hand, the seepage bonding shown in Patent Document 1 is a highly reliable new bonding method with good bonding properties and almost no deformation due to the flow of materials during bonding. Since the member to be joined itself does not flow greatly due to melting and does not use a solder material, a brazing material, a solubilizing material, or the like, there is a feature that a dimensional change due to joining is small and hardly changes in shape. In particular, even in joining members having fine flow paths, good joining can be performed without clogging the flow paths due to inflow or deformation of the liquid phase. Moreover, since strong pressurization between the bonding surfaces is not required unlike diffusion bonding, the bonding is not limited to a flat plate shape, and bonding in which the end portions of the members are abutted is also possible. Since the materials themselves can be joined, the assembly is not complicated as in brazing using a brazing material, and the material cost is not as high as that of a clad material of brazing material.

以上のように、しみ出し接合は、従来の接合方法の問題点を解決する接合方法であり、アルミニウム材の接合において多くの利点を有する方法である。   As described above, the exudation joining is a joining method that solves the problems of the conventional joining methods, and has many advantages in joining aluminum materials.

国際公開WO2011/152556International publication WO2011 / 152556

溶接・接合技術データブック、p.57、溶接・接合技術データブック編集委員会(2007年)Welding and joining technology data book, p. 57, Welding / Joint Technology Data Book Editorial Committee (2007)

アルミニウム材は、比強度が高いことから構造体としての需要が高く、軽量かつ高強度の構造体があれば産業的に大きな効果が得られる。しかしながら、前述のしみ出し接合を構造体のような継手形状に使用する場合には、部材同士の端部を突き合せた部分に応力集中が生じ易い。   Aluminum materials are highly demanded as structures because of their high specific strength, and if there is a lightweight and high-strength structure, a large industrial effect can be obtained. However, when the above-mentioned squeeze-out joining is used in a joint shape such as a structure, stress concentration tends to occur at a portion where the end portions of the members are butted together.

その理由は、次のように考えられる。通常のロウ付けの場合では接合部を液相ロウが埋めて接合部近傍の形状を太らせるフィレットが形成され、溶接の場合では接合部を溶融しつつ溶加材を付加することで接合部近傍の形状を太らせるビードが形成される。これらの接合方法では、部材間の急激な断面積変化を緩和するフィレットやビードによって応力が分散される。これに対してしみ出し接合では、接合部において部材間の断面積変化を緩和するフィレットやビードが形成されないので急激な断面積変化を緩和できず、接合部に応力が集中することになる。そこで、しみ出し接合の利点を活かしつつ、接合部の応力集中をなくして継手強度を向上可能なしみ出し接合に適した接合方法が求められている。   The reason is considered as follows. In the case of normal brazing, a fillet is formed that fills the joint with liquid phase brazing and thickens the shape in the vicinity of the joint, and in the case of welding, the filler is added to the vicinity of the joint by melting the joint. A bead for thickening the shape is formed. In these joining methods, stress is dispersed by a fillet or bead that relaxes a sudden change in cross-sectional area between members. On the other hand, in the seepage joining, since a fillet or bead that relaxes the cross-sectional area change between the members is not formed in the joint portion, the sudden cross-sectional area change cannot be mitigated, and stress concentrates on the joint portion. Therefore, there is a demand for a joining method suitable for seepage joining that can improve the joint strength by eliminating the stress concentration at the joint while utilizing the advantage of seepage joining.

本発明は、かかる技術的背景に鑑みてなされたものである。しみ出し接合を用いたアルミニウム構造体において、継手部分に応力集中がなく十分な強度を有するとともに、溶接やロウ付けにおけるような組織変化、形状変化を生じることがないなど、しみ出し接合の長所を兼ね備えたアルミニウム部材の接合方法の提供を目的とする。   The present invention has been made in view of such technical background. In aluminum structures using exudation bonding, there is no stress concentration in the joint part and it has sufficient strength, and there is no structural change or shape change as in welding or brazing, etc. An object of the present invention is to provide a method for joining aluminum members.

本発明は、 本発明は、第1のアルミニウム部材と第2のアルミニウム部材を接合する方法であって、前記第1及び第2のアルミニウム部材の少なくとも一方を、その全質量に対する当該アルミニウム部材内に生成する液相の質量の比が5%以上35%以下となる温度で他方のアルミニウム部材と接合する接合方法において、
前記第1及び第2のアルミニウム部材の接合部の接合幅、前記第2のアルミニウム合金部材の、前記第1及び第2アルミニウム部材の接合面と平行な面に沿った断面の最小幅よりも大きくし、
前記第1及び第2のアルミニウム部材は、Mg:0.5質量%以下に規制されるアルミニウム材からなり、
前記接合は、非酸化性雰囲気中において、フッ化物系もしくは塩化物系のフラックスが接合部に塗布された状態で行われることを特徴とするアルミニウム部材の接合方法を提供する。
The present invention is a method for joining a first aluminum member and a second aluminum member, wherein at least one of the first and second aluminum members is placed in the aluminum member with respect to its total mass. In the joining method of joining to the other aluminum member at a temperature at which the mass ratio of the liquid phase to be produced is 5% or more and 35% or less,
Bonding width of the bonded portion of the first and second aluminum members, said second aluminum alloy member, than the first and the minimum width of the cross section along the joint surface and parallel to the plane of the second aluminum members Make it bigger
The first and second aluminum members are made of an aluminum material regulated to Mg: 0.5% by mass or less,
The bonding is performed in a non-oxidizing atmosphere with a fluoride-based or chloride-based flux applied to the bonding portion .

本発明は、第1のアルミニウム部材と第2のアルミニウム部材を接合する方法であって、前記第1及び第2のアルミニウム部材の少なくとも一方を、その全質量に対する当該アルミニウム部材内に生成する液相の質量の比が5%以上35%以下となる温度で他方のアルミニウム部材と接合する接合方法において、
前記第1及び第2のアルミニウム部材の接合部の接合幅が、前記第2のアルミニウム合金部材の、前記第1及び第2アルミニウム部材の接合面と平行な面に沿った断面の最小幅よりも大きくし、
前記第1のアルミニウム部材は、Mg:0.2質量%以上2.0質量%以下を含有するアルミニウム材からなり、前記第2のアルミニウム部材は、Mg含有量が2.0質量%以下に規制されるアルミニウム材からなり、
前記接合は、真空中、非酸化性雰囲気中又は大気中において行われることを特徴とするアルミニウム部材の接合方法を提供する。
The present invention is a method for joining a first aluminum member and a second aluminum member, wherein at least one of the first and second aluminum members is generated in the aluminum member with respect to its total mass. In the joining method of joining with the other aluminum member at a temperature at which the mass ratio of 5% or more and 35% or less,
The joining width of the joining portion of the first and second aluminum members is smaller than the minimum width of the cross section along the plane parallel to the joining surfaces of the first and second aluminum members of the second aluminum alloy member. Make it bigger
The first aluminum member is made of an aluminum material containing Mg: 0.2% by mass or more and 2.0% by mass or less, and the second aluminum member is regulated to have an Mg content of 2.0% by mass or less. Made of aluminum material,
The bonding is performed in a vacuum, in a non-oxidizing atmosphere or in the air, and provides a method for bonding aluminum members.

上記本発明において、前記第1及び第2のアルミニウム部材の接合面がそれぞれ単一平面からなるものとすることができる。In the present invention, the joining surfaces of the first and second aluminum members may each be a single plane.

上記本発明において、前記第1及び第2のアルミニウム部材の接合面がそれぞれ、両部材間で相補的な複数の平面又は相補的な曲面からなるものとすることもできる。In the present invention, the joining surfaces of the first and second aluminum members may each be composed of a plurality of complementary planes or complementary curved surfaces between the two members.

前記第1及び第2のアルミニウム部材の接合面がそれぞれ、両部材間で相補的な複数の平面からなる場合、該各接合面は、両部材間で相補的な二つの平面又は三つの平面からなり、該接合面と直交する接合部の断面が略L字状又は略コの字状であってもよい。When the joint surfaces of the first and second aluminum members are each composed of a plurality of planes complementary between the two members, the joint surfaces are formed from two planes or three planes complementary between the two members. Thus, the cross section of the joint perpendicular to the joint surface may be substantially L-shaped or substantially U-shaped.

前記第1及び第2のアルミニウム部材の接合面がそれぞれ、両部材間で相補的な複数の平面からなる場合、該各接合面は、両部材間で相補的な連続する複数の平面からなり、該接合面と直交する接合部の断面が鋸歯状、階段状又は凹凸状であってもよい。When the joint surfaces of the first and second aluminum members are each composed of a plurality of planes complementary between the two members, the joint surfaces are composed of a plurality of continuous planes complementary between the two members, The cross section of the joint perpendicular to the joint surface may be serrated, stepped, or uneven.

前記第1及び第2のアルミニウム部材の接合面がそれぞれ、両部材間で相補的な曲面からなり、該接合面と直交する接合部の断面が波状であってもよい。The joint surfaces of the first and second aluminum members may each be a complementary curved surface between the two members, and the cross section of the joint portion orthogonal to the joint surface may be wavy.

本発明により、溶化材やロウ材を必要としない簡易なアルミニウム部材の接合方法を提供することができ、更に、継手部分において応力集中がなく、十分な強度を有するアルミニウム構造体を提供することができる。   According to the present invention, it is possible to provide a simple aluminum member joining method that does not require a solution material or a brazing material, and further to provide an aluminum structure having sufficient strength without stress concentration at the joint portion. it can.

接合方法について詳述すると、しみ出し接合本来の以下の特徴を有する。すなわち、被接合部材自体が溶融により大きく流動することがなく、ハンダ材やロウ材、溶化材等を用いないため、接合による寸法変化が小さく、殆ど形状変化を生じない。特に、微細な流路を有する部材の接合においても、液相の流れ込みや変形によって流路が塞がれることなく良好な接合を行える。   If it explains in full detail about a joining method, it has the following original features of exudation joining. That is, since the member to be joined itself does not flow greatly due to melting and does not use solder material, brazing material, solution material, or the like, the dimensional change due to joining is small and almost no shape change occurs. In particular, even in joining members having fine flow paths, good joining can be performed without clogging the flow paths due to inflow or deformation of the liquid phase.

更に、接合部近傍において局所的な組織変化が生起しないため、強度脆化が生じ難い。また、ロウ付法と同等の信頼性を有する同時多点接合を、置きロウ、ロウペースト、ロウ材をクラッドしたブレージングシートなどを用いることなく行うことができる。これにより、接合性能を損なうことなく材料のコストダウンが可能となる。   Further, since local structural change does not occur in the vicinity of the joint, strength embrittlement hardly occurs. In addition, simultaneous multipoint joining having the same reliability as that of the brazing method can be performed without using a brazing sheet, brazing paste, brazing sheet clad with brazing material, or the like. Thereby, the cost of the material can be reduced without impairing the bonding performance.

本発明と同様に接合による変形が少なく同時多点接合が可能である拡散接合と比べて、加圧が不要で、接合に要する時間を短くでき、Mgを含有していないアルミニウム合金材の接合であっても、接合面の清浄化処理のための特殊な工程を必要としない。   Similar to the present invention, compared to diffusion bonding, in which there is little deformation due to bonding and simultaneous multipoint bonding is possible, pressurization is not required, the time required for bonding can be shortened, and aluminum alloy materials that do not contain Mg can be bonded. Even if it exists, the special process for the cleaning process of a joint surface is not required.

本発明における接合形態の実施例を示す断面図である。It is sectional drawing which shows the Example of the joining form in this invention. 本発明における接合形態の他の実施例を示す断面図である。It is sectional drawing which shows the other Example of the joining form in this invention. 本発明における接合形態の他の実施例を示す断面図である。It is sectional drawing which shows the other Example of the joining form in this invention. 第1のアルミニウム部材と第2のアルミニウム部材の長手方向に沿った中心線同士が成す角度(θ)を示す模式図である。It is a schematic diagram which shows the angle ((theta)) which the centerlines along the longitudinal direction of a 1st aluminum member and a 2nd aluminum member make. 本発明における接合形態の接合面を変更した実施例を示す断面図である。It is sectional drawing which shows the Example which changed the joining surface of the joining form in this invention. 本発明における接合形態の接合面を変更した他の実施例を示す断面図である。It is sectional drawing which shows the other Example which changed the joining surface of the joining form in this invention. 本発明における接合形態の接合面を変更した他の実施例を示す断面図である。It is sectional drawing which shows the other Example which changed the joining surface of the joining form in this invention. 本発明における接合形態の接合面を変更した他の実施例を示す断面図である。It is sectional drawing which shows the other Example which changed the joining surface of the joining form in this invention. 本発明における接合形態の接合面を変更した他の実施例を示す断面図である。It is sectional drawing which shows the other Example which changed the joining surface of the joining form in this invention. 本発明における接合形態の接合面を変更した他の実施例を示す断面図である。It is sectional drawing which shows the other Example which changed the joining surface of the joining form in this invention. 本発明における接合形態の接合面を変更した他の実施例を示す断面図である。It is sectional drawing which shows the other Example which changed the joining surface of the joining form in this invention. 本発明における接合形態の接合面を変更した他の実施例を示す断面図である。It is sectional drawing which shows the other Example which changed the joining surface of the joining form in this invention. 本発明における接合形態の接合面を変更した他の実施例を示す断面図である。It is sectional drawing which shows the other Example which changed the joining surface of the joining form in this invention. 本発明における接合形態の接合面を変更した他の実施例を示す断面図である。It is sectional drawing which shows the other Example which changed the joining surface of the joining form in this invention. 本発明における接合形態の接合面を変更した他の実施例を示す断面図である。It is sectional drawing which shows the other Example which changed the joining surface of the joining form in this invention. 本発明における接合形態の接合面を変更した他の実施例を示す断面図である。It is sectional drawing which shows the other Example which changed the joining surface of the joining form in this invention. 本発明における接合形態の接合面を変更した他の実施例を示す断面図である。It is sectional drawing which shows the other Example which changed the joining surface of the joining form in this invention. 2元系共晶合金としてAl−Si合金の状態図を示す模式図である。It is a schematic diagram which shows the phase diagram of an Al-Si alloy as a binary eutectic alloy. 本発明に係るアルミニウム部材の接合方法における、液相の生成メカニズムを示す説明図である。It is explanatory drawing which shows the production | generation mechanism of a liquid phase in the joining method of the aluminum member which concerns on this invention. 本発明に係るアルミニウム部材の接合方法における、液相の生成メカニズムを示す説明図である。It is explanatory drawing which shows the production | generation mechanism of a liquid phase in the joining method of the aluminum member which concerns on this invention. 逆T字型接合試験片とその接合部の観察面位置を示す正面図である。It is a front view which shows the observation surface position of a reverse T-shaped joining test piece and its junction part. 図21で観察した接合部を示す顕微鏡写真である。It is a microscope picture which shows the junction part observed in FIG.

以下、本発明のアルミニウム部材の接合方法、ならびに、この接合方法を用いて接合したアルミニウム構造体について説明する。ここで、この接合方法は、前記した特許文献1の記載に従い、アルミニウム部材同士をしみ出し接合法を適用して接合するものである。まず、被接合部材である第1及び第2のアルミニウム部材の接合形態について説明する。   The aluminum member joining method of the present invention and the aluminum structure joined using this joining method will be described below. Here, in this joining method, the aluminum members are exuded and joined by applying the joining method in accordance with the description in Patent Document 1 described above. First, the joining form of the 1st and 2nd aluminum member which is a to-be-joined member is demonstrated.

A.接合形態
図1に示すように、第1のアルミニウム部材が長尺材の場合にその長辺部に対して、或いは、第1のアルミニウム部材が平板材の場合にはその平面部に対して、同じく長尺材である第2のアルミニウム部材の端部を所定の角度を持って接合する接合形態が挙げられる。第2のアルミニウム部材が第1のアルミニウム部材上に“立つ”ように接合されていることから、このような接合を以下「立接」と記す。第1及び第2のアルミニウム部材のそれぞれの接合面が単一平面であり、これらの接合面を当接した部分が接合部となる。まず、接合面が単一平面である立接の接合形態について説明する。
A. As shown in FIG. 1, when the first aluminum member is a long material, its long side portion, or when the first aluminum member is a flat plate material, its flat portion, The joining form which joins the edge part of the 2nd aluminum member which is also a long material with a predetermined angle is mentioned. Since the second aluminum member is joined so as to “stand” on the first aluminum member, such joining is hereinafter referred to as “standing up”. Each joining surface of the 1st and 2nd aluminum member is a single plane, and the part which contact | abutted these joining surfaces becomes a junction part. First, a standing joining mode in which the joining surface is a single plane will be described.

しみ出し接合を適用すると、接合部にはロウ付けのフィレットや、溶接のビードのように、第2のアルミニウム部材から第1のアルミニウム部材にかけて断面積が徐々に大きくなるような部分が存在しない。断面積が徐変する部分が存在しないと、例えば第2のアルミニウム部材の接合部から離れた箇所に片持ち梁のような荷重が加わる場合、断面積が急に変化する接合部に応力が集中し、応力が接合強度を上回るような負荷条件になると接合部が変形又は破壊してしまう。   When exudation joining is applied, there is no portion where the cross-sectional area gradually increases from the second aluminum member to the first aluminum member, such as a brazed fillet or a weld bead. If there is no part where the cross-sectional area gradually changes, for example, when a load such as a cantilever is applied to a part away from the joint part of the second aluminum member, stress concentrates on the joint part where the cross-sectional area changes suddenly. However, when the load condition is such that the stress exceeds the bonding strength, the bonded portion is deformed or broken.

これは、一定の負荷条件では接合部に発生するモーメントは一定で、接合部の最外部に発生する応力は接合中心と最外部の距離が小さければ大きくなり、その距離が大きければ最大応力は小さくなるためである。言い換えれば、最大応力は接合部の幅が小さければ大きく、接合部の幅が大きければ小さくなるためである。そして、しみ出し接合では、この接合部の幅が小さいので、最大応力は大きくなる。   This is because the moment generated at the joint is constant under a certain load condition, and the stress generated at the outermost part of the joint becomes larger when the distance between the joint center and the outermost part is smaller, and the maximum stress becomes smaller when the distance is larger. Because it becomes. In other words, the maximum stress is large when the width of the joint is small and small when the width of the joint is large. And in the exudation joining, since the width | variety of this junction part is small, the maximum stress becomes large.

このため、本発明では、両アルミニウム部材同士をしみ出し接合で立接する場合には、第2のアルミニウム部材の、第1のアルミニウム部材と接する側の端部を大きくして、その接合面が第2のアルミニウム部材の本体部分より大きくなるようにした。具体的には、第2のアルミニウム部材と第1のアルミニウム部材の接合部の接合幅を、第2のアルミニウム部材の本体部分の、第1及び第2のアルミニウム部材の接合面と平行な面に沿った断面の最小幅よりも大きくするものである。これにより、接合部の最外部における応力集中が無くなり、接合部での変形や破壊の発生を抑制することができる。   For this reason, in the present invention, when both the aluminum members are erected and joined in a standing manner, the end of the second aluminum member on the side in contact with the first aluminum member is enlarged so that the joint surface is the first. It was made larger than the main body portion of the aluminum member No. 2. Specifically, the joining width of the joining portion of the second aluminum member and the first aluminum member is set to a surface parallel to the joining surfaces of the first and second aluminum members of the main body portion of the second aluminum member. It is larger than the minimum width of the cross section along. Thereby, the stress concentration in the outermost part of the joint is eliminated, and the occurrence of deformation and breakage at the joint can be suppressed.

このような立接による接合形態の例としては、図1に示すように、端部がL字状に成形された第2のアルミニウム部材と、第1のアルミニウム部材との接合形態が挙げられる。L字形状の寸法は適宜決定すればよい。   As an example of the joining form by such standing contact, as shown in FIG. 1, the joining form of the 2nd aluminum member by which the edge part was shape | molded in L shape, and a 1st aluminum member is mentioned. What is necessary is just to determine the dimension of L shape suitably.

他の接合形態の例としては、図2に示すように、第2のアルミニウム部材の端部が漏斗状に広がっており、この漏斗状の端面において第1のアルミニウム部材と接合されているものが挙げられる。漏斗状の端部形状や寸法は適宜決定すればよい。   As an example of another joining form, as shown in FIG. 2, the end of the second aluminum member spreads in a funnel shape, and the one joined to the first aluminum member at the funnel-shaped end surface is used. Can be mentioned. What is necessary is just to determine a funnel-shaped end part shape and a dimension suitably.

更に他の接合形態の例としては、図3に示すように、図2における第2のアルミニウム部材の第1のアルミニウム部材と接合された端部とは反対側の接合されていない端部が広がっているものが挙げられる。この接合されていない端部の形状は任意であり、本発明の効果を損なうものではない。   As another example of the joining form, as shown in FIG. 3, the unjoined end of the second aluminum member in FIG. 2 opposite to the end joined to the first aluminum member spreads. Are listed. The shape of the unjoined end is arbitrary and does not impair the effects of the present invention.

これら図1〜3に示す立接による接合形態の例では、第2のアルミニウム部材と第1のアルミニウム部材のなす角度、すなわち、両部材の長手方向に沿った中心線同士のなす角度が直角(90°)となっているが、この角度に限定されるものではない。図4に示すように、中心線同士(L1、L2)のなす角度(θ)は、0°<θ<180°の範囲において設定可能でありその効果が発揮される。一般的な構造部材の場合は、30°<θ<150°の範囲で接合する場合が多い。   1 to 3, the angle formed by the second aluminum member and the first aluminum member, that is, the angle formed by the center lines along the longitudinal direction of both members is a right angle ( 90 degrees), but is not limited to this angle. As shown in FIG. 4, the angle (θ) formed by the center lines (L1, L2) can be set in the range of 0 ° <θ <180 °, and the effect is exhibited. In the case of a general structural member, joining is often performed in a range of 30 ° <θ <150 °.

第1及び第2のアルミニウム部材については中実部材であることを前提として述べてきたが、第1及び第2のアルミニウム部材のいずれか一方、或いは、両方が中空部材であってもよい。   Although the first and second aluminum members have been described on the premise that they are solid members, either one or both of the first and second aluminum members may be hollow members.

次に、本発明の接合の形態として、前述の立接のような接合形態に限定しない一般的な接合形態であって、接合面を種々変更した例について説明する。一般に、接合とは2つの被接合部材が存在するものであって、それらの接合面は単一の平面からなる場合が多い。しかしながら、しみ出し接合では、液層量が通常のロウ付けよりも少なく、溶接のように溶加材を用いることもない。従って、被接合部材としてそれ自身の強度が高いものを選択した場合には、相対的に接合部の接合強度が弱くなる。このような場合には、荷重が負荷されれば接合部が変形又は破壊することにもなる。   Next, an example in which the joining surface of the present invention is a general joining form that is not limited to the joining form such as the above-described standing joining, and various joining surfaces are changed will be described. In general, the joining includes two members to be joined, and the joining surfaces are often composed of a single plane. However, in the exudation joining, the amount of liquid layer is smaller than that of normal brazing, and a filler metal is not used unlike welding. Therefore, when a member having high strength is selected as the member to be bonded, the bonding strength of the bonded portion is relatively weak. In such a case, if a load is applied, the joint will be deformed or broken.

このため、本発明の他の実施態様では、第1のアルミニウム部材の接合面を複数の平面とし、かつ、第2のアルミニウム部材の接合面もまた同じ複数の平面とした。そして、第1のアルミニウム部材の複数の接合面と、これらに対応する第2のアルミニウム部材の複数の接合面とが、それぞれ相補的となるようにした。また、これに代わって、第1及び第2のアルミニウム部材の接合面をそれぞれ曲面とし、それぞれの曲面が相補的となるようにした。   For this reason, in another embodiment of the present invention, the joining surface of the first aluminum member has a plurality of planes, and the joining surface of the second aluminum member also has the same plurality of planes. The plurality of joining surfaces of the first aluminum member and the plurality of joining surfaces of the second aluminum member corresponding thereto are respectively complementary. Instead, the joining surfaces of the first and second aluminum members are curved surfaces, and the curved surfaces are complementary.

このような接合形態の例としては、図5に示すように、複数の平面と直交する接合部断面が垂直の段形状になっているものが挙げられる。段形状の寸法は適宜決定すればよく、角部が曲線(R)になっていてもよい。また、図6に示すように、接合部断面が鈍角の段形状になっているものが挙げられる。図5の例と同様に、段形状の寸法は適宜決定すればよく、角部が曲線(R)になっていてもよい。更に、図7に示すように、接合部断面がくの字状になっているものが挙げられる。くの字の直線間の角度は適宜決定すればよい。また、図8に示すように、接合部断面が曲線状になっているものが挙げられる。曲線の具体的な形状や寸法は適宜決定すればよい。   As an example of such a bonding form, as shown in FIG. 5, there is one in which a cross section of a bonding portion orthogonal to a plurality of planes has a vertical step shape. The dimensions of the step shape may be determined as appropriate, and the corners may be curved (R). Moreover, as shown in FIG. 6, what has the cross section of the junction part in the step shape of an obtuse angle is mentioned. Similar to the example of FIG. 5, the dimensions of the step shape may be determined as appropriate, and the corners may be curved (R). Furthermore, as shown in FIG. 7, there is one in which the cross section of the joint portion has a square shape. What is necessary is just to determine the angle between the straight lines of a square shape suitably. Moreover, as shown in FIG. 8, the thing where the junction part cross section is curvilinear is mentioned. What is necessary is just to determine the specific shape and dimension of a curve suitably.

このような接合形態とする際に、アルミニウム部材としてそれ自身の強度が高いものを選択し相対的に接合面の接合強度が弱い場合でも、接合面積を大きくすることができる。その結果、接合構造全体としての接合強度は大きくなり、荷重が負荷されても接合部において破壊し難くなる。   When such a joining mode is adopted, even when the aluminum member having a high strength is selected as the aluminum member and the joining strength of the joining surface is relatively weak, the joining area can be increased. As a result, the bonding strength of the entire bonded structure is increased, and even when a load is applied, it is difficult to break at the bonded portion.

接合面を種々変更した別の例について説明する。この例は、第1のアルミニウム部材の二つの接合平面と、これらに対応する第2のアルミニウム部材の二つの接合平面とが、それぞれ相補的となるもので、接合部の断面が直角又は鈍角を成す略L字状となっているものである。   Another example in which the joint surface is variously changed will be described. In this example, the two joining planes of the first aluminum member and the corresponding two joining planes of the second aluminum member are complementary to each other, and the cross section of the joining portion has a right angle or an obtuse angle. It is a substantially L-shape formed.

例えば、図9に示すように、第2のアルミニウム部材は2つの平面からなる略直角状の角部を有し、第1のアルミニウム部材はこれらの2つの平面に相補的な底面と側面を有する。そして、第1のアルミニウム部材が、第2のアルミニウム部材の角部に立てかけられるように立接して接合され、接合部の断面がL字状になるものである。第1のアルミニウム部材の接合されない端部は、例えばL字状やU字状に成形されていてもよく、或いは、特定の形状に成形されていなくてもよい。   For example, as shown in FIG. 9, the second aluminum member has a substantially right-angled corner formed of two planes, and the first aluminum member has a bottom surface and side surfaces complementary to these two planes. . And the 1st aluminum member is standingly joined so that it may lean against the corner | angular part of a 2nd aluminum member, and the cross section of a junction part becomes L-shape. The end portion of the first aluminum member that is not joined may be formed into an L shape or a U shape, for example, or may not be formed into a specific shape.

図9の第2のアルミニウム部材に代えて、図10に示すように、長辺部に設けた凸部の片側の2つの平面からなる略直角状の角部を有する第2のアルミニウム部材を用いてもよい。第1のアルミニウム部材は、第2のアルミニウム部材の上記2つの平面に相補的な底面と側面を有する。この例においても、第1のアルミニウム部材は、第2のアルミニウム部材の角部に立てかけられるように立接して接合され、接合部の断面がL字状になる。図9に示す例と同様に、第1のアルミニウム部材の接合されない端部は、例えばL字状やU字状に成形されていてもよく、或いは、特定の形状に成形されていなくてもよい。   Instead of the second aluminum member of FIG. 9, as shown in FIG. 10, a second aluminum member having a substantially right-angled corner formed by two flat surfaces on one side of the convex portion provided on the long side portion is used. May be. The first aluminum member has a bottom surface and side surfaces complementary to the two planes of the second aluminum member. Also in this example, the first aluminum member is joined in a standing manner so as to lean against the corner portion of the second aluminum member, and the cross section of the joined portion becomes L-shaped. Similarly to the example shown in FIG. 9, the end portion of the first aluminum member that is not joined may be formed in an L shape or a U shape, for example, or may not be formed in a specific shape. .

接合部が略L字状となる他の例としては、図11に示すように、第1のアルミニウム部材の端部が段状になって2つの平面からなる略直角状の角部が形成されており、第2のアルミニウム部材は平板状であり、第1のアルミニウム部材の上記2つの平面に相補的な底面と側面を有する。そして、第1のアルミニウム部材の角部に第2のアルミニウム部材の端部を突き合せるように接合することにより、接合部の断面がL字状になる。第2のアルミニウム部材の接合されない端部は、例えばL字状やU字状に成形されていてもよく、或いは、特定の形状に成形されていなくてもよい。   As another example in which the joint portion is substantially L-shaped, as shown in FIG. 11, the end portion of the first aluminum member is stepped to form a substantially right-angled corner portion composed of two planes. The second aluminum member has a flat plate shape and has a bottom surface and side surfaces complementary to the two planes of the first aluminum member. And by joining so that the edge part of a 2nd aluminum member may be faced | matched to the corner | angular part of a 1st aluminum member, the cross section of a junction part becomes L shape. The end portion of the second aluminum member that is not joined may be formed into, for example, an L shape or a U shape, or may not be formed into a specific shape.

上記図9〜11に示す例においては、L字状の寸法は適宜決定すればよい。また、これら例示した以外でも、接合部の断面がL字状になっていれば同様の効果を奏する。   In the examples shown in FIGS. 9 to 11, the L-shaped dimension may be determined as appropriate. In addition to these examples, the same effect can be obtained if the cross section of the joint is L-shaped.

接合面を種々変更した更に別の例について説明する。この例は、第1のアルミニウム部材の三つの接合平面と、これらに対応する第2のアルミニウム部材の三つの接合平面とが、それぞれ相補的となるもので、接合部の断面が直角又は鈍角を成す略コの字状となっているものである。   Still another example in which the joint surfaces are variously changed will be described. In this example, the three joining planes of the first aluminum member and the corresponding three joining planes of the second aluminum member are complementary to each other, and the cross section of the joining portion has a right angle or an obtuse angle. It is an approximately U-shape.

例えば、図12に示すように、第2のアルミニウム部材は、直角又は鈍角を成すコの字状の凹部を長辺部に有し、第1のアルミニウム部材は、上記凹部の平面と相補的な例えばL字面に成形された端部を有する。そして、第1のアルミニウム部材のL字状に形成された端部を、第2のアルミニウム部材の凹部に挿入して接合することにより、接合部の断面がコの字状になる。第1のアルミニウム部材の接合されない端部は、例えばL字状やU字状に成形されていても、或いは、特定の形状に成形されていなくてもよい。   For example, as shown in FIG. 12, the second aluminum member has a U-shaped concave portion having a right angle or an obtuse angle at the long side portion, and the first aluminum member is complementary to the plane of the concave portion. For example, it has an end formed on an L-shaped surface. Then, by inserting and joining the L-shaped end portion of the first aluminum member into the concave portion of the second aluminum member, the cross section of the joint portion becomes a U-shape. The end portion of the first aluminum member that is not joined may be formed in an L shape or a U shape, for example, or may not be formed in a specific shape.

また、接合部の断面がコの字状となっている他の例としては、図13に示すように、第2のアルミニウム部材が長辺部に並んで配置された2つの凸部(13-1,13-2)を有し、これら凸部間に凹部が形成されている。第1のアルミニウム部材は、上記凹部の平面と相補的な底面と両側面を備えた端部を有する。そして、第1のアルミニウム部材の上記端部を、第2のアルミニウム部材の凹部に挿入して接合することにより、接合部の断面がコの字状になる。図12の例と同様に、第1のアルミニウム部材の接合されない端部は、例えばL字状やU字状に成形されていても、或いは、特定の形状に成形されていなくてもよい。   Further, as another example in which the cross section of the joint portion is U-shaped, as shown in FIG. 13, two convex portions (13− 1, 13-2), and a concave portion is formed between the convex portions. The first aluminum member has an end portion having a bottom surface and both side surfaces complementary to the plane of the recess. Then, by inserting the end portion of the first aluminum member into the concave portion of the second aluminum member and joining, the cross section of the joint portion becomes a U-shape. Similarly to the example of FIG. 12, the end portion of the first aluminum member that is not joined may be formed in an L shape or a U shape, for example, or may not be formed in a specific shape.

上記図12、13に示す例においては、コの字状の寸法は適宜決定すればよい。また、これら例示した以外でも、接合部の断面がコの字状になっていれば同様の効果を奏する。   In the examples shown in FIGS. 12 and 13, the U-shaped dimensions may be appropriately determined. In addition to the above examples, the same effect can be obtained as long as the cross-section of the joint is U-shaped.

接合面を種々変更した更に別の例について説明する。この例は、第1のアルミニウム部材の連続する複数の接合平面と、これらに対応する第2のアルミニウム部材の連続する複数の接合平面とが、それぞれ相補的となるもので、接合平面と直交する接合部の断面が鋸歯状、階段状又は凹凸(矩形溝と上向き矩形突起の連続体)状となっているもの、或いは、第1及び第2のアルミニウム部材の接合曲面がそれぞれ相補的となるもので、接合曲面と直交する接合部の断面が波状となっているものである。   Still another example in which the joint surfaces are variously changed will be described. In this example, a plurality of continuous joining planes of the first aluminum member and a plurality of continuous joining planes of the second aluminum member corresponding thereto are complementary to each other, and are orthogonal to the joining plane. Where the cross section of the joint is serrated, stepped or uneven (continuous body of rectangular grooves and upward rectangular protrusions), or the curved surfaces of the first and second aluminum members are complementary Thus, the cross section of the joint perpendicular to the joint curved surface is wavy.

例えば、図14に示すように、第1のアルミニウム部材と第2のアルミニウム部材の接合面がそれぞれ複数の階段状の平面からなり、かつ、これら部材間で対応する平面同士が相補的となっているものである。従って、接合によって接合部の断面は階段状になる。   For example, as shown in FIG. 14, the joining surfaces of the first aluminum member and the second aluminum member are each composed of a plurality of stepped planes, and the corresponding planes between these members are complementary to each other. It is what. Accordingly, the cross section of the joint becomes a staircase shape by the joining.

更に図15に示すように、第1のアルミニウム部材と第2のアルミニウム部材の接合面がそれぞれ複数の鋸歯状の平面からなり、かつ、これら部材間で対応する平面同士が相補的となっているものである。従って、接合によって接合部の断面は鋸歯状になる。   Further, as shown in FIG. 15, the joining surfaces of the first aluminum member and the second aluminum member are each composed of a plurality of serrated planes, and the corresponding planes between these members are complementary. Is. Accordingly, the cross section of the joint becomes serrated by joining.

更に図16に示すように、第1のアルミニウム部材と第2のアルミニウム部材の接合面がそれぞれ複数の凹凸状の平面からなり、かつ、これら部材間で対応する凹と凸が相補的となっているものである。従って、接合によって接合部の断面は凹凸状になる。   Further, as shown in FIG. 16, the joining surfaces of the first aluminum member and the second aluminum member are each composed of a plurality of concave and convex surfaces, and the corresponding concaves and convexes between these members are complementary. It is what. Therefore, the cross section of the joint becomes uneven due to the joining.

更に図17に示すように、第1のアルミニウム部材と第2のアルミニウム部材の接合面がそれぞれ波状の曲面からなり、かつ、対応する波状曲面同士が相補的となっているものである。従って、接合によって接合部の断面は波状になる。   Further, as shown in FIG. 17, the joining surfaces of the first aluminum member and the second aluminum member are each composed of a wavy curved surface, and the corresponding wavy curved surfaces are complementary to each other. Accordingly, the cross section of the bonded portion becomes wavy due to the bonding.

これら階段形状の寸法や、鋸歯形状の寸法や、凹凸形状の寸法や、波状の寸法は適宜決定すればよい。
なお、上記図4〜17に示す例においても、第1のアルミニウム部材と第2のアルミニウム部材の接合部の接合幅を、第1及び第2のアルミニウム部材の接合面と平行な第2のアルミニウム部材の本体断面の最小幅よりも大きくする。
These staircase-shaped dimensions, sawtooth-shaped dimensions, uneven-shaped dimensions, and wavy dimensions may be appropriately determined.
In the examples shown in FIGS. 4 to 17 as well, the joining width of the joining portion of the first aluminum member and the second aluminum member is the second aluminum parallel to the joining surfaces of the first and second aluminum members. It is larger than the minimum width of the cross section of the body of the member.

以上、第1及び第2のアルミニウム部材の接合形態について詳述したが、いずれの接合形態においても、アルミニウム部材自身の強度が高いものを選択して、接合部の接合強度が相対的に弱い場合であっても接合面積を大きくすることができる。その結果、接合した構造体全体としての接合強度は大きくなり、荷重が負荷されても接合部において破壊し難いという格別の効果が得られる。   As mentioned above, although the joining form of the 1st and 2nd aluminum member was explained in full detail, in any joining form, the thing whose aluminum member itself intensity | strength is high is selected, and the joining strength of a junction part is relatively weak Even so, the bonding area can be increased. As a result, the bonding strength of the bonded structure as a whole is increased, and a special effect is obtained that it is difficult to break at the bonded portion even when a load is applied.

次に、本発明において適用するしみ出し接合について詳細に説明する。
B.被接合部材の組合せ
本発明に係るアルミニウム部材の接合方法では、一方の被接合部材である第1のアルミニウム部材と他方の被接合部材である第2のアルミニウム部材とを接合する。ここでいうアルミニウム部材とは、アルミニウム合金材又は純アルミニウム材を意味し、アルミニウム部材同士の接合は、合金組成が同一のもの同士でも、合金組成が異なるもの同士でもよい。
Next, the seepage joining applied in the present invention will be described in detail.
B. Combination of Joined Members In the method for joining aluminum members according to the present invention, a first aluminum member that is one joined member and a second aluminum member that is the other joined member are joined. Here, the aluminum member means an aluminum alloy material or a pure aluminum material, and the aluminum members may be joined together with the same alloy composition or with different alloy compositions.

C.液相の生成
本発明において適用するアルミニウム部材のしみ出し接合では、前記した特許文献1に記載されている通り、第1及び第2のアルミニウム部材の少なくとも一方を、すなわち、第1及び第2のアルミニウム部材のいずれか一方、或いは、両方を、アルミニウム部材の全質量に対する当該アルミニウム部材内に生成する液相の質量の比(以下、「液相率」と記す)が5%以上35%以下となる温度で接合する必要がある。液相率が35%を超えると、生成する液相の量が多過ぎてアルミニウム部材が形状を維持できなくなり大きな変形をしてしまう。一方、液相率が5%未満では接合が困難となる。好ましい液相率は5〜30%であり、より好ましい液相率は10〜20%である。
C. Generation of Liquid Phase In the exudation joining of the aluminum member applied in the present invention, as described in Patent Document 1, at least one of the first and second aluminum members, that is, the first and second The ratio of the mass of the liquid phase generated in the aluminum member with respect to the total mass of the aluminum member (hereinafter referred to as “liquid phase ratio”) of either one or both of the aluminum members is 5% or more and 35% or less. It is necessary to join at a temperature. If the liquid phase ratio exceeds 35%, the amount of the liquid phase to be generated is too large, and the aluminum member cannot maintain its shape and is greatly deformed. On the other hand, if the liquid phase ratio is less than 5%, joining becomes difficult. A preferable liquid phase rate is 5 to 30%, and a more preferable liquid phase rate is 10 to 20%.

加熱中における実際の液相率を測定することは、極めて困難である。そこで、本発明で規定する液相率は平衡計算によって求めるものとする。具体的には、Thermo−Calcなどの熱力学平衡計算ソフトによって合金組成と加熱時の最高到達温度から計算される。   It is extremely difficult to measure the actual liquid phase ratio during heating. Therefore, the liquid phase ratio defined in the present invention is obtained by equilibrium calculation. Specifically, the temperature is calculated from the alloy composition and the highest temperature achieved during heating by thermodynamic equilibrium calculation software such as Thermo-Calc.

液相の生成メカニズムについて説明する。図18に代表的な2元系共晶合金であるAl−Si合金の状態図を模式的に示す。Si濃度がc1であるアルミニウム部材を加熱すると、共晶温度(固相線温度)Teを超えた付近の温度T1で液相の生成が始まる。共晶温度Te以下では、図19(a)に示すように、結晶粒界で区分されるマトリクス中に晶析出物が分布している。ここで液相の生成が始まると、図19(b)に示すように、晶析出物分布の偏析の多い結晶粒界が溶融して液相となる。次いで、図19(c)に示すように、アルミニウム合金のマトリクス中に分散する主添加元素成分であるSiの晶析出物粒子や金属間化合物の周辺が球状に溶融して液相となる。更に図19(d)に示すように、マトリクス中に生成したこの球状の液相は、界面エネルギーにより時間の経過や温度上昇と共にマトリクスに再固溶し、固相内拡散によって結晶粒界や表面に移動する。次いで、図17に示すように温度がT2に上昇すると、状態図より液相量は増加する。図18に示すように、一方のアルミニウム部材のSi濃度が最大固溶限濃度より小さいc2の場合には、固相線温度Ts2を超えた付近で液相の生成が始まる。但し、c1の場合と異なり、溶融直前の組織は図20(a)に示すように、マトリクス中に晶析出物が存在しない場合がある。この場合、図20(b)に示すように粒界でまず溶融して液相となった後、図20(c)に示すようにマトリクス中において局所的に溶質元素濃度が高い場所から液相が発生する。図20(d)に示すように、マトリクス中に生成したこの球状の液相は、c1の場合と同様に、界面エネルギーにより時間の経過や温度上昇と共にマトリクスに再固溶し、固相内拡散によって結晶粒界や表面に移動する。温度がT3に上昇すると、状態図より液相量は増加する。このように、本発明が適用するしみ出し接合は、アルミニウム部材内部の部分的な溶融により生成される液相を利用するものであり、接合と形状維持の両立を実現できるものである。   The generation mechanism of the liquid phase will be described. FIG. 18 schematically shows a phase diagram of an Al—Si alloy which is a typical binary eutectic alloy. When an aluminum member having a Si concentration of c1 is heated, generation of a liquid phase starts at a temperature T1 near the eutectic temperature (solidus temperature) Te. Below the eutectic temperature Te, as shown in FIG. 19A, crystal precipitates are distributed in the matrix divided by the crystal grain boundaries. Here, when the generation of the liquid phase starts, as shown in FIG. 19B, the crystal grain boundary with a large segregation of the crystal precipitate distribution melts to become a liquid phase. Next, as shown in FIG. 19 (c), the periphery of the Si crystal precipitate particles and the intermetallic compound, which are the main additive element components dispersed in the matrix of the aluminum alloy, is melted into a spherical shape to form a liquid phase. Further, as shown in FIG. 19 (d), the spherical liquid phase generated in the matrix is re-dissolved in the matrix with the passage of time and temperature due to the interfacial energy, and the grain boundary and the surface are diffused by diffusion in the solid phase. Move to. Next, when the temperature rises to T2 as shown in FIG. 17, the liquid phase amount increases from the state diagram. As shown in FIG. 18, when the Si concentration of one aluminum member is c2 smaller than the maximum solid solution limit concentration, the generation of the liquid phase starts near the solidus temperature Ts2. However, unlike the case of c1, the structure immediately before melting may not have crystal precipitates in the matrix as shown in FIG. In this case, as shown in FIG. 20 (b), after first melting at the grain boundary to become a liquid phase, as shown in FIG. 20 (c), the liquid phase starts from a location where the solute element concentration is locally high in the matrix. Occurs. As shown in FIG. 20 (d), this spherical liquid phase generated in the matrix is re-dissolved in the matrix with the passage of time and temperature due to the interfacial energy, as in the case of c1, and diffuses in the solid phase. To move to the grain boundary or surface. When the temperature rises to T3, the liquid phase amount increases from the state diagram. Thus, the seepage joining applied by the present invention utilizes a liquid phase generated by partial melting inside the aluminum member, and can realize both joining and shape maintenance.

D.接合における金属組織の挙動
液相が生じた後から接合に至るまでの金属組織の挙動を説明する。図21に示すように、液相を生成するアルミニウム部材Aと、これと接合するアルミニウム部材Bとを用いた逆T字型接合試験片を接合し、図に示す観察面を顕微鏡で観察した。前述のように、接合においてアルミニウム部材Aの表面に生成するごく僅かな液相は、フラックス等の作用により酸化皮膜が破壊された相手のアルミニウム部材Bとの隙間を埋める。次に、両部材の接合界面付近にある液相がアルミニウム部材B内へと移動していき、それに伴い接合界面に接しているアルミニウム部材Aの固相α相の結晶粒がアルミニウム部材B内に向かって成長していく。一方、アルミニウム部材Bの結晶粒もアルミニウム部材A側へと成長していく。
D. Behavior of metal structure in joining The behavior of the metal structure after the liquid phase occurs until joining is explained. As shown in FIG. 21, an inverted T-shaped joining test piece using an aluminum member A that generates a liquid phase and an aluminum member B that is joined to the aluminum member A was joined, and the observation surface shown in the figure was observed with a microscope. As described above, a very small amount of liquid phase generated on the surface of the aluminum member A during the bonding fills the gap with the counterpart aluminum member B in which the oxide film is destroyed by the action of flux or the like. Next, the liquid phase in the vicinity of the bonding interface between the two members moves into the aluminum member B, and accordingly, the solid phase α phase crystal grains of the aluminum member A in contact with the bonding interface enter the aluminum member B. Growing towards. On the other hand, the crystal grains of the aluminum member B also grow to the aluminum member A side.

アルミニウム部材Bが液相を生成しない合金の場合には、図22(a)に示すように、接合界面付近のアルミニウム部材B中にアルミニウム部材Aの組織が入り込んだような組織となって接合される。従って、接合界面にはアルミニウム部材Aとアルミニウム部材B以外の金属組織が生じない。また、アルミニウム部材Bも液相を生成する合金の場合には、図22(b)に示すように、両部材は完全に一体化した組織となり接合界面が判別できない。   When the aluminum member B is an alloy that does not generate a liquid phase, as shown in FIG. 22 (a), the aluminum member B is joined as a structure in which the structure of the aluminum member A enters the aluminum member B near the joining interface. The Therefore, a metal structure other than the aluminum member A and the aluminum member B does not occur at the bonding interface. When the aluminum member B is also an alloy that generates a liquid phase, as shown in FIG. 22B, the two members have a completely integrated structure, and the bonding interface cannot be determined.

一方、アルミニウム部材Aとしてロウ材をクラッドしたブレージングシートを用い、アルミニウム部材Bとして液相を生成しない部材を用いた場合には、図22(c)に示すように、接合部にフィレットが形成され共晶組織が見られる。このように、図22(c)では、図22(a)、(b)において形成される接合組織とは異なるものとなる。ロウ付法では接合部を液相ロウが埋めてフィレットを形成するため、接合部は周囲と異なる共晶組織が形成されるのである。また、溶接法においても接合部が局部的に溶融するため、他の部位とは異なる金属組織となる。それに対して、本発明において適用するしみ出し接合では、接合部の金属組織が両被接合部材のものだけで構成され、或いは、両被接合部材が一体化したもので構成される点で、ロウ付や溶接による接合組織と相違する。   On the other hand, when a brazing sheet clad with a brazing material is used as the aluminum member A and a member that does not generate a liquid phase is used as the aluminum member B, a fillet is formed at the joint as shown in FIG. A eutectic structure is observed. Thus, in FIG.22 (c), it differs from the joining structure | tissue formed in FIG.22 (a), (b). In the brazing method, since the liquid phase braze fills the joint portion to form a fillet, a eutectic structure different from the surrounding is formed in the joint portion. Also, in the welding method, since the joint portion is locally melted, the metal structure is different from other portions. On the other hand, in the seepage joint applied in the present invention, the metal structure of the joint portion is composed of only the members to be joined, or the joint structure of both the members to be joined is used. It differs from the joint structure by attaching or welding.

このような接合挙動のため、接合工程後において接合部位近傍の形状変化がほとんど発生しない。すなわち、溶接法のビードや、ロウ付法でのフィレットのような接合後の形状変化が、本発明に係る接合方法では殆ど発生しない。それにも拘わらず、溶接法やロウ付法と同じく金属結合による接合を可能とする。例えば、ブレージングシート(ロウ材クラッド率が片面5%)を用いてドロンカップタイプの積層型熱交換器を組み立てた場合、ロウ付け加熱後には溶融したロウ材が接合部に集中するため、積層した熱交換器の高さが5〜10%減少する。従って、製品設計においてはその減少分を考慮する必要がある。本発明において適用するしみ出し接合においては接合後における寸法変化が極めて小さいため、高精度の製品設計が可能となる。   Due to such joining behavior, the shape change in the vicinity of the joining site hardly occurs after the joining process. That is, the shape change after joining, such as a bead of a welding method and a fillet by a brazing method, hardly occurs in the joining method according to the present invention. In spite of this, it is possible to join by metal bonding as well as welding and brazing. For example, when a drone cup type laminated heat exchanger is assembled using a brazing sheet (a brazing material clad rate is 5% on one side), the molten brazing material concentrates on the joint after brazing heating, so that lamination is performed. Heat exchanger height is reduced by 5-10%. Therefore, it is necessary to consider the decrease in product design. In the exudation joining applied in the present invention, since the dimensional change after joining is extremely small, a highly accurate product design is possible.

E.酸化皮膜の破壊
アルミニウム部材の表層には酸化皮膜が形成されており、これによって接合が阻害される。従って、接合においては酸化皮膜を破壊する必要がある。本発明において適用するしみ出し接合では、酸化皮膜を破壊するために以下のD−1又はD−2に示すいずれかの方法が採用される。
E. Destruction of the oxide film An oxide film is formed on the surface layer of the aluminum member, which inhibits bonding. Therefore, it is necessary to destroy the oxide film in joining. In the seepage bonding applied in the present invention, any of the methods shown in the following D-1 or D-2 is adopted in order to destroy the oxide film.

E−1.フラックスによる酸化皮膜の破壊
この方法では、酸化皮膜を破壊する為に少なくとも接合部にフラックスを塗布する。フラックスはアルミニウム材のロウ付で用いるKAlF4やCsAlF4などのフッ化物系フラックス又はKClやNaClなどの塩化物系フラックスが用いられる。これらフラックスは、しみ出し接合において液相が溶融する前に又は接合温度に至る前に溶融し、酸化皮膜と反応して酸化皮膜を破壊する。
E-1. Fracture of oxide film by flux In this method, flux is applied to at least the joint portion in order to destroy the oxide film. As the flux, a fluoride flux such as KAlF4 or CsAlF4 used for brazing an aluminum material or a chloride flux such as KCl or NaCl is used. These fluxes melt before the liquid phase melts or reaches the joining temperature in the seepage joining, and react with the oxide film to destroy the oxide film.

更にこの方法では、酸化皮膜の形成を抑制するために、窒素ガスやアルゴンガスなどの非酸化性雰囲気中で接合する。特にフッ化物系のフラックスを用いる場合は、酸素濃度を250ppm以下に抑え、露点を−25℃以下に抑えた非酸化性ガス雰囲気中で接合するのが好ましい。   Furthermore, in this method, in order to suppress the formation of an oxide film, bonding is performed in a non-oxidizing atmosphere such as nitrogen gas or argon gas. In particular, when a fluoride-based flux is used, bonding is preferably performed in a non-oxidizing gas atmosphere in which the oxygen concentration is suppressed to 250 ppm or less and the dew point is suppressed to -25 ° C. or less.

また、フッ化物系のフラックスを用いる場合、第1及び第2のアルミニウム部材中にMgが0.5質量%を超えて含有されると、フラックスとMgが反応してフラックスの酸化皮膜破壊作用が損なわれる。従って、請求項1、3に規定するように、第1及び第2のアルミニウム部材のいずれもが、Mg含有量を0.5質量%(以下、単に「%」と記す)以下に規制されるアルミニウム材からなるものとする。ここで、Mg:0.5質量%以下とは、Mgを含有しない場合、或いは、不可避的不純物レベルとして極微量含有する場合を含む。なお、Mg含有量が0.5質量%以下の条件を満たせば、第1及び第2のアルミニウム部材に含有される他の元素の種類や含有量には制限はない。   Further, when using a fluoride-based flux, if Mg exceeds 0.5 mass% in the first and second aluminum members, the flux and Mg react to cause an oxide film destruction action of the flux. Damaged. Therefore, as defined in claims 1 and 3, both the first and second aluminum members are regulated to have an Mg content of 0.5 mass% (hereinafter simply referred to as “%”) or less. It shall consist of aluminum material. Here, Mg: 0.5 mass% or less includes the case where Mg is not contained or the case where it is contained in a very small amount as an inevitable impurity level. In addition, as long as the Mg content satisfies the condition of 0.5% by mass or less, there is no limitation on the type and content of other elements contained in the first and second aluminum members.

E−2.Mgのゲッター作用による酸化皮膜の破壊
アルミニウム部材にMgが所定量添加されている場合は、接合部にフラックスを塗布しなくても、酸化皮膜が破壊されて接合が可能になる。この場合、真空フラックスレスロウ付と同様に、アルミニウム部材が溶融し液相が表層に出てくるときに、アルミニウム部材中より蒸発するMgのゲッター作用によって酸化皮膜が破壊される。
E-2. Breakage of oxide film due to getter action of Mg When a predetermined amount of Mg is added to the aluminum member, the oxide film is broken and joining is possible without applying flux to the joint. In this case, as in the case of vacuum fluxless brazing, when the aluminum member melts and the liquid phase comes out on the surface layer, the oxide film is destroyed by the getter action of Mg that evaporates from the aluminum member.

Mgのゲッター作用により酸化皮膜を破壊する場合、酸化皮膜の形成を抑制するために、真空中又は上記の非酸化性雰囲気中で接合する。面接合や閉塞空間での接合の場合は、乾燥した大気において接合可能な場合がある。非酸化性雰囲気中や乾燥大気中での接合の場合は、露点を−25℃以下に抑えることが好ましい。   When the oxide film is destroyed by the getter action of Mg, in order to suppress the formation of the oxide film, the bonding is performed in a vacuum or the above non-oxidizing atmosphere. In the case of surface bonding or bonding in a closed space, bonding may be possible in a dry atmosphere. In the case of bonding in a non-oxidizing atmosphere or a dry atmosphere, it is preferable to suppress the dew point to −25 ° C. or lower.

Mgのゲッター作用により酸化皮膜を破壊する為には、第1及び第2のアルミニウム部材の一方が、Mg含有量を0.2%以上2.0%以下としたアルミニウム材からなるものとする。Mg含有量が0.2質量%未満では、十分なゲッター作用が得られず良好な接合が達成されない。一方、2.0質量%を超えると、表面でMgが雰囲気中の酸素と反応して酸化物MgOが多く生成され接合が阻害される。なお、一方のアルミニウム部材についてのみMg含有量を0.2%以上2.0%以下としたのは、一方のアルミニウム部材によるMgのゲッター作用が得られれば足りるためである。他方のアルミニウム部材においては、Mg含有量が0.2%以上に限定されないが、MgOが多く生成されると接合が阻害されるので、Mg含有量は2.0%以下に規制した。ここで、Mg:2.0%以下とは、Mgを含有しない場合、或いは、不可避的不純物レベルとして極微量含有する場合も含む。また、一方のアルミニウム部材において、Mg含有量が0.2%以上2.0%以下の条件が満たされれば他の元素の種類や含有量には制限はなく、他方のアルミニウム部材において、Mg含有量が2.0%以下の条件が満たされれば他の元素の種類や含有量には制限はない。   In order to destroy the oxide film by the getter action of Mg, one of the first and second aluminum members is made of an aluminum material having an Mg content of 0.2% or more and 2.0% or less. When the Mg content is less than 0.2% by mass, a sufficient getter action cannot be obtained and good bonding cannot be achieved. On the other hand, if it exceeds 2.0% by mass, Mg reacts with oxygen in the atmosphere on the surface, and a large amount of oxide MgO is generated and bonding is inhibited. The reason why the Mg content is set to 0.2% or more and 2.0% or less for only one aluminum member is that it is sufficient if the getter action of Mg by one aluminum member is obtained. In the other aluminum member, the Mg content is not limited to 0.2% or more, but bonding is inhibited when a large amount of MgO is generated, so the Mg content is regulated to 2.0% or less. Here, Mg: 2.0% or less includes the case where Mg is not contained, or the case where a very small amount is contained as an inevitable impurity level. In addition, in one aluminum member, if the Mg content satisfies the condition of 0.2% or more and 2.0% or less, the type and content of the other elements are not limited, and the other aluminum member contains Mg. There is no limitation on the type and content of other elements as long as the condition of 2.0% or less is satisfied.

F.接合条件
液相率が5%以上35%以下である時間は、30秒以上3600秒以下とするのが好ましく、60秒以上1800秒以下とするのがより好ましい。30秒未満では、液相が接合部に十分に充填されない場合があり、3600秒を超えると被接合部材の形状変化を確実に抑制できない場合がある。
また、液相を生成するアルミニウム部材の固相線温度と液相線温度の差を10℃以上とするのが好ましい。10℃未満では、固体と液体が共存する温度範囲が狭くなり、発生する液相量の制御が困難となる場合がる。
更に、液相を生成するアルミニウム合金材においては、接合温度で加熱した後のマトリクスの結晶粒径を50μm以上とするのが好ましい。50μm未満では、自重により粒界すべりが発生し易くなり、接合時間が長くなると変形が促進される場合が生じるからである。なお、結晶粒径の測定はJIS H:501に準拠した切断法により測定した。
F. Bonding conditions The time during which the liquid phase ratio is 5% or more and 35% or less is preferably 30 seconds or more and 3600 seconds or less, and more preferably 60 seconds or more and 1800 seconds or less. If it is less than 30 seconds, the liquid phase may not be sufficiently filled in the joint, and if it exceeds 3600 seconds, the shape change of the member to be joined may not be reliably suppressed.
The difference between the solidus temperature and the liquidus temperature of the aluminum member that generates the liquid phase is preferably 10 ° C. or higher. If it is less than 10 degreeC, the temperature range in which a solid and a liquid coexist will become narrow, and control of the amount of generated liquid phases may become difficult.
Furthermore, in an aluminum alloy material that generates a liquid phase, it is preferable that the crystal grain size of the matrix after heating at the bonding temperature is 50 μm or more. If the thickness is less than 50 μm, grain boundary slip is likely to occur due to its own weight, and deformation may be promoted when the joining time is increased. The crystal grain size was measured by a cutting method based on JIS H: 501.

G.本発明に適したアルミニウム部材の材質
所定の液相率を生成するアルミニウム部材としては、Mg含有量が0.5%以下又は0.2%以上2.0%以下に規制され、Si:0.6〜3.5%を必須元素として含有し、Cu:0.05〜0.5%、Fe:0.05〜1.0%、Zn:0.2〜1.0%、Mn:0.1〜1.8%及びTi:0.01〜150.3%から選択される1種又は2種以上を選択的添加元素として更に含有し、残部がAl及び不可避的不純物からなるアルミニウム合金からなるアルミニウム合金材が好適に用いられる。
G. Material of Aluminum Member Suitable for the Present Invention As an aluminum member that generates a predetermined liquid phase ratio, the Mg content is regulated to 0.5% or less or 0.2% to 2.0%, and Si: It contains 6 to 3.5% as an essential element, Cu: 0.05 to 0.5%, Fe: 0.05 to 1.0%, Zn: 0.2 to 1.0%, Mn: 0.00. One or more selected from 1 to 1.8% and Ti: 0.01 to 150.3% are further contained as selective additional elements, and the balance is made of an aluminum alloy composed of Al and inevitable impurities. An aluminum alloy material is preferably used.

このようなAl−Si合金又はAl−Si−Mg合金からなるアルミニウム合金材を、液相を生成するアルミニウム部材とする場合には、Si含有量をX(%)として、接合温度Tを、660−39.5X≦T≦660−15.7X、且つ、T≧577となるように制御するのが好ましい。これによって、更に良好な接合が達成される。   When an aluminum alloy material made of such an Al—Si alloy or Al—Si—Mg alloy is used as an aluminum member that generates a liquid phase, the Si content is X (%), and the joining temperature T is 660. It is preferable to control so that −39.5X ≦ T ≦ 660−15.7X and T ≧ 577. This achieves even better bonding.

所定の液相率を生成する他のアルミニウム部材としては、Mg含有量が0.5%以下又は0.2%以上2.0%以下に規制され、Cu:0.7〜15.0%を必須元素として含有し、Si:0.05〜0.8%、Fe:0.05〜1.0%、Zn:0.2〜1.0%、Mn:0.1〜1.8%及びTi:0.01〜0.3%から選択される1種又は2種以上を選択的添加元素として更に含有し、残部がAl及び不可避的不純物からなるアルミニウム合金からなるアルミニウム合金材も好適に用いられる。   As another aluminum member that generates a predetermined liquid phase ratio, Mg content is regulated to 0.5% or less or 0.2% to 2.0%, Cu: 0.7 to 15.0% Containing as an essential element, Si: 0.05-0.8%, Fe: 0.05-1.0%, Zn: 0.2-1.0%, Mn: 0.1-1.8% and Ti: One or more elements selected from 0.01 to 0.3% are further contained as selective additive elements, and an aluminum alloy material made of an aluminum alloy composed of Al and inevitable impurities is also preferably used. It is done.

このようなAl−Cu合金又はAl−Cu−Mg合金からなるアルミニウム合金材を、液相を生成するアルミニウム部材とする場合には、Cu含有量をY(%)として、接合温度温Tを、660−15.6Y≦T≦660−6.9Y、且つ、T≧548となるように制御するのが好ましい。これによって、更に良好な接合が達成される。   When an aluminum alloy material made of such an Al—Cu alloy or Al—Cu—Mg alloy is used as an aluminum member that generates a liquid phase, the Cu content is defined as Y (%), and the junction temperature T is set to It is preferable to control so that 660-15.6Y ≦ T ≦ 660-6.9Y and T ≧ 548. This achieves even better bonding.

H.接合時におけるアルミニウム部材に加わる応力
本発明の接合においては、接合部で第1及び第2のアルミニウム部材が接していれば接合面に圧力を加える必要は必ずしもない。しかしながら、実際の製品の製造過程では、アルミニウム部材同士を固定したりクリアランスを縮めたりする為に、冶具等で両アルミニウム部材に応力が加わる場合が多い。また、自重によってもアルミニウム部材内に応力が発生する。このとき、各アルミニウム部材内の各部位に発生する応力は、形状と荷重から求められる。例えば、構造計算プログラムなどを用いて計算する。本発明では、接合時において液相を生じるアルミニウム部材の各部位に発生する応力のうち最大のもの(最大応力)をP(kPa)とし、当該アルミニウム部材であるアルミニウム合金での液相率をVとしたときに、P≦460−12Vを満たすよう接合することが好ましい。この式の右辺で示される値は限界応力であり、これを超える応力が液相を生じるアルミニウム部材に加わると、液相率が35%以内であってもアルミニウム部材に大きな変形が発生するおそれがある。
なお、両アルミニウム部材から液相が発生する場合は、両アルミニウム部材各々に対して、各々の応力P、液相率Vを用いてP≦460−12Vを算出し、両アルミニウム部材とも前記式を同時に満たすよう接合を行う。
H. Stress applied to the aluminum member at the time of joining In the joining of the present invention, it is not always necessary to apply pressure to the joining surface as long as the first and second aluminum members are in contact with each other at the joint. However, in an actual product manufacturing process, stress is often applied to both aluminum members with a jig or the like in order to fix the aluminum members together or reduce the clearance. Also, stress is generated in the aluminum member due to its own weight. At this time, the stress which generate | occur | produces in each site | part in each aluminum member is calculated | required from a shape and a load. For example, the calculation is performed using a structural calculation program or the like. In the present invention, the maximum stress (maximum stress) among the stresses generated in each part of the aluminum member that generates a liquid phase at the time of joining is P (kPa), and the liquid phase ratio in the aluminum alloy that is the aluminum member is V When joining, it is preferable to join so as to satisfy P ≦ 460-12V. The value shown on the right side of this equation is the critical stress. If a stress exceeding this value is applied to an aluminum member that generates a liquid phase, the aluminum member may be greatly deformed even if the liquid phase rate is within 35%. is there.
When a liquid phase is generated from both aluminum members, P ≦ 460-12V is calculated for each of the aluminum members using the respective stress P and liquid phase ratio V. Join to meet at the same time.

I.アルミニウム部材の接合表面におけるうねり
本発明の接合においてはアルミニウム部材の液相生成量が微量である為、接合部では両アルミニウム部材が接するように配置される必要がある。しかしながら、材料の反りやうねりにより、両アルミニウム部材の間に僅かな隙間が生じる場合がある。特に、凹凸の波長が25〜2500μmのうねりは隙間として無視できる大きさではなく、また冶具の押さえなどで矯正することも困難である。
I. In the joining of the present invention, since the amount of liquid phase generated in the aluminum member is very small, the aluminum member needs to be arranged so that both aluminum members are in contact with each other. However, a slight gap may be generated between the two aluminum members due to warpage or undulation of the material. In particular, undulations with a wavelength of 25 to 2500 μm are not a size that can be ignored as a gap, and it is difficult to correct with a jig press.

本発明においては、接合前の両アルミニウム部材の接合面の表面の凹凸から求められる算術平均うねりWa1とWa2の和が、Wa1+Wa2≦10(μm)を満たす場合には、更に十分な接合が得られる。なお、算術平均うねりWa1、Wa2は、JISB0633で規定されるものであり、25〜2500μmの波長のみを検出するようにカットオフ値を設定したレーザー顕微鏡やコンフォーカル顕微鏡で測定されたうねり曲線から求められる。   In the present invention, when the arithmetic mean waviness Wa1 and Wa2 obtained from the unevenness of the surfaces of the two aluminum members before joining satisfy Wa1 + Wa2 ≦ 10 (μm), further sufficient joining is obtained. . The arithmetic average waviness Wa1 and Wa2 are defined by JISB0633, and are obtained from waviness curves measured with a laser microscope or a confocal microscope in which a cutoff value is set so as to detect only a wavelength of 25 to 2500 μm. It is done.

J.接合方法
本発明の接合方法においては、通常、アルミニウム部材は炉中で加熱される。炉の形状に特に制限はなく、例えば1室構造のバッチ炉、自動車用熱交換器の製造などに用いられる連続炉などを用いることができる。なお、炉中の雰囲気に制限はないが、前述の通り非酸化性雰囲気中で行うことが好ましい。
J. et al. Joining Method In the joining method of the present invention, the aluminum member is usually heated in a furnace. There is no restriction | limiting in particular in the shape of a furnace, For example, the continuous furnace etc. which are used for manufacture of the batch furnace of a one-chamber structure, the heat exchanger for motor vehicles, etc. can be used. The atmosphere in the furnace is not limited, but is preferably performed in a non-oxidizing atmosphere as described above.

アルミニウム材の表層には酸化皮膜が形成されており、これによって接合が阻害される。従って、接合においては酸化皮膜を破壊する必要がある。本発明に係る接合方法では、酸化皮膜を破壊するために接合部にフラックスを塗布するのが好ましい。また、酸化皮膜の形成を抑制するために、窒素などの非酸化性ガスの雰囲気中で接合するのが好ましい。接合部にフラックスを塗布し、かつ、非酸化性ガスの雰囲気中で接合するのが特に好ましい。なお、アルミニウム合金材にMgが添加されている場合は、接合部にフラックスを塗布しなくても、真空、非酸化性雰囲気又は大気雰囲気の炉を用いることにより表面の酸化被膜をMgのゲッター作用により除去することが可能である。   An oxide film is formed on the surface layer of the aluminum material, which inhibits bonding. Therefore, it is necessary to destroy the oxide film in joining. In the bonding method according to the present invention, it is preferable to apply a flux to the bonding portion in order to destroy the oxide film. Further, in order to suppress the formation of an oxide film, it is preferable to perform bonding in an atmosphere of a non-oxidizing gas such as nitrogen. It is particularly preferable to apply a flux to the joint and join in a non-oxidizing gas atmosphere. In addition, when Mg is added to the aluminum alloy material, the getter action of the Mg oxide film on the surface can be achieved by using a furnace in a vacuum, a non-oxidizing atmosphere or an air atmosphere without applying a flux to the joint. Can be removed.

本発明により、溶化材やロウ材を必要としない簡易なアルミニウム部材の接合方法が提供される。また、継手部分において応力集中がなく、十分な強度を有するアルミニウム構造体が提供される。   The present invention provides a simple method for joining aluminum members that does not require a solubilizing material or brazing material. Further, there is provided an aluminum structure having no strength at the joint portion and having sufficient strength.

c・・Si濃度
c1・・Si濃度
c2・・Si濃度
L1・・第1のアルミニウム部材の長手方向に沿った中心線
L2・・第2のアルミニウム部材の長手方向に沿った中心線
T・・温度
T1・・Teを超えた温度
T2・・T1より更に高い温度
T3・・Ts2を超えた温度
Te・・固相線温度
Ts2・・固相線温度
c ·· Si concentration c1 ·· Si concentration c2 ·· Si concentration L1 ·· Center line along the longitudinal direction of the first aluminum member L2 ·· Center line along the longitudinal direction of the second aluminum member T ··· Temperature above T1 ·· Te Temperature higher than T2 ·· T1 Temperature above T3 ·· Ts2 Te ·· Solidus temperature Ts2 ·· Solidus temperature

Claims (8)

第1のアルミニウム部材の平面部と第2のアルミニウム部材の端部とを接合する方法であって、前記第1及び第2のアルミニウム部材の少なくとも一方を、その全質量に対する当該アルミニウム部材内に生成される液相の質量の比が5%以上35%以下となる温度で接合する接合方法において、
前記第1及び第2のアルミニウム部材の接合部の接合幅を、前記第2のアルミニウム部材の本体部分の、前記第1及び第2アルミニウム部材の接合面と平行な面に沿った断面の最小幅よりも大きくし
前記第1及び第2のアルミニウム部材は、Mg:0.5質量%以下に規制されるアルミニウム材からなり、
前記接合は、非酸化性雰囲気中において、フッ化物系もしくは塩化物系のフラックスが接合部に塗布された状態で行われることを特徴とするアルミニウム部材の接合方法。
A method of joining a flat portion of a first aluminum member and an end portion of a second aluminum member, wherein at least one of the first and second aluminum members is generated in the aluminum member with respect to the total mass thereof In the joining method of joining at a temperature at which the ratio of the mass of the liquid phase is 5% or more and 35% or less,
The joining width of the joining portion of the first and second aluminum members is the minimum width of the cross section along the plane parallel to the joining surface of the first and second aluminum members of the main body portion of the second aluminum member. larger than,
The first and second aluminum members are made of an aluminum material regulated to Mg: 0.5% by mass or less,
The joining is performed in a non-oxidizing atmosphere in a state in which a fluoride-based or chloride-based flux is applied to the joining portion .
第1のアルミニウム部材の平面部と第2のアルミニウム部材の端部とを接合する方法であって、前記第1及び第2のアルミニウム部材の少なくとも一方を、その全質量に対する当該アルミニウム部材内に生成される液相の質量の比が5%以上35%以下となる温度で接合する接合方法において、A method of joining a flat portion of a first aluminum member and an end portion of a second aluminum member, wherein at least one of the first and second aluminum members is generated in the aluminum member with respect to the total mass thereof In the joining method of joining at a temperature at which the ratio of the mass of the liquid phase is 5% or more and 35% or less,
前記第1及び第2のアルミニウム部材の接合部の接合幅を、前記第2のアルミニウム部材の本体部分の、前記第1及び第2アルミニウム部材の接合面と平行な面に沿った断面の最小幅よりも大きくし、  The joining width of the joining portion of the first and second aluminum members is the minimum width of the cross section along the plane parallel to the joining surface of the first and second aluminum members of the main body portion of the second aluminum member. Bigger than
前記第1のアルミニウム部材は、Mg:0.2質量%以上2.0質量%以下を含有するアルミニウム材からなり、前記第2のアルミニウム部材は、Mg含有量が2.0質量%以下に規制されるアルミニウム材からなり、The first aluminum member is made of an aluminum material containing Mg: 0.2% by mass or more and 2.0% by mass or less, and the second aluminum member is regulated to have an Mg content of 2.0% by mass or less. Made of aluminum material,
前記接合は、真空中、非酸化性雰囲気中又は大気中において行われることを特徴とするアルミニウム部材の接合方法。The said joining is performed in a vacuum, a non-oxidizing atmosphere, or air | atmosphere, The joining method of the aluminum member characterized by the above-mentioned.
前記第1及び第2のアルミニウム部材の前記接合面がそれぞれ単一平面からなることを特徴とする、請求項1又は2に記載のアルミニウム部材の接合方法。 The method for joining aluminum members according to claim 1 or 2 , wherein the joining surfaces of the first and second aluminum members are each formed from a single plane . 前記第1及び第2のアルミニウム部材の前記接合面がそれぞれ、両部材間で相補的な複数の平面又は相補的な曲面からなることを特徴とする、請求項1又は2に記載のアルミニウム部材の接合方法。 3. The aluminum member according to claim 1, wherein the joining surfaces of the first and second aluminum members are each composed of a plurality of planes complementary to each other or a curved surface complementary to each other. Joining method. 前記第1及び第2のアルミニウム部材の前記接合面がそれぞれ、両部材間で相補的な二つの平面からなり、該接合面と直交する接合部の断面が略L字状である、請求項4に記載のアルミニウム部材の接合方法。 5. The joint surfaces of the first and second aluminum members are each composed of two planes complementary to each other, and the cross section of the joint perpendicular to the joint surfaces is substantially L-shaped. The joining method of the aluminum member as described in 2. 前記第1及び第2のアルミニウム部材の前記接合面がそれぞれ、両部材間で相補的な三つの平面からなり、該接合面と直交する接合部の断面が略コの字状である、請求項4に記載のアルミニウム部材の接合方法。 The joint surface of each of the first and second aluminum members is composed of three planes complementary to each other, and a cross section of a joint portion orthogonal to the joint surface is substantially U-shaped. 4. A method for joining aluminum members according to 4 . 前記第1及び第2のアルミニウム部材の前記接合面がそれぞれ、両部材間で相補的な複数の平面からなり、該接合面と直交する接合部の断面が鋸歯状、階段状又は凹凸状である、請求項4に記載のアルミニウム部材の接合方法。 Each of the joint surfaces of the first and second aluminum members is composed of a plurality of planes complementary to each other, and the cross section of the joint perpendicular to the joint surfaces is sawtooth, stepped or uneven. The method for joining aluminum members according to claim 4 . 前記第1及び第2のアルミニウム部材の前記接合面がそれぞれ、両部材間で相補的な曲面からなり、該接合面と直交する接合部の断面が波状である、請求項4に記載のアルミニウム部材の接合方法。 5. The aluminum member according to claim 4, wherein each of the joining surfaces of the first and second aluminum members has a curved surface that is complementary between the two members, and a section of the joining portion that is orthogonal to the joining surface is corrugated. Joining method.
JP2013545987A 2011-11-27 2012-11-27 Aluminum member joining method Active JP6023074B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011258377 2011-11-27
JP2011258377 2011-11-27
PCT/JP2012/080650 WO2013077455A2 (en) 2011-11-27 2012-11-27 Bonding method for aluminium members, and aluminium structure bonded by means of said bonding method

Publications (2)

Publication Number Publication Date
JPWO2013077455A1 JPWO2013077455A1 (en) 2015-04-27
JP6023074B2 true JP6023074B2 (en) 2016-11-09

Family

ID=48470390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013545987A Active JP6023074B2 (en) 2011-11-27 2012-11-27 Aluminum member joining method

Country Status (3)

Country Link
JP (1) JP6023074B2 (en)
CN (1) CN103958111B (en)
WO (1) WO2013077455A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023078B2 (en) * 2011-11-30 2016-11-09 株式会社Uacj Joining method of aluminum alloy material
CN106402770A (en) * 2016-08-29 2017-02-15 嘉兴海拉灯具有限公司 Headlight and vehicle provided with same
KR102033064B1 (en) * 2017-05-26 2019-10-16 엘티정밀(주) A Manufacturing Method Of Battery Cooling Apparatus For Electric Behicle
JP7200608B2 (en) 2018-01-29 2023-01-10 大日本印刷株式会社 Vapor chambers, electronics, and sheets for vapor chambers
CN110153557A (en) * 2019-05-22 2019-08-23 华中科技大学无锡研究院 A kind of method for laser welding homogenizing Al-Mg line aluminium alloy seam organization
CN112388144B (en) * 2020-10-28 2022-04-12 中国电子科技集团公司第三十八研究所 Precise diffusion welding method for millimeter wave waveguide antenna

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136587A (en) * 1979-04-11 1980-10-24 Mitsubishi Heavy Ind Ltd Diffusion welding method
US4890784A (en) * 1983-03-28 1990-01-02 Rockwell International Corporation Method for diffusion bonding aluminum
JPS61222962A (en) * 1984-11-16 1986-10-03 アイシン精機株式会社 Method of joining ceramics and metal
JPS61162295A (en) * 1985-01-11 1986-07-22 Toyota Central Res & Dev Lab Inc Flux for soldering
JPH01205890A (en) * 1988-02-12 1989-08-18 Komatsu Ltd Rail and rail crossing and joining method therefor
JPH03268881A (en) * 1990-03-15 1991-11-29 Mitsubishi Heavy Ind Ltd Hard facing method utilizing material of hard weldability for high-temperature resistant member
JPH0455073A (en) * 1990-06-26 1992-02-21 Daido Steel Co Ltd Joining method
JP3447891B2 (en) * 1996-03-14 2003-09-16 大和ハウス工業株式会社 How to join the end of the strip to a flat surface
JP2003048077A (en) * 2001-07-31 2003-02-18 Kobe Steel Ltd METHOD FOR JOINING Al OR Al ALLOY MEMBER
JP4248433B2 (en) * 2003-04-08 2009-04-02 株式会社デンソー Method for brazing Mg-containing aluminum alloy material
CN1254345C (en) * 2003-12-08 2006-05-03 哈尔滨工业大学 Novel process of liquid phase impact diffusion welding for aluminium-based composite material
JP4726455B2 (en) * 2004-09-22 2011-07-20 古河スカイ株式会社 Method for brazing aluminum alloy material and method for producing aluminum alloy heat exchanger
JP4393362B2 (en) * 2004-12-03 2010-01-06 株式会社コベルコ科研 Method for producing Al or Al alloy joined body
JP2009279595A (en) * 2008-05-20 2009-12-03 Nippon Light Metal Co Ltd Joining method
JP2010094683A (en) * 2008-10-14 2010-04-30 Panasonic Corp Diffusion bonding method of aluminum alloy
US8534344B2 (en) * 2009-03-31 2013-09-17 Alcoa Inc. System and method of producing multi-layered alloy products
WO2011152556A1 (en) * 2010-06-04 2011-12-08 古河スカイ株式会社 Method of joining aluminum alloys

Also Published As

Publication number Publication date
WO2013077455A3 (en) 2013-08-08
JPWO2013077455A1 (en) 2015-04-27
CN103958111B (en) 2017-10-24
WO2013077455A2 (en) 2013-05-30
CN103958111A (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5021097B2 (en) Joining method of aluminum alloy material
JP6023074B2 (en) Aluminum member joining method
WO2017208940A1 (en) Brazing sheet, manufacturing method therefor, and aluminum structure brazing method
WO2013081021A2 (en) Aluminium alloy-copper alloy bond, and bonding method for same
JP2007178062A (en) Method of manufacturing heat exchanger, aluminum-clad plate material, and heat exchanger
JP2013123749A (en) Fluxless brazing method for aluminum material and brazing sheet used for the same
JP5284542B1 (en) Method for producing aluminum alloy clad material
JP5629130B2 (en) Joining method of metal materials
KR101545530B1 (en) Flux for brazing aluminum materials
JP6426883B2 (en) Method of manufacturing joined body excellent in corrosion resistance
JP5190079B2 (en) Aluminum alloy brazing sheet manufacturing method, aluminum alloy brazing sheet brazing method, heat exchanger manufacturing method, heat exchanger
JP2010172965A (en) Brazing filler metal of brazing sheet made of aluminum alloy and method for designing the same
JP2006320930A (en) Brazing material, and method for producing the same
JP6023078B2 (en) Joining method of aluminum alloy material
JP6033542B2 (en) CONNECTED BODY AND METHOD FOR PRODUCING THE SAME
JP6218903B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JP5674355B2 (en) Welding method of aluminum material
JP5901251B2 (en) Manufacturing method of structure
JP6764777B2 (en) Air cooling module
JP6745578B2 (en) Brazing sheet for surface bonding
JP2013116483A (en) Joining method of aluminum alloy material and dissimilar metal material
WO2014128880A1 (en) Aluminum alloy brazing sheet, method for producing same, and method for brazing heat exchanger formed of aluminum
JP2016112585A (en) Brazing filler material sheet for surface joint
JP2012040610A (en) Structure using aluminum-alloy material and jointing method for the same structure
JP5956228B2 (en) Joining method of aluminum alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161006

R150 Certificate of patent or registration of utility model

Ref document number: 6023074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150