JP5629130B2 - Joining method of metal materials - Google Patents

Joining method of metal materials Download PDF

Info

Publication number
JP5629130B2
JP5629130B2 JP2010129808A JP2010129808A JP5629130B2 JP 5629130 B2 JP5629130 B2 JP 5629130B2 JP 2010129808 A JP2010129808 A JP 2010129808A JP 2010129808 A JP2010129808 A JP 2010129808A JP 5629130 B2 JP5629130 B2 JP 5629130B2
Authority
JP
Japan
Prior art keywords
joining
joined
bonding
liquid phase
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010129808A
Other languages
Japanese (ja)
Other versions
JP2011255389A (en
Inventor
村瀬崇
浜田逸平
藤田和子
新倉昭男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2010129808A priority Critical patent/JP5629130B2/en
Publication of JP2011255389A publication Critical patent/JP2011255389A/en
Application granted granted Critical
Publication of JP5629130B2 publication Critical patent/JP5629130B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属材料を一方の被接合部材とし、同一もしくは異なる種類の金属材料を他方の被接合部材として、両被接合部材を接合する方法に関する。   The present invention relates to a method of joining both members to be joined using a metal material as one member to be joined and the same or different type of metal material as the other member to be joined.

金属製の部材の接合方法には、従来から様々な方法が採用されている。非特許文献1には、金属の接合方法が材質的接合法、化学的接合法及び機械的接合法に大きく分類されている。   Conventionally, various methods have been employed for joining metal members. In Non-Patent Document 1, metal joining methods are roughly classified into material joining methods, chemical joining methods, and mechanical joining methods.

材質的接合法は、被接合部材同士を金属結合によって強固に接合するものである。適切に行なうことにより、接合部の信頼性を高くすることができる。具体的には、溶融させて接合する溶接法;拡散接合法、摩擦接合法、圧接法などの固相接合法;ろう接などの液相−固相反応接合法;などに分類される。材質的接合法は、前述の通り金属結合によって強固な接合を実現するものである。なかでも液相−固相反応接合法であるろう接は、炉中で被接合部材全体を加熱して接合を行うので、同時に多点の接合が可能である。このような利点を活かしたろう接は、自動車用熱交換器やヒートシンクなど接合箇所が多く狭い間隔で接合される製品の接合に多く適用されている。   In the material joining method, the members to be joined are joined firmly by metal bonding. When performed appropriately, the reliability of the joint can be increased. Specifically, it is classified into a welding method for melting and joining; a solid phase joining method such as a diffusion joining method, a friction joining method, and a pressure welding method; a liquid phase-solid phase reaction joining method such as brazing. As described above, the material bonding method realizes strong bonding by metal bonding. In particular, brazing, which is a liquid phase-solid reaction bonding method, is performed by heating the entire members to be bonded in a furnace, and therefore, multipoint bonding is possible at the same time. Brazing which makes use of such advantages is often applied to the joining of products such as automobile heat exchangers and heat sinks that have many joints and are joined at narrow intervals.

化学的接合法は、いわゆる接着剤を用いた接合方法である。材質的接合法とは異なり、高温で接合する必要がなく、被接合部材自体の変形が生じないという利点がある。しかしながら、金属結合のような強固な接合が得られないので、接合部の信頼性や熱伝導性が材質的接合法と比べて劣るという欠点がある。   The chemical bonding method is a bonding method using a so-called adhesive. Unlike the material joining method, there is an advantage that it is not necessary to join at a high temperature and the member to be joined itself is not deformed. However, since a strong bond such as a metal bond cannot be obtained, there is a disadvantage that the reliability and thermal conductivity of the bonded portion are inferior to those of the material bonding method.

機械的接合法には、リベットやボルト締めなどが挙げられる。材質的接合法や化学的接合法に比べて、比較的簡単に接合ができる。また、材質的接合法と同等以上の接合強度が得られ、方法によっては接合のやり直しが容易である。しかしながら、接合部の形状が限定されること、密閉性を必要とする接合には不適であることなどの欠点がある。   Examples of the mechanical joining method include rivets and bolting. Compared to material bonding methods and chemical bonding methods, bonding can be performed relatively easily. In addition, a bonding strength equal to or higher than that of the material bonding method can be obtained, and re-bonding can be easily performed depending on the method. However, there are drawbacks such as the shape of the joint being limited and being unsuitable for joining that requires hermeticity.

金属材料の接合には、従来から溶接法、ハンダ付け法、ろう付法等の材質的接合法が用いられてきた。
溶接法は、接合部を電気又は炎により加熱して溶融、合金化して接合を成すものである。接合部の隙間が大きい場合や接合強度が必要な場合は、接合時に溶加材を同時に溶融させて隙間を充填する。このように、接合部が溶融するため確実な接合がなされる。一方で、接合部を溶融して接合するため、接合部近傍の形状が大きく変形し、金属組織も局所的に大きく変化して別組織となり局所的な脆弱化が生じることがある。また、接合部のみを局所的に加熱していく必要があるために、同時に多点を接合するのが困難となるなどの問題もある。
Conventionally, material joining methods such as a welding method, a soldering method, and a brazing method have been used for joining metal materials.
In the welding method, the joint is heated by electricity or flame to be melted and alloyed to form a joint. When the gap between the joints is large or when bonding strength is required, the filler material is simultaneously melted at the time of joining to fill the gap. Thus, since a junction part melts, reliable joining is made. On the other hand, since the joint portion is melted and joined, the shape in the vicinity of the joint portion is greatly deformed, and the metal structure is also greatly changed locally to become another structure, which may cause local weakening. In addition, since it is necessary to locally heat only the joint portion, there is a problem that it is difficult to join multiple points at the same time.

ハンダ付け法やろう付法では、被接合部材よりも融点の低いハンダ材やろう材を用いて、電気又は炎により加熱することで、これらハンダ材やろう材のみを溶融させて接合部の隙間を充填することにより接合を成すものである。点状や線状の接続部の接合に有利であり、ハンダ材やろう材は接合凝固時にフィレットと称する形状を成すことにより強度や熱伝導性などの面で非常に高い信頼性が得られる。また、母材を溶融させることなく短時間で強固な接合を得ることができる。特にアルミニウム合金のろう付けでは、ノコロックろう付法や真空ろう付法など炉中ろう付法が行われ、ろう材と被接合部材であるアルミニウム合金材をクラッドしたブレージングシートを用いることを特徴とする。ブレージングシートをプレス加工し、中空構造を有する積層型熱交換器を組み立て、炉中で加熱することにより接合箇所が多く複雑な形状を有する熱交換器を製造することができる。一方で、ろう付やはんだ付では液相が流動するため、微細な流路などがろうで埋められてしまうこともあった。また、ブレージングシートを用いることによって接合部にろうを容易に均一供給できる利点がある一方で、ブレージングシートの製造が複雑であることから、コストダウンや調達性の改善が求められる。更に、接合面側での切削などの加工の自由度が損なわれるなどの問題もある。   In the soldering or brazing method, a solder or brazing material having a melting point lower than that of the member to be joined is heated by electricity or flame, so that only the solder or brazing material is melted and a gap between the joints is obtained. Is formed by filling. This is advantageous for joining point-like or line-like connecting portions, and the solder material and brazing material form a shape called a fillet at the time of solidification of the joint, thereby obtaining very high reliability in terms of strength and thermal conductivity. In addition, a strong bond can be obtained in a short time without melting the base material. Particularly in brazing of aluminum alloys, furnace brazing methods such as Nocolok brazing method and vacuum brazing method are performed, and a brazing sheet clad with a brazing material and an aluminum alloy material to be joined is used. . A heat exchanger having a complicated shape with many joints can be manufactured by pressing a brazing sheet, assembling a laminated heat exchanger having a hollow structure, and heating in a furnace. On the other hand, since the liquid phase flows in brazing or soldering, fine flow paths and the like may be filled with brazing. In addition, by using the brazing sheet, there is an advantage that the brazing sheet can be easily and uniformly supplied. On the other hand, since the manufacture of the brazing sheet is complicated, cost reduction and improvement in procurement are required. Furthermore, there is a problem that the degree of freedom of processing such as cutting on the joint surface side is impaired.

拡散接合法や摩擦接合法等の固相接合法は、原則として被接合部材の溶融を伴わない接合方法である。
拡散接合法は、母材同士を密着させ、基本的に母材の融点以下で塑性変形を生じない程度に加圧し、接合面間に生じる原子の拡散を利用して接合を成すものである。この接合方法では、被接合部材の変形を伴わずに同時に多点の接合や面接合が可能である。従って、微細な形状を有する被接合部材の接合が可能である。しかしながら、拡散現象を利用するために、溶接やろう付などと比べて接合に長時間を要する。通常、30分程度からそれ以上の時間、所定温度での保持が必要となる。また、接合に加圧が必要であるため、接合操作の煩雑化やコスト増加が避けられない。更に、金属材料によっては、その表面に安定で強固な酸化皮膜が存在しこれによって拡散が阻害されるために、固相拡散接合の適用が難しくなる場合もある。その場合、接合面の酸化皮膜を除去するための特殊な清浄化処理が必要となり、アルゴンイオン衝撃、グロー放電、超音波付与など特殊な工程を要するなどの問題がある。
In principle, solid phase bonding methods such as diffusion bonding and friction bonding are bonding methods that do not involve melting of the members to be bonded.
In the diffusion bonding method, the base materials are brought into close contact with each other, basically pressed to the extent that the plastic deformation does not occur below the melting point of the base material, and bonding is performed using the diffusion of atoms generated between the joint surfaces. In this joining method, multi-point joining and surface joining can be performed simultaneously without deformation of the members to be joined. Therefore, it is possible to join the members to be joined having a fine shape. However, in order to utilize the diffusion phenomenon, a long time is required for joining as compared with welding or brazing. Usually, it is necessary to hold at a predetermined temperature for about 30 minutes or more. Moreover, since pressurization is required for joining, complication of joining operation and cost increase are inevitable. Furthermore, depending on the metal material, there is a case where a stable and strong oxide film is present on the surface and diffusion is inhibited thereby, making it difficult to apply solid phase diffusion bonding. In that case, a special cleaning process for removing the oxide film on the bonding surface is required, and there are problems such as requiring special processes such as argon ion bombardment, glow discharge, and application of ultrasonic waves.

摩擦接合法のなかで摩擦攪拌接合法は、様々な種類の金属材料に適用可能である。母材の溶融を伴わないために、接合による被接合部材の変形が少ないという利点がある。一方で、接合部の形状が直線や緩曲線に限定され、複雑な形状の接合が困難である。また、接合ツールを接合部に直接接触させるために、微細な形状の接合が困難であると共に、同時に多点を接合することも困難である。また、この接合方法では、接合終端部に接合ピンの痕が残るのを避けられない。更に、接合部において被接合部材が攪拌されるので、母材とは異なる組織を呈することにより接合強度が低下する場合もある。   Among the friction welding methods, the friction stir welding method can be applied to various types of metal materials. Since there is no melting of the base material, there is an advantage that deformation of the member to be joined due to joining is small. On the other hand, the shape of the joint is limited to a straight line or a gentle curve, and it is difficult to join a complicated shape. In addition, since the joining tool is brought into direct contact with the joining portion, it is difficult to join the fine shapes, and it is also difficult to join multiple points at the same time. In addition, in this joining method, it is inevitable that the mark of the joining pin remains at the joining end portion. Furthermore, since the members to be joined are agitated at the joint, the joint strength may be reduced by exhibiting a structure different from that of the base material.

以上のように、金属材料を材質接合法によって接合する場合は、被接合部材を溶融させない、又は接合部近辺のみ局所的に溶融させる接合方法が一般的に採用されている。被接合部材が全体で溶融すると、形状が保たれず所望の形状が得られないためである。しかしながら、実用的な速度で接合を確実に行うためには、溶融される部分が必要であり、その部分の変形を回避することはできなかった。そのため、接合後の寸法変化や強度変化を想定して、部材の設計、組立を行わなければならない問題がある。   As described above, when joining metal materials by a material joining method, a joining method is generally employed in which the member to be joined is not melted or only the vicinity of the joint is melted locally. This is because when the member to be joined is melted as a whole, the shape is not maintained and a desired shape cannot be obtained. However, in order to reliably perform bonding at a practical speed, a melted part is necessary, and deformation of the part could not be avoided. Therefore, there is a problem that the member must be designed and assembled in consideration of dimensional changes and strength changes after joining.

一方で、金属部材の全体を半溶融状態として行う接合方法も提案されている。特許文献1には、合金粉末の半溶融を利用した接合方法が提案されている。この接合方法では、被接合部材である合金粉末はその全体が半溶融状態となるためその形状変形が著しく、形状変形を抑制したい部材の接合には適さない。また、特許文献2には、半溶融の合金母材に非金属部材を圧入して非金属部材と合金母材とを接合する方法が提案されている。しかしながら、この接合方法では所定の金型にパンチを圧接して接合するため、製品の形状が限定される。   On the other hand, the joining method which performs the whole metal member as a semi-molten state is also proposed. Patent Document 1 proposes a joining method using semi-melting of alloy powder. In this joining method, the alloy powder as a member to be joined is in a semi-molten state as a whole, so that its shape deformation is remarkable, and is not suitable for joining members that want to suppress shape deformation. Patent Document 2 proposes a method in which a nonmetallic member is press-fitted into a semi-molten alloy base material to join the nonmetallic member and the alloy base material. However, in this joining method, since the punch is pressed and joined to a predetermined mold, the shape of the product is limited.

特開2005−30513号公報JP 2005-30513 A 特開2003−88948号公報JP 2003-88948 A

溶接・接合技術データブック、p.57、溶接・接合技術データブック編集委員会(2007年)Welding and joining technology data book, p. 57, Welding / Joint Technology Data Book Editorial Committee (2007)

上述のような従来技術の問題点に鑑み、本発明は、良好な接合性と、接合による変形が殆どない、信頼性の高い新規な接合方法の提供を目的とする。   In view of the above-described problems of the prior art, an object of the present invention is to provide a highly reliable new bonding method with good bonding properties and almost no deformation due to bonding.

本発明者らは、鋭意検討の結果、被接合部材である金属材料を加熱する際に生成する液相を利用する新規な接合方法を見出し、本発明を完成するに至った。すなわち、本発明は請求項1において、金属材料を一方の被接合部材とし、同一もしくは異なる種類の金属材料のいずれかを他方の被接合部材として、前記一方の被接合部材と他方の被接合部材とを接合する方法において、前記一方の被接合部材である金属材料の全質量に対する当該金属材料内に生成する液相の質量の比が0%を超え35%以下となる温度で接合することを特徴とする金属の接合方法とした。   As a result of intensive studies, the present inventors have found a novel joining method using a liquid phase generated when heating a metal material that is a member to be joined, and have completed the present invention. That is, according to the present invention, the one member to be bonded and the other member to be bonded are defined in claim 1 in which the metal material is one member to be bonded, and one of the same or different types of metal materials is the other member to be bonded. And joining at a temperature at which the ratio of the mass of the liquid phase generated in the metal material to the total mass of the metal material that is the one member to be joined exceeds 0% and is 35% or less. It was set as the metal joining method characterized.

本発明は請求項2において、前記一方の被接合部材である金属材料において、固相線温度と液相線温度の差を10℃以上とした。更に、本発明は請求項3において、前記一方の被接合部材である金属材料において、接合前に対する接合後の寸法変化を5%以下とした。また、本発明は請求項4において、前記金属材料がAl系合金、Cu系合金、Fe系合金、Ni系合金、Ti系合金、Mg系合金である、請求項1乃至3に記載の金属材料の接合方法であるとした。     In the second aspect of the present invention, in the metal material as the one member to be joined, the difference between the solidus temperature and the liquidus temperature is 10 ° C. or more. Further, according to the present invention, in the metal material as the one member to be joined, the dimensional change after joining with respect to before joining is 5% or less. Further, the present invention provides the metal material according to claim 4, wherein the metal material is an Al alloy, a Cu alloy, a Fe alloy, a Ni alloy, a Ti alloy, or a Mg alloy. It was assumed that this was the joining method.

本発明に係る金属材料の接合方法は、接合する合金内部に生じる僅かな液相を利用して接合を行うものである。本発明では、同一組成の金属材料同士の接合は勿論のこと、組成の異なる同一金属系の金属材料同士、更には異種金属材料間の接合を、信頼性の高い金属結合によって可能とする。   The metal material joining method according to the present invention is performed by utilizing a slight liquid phase generated inside an alloy to be joined. In the present invention, not only bonding of metal materials having the same composition but also bonding of metal materials of the same metal type having different compositions, and further, dissimilar metal materials are made possible by highly reliable metal bonding.

また、本発明は、被接合部材自体が溶融により大きく流動することがなく、ハンダ材やろう材、溶化材等を用いないため、接合による寸法変化が小さく、殆ど形状変化を生じない。特に、微細な流路を有する部材の接合においても、液相の流れ込みや変形によって流路が塞がれることなく良好な接合を行える。   Further, in the present invention, since the member to be joined itself does not flow greatly due to melting and does not use a solder material, a brazing material, a solubilizing material, or the like, a dimensional change due to joining is small, and a shape change hardly occurs. In particular, even in joining members having fine flow paths, good joining can be performed without clogging the flow paths due to inflow or deformation of the liquid phase.

更に、接合部近傍において局所的な組織変化が生起しないため、強度脆化が生じ難い。また、ろう付法と同等の信頼性を有する同時多点接合を、置きろう、ろうペースト、ろう材をクラッドしたブレージングシートなどを用いることなく行うことができる。これにより、接合性能を損なうことなく材料のコストダウンが可能となる。   Further, since local structural change does not occur in the vicinity of the joint, strength embrittlement hardly occurs. In addition, simultaneous multi-point joining having reliability equivalent to that of the brazing method can be performed without using a brazing sheet, brazing paste, brazing sheet clad with a brazing material, or the like. Thereby, the cost of the material can be reduced without impairing the bonding performance.

本発明と同様に接合による変形が少なく同時多点接合が可能である拡散接合と比べて、加圧が不要で、接合に要する時間を短くでき、接合面に強固な酸化皮膜を有する金属材料の接合であっても、接合面の清浄化処理のための特殊な工程を必要としない。
以上のように、本発明は従来にはない新規な接合方法を提供するものである。
Similar to the present invention, compared to diffusion bonding, in which deformation due to bonding is small and simultaneous multipoint bonding is possible, pressurization is not required, the time required for bonding can be shortened, and a metal material having a strong oxide film on the bonding surface Even for joining, a special process for cleaning the joining surface is not required.
As described above, the present invention provides a novel joining method that has not existed in the past.

2元系共晶合金としてAl−Si合金の状態図を示す模式図である。It is a schematic diagram which shows the phase diagram of an Al-Si alloy as a binary eutectic alloy. 本発明に係る金属材料の接合方法における、液相の生成メカニズムを示す説明図である。It is explanatory drawing which shows the production | generation mechanism of a liquid phase in the joining method of the metal material which concerns on this invention. 逆T字型接合試験片とその接合部の観察面位置を示す正面図である。It is a front view which shows the observation surface position of a reverse T-shaped joining test piece and its junction part. 図3で観察した接合部を示す顕微鏡写真である。It is a microscope picture which shows the junction part observed in FIG. 接合率、ならびに、接合による変形率を測定するための試料を示す斜視図である。It is a perspective view which shows the sample for measuring a joining rate and the deformation rate by joining. 接合率、ならびに、接合による変形率の測定方法の説明図である。It is explanatory drawing of the measuring method of a joining rate and the deformation rate by joining.

以下において、本発明を詳細に説明する。
A.被接合部材の組合せ
本発明に係る金属材料の接合方法では、金属材料を一方の被接合部材とし、同一金属系の金属材料及び異種金属材料のいずれかを他方の被接合部材として、一方の被接合部材と他方の被接合部材とを接合する。同一金属系の金属材料同士を接合する場合は、合金組成が同一のもの同士でも、合金組成が異なるもの同士でもよい。
Hereinafter, the present invention will be described in detail.
A. Combination of members to be joined In the method for joining metal materials according to the present invention, a metal material is used as one member to be joined, and either one of the same metal-based metal material or different metal material is used as the other member to be joined. The joining member and the other joined member are joined. When joining metal materials of the same metal type, those having the same alloy composition or those having different alloy compositions may be used.

B.液相の生成
本発明に係る金属材料の接合方法では、一方の被接合部材である金属材料の全質量に対する当該金属材料内に生成する液相の質量の比(以下、「液相率」と記す)が0%を超え35%以下となる温度で接合する必要がある。液相率が35%を超えると、生成する液相の量が多過ぎて金属材料が変形を開始してしまう。一方、液相が生成しなければ接合ができない。液相が少ないと接合が困難となる場合があり、好ましい液相率は5〜35%であり、より好ましい液相率は10〜20%である。
B. Production of Liquid Phase In the method for joining metal materials according to the present invention, the ratio of the mass of the liquid phase produced in the metal material to the total mass of the metal material as one of the members to be joined (hereinafter referred to as “liquid phase ratio”) It is necessary to join at a temperature that exceeds 0% and not more than 35%. When the liquid phase ratio exceeds 35%, the amount of the liquid phase to be generated is too large and the metal material starts to be deformed. On the other hand, bonding is not possible unless a liquid phase is generated. When there are few liquid phases, joining may become difficult, a preferable liquid phase rate is 5-35%, and a more preferable liquid phase rate is 10-20%.

加熱中における実際の液相率を測定することは、極めて困難である。そこで、本発明で規定する液相率は平衡計算によって求めるものとする。具体的には、平衡状態を計算するソフトであるThermo−Calcによって合金組成と加熱時の最高到達温度から計算される。   It is extremely difficult to measure the actual liquid phase ratio during heating. Therefore, the liquid phase ratio defined in the present invention is obtained by equilibrium calculation. More specifically, the temperature is calculated from the alloy composition and the highest temperature at the time of heating by Thermo-Calc which is software for calculating the equilibrium state.

液相の生成メカニズムについて説明する。図1に代表的な2元系共晶合金であるAl−Si合金の状態図を模式的に示す。Si濃度がc1である一方のアルミニウム合金材と他方の被接合部材を組合せて加熱すると、共晶温度(固相線温度)Teを超えた付近の温度T1で液相の生成が始まる。共晶温度Te以下では、図2(a)に示すように、結晶粒界で区分されるマトリクス中に晶析出物が分布している。ここで液相の生成が始まると、図2(b)に示すように、晶析出物分布の偏析の多い結晶粒界が溶融して液相となる。次いで、図2(c)に示すように、アルミニウム合金のマトリクス中に分散する主添加元素成分であるSiの晶析出物粒子や金属間化合物の周辺が球状に溶融して液相となる。更に図2(d)に示すように、マトリクス中に生成したこの球状の液相は、界面エネルギーにより時間の経過や温度上昇と共にマトリクスに再固溶し、固相内拡散によって結晶粒界や表面に移動する。次いで、図1に示すように温度がT2に上昇すると、状態図より液相量は増加する。図1に示すように、一方のアルミニウム合金材のSi濃度がc2の場合には、固相線温度Ts2を超えた付近でc1と同様に液相の生成が始まり、温度がT3に上昇すると、状態図より液相量は増加する。このように、本発明に係る接合方法は、アルミニウム合金に限らず全ての金属材料において、金属材料内部の部分的な溶融により生成される液相を利用するものであり、接合と形状維持の両立を実現できるものである。   The generation mechanism of the liquid phase will be described. FIG. 1 schematically shows a phase diagram of an Al—Si alloy, which is a typical binary eutectic alloy. When one aluminum alloy material having a Si concentration of c1 and the other member to be joined are heated, the generation of a liquid phase starts at a temperature T1 near the eutectic temperature (solidus temperature) Te. Below the eutectic temperature Te, as shown in FIG. 2A, crystal precipitates are distributed in the matrix divided by the grain boundaries. Here, when the generation of the liquid phase starts, as shown in FIG. 2B, the crystal grain boundary with a large segregation of the crystal precipitate distribution melts to become a liquid phase. Next, as shown in FIG. 2C, the periphery of the Si crystal precipitate particles and intermetallic compounds, which are the main additive element components dispersed in the matrix of the aluminum alloy, melts into a spherical shape to form a liquid phase. Further, as shown in FIG. 2 (d), this spherical liquid phase generated in the matrix is re-dissolved in the matrix with the passage of time and temperature due to the interfacial energy, and the grain boundaries and the surface are diffused by diffusion in the solid phase. Move to. Next, as shown in FIG. 1, when the temperature rises to T2, the liquid phase amount increases from the state diagram. As shown in FIG. 1, when the Si concentration of one aluminum alloy material is c2, the generation of a liquid phase starts in the vicinity of the solidus temperature Ts2 in the same manner as c1, and when the temperature rises to T3, The amount of liquid phase increases from the phase diagram. As described above, the bonding method according to the present invention uses a liquid phase generated by partial melting inside the metal material in all metal materials, not limited to aluminum alloys, and achieves both bonding and shape maintenance. Can be realized.

C.接合における金属組織の挙動
液相が生じた後から接合に至るまでの金属組織の挙動をアルミニウム合金での接合を例に示しながら説明する。図3に示すように、液相を生成するアルミニウム合金材Aと、これと接合するアルミニウム合金材Bとを用いた逆T字型接合試験片を接合し、図に示す観察面を顕微鏡で観察した。前述のように、接合においてアルミニウム合金材Aの表面に生成するごく僅かな液相は、フラックス等の作用により酸化皮膜が破壊された相手のアルミニウム合金材Bとの隙間を埋める。次に、両合金材の接合界面付近にある液相がアルミニウム合金材B内へと移動していき、それに伴い接合界面に接しているアルミニウム合金材Aの固相α相の結晶粒がアルミニウム合金材B内に向かって成長していく。一方、アルミニウム合金材Bの結晶粒もアルミニウム合金材A側へと成長していく。
C. Behavior of Metal Structure in Joining The behavior of the metal structure from the occurrence of a liquid phase to joining is described with an example of joining with an aluminum alloy. As shown in FIG. 3, an inverted T-shaped joining test piece using an aluminum alloy material A that generates a liquid phase and an aluminum alloy material B to be bonded to the liquid phase is joined, and the observation surface shown in the figure is observed with a microscope. did. As described above, a very small amount of the liquid phase generated on the surface of the aluminum alloy material A during bonding fills the gap with the counterpart aluminum alloy material B in which the oxide film is destroyed by the action of flux or the like. Next, the liquid phase in the vicinity of the bonding interface between the two alloy materials moves into the aluminum alloy material B, and the solid-phase α-phase crystal grains of the aluminum alloy material A in contact with the bonding interface are aluminum alloy. Grows toward material B. On the other hand, the crystal grains of the aluminum alloy material B also grow to the aluminum alloy material A side.

アルミニウム合金材Bが液相を生成しない合金の場合には、図4(a)に示すように、接合界面付近のアルミニウム合金材B中にアルミニウム合金材Aの組織が入り込んだような組織となって接合される。従って、接合界面にはアルミニウム合金材Aとアルミニウム合金材B以外の金属組織が生じない。また、アルミニウム合金材Bも液相を生成する合金の場合には、図4(b)に示すように、両合金材は完全に一体化した組織となり接合界面が判別できない。   In the case where the aluminum alloy material B is an alloy that does not generate a liquid phase, as shown in FIG. 4A, the structure of the aluminum alloy material A enters the aluminum alloy material B in the vicinity of the bonding interface. Are joined. Therefore, no metal structure other than the aluminum alloy material A and the aluminum alloy material B is generated at the bonding interface. When the aluminum alloy material B is also an alloy that generates a liquid phase, as shown in FIG. 4B, both alloy materials have a completely integrated structure, and the bonding interface cannot be determined.

一方、アルミニウム合金材Bとしてろう材をクラッドしたブレージングシートを用いた場合には、図4(c)に示すように、接合部にフィレットが形成され共晶組織が見られる。このように、図4(c)では、図4(a)、(b)において形成される接合組織とは異なるものとなる。ろう付法では接合部を液相ろうが埋めてフィレットを形成するため、接合部は周囲と異なる共晶組織が形成されるのである。また、溶接法においても接合部が局部的に溶融するため、他の部位とは異なる金属組織となる。それに対して、本発明に係る接合方法では、接合部の金属組織が両被接合部材のものだけで構成され、或いは、両被接合部材が一体化したもので構成される点で、ろう付や溶接による接合組織と相違する。   On the other hand, when a brazing sheet clad with a brazing material is used as the aluminum alloy material B, as shown in FIG. 4C, a fillet is formed at the joint and a eutectic structure is observed. Thus, in FIG.4 (c), it becomes a thing different from the joining structure | tissue formed in FIG. 4 (a), (b). In the brazing method, a liquid phase braze fills the joint to form a fillet, so that a eutectic structure different from the surrounding is formed in the joint. Also, in the welding method, since the joint portion is locally melted, the metal structure is different from other portions. On the other hand, in the joining method according to the present invention, the metal structure of the joint portion is composed of only the members to be joined, or the joint structure is formed by integrating both the members to be joined. It differs from the welded joint structure.

このような接合挙動のため、接合工程後において接合部位近傍の形状変化がほとんど発生しない。すなわち、溶接法のビードや、ろう付法でのフィレットのような接合後の形状変化が、本発明に係る接合方法では殆ど発生しない。それにも拘わらず、溶接法やろう付法と同じく金属結合による接合を可能とする。例えば、アルミニウム合金製ブレージングシート(ろう材クラッド率が片面5%)を用いてドロンカップタイプの積層型熱交換器を組み立てた場合、ろう付け加熱後には溶融したろう材が接合部に集中するため、積層した熱交換器の高さが5〜10%減少する。従って、製品設計においてはその減少分を考慮する必要がある。本発明においては接合後における寸法変化が5%以下であるため、高精度の製品設計が可能となる。   Due to such joining behavior, the shape change in the vicinity of the joining site hardly occurs after the joining process. That is, the shape change after joining like the bead of the welding method and the fillet in the brazing method hardly occurs in the joining method according to the present invention. In spite of this, joining by metal bonding is possible as in the welding method and the brazing method. For example, when a drone cup type laminated heat exchanger is assembled using a brazing sheet made of aluminum alloy (a brazing material clad rate is 5% on one side), the molten brazing material concentrates at the joint after brazing heating. The height of the laminated heat exchanger is reduced by 5-10%. Therefore, it is necessary to consider the decrease in product design. In the present invention, since the dimensional change after bonding is 5% or less, a highly accurate product design is possible.

D.固相線温度と液相線温度の差
本発明に係る接合方法では、液相を生成する金属材料の固相線温度と液相線温度の差を10℃以上とするのが好ましい。固相線温度を超えると液相の生成が始まるが、固相線温度と液相線温度の差が小さいと、固体と液体が共存する温度範囲が狭くなり、発生する液相の量を制御することが困難となる。従って、この差を10℃以上とするのが好ましい。例えば、この条件を満たす組成を有する2元系の合金としては、Al−Si系合金、Al−Cu系合金、Cu−Zn系合金、Cu−Sn系合金、Fe−C系合金、Ti−Al系合金、Ni−Al系合金、Mg−Zn系合金などが挙げられる。この条件を満たすには、共晶型合金が固液共存領域を大きく有するので有利である。しかしながら、他の全率固溶型、包晶型、偏晶型などの合金であっても、固相線温度と液相線温度の差を10℃以上とすることにより良好な接合が可能となる。また、上記の2元系合金は主添加元素以外の添加元素を含有することができ、実質的には3元系や4元系合金、更に5元以上の多元系の合金も含まれる。
なお、固相線温度と液相線温度の差は大きくなるほど適切な液相量に制御するのが容易になる。従って、固相線温度と液相線温度の差に上限は特に設けない。
D. Difference between solidus temperature and liquidus temperature In the joining method according to the present invention, it is preferable that the difference between the solidus temperature and the liquidus temperature of the metal material generating the liquid phase is 10 ° C. or more. When the solidus temperature is exceeded, liquid phase generation begins, but if the difference between the solidus temperature and the liquidus temperature is small, the temperature range in which the solid and the liquid coexist is narrowed, and the amount of the generated liquid phase is controlled. Difficult to do. Therefore, this difference is preferably set to 10 ° C. or more. For example, binary alloys having a composition satisfying this condition include Al—Si alloys, Al—Cu alloys, Cu—Zn alloys, Cu—Sn alloys, Fe—C alloys, Ti—Al Alloy, Ni—Al alloy, Mg—Zn alloy and the like. In order to satisfy this condition, the eutectic type alloy is advantageous because it has a large solid-liquid coexistence region. However, even for other alloys such as all solid solution type, peritectic type, and monotectic type, good bonding is possible by setting the difference between the solidus temperature and the liquidus temperature to 10 ° C. or more. Become. Further, the above binary alloy can contain an additive element other than the main additive element, and substantially includes a ternary alloy, a quaternary alloy, and a multi-element alloy of more than five elements.
Note that the larger the difference between the solidus temperature and the liquidus temperature, the easier it is to control the amount of liquid phase. Therefore, there is no particular upper limit for the difference between the solidus temperature and the liquidus temperature.

E.接合方法
本発明の接合方法においては、通常、被接合部材は炉中で加熱される。炉の形状に特に制限はなく、例えば1室構造のバッチ炉、ベルト等の搬送機構を有する連続炉などを用いることができる。なお、炉中の雰囲気に制限はないが、真空中や不活性ガス中、あるいは還元性ガス中で行うことが好ましい。また、接合加熱の際に、液相を生成する金属材料の固相線温度以上となる時間を20分以内とするのが好ましく、15分以内とするのが更に好ましい。20分を超えると、前述の粒界すべりによる変形が発生するおそれがある。
E. Joining Method In the joining method of the present invention, the members to be joined are usually heated in a furnace. There is no restriction | limiting in particular in the shape of a furnace, For example, the continuous furnace etc. which have conveyance mechanisms, such as a batch furnace of a 1 chamber structure, and a belt, can be used. The atmosphere in the furnace is not limited, but it is preferably performed in a vacuum, an inert gas, or a reducing gas. Moreover, it is preferable that the time when the metal material that generates the liquid phase is equal to or higher than the solidus temperature is 20 minutes or less, more preferably 15 minutes or less during the bonding heating. If it exceeds 20 minutes, deformation due to the above-mentioned grain boundary sliding may occur.

金属材料の表層には酸化皮膜が形成されており、これによって接合が阻害される。従って、接合においては酸化皮膜を破壊する必要がある。本発明に係る接合方法では、酸化被膜を破壊するために接合面にフラックスを塗布するのが好ましい。また、酸化皮膜の形成を抑制するために、窒素などの非酸化性雰囲気ガス中で接合するのが好ましい。   An oxide film is formed on the surface layer of the metal material, which inhibits bonding. Therefore, it is necessary to destroy the oxide film in joining. In the joining method according to the present invention, it is preferable to apply a flux to the joining surface in order to destroy the oxide film. Moreover, in order to suppress formation of an oxide film, it is preferable to join in non-oxidizing atmosphere gas, such as nitrogen.

以下に、本発明を実施例と比較例に基づいて詳細に説明する。   Below, this invention is demonstrated in detail based on an Example and a comparative example.

(実施例1〜20及び比較例21〜25)
表1に接合に用いたAl−Si合金の組成を示す(Siを、1.5〜4.0mass%含有する)。表1には、580〜640℃の各温度での平衡液相率も示した。なお、平衡液相率は、Thermo−Calcによる計算値である。表1に示す合金鋳塊を調製した後、熱間圧延及び冷間圧延により厚さ1mmの圧延板を得た。この圧延板を切り出し、端面をフライスにより平滑にしたものを組み合わせて、図5に示す接合試験片を作製した。試験片の上板と中板には、表1に示す組成のアルミニウム合金板を用い、下板には純アルミニウム板(A1070)を用いた。上板と中板のアルミニウム合金板は同一組成である。これら例は、同一組成のアルミニウム合金材同士の接合である。この接合試験片の接合面には、フッ化物系の非腐食性フラックスを塗布した。図5(a)に示すように、下板に中板と上板を順次重ね、重ね合わせたものの上下に板厚1mmのセラミックス板の治具を配するようにした。次いで、図5(b)に示すように、上下のステンレス板と側面に2本のステンレス線を架け渡して端部をそれぞれ縛り、下板、中板及び上板からなる試験片を固定して試料とした。なお、図5(a)に記載の数字は、部材の寸法(単位:mm)を表わす。
(Examples 1-20 and Comparative Examples 21-25)
Table 1 shows the composition of the Al—Si alloy used for joining (containing Si in an amount of 1.5 to 4.0 mass%). Table 1 also shows the equilibrium liquid phase ratio at each temperature of 580 to 640 ° C. The equilibrium liquid phase ratio is a value calculated by Thermo-Calc. After preparing the alloy ingot shown in Table 1, a rolled plate having a thickness of 1 mm was obtained by hot rolling and cold rolling. This rolled plate was cut out and the end surfaces of which were smoothed by a milling cutter were combined to produce a joining test piece shown in FIG. An aluminum alloy plate having a composition shown in Table 1 was used for the upper and middle plates of the test piece, and a pure aluminum plate (A1070) was used for the lower plate. The upper and middle aluminum alloy plates have the same composition. These examples are joining of aluminum alloy materials having the same composition. Fluoride-based non-corrosive flux was applied to the bonding surface of this bonding test piece. As shown in FIG. 5 (a), a middle plate and an upper plate were sequentially stacked on the lower plate, and a ceramic plate jig having a plate thickness of 1 mm was arranged above and below the superposed plate. Next, as shown in FIG. 5 (b), the upper and lower stainless steel plates and the two stainless steel wires are bridged on the side surface, the ends are tied together, and the test piece consisting of the lower plate, the middle plate and the upper plate is fixed. A sample was used. In addition, the number described in FIG. 5A represents the dimension (unit: mm) of the member.

Figure 0005629130
Figure 0005629130

上記の試料を、窒素雰囲気中で所定の温度(580〜635℃)まで昇温しその温度に2分間保持した後に、室温で自然冷却した。窒素雰囲気は、酸素濃度100ppm以下で露点−45℃以下に管理した。昇温速度は、520℃以上において、10℃/分とした。   The sample was heated to a predetermined temperature (580 to 635 ° C.) in a nitrogen atmosphere and held at that temperature for 2 minutes, and then naturally cooled at room temperature. The nitrogen atmosphere was controlled at an oxygen concentration of 100 ppm or less and a dew point of −45 ° C. or less. The heating rate was 10 ° C./min at 520 ° C. or higher.

接合後の試験片を、図6(a)に示す観察断面が得られるように切断した。図6(b)に示すように、上板と中板は接合部1及び接合部2で接合されている。接合部1(2)の一部拡大図を6(c)に示す。上板と中板に接合界面が見られない部分が、接合されている部分であり、接合界面(図の横線)が見られる部分が、接合されていない未接合の部分である。接合率は、下記式(2)で定義される。
接合率(%)={(L1+L2)/2L0}×100 (2)
ここで、L1は接合部1において接合されている部分の長さ、L2は接合部2において接合されている部分の長さ、L10は接合部1と接合部2において、それぞれ接合されるべき長さである。
The test piece after joining was cut so that an observation cross section shown in FIG. As shown in FIG. 6B, the upper plate and the middle plate are joined by the joint 1 and the joint 2. A partially enlarged view of the joint 1 (2) is shown in FIG. A portion where the joining interface is not seen between the upper plate and the middle plate is a joined portion, and a portion where the joining interface (horizontal line in the figure) is seen is an unjoined portion which is not joined. The joining rate is defined by the following formula (2).
Joining rate (%) = {(L1 + L2) / 2L0} × 100 (2)
Here, L1 is the length of the part joined in the joint part 1, L2 is the length of the part joined in the joint part 2, and L10 is the length to be joined in the joint part 1 and the joint part 2, respectively. That's it.

図6(d)に、試験片の天井部を示す。aは試験片の天井部の接合前の長さ、a1は試験片の天井部上側の接合後における湾曲長さ、a2は試験片の天井部下側の接合後における湾曲長さを表わす。下記式(3)で定義される変形率をもって、接合前に対する接合後の寸法変化とした。
変形率(%)={(a1+a2)/2a}×100 (3)
FIG. 6D shows the ceiling of the test piece. a is the length before joining the ceiling part of the test piece, a1 is the bending length after joining the upper part of the ceiling part of the test piece, and a2 is the bending length after joining the lower part of the ceiling part of the test piece. The deformation rate defined by the following formula (3) was taken as the dimensional change after joining with respect to before joining.
Deformation rate (%) = {(a1 + a2) / 2a} × 100 (3)

接合率が95%以上を◎、90%以上95%未満を○、25%以上90%未満を△、25%未満を×と判定した。また、変形率が3%以下を◎、3%を超え5%以下を○、5%を超え8%以下を△、8%を超えるものを×と判定した。   A joining rate of 95% or more was judged as ◎, 90% or more and less than 95% as ○, 25% or more and less than 90% as Δ, and less than 25% as ×. Further, the deformation rate of 3% or less was evaluated as ◎, 3% and 5% or less as ◯, 5% and 8% or less as Δ, and 8% or more as ×.

以上の結果より、各評価の判定に対して◎を5点、○を3点、△を0点、×を−5点として点数をつけ、合計点が10点を◎、6点以上9点以下を○、1点以上5点以下を△、0点以下を×と総合判定した。総合判定が◎、○、△を合格とし、×を不合格とした。接合条件(温度、平衡液相率の計算値)と試験結果を表2に示す。   Based on the above results, for each evaluation judgment, ◎ is given 5 points, ○ is 3 points, △ is 0 points, × is -5 points, and the total score is 10 points ◎, 6 points to 9 points The following was comprehensively judged as ◯, from 1 to 5 points as Δ, and from 0 points or less as ×. In the comprehensive judgment, ◎, ○, and △ were accepted, and x was rejected. Table 2 shows the joining conditions (calculated values of temperature and equilibrium liquid phase ratio) and test results.

Figure 0005629130
Figure 0005629130

実施例1〜20では、接合加熱時のアルミニウム合金材中の液相率が適正な範囲であったため良好な接合がなされ、総合判定が合格であった。特に、液相率が10〜20%である実施例3、8、12、13、15、16では変形が極僅かで且つ高い接合率が得られた。   In Examples 1-20, since the liquid phase rate in the aluminum alloy material at the time of joining heating was in an appropriate range, favorable joining was made and the comprehensive judgment was acceptable. In particular, in Examples 3, 8, 12, 13, 15, and 16 having a liquid phase ratio of 10 to 20%, the deformation was very small and a high bonding rate was obtained.

比較例21では、液相が生成しなかったため、接合がなされなかった。
比較例22〜25では、液相率が高過ぎたため、大きな変形が発生して総合判定が不合格となった。
In Comparative Example 21, since no liquid phase was generated, bonding was not performed.
In Comparative Examples 22 to 25, since the liquid phase ratio was too high, large deformation occurred and the comprehensive judgment was rejected.

(実施例26〜40及び比較例41〜50)
表1に示すAl−Si合金に代えて、表3に示す組成の金属材料を用いて、実施例1〜20及び比較例21〜25と同様に接合率と変形率を試験した。すなわち、これら例においても、上板と中板の金属材料板は同一組成であり、同一組成の金属材料同士の接合である。
(Examples 26-40 and Comparative Examples 41-50)
Instead of the Al—Si alloy shown in Table 1, the joining rate and the deformation rate were tested in the same manner as in Examples 1-20 and Comparative Examples 21-25 using a metal material having the composition shown in Table 3. That is, also in these examples, the metal material plates of the upper plate and the middle plate have the same composition and are joining of metal materials having the same composition.

Figure 0005629130
Figure 0005629130

試験片を、水素と窒素の混合雰囲気中で所定の接合温度にて保持時間3分の加熱により接合を実施した。   The test piece was bonded by heating at a predetermined bonding temperature for 3 minutes in a mixed atmosphere of hydrogen and nitrogen.

表4に、接合条件(接合温度、平衡液相率の計算値)、ならびに、試験結果を示す。なお、平衡液相率の計算、接合率及び変形率の算出は、実施例1〜20及び比較例21〜25と同様である。   Table 4 shows joining conditions (joining temperature, calculated value of equilibrium liquid phase ratio) and test results. In addition, calculation of an equilibrium liquid phase rate, calculation of a joining rate, and a deformation rate are the same as that of Examples 1-20 and Comparative Examples 21-25.

Figure 0005629130
Figure 0005629130

実施例26〜40では、接合加熱時の金属材料中の液相率が適正な範囲であったため良好な接合がなされ、総合判定が合格であった。   In Examples 26-40, since the liquid phase ratio in the metal material at the time of joining heating was in an appropriate range, favorable joining was made, and the comprehensive judgment was acceptable.

比較例41、43、45、47、49では、接合温度が固相線温度以下であったため、液相が生成されず接合がなされなかった。
比較例42、44、46、48、50では、生成する液相が過剰であったため被接合部材が形状を維持できず、大きく変形してしまった。特に、比較例48では完全に形状が崩れてしまい、接合率を測定することも不可能であった。
In Comparative Examples 41, 43, 45, 47, and 49, since the bonding temperature was not higher than the solidus temperature, no liquid phase was generated and bonding was not performed.
In Comparative Examples 42, 44, 46, 48, and 50, since the liquid phase to be generated was excessive, the shape of the member to be joined could not be maintained and was greatly deformed. In particular, in Comparative Example 48, the shape completely collapsed, and it was impossible to measure the joining rate.

本発明により、良好な接合性と、接合による変形が殆どない、信頼性の高い金属材料の接合方法が達成され、工業的な価値が大きい。   According to the present invention, a highly reliable joining method of a metal material with good joining properties and almost no deformation due to joining is achieved, and the industrial value is great.

a・・試験片の天井部の接合前の長さ
a1・・試験片の天井部上側の接合後における湾曲長さ
a2・・試験片の天井部下側の接合後における湾曲長さ
c1・・Si濃度
c2・・Si濃度
T・・温度
T1・・Teを超えた温度
T2・・T1より更に高い温度
T3・・Ts2を超えた温度
Te・・固相線温度
Ts2・・固相線温度
a ··· length before joining the ceiling of the test piece a1 ·· curved length after joining the upper side of the ceiling of the test piece a2 ·· curving length after joining the lower side of the ceiling of the test piece c1 ·· Si Concentration c2 ·· Si concentration T ·· Temperature above T1 ·· Te Temperature higher than T2 ·· T1 Temperature above T3 ·· Ts2 Te ·· Solidus temperature Ts2 ·· Solidus temperature

Claims (4)

金属材料を一方の被接合部材とし、同一の金属材料あるいは他の金属材料のいずれかを他方の被接合部材として、前記一方の被接合部材と他方の被接合部材とを接合する方法において、前記一方の被接合部材である金属材料の全質量に対する当該金属材料内に生成する液相の質量の比が0%を超え35%以下となる温度で接合することを特徴とする金属材料の接合方法。   In the method of joining the one member to be joined and the other member to be joined, using the metal material as one member to be joined and using either the same metal material or another metal material as the other member to be joined, Joining at a temperature at which the ratio of the mass of the liquid phase generated in the metal material to the total mass of the metal material as one of the members to be joined exceeds 0% and is 35% or less . 前記一方の被接合部材である金属材料において、固相線温度と液相線温度の差が10℃以上である、請求項1に記載の金属材料の接合方法。   The metal material joining method according to claim 1, wherein a difference between the solidus temperature and the liquidus temperature is 10 ° C. or more in the metal material that is the one member to be joined. 前記一方の被接合部材である金属材料において、接合前に対する接合後の寸法変化が5%以下である、請求項1又は2に記載の金属材料の接合方法。   The metal material joining method according to claim 1 or 2, wherein in the metal material as the one member to be joined, a dimensional change after joining with respect to before joining is 5% or less. 前記金属材料がAl系合金、Cu系合金、Fe系合金、Ni系合金、Ti系合金、Mg系合金である、請求項1〜3のいずれかに記載の金属材料の接合方法。
The metallic material is Al alloy, Cu-based alloys, Fe-based alloys, Ni-based alloys, Ti-based alloy, an Mg-based alloy, the joining method of the metal material according to claim 1.
JP2010129808A 2010-06-07 2010-06-07 Joining method of metal materials Expired - Fee Related JP5629130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010129808A JP5629130B2 (en) 2010-06-07 2010-06-07 Joining method of metal materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010129808A JP5629130B2 (en) 2010-06-07 2010-06-07 Joining method of metal materials

Publications (2)

Publication Number Publication Date
JP2011255389A JP2011255389A (en) 2011-12-22
JP5629130B2 true JP5629130B2 (en) 2014-11-19

Family

ID=45472156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010129808A Expired - Fee Related JP5629130B2 (en) 2010-06-07 2010-06-07 Joining method of metal materials

Country Status (1)

Country Link
JP (1) JP5629130B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5276238B1 (en) * 2011-11-30 2013-08-28 古河スカイ株式会社 Metal forming method and molded product thereof
JP6696214B2 (en) 2015-04-16 2020-05-20 三菱マテリアル株式会社 Bonded body, power module substrate with heat sink, heat sink, and method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink
US10497585B2 (en) 2015-04-16 2019-12-03 Mitsubishi Materials Corporation Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
WO2016167218A1 (en) * 2015-04-16 2016-10-20 三菱マテリアル株式会社 Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
CN110640345A (en) * 2019-08-23 2020-01-03 广州洲宗金属制品有限公司 Self-brazing aluminum alloy plate, heating plate, composite pot bottom and manufacturing methods thereof

Also Published As

Publication number Publication date
JP2011255389A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5021097B2 (en) Joining method of aluminum alloy material
JP6243837B2 (en) Aluminum alloy brazing sheet for heat exchanger, brazing body made of aluminum alloy for heat exchanger and method for producing the same
JP6060090B2 (en) Bonded body of aluminum alloy and copper alloy and bonding method thereof
JP5629130B2 (en) Joining method of metal materials
JP5284542B1 (en) Method for producing aluminum alloy clad material
WO2014021308A1 (en) Solder alloy for bonding metal, and soldering method using same
JP6426883B2 (en) Method of manufacturing joined body excellent in corrosion resistance
JP6033542B2 (en) CONNECTED BODY AND METHOD FOR PRODUCING THE SAME
JP6218903B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JP6023078B2 (en) Joining method of aluminum alloy material
TWI745631B (en) Silver brazing material and joining method using the silver brazing material
JP2003117679A (en) Composite brazing filler metal and composite material for brazing and brazing method
JP2013116483A (en) Joining method of aluminum alloy material and dissimilar metal material
JP5901251B2 (en) Manufacturing method of structure
JP2015058472A (en) Method of soldering aluminum alloy member
JP2006326621A (en) Solder material wire for soldering aluminum alloy
JP5956228B2 (en) Joining method of aluminum alloy
US20140048587A1 (en) Brazing alloy and processes for making and using
JP2013116474A (en) Method for joining aluminum alloy material, method for manufacturing aluminum alloy joined body, and aluminum alloy joined body
JPS60170593A (en) Foil-shaped brazing filler metal for brazing al or al alloy
JP2003117677A (en) Composite brazing filler metal and composite material for brazing and brazed product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141003

R150 Certificate of patent or registration of utility model

Ref document number: 5629130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees