JP2013116483A - Joining method of aluminum alloy material and dissimilar metal material - Google Patents

Joining method of aluminum alloy material and dissimilar metal material Download PDF

Info

Publication number
JP2013116483A
JP2013116483A JP2011264846A JP2011264846A JP2013116483A JP 2013116483 A JP2013116483 A JP 2013116483A JP 2011264846 A JP2011264846 A JP 2011264846A JP 2011264846 A JP2011264846 A JP 2011264846A JP 2013116483 A JP2013116483 A JP 2013116483A
Authority
JP
Japan
Prior art keywords
aluminum alloy
joining
joined
alloy material
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011264846A
Other languages
Japanese (ja)
Inventor
Takashi Murase
崇 村瀬
Yutaka Yanagawa
裕 柳川
Toshiya Okada
俊哉 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2011264846A priority Critical patent/JP2013116483A/en
Publication of JP2013116483A publication Critical patent/JP2013116483A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new joining method capable of achieving high reliability, excellent joining performance and small material deformation in joining, in a joining method of an aluminum alloy material and a dissimilar metal material.SOLUTION: The joining method of the aluminum alloy material and the dissimilar metal material is used for joining one joining member being the aluminum alloy material and the other joining member being the dissimilar metal material. In the method, the other joining member is the dissimilar metal material having higher solid phase line temperature than the aluminum alloy, and is joined at a temperature where a ratio of a liquid phase mass generated in the aluminum alloy material to the total mass of the aluminum alloy material is 5 to 35%. The one joining member breaks an oxidized film of the surface of the aluminum alloy material by adjustment of Mg concentration of the aluminum alloy material or use of a flux so as to contrive secure joining.

Description

本発明は、アルミニウム合金材を一方の被接合部材とし、アルミニウム以外の金属及びその合金いずれかを他方の被接合部材として、両被接合部材を接合する、異種金属の接合方法に関する。   The present invention relates to a method for joining dissimilar metals, in which an aluminum alloy material is used as one member to be joined, and a metal other than aluminum and any alloy thereof is used as the other member to be joined.

金属製部材の接合方法には、従来から様々な方法が採用されている。非特許文献1には、金属の接合方法が材質的接合法、化学的接合法及び機械的接合法に大きく分類されている。アルミニウム合金材を被接合材とする接合においても上記方法のいずれも適用できるが、特に、用いられるのは材質的接合法である。   Conventionally, various methods have been employed for joining metal members. In Non-Patent Document 1, metal joining methods are roughly classified into material joining methods, chemical joining methods, and mechanical joining methods. Any of the above methods can be applied to the joining using an aluminum alloy material as the material to be joined, but the material joining method is particularly used.

化学的接合法は、いわゆる接着剤を用いた接合方法である。材質的接合法とは異なり高温で接合する必要がなく、被接合部材自体の変形が生じないという利点がある。また、機械的接合法としては、リベットやボルト締め等が挙げられる。この方法は、材質的接合法や化学的接合法に比べて比較的簡単に接合ができ、方法によっては接合のやり直しが容易であるという利点がある。しかし、化学的接合法は、金属結合のような強固な接合が得られないので、接合部の信頼性や熱伝導性が材質的接合法と比べて劣るという欠点がある。また、機械的接合法も、接合部の形状が限定され、また、気密性・密閉性を必要とする接合には不適であるという欠点がある。   The chemical bonding method is a bonding method using a so-called adhesive. Unlike the material joining method, there is no need to join at a high temperature, and there is an advantage that the members to be joined themselves are not deformed. Examples of the mechanical joining method include rivets and bolting. This method has an advantage that bonding can be performed relatively easily as compared with material bonding methods and chemical bonding methods, and re-bonding can be easily performed depending on the method. However, the chemical bonding method has a drawback that reliability and thermal conductivity of the bonded portion are inferior to those of the material bonding method because strong bonding such as metal bonding cannot be obtained. In addition, the mechanical joining method has a drawback that the shape of the joining portion is limited and is not suitable for joining requiring airtightness and sealing.

上記2つの接合法に対し、材質的接合法は、被接合部材同士を金属結合によって強固に接合するものであって、適切に行なうことにより接合部の信頼性を高くすることができる。そして、この利点により、材質的接合法は接合強度や気密性等が要求されるアルミニウム合金材の接合法として最も一般的なものとなっている。   In contrast to the above two bonding methods, the material bonding method is a method in which the members to be bonded are firmly bonded to each other by metal bonding, and the reliability of the bonded portion can be increased by performing appropriately. Due to this advantage, the material joining method has become the most common joining method for aluminum alloy materials that require joining strength, airtightness, and the like.

そして、材質的接合法は、被接合材の状態に応じて更に分類可能である。具体的には、被接合材の少なくとも一方を溶融させて接合する溶接法と、被接合材の溶融を伴わない拡散接合法、摩擦接合法、圧接法等の固相接合法、そして、ろう接等の液相−固相反応接合法に分類される。   The material joining method can be further classified according to the state of the materials to be joined. Specifically, a welding method that melts and joins at least one of the materials to be joined, a diffusion joining method that does not involve melting of the materials to be joined, a friction joining method, a pressure welding method, and other solid-phase joining methods, and brazing And so on.

溶接法は、接合部を電気又は炎により加熱して溶融、合金化して接合を成すものである。接合部の隙間が大きい場合や接合強度が必要な場合は、接合時に溶加材を同時に溶融させて隙間を充填する。この方法では、接合部が溶融するため確実な接合がなされる。その一方、接合部を溶融して接合するため、接合部近傍の形状が大きく変形し、金属組織も局所的に大きく変化して別組織となり局所的な脆弱化が生じることがある。また、接合部のみを局所的に加熱していく必要があるために、同時に多点を接合するのが困難となる等の問題もある。   In the welding method, the joint is heated by electricity or flame to be melted and alloyed to form a joint. When the gap between the joints is large or when bonding strength is required, the filler material is simultaneously melted at the time of joining to fill the gap. In this method, since the joining portion melts, reliable joining is performed. On the other hand, since the joined portion is melted and joined, the shape near the joined portion is greatly deformed, and the metal structure is also greatly changed locally to become another structure, which may cause local weakening. In addition, since it is necessary to locally heat only the joint portion, there is a problem that it is difficult to join multiple points at the same time.

一方、液相−固相反応接合法であるハンダ付け法やろう付法は、被接合部材よりも融点の低いハンダ材やろう材を用いて、電気又は炎により加熱することで、これらハンダ材やろう材のみを溶融させて接合部の隙間を充填することにより接合を成すものである。この接合法は、点状や線状の接続部の接合に有利であり、ハンダ材やろう材は接合凝固時にフィレットと称する形状を成すことにより強度や熱伝導性等の面で非常に高い信頼性が得られる。   On the other hand, the soldering method and the brazing method, which are liquid phase-solid phase reaction bonding methods, use a solder material or a brazing material having a melting point lower than that of the member to be joined, and heat them by electricity or flame, so that these solder materials Only the brazing filler metal is melted to fill the gaps at the joints, thereby joining. This joining method is advantageous for joining point-like or line-like joints, and solder and brazing filler metal form a shape called fillet at the time of joining and solidification, so that it has extremely high reliability in terms of strength and thermal conductivity. Sex is obtained.

また、ハンダ付け法やろう付法は、母材を溶融させることなく短時間で強固な接合を得ることができる。特に、ノコロックろう付法や真空ろう付法等の炉中ろう付法は、ろう材と被接合部材であるアルミニウム合金材をクラッドしたブレージングシートを用いることを特徴とする。ブレージングシートをプレス加工し、中空構造を有する積層型熱交換器を組み立て、炉中で加熱することにより接合箇所が多く複雑な形状を有する部材・部品を効率的に製造することができる。このような利点を活かしたろう付法は、自動車用熱交換器やヒートシンク等接合箇所が多く狭い間隔で接合される製品の接合に多く適用されている。   Further, the soldering method and the brazing method can obtain a strong bond in a short time without melting the base material. In particular, in-furnace brazing methods such as the Nocolok brazing method and the vacuum brazing method use a brazing sheet clad with a brazing material and an aluminum alloy material to be joined. By pressing a brazing sheet, assembling a laminated heat exchanger having a hollow structure, and heating in a furnace, members / parts having many joints and a complicated shape can be efficiently manufactured. Brazing methods that take advantage of these advantages are often applied to the joining of products such as automotive heat exchangers and heat sinks that have many joints and are joined at narrow intervals.

但し、ハンダ付け法やろう付法にも一応の欠点があり、液相が流動するため、微細な流路等がろうで埋められてしまうことがある。また、ブレージングシートを用いる接合では、接合部にろうを容易に均一供給できる利点がある一方で、ブレージングシートの製造が複雑であることから、コストダウンや調達性の改善が求められている。更に、接合面側での切削等の加工の自由度が損なわれる等の問題もある。   However, the soldering method and the brazing method also have a shortcoming and the liquid phase flows, so that fine flow paths and the like may be filled with wax. Further, in the joining using the brazing sheet, there is an advantage that the brazing can be easily and uniformly supplied to the joining portion. On the other hand, since the production of the brazing sheet is complicated, cost reduction and improvement in procurement are required. Furthermore, there is a problem that the degree of freedom of processing such as cutting on the joint surface side is impaired.

固相接合法には拡散接合法や摩擦接合法等が知られており、これらは原則として被接合部材の溶融を伴わない接合方法である。拡散接合法は、母材同士を密着させ、基本的に母材の融点以下で塑性変形を生じない程度に加圧し、接合面間に生じる原子の拡散を利用して接合を成すものである。この接合方法では、被接合部材の変形を伴わずに同時に多点の接合や面接合が可能である。従って、微細な形状を有する被接合部材の接合が可能である。しかし、拡散現象を利用するために、溶接やろう付等と比べて接合に長時間を要し、通常、30分程度からそれ以上の時間、所定温度での保持が必要となる。また、接合に加圧が必要であるため、接合操作の煩雑化やコスト増加が避けられない。更に、アルミニウム合金材の場合には、その表面に安定で強固な酸化皮膜が存在しこれによって拡散が阻害されるために、固相拡散接合の適用が難しい。この点、被接合部材にMgを0.5〜1.0mass%程度含有するアルミニウム合金材を用いる場合は、Mgの還元作用により酸化皮膜が破壊されて比較的容易に接合をすることが可能であるが、その他のアルミニウム合金材では、接合面の酸化皮膜を除去する清浄化処理が必要となり、アルゴンイオン衝撃、グロー放電、超音波付与等特殊な工程を要する等の問題がある。   As the solid-phase bonding method, a diffusion bonding method, a friction bonding method, and the like are known, and these are bonding methods that do not involve melting of the members to be bonded in principle. In the diffusion bonding method, the base materials are brought into close contact with each other, basically pressed to the extent that the plastic deformation does not occur below the melting point of the base material, and bonding is performed using the diffusion of atoms generated between the joint surfaces. In this joining method, multi-point joining and surface joining can be performed simultaneously without deformation of the members to be joined. Therefore, it is possible to join the members to be joined having a fine shape. However, in order to utilize the diffusion phenomenon, it takes a long time for joining as compared with welding, brazing or the like, and usually it is necessary to hold at a predetermined temperature for about 30 minutes or more. Moreover, since pressurization is required for joining, complication of joining operation and cost increase are inevitable. Furthermore, in the case of an aluminum alloy material, since a stable and strong oxide film exists on the surface and diffusion is inhibited thereby, it is difficult to apply solid phase diffusion bonding. In this regard, when an aluminum alloy material containing about 0.5 to 1.0 mass% of Mg is used for the member to be joined, the oxide film is destroyed by the reducing action of Mg, and it is possible to join relatively easily. However, other aluminum alloy materials require a cleaning process to remove the oxide film on the joint surface, and there are problems such as requiring special processes such as argon ion bombardment, glow discharge, and application of ultrasonic waves.

同じく固相接合法である摩擦接合法の中でアルミニウム材に適用される摩擦攪拌接合法は、全てのアルミニウム合金材に適用可能である。母材の溶融を伴わないために、接合による被接合部材の変形が少ないという利点がある。一方で、接合部の形状が直線や緩曲線に限定され、複雑な形状の接合が困難である。また、接合ツールを接合部に直接接触させるために、微細な形状の接合が困難であると共に、同時に多点を接合することも困難である。また、この接合方法では、接合終端部に接合ピンの痕が残るのを避けられない。更に、接合部において被接合部材が攪拌されるので、母材とは異なる組織を呈することにより接合強度が低下する問題もある。   The friction stir welding method applied to the aluminum material among the friction welding methods, which are also solid phase bonding methods, can be applied to all aluminum alloy materials. Since there is no melting of the base material, there is an advantage that deformation of the member to be joined due to joining is small. On the other hand, the shape of the joint is limited to a straight line or a gentle curve, and it is difficult to join a complicated shape. In addition, since the joining tool is brought into direct contact with the joining portion, it is difficult to join the fine shapes, and it is also difficult to join multiple points at the same time. In addition, in this joining method, it is inevitable that the mark of the joining pin remains at the joining end portion. Furthermore, since the member to be joined is agitated at the joint, there is also a problem that the joint strength is lowered by exhibiting a structure different from the base material.

尚、溶接法と固相接合法とは被接合材の溶融の有無で区別されるが、この他金属部材の全体を半溶融状態として行う接合方法も提案されている。特許文献1には、合金粉末の半溶融を利用した接合方法が提案されている。この接合方法では、被接合部材である合金粉末はその全体が半溶融状態となるためその形状変形が著しく、形状変形を抑制したい部材の接合には適さない。また、特許文献2には、半溶融の合金母材に非金属部材を圧入して非金属部材と合金母材とを接合する方法が提案されている。しかしながら、この接合方法では所定の金型にパンチを圧接して接合するため、製品の形状が限定される。   The welding method and the solid phase bonding method are distinguished by the presence or absence of melting of the material to be joined. However, other joining methods in which the entire metal member is in a semi-molten state have also been proposed. Patent Document 1 proposes a joining method using semi-melting of alloy powder. In this joining method, the alloy powder as a member to be joined is in a semi-molten state as a whole, so that its shape deformation is remarkable, and is not suitable for joining members for which shape deformation is to be suppressed. Patent Document 2 proposes a method in which a nonmetallic member is press-fitted into a semi-molten alloy base material to join the nonmetallic member and the alloy base material. However, in this joining method, since the punch is pressed and joined to a predetermined mold, the shape of the product is limited.

また、特許文献3には、導波管タイプのアンテナを作製するにあたり、導波管を構成するスロット板と基板にMg系のアルミニウム合金を用い、該アルミニウム合金の固液共存域あるいは固液共存域付近の温度にて加熱・加圧して拡散接合を行う方法が提案されている。この方法では、楔を用いた冶具で接合面を加圧して、冶具と該アルミニウムの熱膨張差を利用し更に接合部に加圧を与え拡散接合をなす。その際、部材であるスロット板と基板を液相率が最大で1.7%となるような接合条件が示されている。しかしながら、液相率が1.7%程度の場合、生成する液相が少なすぎ、十分な強度を有する接合がなされないおそれがあった。また、特許文献3で提案されている方法において、液相の割合が大きくなるよう温度を更に高くした場合は、圧力が掛かり過ぎて大きな変形が起こるおそれがあった。更に、この方法では、平坦な板状のものしか接合できず、また接合面の向きが加圧方向に限定されてしまう。   Further, in Patent Document 3, an Mg-type aluminum alloy is used for a slot plate and a substrate constituting a waveguide, and a solid-liquid coexistence region or a solid-liquid coexistence of the aluminum alloy is disclosed. A method of performing diffusion bonding by heating and pressurizing at a temperature in the vicinity of the region has been proposed. In this method, the bonding surface is pressed with a jig using a wedge, and the bonding portion is further pressurized by using the difference in thermal expansion between the jig and the aluminum to perform diffusion bonding. At that time, the bonding conditions are shown such that the liquid phase ratio is 1.7% at the maximum between the slot plate and the substrate which are members. However, when the liquid phase ratio is about 1.7%, the liquid phase produced is too small, and there is a possibility that bonding having sufficient strength may not be performed. Further, in the method proposed in Patent Document 3, when the temperature is further increased so that the ratio of the liquid phase is increased, there is a possibility that a large deformation occurs due to excessive pressure. Furthermore, in this method, only a flat plate-like object can be bonded, and the direction of the bonding surface is limited to the pressing direction.

特許文献4には、二つの金属合金の被接合部材がいずれも固相率が30%以上90%未満(液相率が10%以上70%未満)の範囲内にある温度においてこれらを鍛造型内に挿入し、鍛造して成形と同時に接合をなす方法が提案されている。この方法は複数の合金板を鍛造で複合材化する方法であるため、接合前後での形状を保ったまま接合することはできなかった。また、接合する材料の間に中空部を設けたり、平坦でない材料を接合することはできない。更には、高温で大掛かりな鍛造装置も必要とする。   In Patent Document 4, both of the members to be joined of two metal alloys are forged at a temperature where the solid phase ratio is in the range of 30% or more and less than 90% (liquid phase ratio is 10% or more and less than 70%). There has been proposed a method of inserting into a forging and joining at the same time as forming. Since this method is a method of forming a composite material by forging a plurality of alloy plates, it was not possible to join them while maintaining the shape before and after joining. Moreover, a hollow part cannot be provided between the materials to be joined, and a non-flat material cannot be joined. Furthermore, a large-scale forging device is required at high temperatures.

特開2005−30513号公報JP 2005-30513 A 特開2003−88948号公報JP 2003-88948 A 特開平10−313214号公報Japanese Patent Laid-Open No. 10-313214 特許第4261705号Japanese Patent No. 4261705

溶接・接合技術データブック、p.57、溶接・接合技術データブック編集委員会(2007年)Welding and joining technology data book, p. 57, Welding / Joint Technology Data Book Editorial Committee (2007)

アルミニウム合金材の材質接合法による接合方法は上記の通り様々であるが、一般的には、被接合部材を溶融させない接合方法、若しくは、接合部近辺のみを局所的に溶融させる接合方法が採用されることが多い。被接合部材を広範に溶融すると、形状が保たれず所望の形状が得られないためである。もっとも、実用的な速度で接合を確実に行うためには、被接合部材を全く溶融させないよりも部分的にであっても溶融させることが必要とされる。しかし、部分的であっても被接合部材を溶融すると、その部分の変形を回避することはできない。そのため、接合後の寸法変化や強度変化を想定して、部材の設計、組立を行わなければならない。   There are various joining methods by the material joining method of the aluminum alloy material as described above, but generally, a joining method that does not melt the member to be joined or a joining method that locally melts only the vicinity of the joint is adopted. Often. This is because if the members to be joined are melted extensively, the shape is not maintained and a desired shape cannot be obtained. However, in order to reliably perform the bonding at a practical speed, it is necessary to melt the members to be bonded even if they are partially rather than not being melted at all. However, even if it is partial, if the member to be joined is melted, deformation of that part cannot be avoided. Therefore, it is necessary to design and assemble the members in consideration of dimensional changes and strength changes after joining.

また、溶融を伴わない固相拡散接合においては、大きな加圧が必要とされる。この加圧により、アルミニウム合金が溶融していなくても大きく変形するおそれがある。特に、微細な形状を持ったアルミニウム合金の場合、その形状を保つことが困難になる。   Further, in the solid phase diffusion bonding not involving melting, a large pressure is required. Due to this pressurization, the aluminum alloy may be greatly deformed even if it is not melted. In particular, in the case of an aluminum alloy having a fine shape, it becomes difficult to maintain the shape.

本発明は、上述のような従来技術の問題点に鑑み、アルミニウム合金材と異種金属材との接合方法について、良好な接合性と、接合時の材料の流動による変形が殆どない、信頼性の高い新規な接合方法の提供を目的とする。   In view of the problems of the prior art as described above, the present invention provides a method for joining an aluminum alloy material and a dissimilar metal material with good joining properties and almost no deformation due to the flow of materials during joining. The purpose is to provide a highly novel joining method.

本発明者らは、鋭意検討の結果、被接合部材であるアルミニウム合金の金属組織学上の特性に着目し、アルミニウム合金を加熱する際に生成する液相を異種金属材との接合に利用する新規な接合方法を見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors pay attention to the metallographic characteristics of the aluminum alloy that is the member to be joined, and use the liquid phase generated when the aluminum alloy is heated for joining with a dissimilar metal material. A new joining method has been found and the present invention has been completed.

すなわち、本願に係る第1の発明は、アルミニウム合金材を一方の被接合部材とし、アルミニウム以外の金属又はその金属合金を他方の被接合部材として、前記一方の被接合部材と他方の被接合部材を接合する方法において、前記一方の被接合部材はMg濃度が0.5質量%以下に規制されたアルミニウム合金からなり、他方の被接合部材は、前記一方のアルミニウム合金より固相線温度が高い金属又はその金属合金からなり、非酸化性雰囲気中でフラックスが接合部材間に塗布された状態で、前記一方の被接合部材であるアルミニウム合金材の全質量に対する当該アルミニウム合金材内に生成する液相の質量の比が5%以上35%以下となる温度において接合することを特徴とするアルミニウム合金材と異種金属材との接合方法である。   That is, in the first invention according to the present application, an aluminum alloy material is used as one member to be bonded, and a metal other than aluminum or a metal alloy thereof is used as the other member to be bonded. In the method of joining, the one member to be joined is made of an aluminum alloy whose Mg concentration is regulated to 0.5% by mass or less, and the other member to be joined has a solidus temperature higher than that of the one aluminum alloy. A liquid made of a metal or a metal alloy thereof and formed in the aluminum alloy material with respect to the total mass of the aluminum alloy material as the one member to be joined in a state where the flux is applied between the joining members in a non-oxidizing atmosphere. It is a joining method of an aluminum alloy material and a dissimilar metal material characterized by joining at a temperature at which the mass ratio of the phases is 5% or more and 35% or less.

また、本願に係る第2の発明は、アルミニウム合金材を一方の被接合部材とし、アルミニウム以外の金属又はその金属合金を他方の被接合部材として、前記一方の被接合部材と他方の被接合部材を接合する方法において、前記一方の被接合部材はMg濃度が0.2質量%以上2.0質量%以下を含有するアルミニウム合金からなり、他方の被接合部材は、前記一方のアルミニウム合金より固相線温度が高い金属又はその金属合金からなり、真空中または非酸化性雰囲気中で前記一方の被接合部材であるアルミニウム合金材の全質量に対する当該アルミニウム合金内に発生する液相の質量の比が5%以上35%以下となる温度において接合することを特徴とするアルミニウム合金材と異種金属材との接合方法である。   In addition, the second invention according to the present application uses an aluminum alloy material as one member to be bonded, a metal other than aluminum or a metal alloy thereof as the other member to be bonded, and the one member to be bonded and the other member to be bonded. The one member to be joined is made of an aluminum alloy containing a Mg concentration of 0.2% by mass or more and 2.0% by mass or less, and the other member to be joined is more solid than the one aluminum alloy. The ratio of the mass of the liquid phase generated in the aluminum alloy to the total mass of the aluminum alloy material that is one of the members to be joined in a vacuum or in a non-oxidizing atmosphere made of a metal having a high phase line temperature or a metal alloy thereof. Is a method of joining an aluminum alloy material and a dissimilar metal material, characterized by joining at a temperature of 5% to 35%.

以下、本発明について詳細に説明する。本願に係る第1、第2の発明は、一方の被接合部材であるアルミニウム合金材の加熱時に生成する所定量の液相を、他方の被接合部材である異種金属材との接合に利用するという主要な構成が共通する。そこで、まずこの液相の生成メカニズムについて説明する。尚、本願では、このアルミニウム合金材が生成する液相を利用する接合を「しみ出し接合」とする。   Hereinafter, the present invention will be described in detail. 1st, 2nd invention which concerns on this application utilizes the predetermined amount of liquid phase produced | generated at the time of the heating of the aluminum alloy material which is one to-be-joined member for joining with the dissimilar metal material which is the other to-be-joined member. The main composition is common. First, the liquid phase generation mechanism will be described. In the present application, the joining using the liquid phase generated by the aluminum alloy material is referred to as “seeding joining”.

図1に代表的な2元系共晶合金であるAl−Si合金の状態図を模式的に示す。Si濃度がc1であるアルミニウム合金材を加熱すると、共晶温度(固相線温度)Teを超えた付近の温度T1で液相の生成が始まる。共晶温度Te以下では、図2(a)に示すように、結晶粒界で区分されるマトリクス中に晶析出物が分布している。ここで液相の生成が始まると、図2(b)に示すように、晶析出物分布の偏析の多い結晶粒界が溶融して液相となる。次いで、図2(c)に示すように、アルミニウム合金のマトリクス中に分散する主添加元素成分であるSiの晶析出物粒子や金属間化合物の周辺が球状に溶融して液相となる。更に図2(d)に示すように、マトリクス中に生成したこの球状の液相は、界面エネルギーにより時間の経過や温度上昇と共にマトリクスに再固溶し、固相内拡散によって結晶粒界や表面に移動する。次いで、図1に示すように温度がT2に上昇すると、状態図より液相量は増加する。   FIG. 1 schematically shows a phase diagram of an Al—Si alloy, which is a typical binary eutectic alloy. When an aluminum alloy material having a Si concentration of c1 is heated, generation of a liquid phase starts at a temperature T1 near the eutectic temperature (solidus temperature) Te. Below the eutectic temperature Te, as shown in FIG. 2A, crystal precipitates are distributed in the matrix divided by the grain boundaries. Here, when the generation of the liquid phase starts, as shown in FIG. 2B, the crystal grain boundary with a large segregation of the crystal precipitate distribution melts to become a liquid phase. Next, as shown in FIG. 2C, the periphery of the Si crystal precipitate particles and intermetallic compounds, which are the main additive element components dispersed in the matrix of the aluminum alloy, melts into a spherical shape to form a liquid phase. Further, as shown in FIG. 2 (d), this spherical liquid phase generated in the matrix is re-dissolved in the matrix with the passage of time and temperature due to the interfacial energy, and the grain boundaries and the surface are diffused by diffusion in the solid phase. Move to. Next, as shown in FIG. 1, when the temperature rises to T2, the liquid phase amount increases from the state diagram.

また、図1において、一方のアルミニウム合金材のSi濃度が最大固溶限濃度より小さいc2の場合には、固相線温度Ts2を超えた付近で液相の生成が始まる。但し、c1の場合と異なり、溶融直前の組織は図3(a)に示すように、マトリクス中に晶析出物が存在しない場合がある。この場合、図3(b)に示すように粒界でまず溶融して液相となった後、図3(c)に示すようにマトリクス中において局所的に溶質元素濃度が高い場所から液相が発生する。図3(d)に示すように、マトリクス中に生成したこの球状の液相は、c1の場合と同様に、界面エネルギーにより時間の経過や温度上昇と共にマトリクスに再固溶し、固相内拡散によって結晶粒界や表面に移動する。温度がT3に上昇すると、状態図より液相量は増加する。   Further, in FIG. 1, when the Si concentration of one aluminum alloy material is c2 smaller than the maximum solid solution limit concentration, the generation of the liquid phase starts near the solidus temperature Ts2. However, unlike the case of c1, as shown in FIG. 3A, the structure immediately before melting may not have crystal precipitates in the matrix. In this case, as shown in FIG. 3 (b), after first melting at the grain boundary to become a liquid phase, the liquid phase starts from a location where the solute element concentration is locally high in the matrix as shown in FIG. 3 (c). Occurs. As shown in FIG. 3D, this spherical liquid phase generated in the matrix is re-dissolved in the matrix with the passage of time and temperature due to the interfacial energy, as in the case of c1, and diffused in the solid phase. To move to the grain boundary or surface. When the temperature rises to T3, the liquid phase amount increases from the state diagram.

上記のようなメカニズムでしみ出し、接合部に供給される液相の量は、ろう付に比べてごく僅かであり、接合工程後において接合部位近傍の形状変化がほとんど発生しない。すなわち、接合部に供給される液相はアルミニウム合金材と異種金属材の間のすき間を埋める程度であり、溶接法のビードや、ろう付法でのフィレットのような接合後の形状変化が、本発明に係る接合方法では殆ど発生しない。それにも拘わらず、溶接法やろう付法と同じく金属結合による接合を可能とする。従って、製品設計においてはその減少分を考慮する必要がある。本発明のしみ出し接合においては接合後における寸法変化が極めて小さいため、高精度の製品設計が可能となる。   The amount of the liquid phase that oozes out by the mechanism as described above and is supplied to the joined portion is very small compared to brazing, and the shape change in the vicinity of the joined portion hardly occurs after the joining step. In other words, the liquid phase supplied to the joint is just enough to fill the gap between the aluminum alloy material and the dissimilar metal material, and the shape change after joining, such as the bead of the welding method and the fillet in the brazing method, It hardly occurs in the joining method according to the present invention. In spite of this, joining by metal bonding is possible as in the welding method and the brazing method. Therefore, it is necessary to consider the decrease in product design. In the exudation joining of the present invention, since the dimensional change after joining is extremely small, a highly accurate product design is possible.

このように、本発明のしみ出し接合は、アルミニウム合金材内部の局所的な溶融により生成される液相を利用するものである。そして、加熱温度の調整により液相の質量を好適な範囲にすることにより、接合と形状維持の両立を実現できるものである。尚、本発明における他方の被接合部材である異種金属材は、当該加熱温度において固相線温度以下にある必要がある。異種金属材が固相線温度を超えた状態にあると、異種金属材までも溶融を開始し、接合界面近傍でアルミニウム合金と反応して接合界面付近で急激に液相生成が加速するため部材形状を保てなくなるおそれがあるからである。   Thus, the seepage bonding of the present invention utilizes a liquid phase generated by local melting inside the aluminum alloy material. And it can implement | achieve both joining and shape maintenance by making mass of a liquid phase into a suitable range by adjustment of heating temperature. In addition, the dissimilar metal material which is the other to-be-joined member in this invention needs to be below the solidus temperature at the said heating temperature. When the dissimilar metal material exceeds the solidus temperature, the dissimilar metal material starts to melt, reacts with the aluminum alloy near the joint interface, and the liquid phase generation accelerates rapidly near the joint interface. This is because the shape may not be maintained.

本願に係る第1、第2の発明で共通する接合の基本的なメカニズムは上記の通りである。そして、本願に係る第1、第2の発明の相違点であるが、それは一方の被接合部材であるアルミニウム合金部材の酸化皮膜破壊のための手法にあり、具体的には、アルミニウム合金部材のMg濃度の調整とフラックス使用の有無である。これらの手法の詳細については後述することとし、本願に係る第1、第2の発明の特徴について更に詳しく述べる。   The basic mechanism of joining common to the first and second inventions according to the present application is as described above. And, it is the difference between the first and second inventions according to the present application, but it is in a technique for destroying the oxide film of the aluminum alloy member which is one member to be joined. It is the presence or absence of adjustment of Mg concentration and use of flux. Details of these methods will be described later, and the features of the first and second inventions according to the present application will be described in more detail.

A.被接合部材の組合せ
まず、本発明に係るアルミニウム合金材のしみ出し接合では、アルミニウム合金材を一方の被接合部材とし、異種金属材を他方の被接合部材として、一方の被接合部材と他方の被接合部材とを接合する。尚、上記の通り、しみ出し接合を可能とするため、異種金属材としては、一方のアルミニウム合金より固相線温度が高い金属又はその金属合金からなるものを適用対象とする。
A. The combination of the bonded members First, the exudation joining of the aluminum alloy material according to the present invention, an aluminum alloy material as one of the workpieces, the dissimilar metal material as the other member to be joined, one of the workpieces and the other The member to be joined is joined. Note that, as described above, in order to enable exudation joining, the dissimilar metal material includes a metal having a solidus temperature higher than that of one aluminum alloy or a metal alloy thereof.

B.液相の質量比の範囲
本発明に係るアルミニウム合金材のしみ出し接合では、一方の被接合部材であるアルミニウム合金材の全質量に対する当該アルミニウム合金材内に生成する液相の質量の比(以下、「液相率」と記す)が5%以上35%以下となる温度で接合する必要がある。液相率が35%を超えると、生成する液相の量が多過ぎてアルミニウム合金材が形状を維持できなくなり大きな変形をしてしまう。一方、液相率が5%未満では接合が困難となる。好ましい液相率は5〜30%であり、より好ましい液相率は10〜20%である。
B. Range of mass ratio of liquid phase In the exudation joining of the aluminum alloy material according to the present invention, the ratio of the mass of the liquid phase generated in the aluminum alloy material to the total mass of the aluminum alloy material which is one of the members to be joined (hereinafter referred to as , Described as “liquid phase ratio”) at a temperature of 5% to 35%. If the liquid phase ratio exceeds 35%, the amount of the liquid phase to be generated is too large, and the aluminum alloy material cannot maintain its shape and undergoes large deformation. On the other hand, if the liquid phase ratio is less than 5%, joining becomes difficult. A preferable liquid phase rate is 5 to 30%, and a more preferable liquid phase rate is 10 to 20%.

尚、加熱中における実際の液相率を測定することは極めて困難である。そこで、本発明で規定する液相率は、通常、平衡状態図を利用して、合金組成と最高到達温度を基にてこの原理(lever
rule)によって求めることができる。すでに状態図が明らかになっている合金系においては、その状態図を使い、てこの原理を用いて液相率を求めることができる。一方、平衡状態図が公表されていない合金系に関しては、平衡計算状態図ソフトを利用して液相率を求める。平衡計算状態図ソフトには、合金組成と温度を用いて、てこの原理で液相率を求める手法が組み込まれている。平衡計算状態図ソフトには、Thermo−Calc;Thermo−Calc Software AB社製などがある。平衡状態図が明らかになっている合金系においても、平衡計算状態図ソフトを用いて液相率を計算しても、平衡状態図からてこの原理を用いて液相率を求めた結果と同じ結果となるので、簡便化のために、平衡計算状態図ソフトを利用しても良い。
It is extremely difficult to measure the actual liquid phase rate during heating. Therefore, the liquid phase ratio defined in the present invention is usually based on this principle (level) based on the alloy composition and the maximum temperature achieved using an equilibrium diagram.
rule). In an alloy system whose phase diagram has already been clarified, the liquid phase ratio can be determined using the phase diagram using the phase diagram. On the other hand, for an alloy system whose equilibrium phase diagram is not disclosed, the liquid phase ratio is obtained using equilibrium calculation phase diagram software. The equilibrium calculation phase diagram software incorporates a technique for determining the liquid phase ratio based on the lever principle using the alloy composition and temperature. The equilibrium calculation state diagram software includes Thermo-Calc; manufactured by Thermo-Calc Software AB. Even in an alloy system whose equilibrium phase diagram has been clarified, calculating the liquid phase rate using the equilibrium calculation phase diagram software is the same as the result of calculating the liquid phase rate using this principle from the equilibrium phase diagram. As a result, equilibrium calculation state diagram software may be used for simplification.

C.酸化皮膜の破壊方法
アルミニウム合金材の表層には強固な酸化皮膜が形成されており、これによって接合が阻害される。従って、接合においては酸化皮膜を破壊する必要がある。本発明に係る第1、第2の発明は、いずれも酸化被膜を破壊するための方法を備える。そこで次に、各発明における酸化皮膜除去の具体的方法を説明する。尚、以下の説明ではアルミニウムの酸化皮膜の破壊について説明するものであるが、アルミニウムの酸化皮膜は極めて強固であり、アルミニウムに比べると異種金属材は通常、酸化皮膜が生じても酸化皮膜が還元・破壊されやすい。よって、アルミニウムの酸化皮膜が破壊されれば、異種金属の酸化皮膜も同時に破壊され、接合が可能である。
C. Method for Destroying Oxide Film A strong oxide film is formed on the surface layer of the aluminum alloy material, which inhibits bonding. Therefore, it is necessary to destroy the oxide film in joining. The first and second inventions according to the present invention both include a method for destroying an oxide film. Next, a specific method for removing the oxide film in each invention will be described. In the following explanation, the destruction of the oxide film of aluminum will be explained. However, the oxide film of aluminum is extremely strong, and compared to aluminum, different metal materials usually reduce the oxide film even if an oxide film is formed.・ Easily destroyed. Therefore, if the oxide film of aluminum is destroyed, the oxide film of dissimilar metal is also destroyed at the same time, and bonding is possible.

C−1.フラックスによる酸化皮膜の破壊
この方法は、本願第1の発明で採用される方法であり、酸化皮膜を破壊する為に少なくとも接合部にフラックスを塗布するものである。フラックスはアルミニウム合金のろう付で用いるKAlF、KAlF、KAlF・HO、KAlF、AlF、KZnF、KSiF等のフッ化物系フラックスや、CsAlF、CsAlF・2HO、CsAlF・HO等のセシウム系フラックス、又はKClやNaCl、LiCl、ZnCl等の塩化物系フラックスが用いられる。これらフラックスは、しみ出し接合において液相が溶融する前に又は接合温度に至る前に溶融し、酸化皮膜と反応して酸化皮膜を破壊する。
C-1. Destruction of oxide film by flux This method is a method employed in the first invention of the present application, in which flux is applied to at least the joint portion in order to destroy the oxide film. The flux is fluoride flux such as KAlF 4 , K 2 AlF 5 , K 2 AlF 5 .H 2 O, K 3 AlF 6 , AlF 3 , KZnF 3 , K 2 SiF 6 used for brazing of aluminum alloys, Cs Cesium flux such as 3 AlF 6 , CsAlF 4 .2H 2 O, Cs 2 AlF 5 .H 2 O, or chloride flux such as KCl, NaCl, LiCl, ZnCl 2 is used. These fluxes melt before the liquid phase melts or reaches the joining temperature in the seepage joining, and react with the oxide film to destroy the oxide film.

更にこの方法では、酸化皮膜の形成を抑制するために、窒素ガスやアルゴンガス等の非酸化性雰囲気中で接合する。特にフッ化物系のフラックスを用いる場合は、酸素濃度を250ppm以下に抑え、露点を−25℃以下に抑えた非酸化性ガス雰囲気中で接合するのが好ましい。   Furthermore, in this method, in order to suppress the formation of an oxide film, bonding is performed in a non-oxidizing atmosphere such as nitrogen gas or argon gas. In particular, when a fluoride-based flux is used, bonding is preferably performed in a non-oxidizing gas atmosphere in which the oxygen concentration is suppressed to 250 ppm or less and the dew point is suppressed to -25 ° C. or less.

また、フッ化物系のフラックスを用いる場合、一方の被接合部材のアルミニウム合金材においてアルミニウム合金中にMgが0.5質量%を超えて含有されると、フラックスとMgが反応してフラックスの酸化皮膜破壊作用が損なわれる。この点を考慮して、一方の被接合部材のアルミニウム合金材のMg濃度の上限を0.5質量%とするものである。尚、Mg含有量が0.5質量%以下の条件を満たせば、アルミニウム合金に含有される他の元素の種類や含有量には制限はない。   In addition, when a fluoride-based flux is used, if the aluminum alloy material of one member to be joined contains Mg in an amount exceeding 0.5 mass%, the flux and Mg react to oxidize the flux. The film breaking action is impaired. Considering this point, the upper limit of the Mg concentration of the aluminum alloy material of one member to be joined is set to 0.5 mass%. In addition, if the Mg content satisfies the condition of 0.5% by mass or less, there is no limitation on the type and content of other elements contained in the aluminum alloy.

C−2.Mgのゲッター作用による酸化皮膜の破壊
この方法は、本願第2の発明で採用される方法である。この方法ではアルミニウム合金材にMgが所定量添加されている材料を適用するものであり、この場合は接合部にフラックスを塗布しなくても、酸化被膜が破壊されて接合が可能になる。このとき、アルミニウム合金が溶融し液相が表層に出てくるときに、アルミニウム合金中より蒸発するMgのゲッター作用によって酸化皮膜が破壊される。そして、第2の発明におけるアルミニウム合金材のMg濃度については0.2質量%以上2.0質量%以下とする、0.2質量%未満ではMgのゲッター作用が期待できないからであり、2.0質量%を越えると加熱過程でMgO酸化皮膜が多く生成し、著しく接合性が低下するからである。
C-2. Breakage of oxide film by getter action of Mg This method is employed in the second invention of the present application. In this method, a material in which a predetermined amount of Mg is added to the aluminum alloy material is applied. In this case, the oxide film is broken and bonding can be performed without applying a flux to the bonding portion. At this time, when the aluminum alloy melts and the liquid phase comes out on the surface layer, the oxide film is destroyed by the getter action of Mg that evaporates from the aluminum alloy. In the second invention, the Mg concentration of the aluminum alloy material is 0.2% by mass or more and 2.0% by mass or less. If less than 0.2% by mass, the getter action of Mg cannot be expected. This is because if the content exceeds 0% by mass, a large amount of MgO oxide film is formed in the heating process, and the bondability is significantly reduced.

本発明に係るしみ出し接合法は、以上説明した基本的構成により、被接合部材の変形を最小限としつつ確実な接合を行うことができる。ここで、本発明においては、被接合部材の形状維持を考慮した接合条件として、接合時間、及び、両被接合部材に加わる応力を適宜に設定することで好ましい接合を得ることができる。   The exudation joining method according to the present invention can perform reliable joining while minimizing deformation of the members to be joined by the basic configuration described above. Here, in the present invention, preferable joining can be obtained by appropriately setting the joining time and the stress applied to both the joined members as the joining conditions considering the shape maintenance of the joined members.

D.形状維持に必要な接合時間
本発明において接合時間の意義は、液相を生じる一方の被接合部材であるアルミニウム合金材における液相率が5%以上である時間である。そして、この接合時間は3600秒以内であるのが好ましい。3600秒以内とすると接合前からの形状変化が少ない接合体を得ることができ、さらに1800秒以内とすると、さらに形状変化の少ない精緻な接合体を得ることができる。また、接合時間は30秒以上であることが好ましい。30秒以上であれば確実に接合された接合体を得ることができ、さらに60秒であればより確実に接合された接合体を得ることができる。
D. Joining Time Required for Maintaining Shape In the present invention, the meaning of joining time is the time during which the liquid phase ratio in an aluminum alloy material, which is one member to be joined that produces a liquid phase, is 5% or more. And this joining time is preferably within 3600 seconds. When it is within 3600 seconds, a joined body with little shape change from before joining can be obtained, and when within 1800 seconds, a precise joined body with further less shape change can be obtained. The joining time is preferably 30 seconds or longer. If it is 30 seconds or more, a bonded body reliably bonded can be obtained, and if it is 60 seconds, a bonded body bonded more reliably can be obtained.

E.接合時における両被接合部材に加わる応力
本発明の接合においては、接合部で両被接合部材が接していれば接合面に圧力を加える必要は必ずしもない。但し、実際の製品の製造過程では、被接合部材同士を固定したりクリアランスを縮めたりする為に、冶具等で両被接合部材に応力が加わる場合が多い。また、自重によっても被接合部材内に応力が発生する。
E. Stress applied to both members to be bonded at the time of bonding In the bonding according to the present invention, it is not always necessary to apply pressure to the bonding surface as long as both members to be bonded are in contact with each other at the bonding portion. However, in an actual product manufacturing process, stress is often applied to both members to be joined by a jig or the like in order to fix the members to be joined or to reduce the clearance. Further, stress is also generated in the member to be joined by its own weight.

このとき、各被接合部材内の各部位に発生する応力は、形状と荷重から求められる。この応力は、例えば、構造計算プログラム等を用いて計算することができる。本発明では、接合時において液相を生じる被接合部材の各部位に発生する応力のうち最大のもの(最大応力)をP(kPa)とし、当該被接合部材であるアルミニウム合金での液相率をVとしたときに、P≦460−12Vを満たすよう接合することが好ましい。この式の右辺で示される値は限界応力であり、これを超える応力が液相を生じる被接合部材に加わると、液相率が35%以内であっても被接合部材に大きな変形が発生するおそれがある。   At this time, the stress which generate | occur | produces in each site | part in each to-be-joined member is calculated | required from a shape and a load. This stress can be calculated using, for example, a structure calculation program. In the present invention, P (kPa) is the maximum stress (maximum stress) among the stresses generated in each part of the bonded member that generates a liquid phase during bonding, and the liquid phase ratio of the aluminum alloy that is the bonded member When V is V, bonding is preferably performed so as to satisfy P ≦ 460-12V. The value shown on the right side of this equation is the critical stress, and if a stress exceeding this is applied to the member to be joined that generates a liquid phase, large deformation occurs in the member to be joined even if the liquid phase ratio is within 35%. There is a fear.

F.被接合材の組み合わせの具体例
上述のように、本発明に係るアルミニウム合金材のしみ出し接合が適用される被接合部材の組み合わせは、アルミニウム合金材を一方の被接合部材とし、異種金属材を他方の被接合部材する。ここで、各被接合部材についての好適な例を以下に述べる。
F. Specific examples of the combination of the materials to be joined As described above, the combination of the members to be joined to which the seepage joining of the aluminum alloy material according to the present invention is applied, the aluminum alloy material is one member to be joined, and the dissimilar metal material is used. The other member to be joined is used. Here, a suitable example for each member to be joined will be described below.

F−1.アルミニウム合金材(固相線温度と液相線温度の差)
一方の被接合部材である液相を生成するアルミニウム合金材は、その固相線温度と液相線温度との差が10℃以上であるものが好ましい。固相線温度を超えると液相の生成が始まるが、固相線温度と液相線温度との差が小さいと、固体と液体が共存する温度範囲が狭くなり、発生する液相の量を制御することが困難となる。従って、この差を10℃以上とするのが好ましい。この条件を満たす組成を有する2元系の合金の具体例としては、Al−Si系合金、Al−Cu系合金、Al−Mg系合金、Al−Zn系合金、Al−Ni系合金等が挙げられる。
F-1. Aluminum alloy material (difference between solidus temperature and liquidus temperature)
The aluminum alloy material that generates the liquid phase as one member to be joined preferably has a difference between the solidus temperature and the liquidus temperature of 10 ° C. or more. When the solidus temperature is exceeded, the generation of the liquid phase begins, but if the difference between the solidus temperature and the liquidus temperature is small, the temperature range in which the solid and the liquid coexist is narrowed, and the amount of the generated liquid phase is reduced. It becomes difficult to control. Therefore, this difference is preferably set to 10 ° C. or more. Specific examples of the binary alloy having a composition satisfying this condition include an Al—Si alloy, an Al—Cu alloy, an Al—Mg alloy, an Al—Zn alloy, an Al—Ni alloy, and the like. It is done.

上記の条件を満たすアルミニウム合金材としては、上記のような共晶型アルミニウム合金が固液共存領域を大きく有するので有利である。但し、他の全率固溶型、包晶型、偏晶型等の合金であっても、固相線温度と液相線温度の差が10℃以上有するものであれば良好な接合が可能となる。また、上記の2元系合金は主添加元素以外の添加元素を含有することができ、実質的には3元系や4元系合金、更に5元以上の多元系の合金にも本発明は適用できる。例えばAl−Si−Mg系やAl−Si−Cu系、Al−Si−Zn系、Al−Si−Cu−Mg系等が挙げられる。   As an aluminum alloy material satisfying the above conditions, the eutectic aluminum alloy as described above is advantageous because it has a large solid-liquid coexistence region. However, it is possible to achieve good bonding with other solid solution type, peritectic type, and monotectic type alloys as long as the difference between the solidus temperature and the liquidus temperature is at least 10 ° C. It becomes. In addition, the above binary alloy can contain an additive element other than the main additive element, and the present invention can be applied to a ternary alloy, a quaternary alloy, and a multi-element alloy of more than 5 elements. Applicable. For example, Al-Si-Mg, Al-Si-Cu, Al-Si-Zn, Al-Si-Cu-Mg, and the like can be given.

固相線温度と液相線温度の差は大きくなるほど適切な液相量に制御するのが容易になる。従って、固相線温度と液相線温度の差に上限は特に設けない。また、液相を生成するアルミニウム合金材は、液相率が5%〜35%となるときの温度範囲が10℃以上であることがより好ましく、液相率が5〜35%となるときの温度範囲が20℃以上であることが更に好ましい   The larger the difference between the solidus temperature and the liquidus temperature, the easier it is to control the amount of liquid phase. Therefore, there is no particular upper limit for the difference between the solidus temperature and the liquidus temperature. Moreover, it is more preferable that the temperature range when the liquid phase rate is 5% to 35% is more than 10 ° C, and the aluminum alloy material that generates the liquid phase is when the liquid phase rate is 5 to 35%. More preferably, the temperature range is 20 ° C. or higher.

尚、本発明に係るアルミニウム合金材と異種金属材との接合方法において、溶融する側をアルミニウム合金とした理由として、アルミニウム合金の強固な酸化皮膜を破壊する場合、アルミニウム合金側から液相を生じたほうが酸化皮膜の破壊がより容易になるからである。特に、上記したMg元素のゲッター効果を用いて接合する場合は、液相の内部からMgが酸化皮膜を突き破る必要があり、アルミニウム合金側から液相を生じさせないと接合が困難となる。   In addition, in the joining method of the aluminum alloy material and the dissimilar metal material according to the present invention, the reason why the melting side is made of an aluminum alloy is that when a strong oxide film of the aluminum alloy is broken, a liquid phase is generated from the aluminum alloy side. This is because the destruction of the oxide film becomes easier. In particular, when joining using the getter effect of the Mg element described above, it is necessary for Mg to break through the oxide film from the inside of the liquid phase, and joining becomes difficult unless a liquid phase is generated from the aluminum alloy side.

F−2.異種金属材
上記の通り、異種金属材は、しみ出し接合を可能とするため、一方のアルミニウム合金より固相線温度が高い金属もしくはその合金からなるものを適用対象とする。この異種金属材としては、鉄、銅、チタン、ニッケル、マグネシウムのいずれかの金属又はその金属合金に対して本発明を適用できる。尚、本発明において、「金属」とは純金属を示すが、これは不可避不純物を含んだ状態の純金属も含むものである。
F-2. Dissimilar metal material As described above, the dissimilar metal material is made of a metal having a solidus temperature higher than that of one aluminum alloy or an alloy thereof in order to enable exudation joining. As the dissimilar metal material, the present invention can be applied to any metal of iron, copper, titanium, nickel, magnesium, or a metal alloy thereof. In the present invention, “metal” refers to a pure metal, which includes a pure metal containing inevitable impurities.

以上説明したように、本発明に係るアルミニウム合金材と異種金属材との接合方法は、接合するアルミニウム合金内部に生じる僅かな液相を利用して接合を行うものである。本発明では、アルミニウム合金材と異種金属材との接合を、信頼性の高い金属結合によって可能とする。   As described above, the joining method of the aluminum alloy material and the dissimilar metal material according to the present invention performs joining by utilizing a slight liquid phase generated inside the aluminum alloy to be joined. In the present invention, the aluminum alloy material and the dissimilar metal material can be joined by highly reliable metal bonding.

また、本発明は、被接合部材自体が溶融により大きく流動することがなく、ハンダ材やろう材、溶化材等を用いないため、接合による寸法変化が小さく、殆ど形状変化を生じない。特に、微細な流路を有する部材の接合においても、液相の流れ込みや変形によって流路が塞がれることなく良好な接合を行える。   Further, in the present invention, since the member to be joined itself does not flow greatly due to melting and does not use a solder material, a brazing material, a solubilizing material, or the like, a dimensional change due to joining is small, and a shape change hardly occurs. In particular, even in joining members having fine flow paths, good joining can be performed without clogging the flow paths due to inflow or deformation of the liquid phase.

また、ろう付法と同等の信頼性を有する同時多点接合を、置きろう、ろうペースト、ろう材をクラッドしたブレージングシート等を用いることなく行うことができる。これにより、接合性能を損なうことなく材料のコストダウンが可能となる。   Further, simultaneous multipoint joining having the same reliability as the brazing method can be performed without using a brazing sheet, brazing paste, brazing sheet clad with a brazing material, or the like. Thereby, the cost of the material can be reduced without impairing the bonding performance.

尚、本発明は、接合による変形が少なく同時多点接合が可能である点で拡散接合と同様であるが、拡散接合と比べて、加圧が不要で、接合に要する時間を短くでき、Mgを含有していないアルミニウム合金材の接合であっても、接合面の清浄化処理のための特殊な工程を必要としないといった利点を有する。   The present invention is similar to the diffusion bonding in that the deformation due to bonding is small and simultaneous multi-point bonding is possible. However, compared to the diffusion bonding, no pressure is required, and the time required for bonding can be shortened. Even if it is joining of the aluminum alloy material which does not contain, there exists an advantage that the special process for the cleaning process of a joint surface is not required.

2元系共晶合金としてAl−Si合金の状態図を示す模式図である。It is a schematic diagram which shows the phase diagram of an Al-Si alloy as a binary eutectic alloy. 本発明に係るアルミニウム合金材と異種金属材の接合方法における、アルミニウム合金材での液相の生成メカニズムを示す説明図である。It is explanatory drawing which shows the production | generation mechanism of the liquid phase in an aluminum alloy material in the joining method of the aluminum alloy material and dissimilar metal material which concern on this invention. 本発明に係るアルミニウム合金材と異種金属材の接合方法における、アルミニウム合金材の液相の生成メカニズムを示す説明図である。It is explanatory drawing which shows the production | generation mechanism of the liquid phase of an aluminum alloy material in the joining method of the aluminum alloy material and dissimilar metal material which concern on this invention. 接合率を評価する為の逆T字型接合試験片を示す斜視図である。It is a perspective view which shows the reverse T-shaped joining test piece for evaluating a joining rate. 変形率を評価する為のサグ試験を説明する斜視図(a)及び側面図(b)である。It is the perspective view (a) and side view (b) explaining the sag test for evaluating a deformation rate.

以下に、本発明を実施例と比較例に基づいて詳細に説明する。以下では複数のアルミニウム合金材及び異種金属材を用意して、本発明に係るしみ出し接合法を適用して接合を行い接合性の評価を行った(第1実施形態)。また、アルミニウム合金材の変形率の評価についての詳細検討も行った(第2実施形態)。   Below, this invention is demonstrated in detail based on an Example and a comparative example. In the following, a plurality of aluminum alloy materials and dissimilar metal materials were prepared, joined by applying the seepage joining method according to the present invention, and the joining property was evaluated (first embodiment). In addition, a detailed examination was performed on the evaluation of the deformation rate of the aluminum alloy material (second embodiment).

第1実施形態(実施例1〜37、比較例38〜59)
表1に、一方の被接合材として用いたアルミニウム合金材の組成を示す。表1に示す合金鋳塊を調製した後、熱間圧延及び冷間圧延により厚さ2mmの圧延板を得た。この圧延板をレベラーに掛けた後に380℃で2時間焼鈍して、圧延板試料とした。
1st Embodiment (Examples 1-37, Comparative Examples 38-59)
Table 1 shows the composition of the aluminum alloy material used as one of the materials to be joined. After preparing the alloy ingot shown in Table 1, a rolled plate having a thickness of 2 mm was obtained by hot rolling and cold rolling. The rolled plate was subjected to a leveler and then annealed at 380 ° C. for 2 hours to obtain a rolled plate sample.

Figure 2013116483
Figure 2013116483

表2に、他方の被接合部材として用いた異種金属材の組成を示す。表2に示す合金鋳塊を調製した後、熱間圧延及び冷間圧延により厚さ3mmの圧延板を得た。尚、B12については、表1組成の材料を圧延後、ニッケルメッキ(厚さ5μm)を表面に施した。   Table 2 shows the composition of the dissimilar metal material used as the other member to be joined. After preparing the alloy ingot shown in Table 2, a rolled plate having a thickness of 3 mm was obtained by hot rolling and cold rolling. In addition, about B12, after rolling the material of Table 1, the nickel plating (thickness 5 micrometers) was given to the surface.

Figure 2013116483
Figure 2013116483

以上のようにして作成したアルミニウム合金材及び異種金属材の圧延板試料を用いて、接合試験を行い接合率と変形率を評価した。この接合試験では、まず、上記圧延板試料から幅20mm×長さ50mmの二枚の板を切り出し、それぞれの端面をフライスにより平滑にして、アルミニウム合金材を上板とし、異種金属材を下板として組み合わせ、図4に示す逆T字型接合試験片を作製した。表3に、各試験片の上板と下板の組み合わせを示す。この接合試験片の接合面には、フッ化カリウム系又はフッ化セシウム系又は塩化物系のフラックスを塗布するか、或いは、フラックスを塗布しなかった。フラックス塗布の有無と種類を表6〜8に示す。これらの表において、「F」はフッ化カリウム系非腐食性フラックス(KAlF)を、「Cs」はフッ化セシウム系の非腐食性フラックス(CsAlF)を、「Cl」は塩化物系のフラックス(NaF:7%、NaCl:25%、ZnCl:8%、LiCl:13%、KCl:47%)、「−」はフラックスを塗布しなかった場合を示す。 Using the aluminum alloy material and the rolled metal sample of different metal materials prepared as described above, a joining test was performed to evaluate the joining rate and the deformation rate. In this joining test, first, two plates having a width of 20 mm and a length of 50 mm are cut out from the rolled plate sample, each end face is smoothed by a mill, an aluminum alloy material is used as an upper plate, and a dissimilar metal material is used as a lower plate. As a result, an inverted T-shaped joining test piece shown in FIG. 4 was produced. Table 3 shows combinations of the upper and lower plates of each test piece. The bonding test piece was applied with a potassium fluoride, cesium fluoride, or chloride flux, or no flux. Tables 6 to 8 show the presence and type of flux application. In these tables, “F” is potassium fluoride-based non-corrosive flux (KAlF 4 ), “Cs” is cesium fluoride-based non-corrosive flux (CsAlF 4 ), and “Cl” is chloride-based. Flux (NaF: 7%, NaCl: 25%, ZnCl 2 : 8%, LiCl: 13%, KCl: 47%), “−” indicates a case where no flux was applied.

そして、上記の試験片を、窒素雰囲気中、アルゴン雰囲気中又は真空雰囲気中で所定の温度まで昇温してその温度(表3に示す接合温度)に所定の時間保持した後に、炉中で自然冷却した。窒素雰囲気及びアルゴン雰囲気は、酸素濃度100ppm以下で露点−45℃以下に管理した。真空雰囲気は、10−5torrに管理した。いずれの雰囲気中においても昇温速度は、520℃以上において、10℃/分とした。そして、接合加熱後の試験片より、接合率、変形率、総合評価を以下の通り評価した。 Then, the test piece is heated to a predetermined temperature in a nitrogen atmosphere, an argon atmosphere or a vacuum atmosphere and held at that temperature (joining temperature shown in Table 3) for a predetermined time, and then naturally in a furnace. Cooled down. The nitrogen atmosphere and the argon atmosphere were controlled at an oxygen concentration of 100 ppm or less and a dew point of −45 ° C. or less. The vacuum atmosphere was controlled at 10 −5 torr. In any atmosphere, the heating rate was 10 ° C./min at 520 ° C. or higher. And from the test piece after joining heating, a joining rate, a deformation rate, and comprehensive evaluation were evaluated as follows.

(1)接合率評価
接合率は次のようにして求めた。超音波探傷装置を用い、接合部での接合がなされている部分の長さを測定した。逆T字試験片の接合部の全長を50mmとして、{接合部での接合がなされている部分の長さ(mm)/50(mm)}×100によって接合率(%)を算出した。接合率が、95%以上を◎とし、90%以上95%未満を○とし、25%以上90%未満を△とし、25%未満を×として判定した。
(1) Joining rate evaluation The joining rate was calculated | required as follows. Using an ultrasonic flaw detector, the length of the portion where the joint portion is joined was measured. The total length of the joint part of the inverted T-shaped test piece was set to 50 mm, and the joining rate (%) was calculated by {the length of the part joined at the joint part (mm) / 50 (mm)} × 100. The bonding rate was determined as ◎ when 95% or more, ○ when 90% or more and less than 95%, △ when 25% or more and less than 90%, and × when less than 25%.

(2)変形率評価
表1に示した組成の上記圧延板試料から幅10mm×長さ30mmの板を切り出して、変形率測定用の試験片とした。図5(a)に示すように、この試験片を突き出し長さ20mmをもってサグ試験用冶具に取り付けてセットした(図には、3枚の試験片がセットされている)。サグ試験のような片持ち梁の形状での最大応力P(N/m)は、曲げモーメントMと断面係数Zより、以下のように求めた。
(2) Deformation rate evaluation A plate having a width of 10 mm and a length of 30 mm was cut out from the rolled plate sample having the composition shown in Table 1 to obtain a test piece for measuring the deformation rate. As shown in FIG. 5 (a), this test piece was set to a sag test jig with a protruding length of 20 mm (three test pieces are set in the figure). The maximum stress P (N / m 2 ) in the cantilever shape as in the sag test was determined from the bending moment M and the section modulus Z as follows.

P=M/Z=(W×I/2)/(bh/6)
=[(g×ρ×I×b×h/I)×I/2]/(bh/6)
=3×g×ρ×I/h
M:曲げモーメント(N・m)
等分布荷重の片持ち梁の場合W×I/2
Z:断面係数(m
断面形状が長方形の場合bh/6
W:等分布荷重(N/m)
g:重力加速度(m/s
ρ:アルミニウムの密度(kg/m
I:突き出し長さ(m)
b:板幅(m)
h:板厚(m)
P = M / Z = (W × I 2/2) / (bh 2/6)
= [(G × ρ × I × b × h / I) × I 2/2] / (bh 2/6)
= 3 × g × ρ × I 2 / h
M: Bending moment (N · m)
In the case of a uniformly distributed load of the cantilever W × I 2/2
Z: Section modulus (m 3 )
If the cross-sectional shape of a rectangular bh 2/6
W: Uniformly distributed load (N / m)
g: Gravity acceleration (m / s 2 )
ρ: Aluminum density (kg / m 3 )
I: Projection length (m)
b: Plate width (m)
h: Plate thickness (m)

尚、最大応力Pは、突き出し部の根元に掛かる。この試験で試験片にかかる最大応力Pは、上式に数値を代入して計算した結果、31kPaであった。この試験片を、表3に示す雰囲気中で所定の温度まで加熱しその温度(各表に示す接合温度)に各表に示す所定の時間保持した後に、炉中で自然冷却した。窒素雰囲気及びアルゴン雰囲気は、酸素濃度100ppm以下で露点−45℃以下に管理した。真空雰囲気は、10−5torrに管理した。いずれの雰囲気中においても昇温速度は、520℃以上において、10℃/分とした。   The maximum stress P is applied to the base of the protruding portion. The maximum stress P applied to the test piece in this test was 31 kPa as a result of calculation by assigning a numerical value to the above equation. The test piece was heated to a predetermined temperature in the atmosphere shown in Table 3 and held at that temperature (joining temperature shown in each table) for a predetermined time shown in each table, and then naturally cooled in a furnace. The nitrogen atmosphere and the argon atmosphere were controlled at an oxygen concentration of 100 ppm or less and a dew point of −45 ° C. or less. The vacuum atmosphere was controlled at 10-5 torr. In any atmosphere, the heating rate was 10 ° C./min at 520 ° C. or higher.

加熱後の試験片より、変形率を以下のように求めた。図5(b)に示すように、加熱後における試験片の垂下量を測定した。突き出し長さ(20mm)を用いて、{垂下量(mm)/20(mm)}×100によって変形率(%)を算出した。変形率が50%以下を◎とし、50%を超え70%以下を○とし、70%を超え80%以下を△とし、80%を超えるものを×として判定した。   The deformation rate was determined from the test piece after heating as follows. As shown in FIG. 5 (b), the amount of droop of the test piece after heating was measured. Using the protrusion length (20 mm), the deformation rate (%) was calculated by {amount of droop (mm) / 20 (mm)} × 100. Deformation rates of 50% or less were evaluated as ◎, over 50% and 70% or less as ◯, over 70% and 80% or less as Δ, and over 80% as x.

(3)総合判定
以上の結果より、各評価の判定に対して◎を5点、○を3点、△を0点、×を−5点として点数をつけ、合計点が10点を◎とし、6点以上9点以下を○とし、1点以上5点以下を△とし、0点以下を×として総合判定を行った。総合判定が◎、○、△を合格とし、×を不合格とした。接合率、変形率及び総合判定の結果を、接合条件(温度、平衡液相率の計算値)と共に表3に示す。
(3) Comprehensive judgment From the above results, for each assessment judgment, ◎ is given 5 points, ○ is 3 points, △ is 0 points, × is -5 points, and the total score is 10 points. The overall judgment was made with 6 to 9 points being ◯, 1 to 5 points being Δ, and 0 points or less being x. In the comprehensive judgment, ◎, ○, and △ were accepted, and x was rejected. The results of the joining rate, deformation rate, and comprehensive judgment are shown in Table 3 together with the joining conditions (temperature, equilibrium liquid phase rate calculated values).

Figure 2013116483
Figure 2013116483

表3からわかるように、実施例1〜37では、接合加熱時のアルミニウム合金材中の液相率が適正な範囲であったため良好な接合がなされ、総合判定が合格であった。   As can be seen from Table 3, in Examples 1 to 37, the liquid phase ratio in the aluminum alloy material at the time of bonding heating was in an appropriate range, so that good bonding was made and the overall judgment was acceptable.

一方、液相量の観点から比較例をみると、比較例38、43、48、50、52では、アルミニウム合金材に生成した液相量が低過ぎたために接合率が低くなり総合判定が不合格となった。また、比較例39では、アルミニウム合金材に液相が生成しなかったために接合がなされず総合判定が不合格となった。更に、比較例40、42、44〜47、49、51、53〜56ではアルミニウム合金材に生成した液相量が多すぎたために変形率が高くなり総合判定が不合格となった。   On the other hand, looking at the comparative examples from the viewpoint of the liquid phase amount, in Comparative Examples 38, 43, 48, 50, and 52, since the liquid phase amount generated in the aluminum alloy material was too low, the bonding rate was low and the overall judgment was not good. Passed. Further, in Comparative Example 39, no liquid phase was generated in the aluminum alloy material, so that the joining was not performed and the comprehensive judgment was rejected. Furthermore, in Comparative Examples 40, 42, 44 to 47, 49, 51, and 53 to 56, since the amount of liquid phase generated in the aluminum alloy material was too large, the deformation rate was high and the comprehensive judgment was rejected.

尚、ろう材組成とフラックス使用の有無との関係から、比較例41、57では、アルミニウム合金材のMg含有量が0.2質量%未満にもかかわらずフラックスが塗布されなかったために接合が不十分となり、総合判定が不合格となった。また、比較例58では、アルミニウム合金材のMg含有量が0.5質量%を超えていたにもかかわらずフラックスが塗布されたために接合が不十分となり、総合判定が不合格となった。更に、比較例59はフラックスが塗布されていない状態でもアルミニウム合金材のMg含有量が2.0質量%を超えていたために接合が不十分となり、総合判定が不合格となった。   In addition, from the relationship between the brazing filler metal composition and the presence / absence of the use of flux, in Comparative Examples 41 and 57, the flux was not applied even though the Mg content of the aluminum alloy material was less than 0.2% by mass, so that bonding was not possible. It became enough, and comprehensive judgment failed. Moreover, in Comparative Example 58, since the flux was applied even though the Mg content of the aluminum alloy material exceeded 0.5% by mass, the joining was insufficient and the comprehensive judgment was rejected. Further, in Comparative Example 59, even when no flux was applied, the Mg content of the aluminum alloy material exceeded 2.0 mass%, so that the bonding was insufficient, and the comprehensive judgment was rejected.

第2実施形態(実施例60〜71、参考例1〜3)
ここでは、サグ試験を行い、加熱中に被接合部材が耐えられる応力Pを評価した。この評価は、第1実施形態での評価において、総合評価が合格となる条件(合金、加熱条件)を選んで、アルミニウム合金材の変形率の評価のみを更に詳細に行なったものである。試験片には、表1のアルミニウム合金材を選んで用いた。試験片は、板厚1mm、幅15mm、長さ60mmとした。この試験片について突き出し長さを20〜50mmに変化させて、図5(a)に示すサグ試験用冶具に取り付けてセットした。
Second Embodiment (Examples 60 to 71, Reference Examples 1 to 3)
Here, a sag test was performed to evaluate the stress P that the bonded member can withstand during heating. In this evaluation, the conditions (alloy and heating conditions) that pass the overall evaluation are selected in the evaluation according to the first embodiment, and only the deformation rate of the aluminum alloy material is evaluated in more detail. As the test piece, the aluminum alloy material shown in Table 1 was selected and used. The test piece had a plate thickness of 1 mm, a width of 15 mm, and a length of 60 mm. The protruding length of this test piece was changed to 20 to 50 mm, and the sag test jig shown in FIG.

具体的な試験方法は、試験片を、窒素雰囲気中で所定の温度まで加熱しその温度に180秒保持した後に、炉中で自然冷却した。窒素雰囲気は、酸素濃度100ppm以下で露点−45℃以下に管理した。昇温速度は、520℃以上において、10℃/分とした。   Specifically, the test piece was heated to a predetermined temperature in a nitrogen atmosphere and held at that temperature for 180 seconds, and then naturally cooled in a furnace. The nitrogen atmosphere was controlled at an oxygen concentration of 100 ppm or less and a dew point of −45 ° C. or less. The heating rate was 10 ° C./min at 520 ° C. or higher.

加熱後の試験片より、変形率を以下のように求めた。図5(b)に示すように、加熱後における試験片の垂下量を測定した。各突き出し長さを用いて、{垂下量(mm)/突き出し長さ(mm)}×100によって変形率(%)を算出した。変形率が50%未満を◎とし、50%以上70%未満を○とし、70%以上を×として判定した。◎と○を合格とし、×を不合格とした。変形率、突き出し長さ、応力及び限界応力を、加熱条件(加熱温度、液相率、加熱温度での保持時間)と共に表4に示す。   The deformation rate was determined from the test piece after heating as follows. As shown in FIG. 5 (b), the amount of droop of the test piece after heating was measured. Using each protrusion length, the deformation rate (%) was calculated by {the amount of droop (mm) / the protrusion length (mm)} × 100. A deformation rate of less than 50% was evaluated as ◎, 50% or more and less than 70% as ◯, and 70% or more as x. ◎ and ○ were accepted, and x was rejected. Deformation rate, protrusion length, stress and critical stress are shown in Table 4 together with heating conditions (heating temperature, liquid phase rate, holding time at heating temperature).

Figure 2013116483
Figure 2013116483

表4から、実施例60〜71では、応力P(kPa)が、V(%)を液相率とした限界応力(460−12V)以下であった。その結果、これらの実施例ではいずれも垂下量が突き出し長さに対して70%未満であり、良好な変形率となった。これに対して、参考例1〜3では応力Pが限界応力(460−12V)よりも大きくなった。その結果、いずれも垂下量が突き出し長さに対して70%以上となり変形率が大きかった。   From Table 4, in Examples 60-71, stress P (kPa) was below the critical stress (460-12V) which made V (%) the liquid phase rate. As a result, in all of these examples, the amount of sag was less than 70% with respect to the protruding length, and a good deformation rate was obtained. On the other hand, in Reference Examples 1 to 3, the stress P was larger than the limit stress (460-12V). As a result, the drooping amount was 70% or more with respect to the protruding length, and the deformation rate was large.

以上の結果より、被接合部材に加わる応力Pが限界応力(460−12V)以下であれば、部材の接合前後での変形が5%以内に抑えられ、精度の高い構造物が作製できることが確認された。   From the above results, it is confirmed that if the stress P applied to the member to be joined is not more than the limit stress (460-12V), the deformation before and after joining the members is suppressed to within 5%, and a highly accurate structure can be manufactured. It was done.

本発明により、良好な接合性と、接合による変形が殆どない、信頼性の高いアルミニウム合金材と異種金属材の接合方法であり、工業的な価値が大きい。本発明によれば、接合箇所が多い、複雑な形状を有する等の特徴がある部材・部品を効率的に製造することができ、例えば、熱交換器やヒートシンク等の接合に有用である。   According to the present invention, it is a highly reliable joining method between an aluminum alloy material and a dissimilar metal material that has good joining properties and hardly undergoes deformation due to joining, and has a great industrial value. According to the present invention, it is possible to efficiently manufacture members / parts having features such as a large number of joints and a complicated shape, which is useful for joining, for example, a heat exchanger or a heat sink.

Claims (5)

アルミニウム合金材を一方の被接合部材とし、アルミニウム以外の金属又はその金属合金を他方の被接合部材として、前記一方の被接合部材と他方の被接合部材を接合する方法において、
前記一方の被接合部材はMg濃度が0.5質量%以下に規制されたアルミニウム合金からなり、
他方の被接合部材は、前記一方のアルミニウム合金より固相線温度が高い金属又はその金属合金からなり、
非酸化性雰囲気中でフラックスが接合部材間に塗布された状態で、前記一方の被接合部材であるアルミニウム合金材の全質量に対する前記アルミニウム合金材内に生成する液相の質量の比が5%以上35%以下となる温度において接合することを特徴とするアルミニウム合金材と異種金属材との接合方法。
In the method of joining the one member to be joined and the other member to be joined, using an aluminum alloy material as one member to be joined, a metal other than aluminum or its metal alloy as the other member to be joined,
The one bonded member is made of an aluminum alloy whose Mg concentration is regulated to 0.5% by mass or less,
The other member to be joined is made of a metal having a higher solidus temperature than the one aluminum alloy or a metal alloy thereof,
In a state where the flux is applied between the joining members in a non-oxidizing atmosphere, the ratio of the mass of the liquid phase generated in the aluminum alloy material to the total mass of the aluminum alloy material which is the one member to be joined is 5%. A joining method of an aluminum alloy material and a dissimilar metal material, characterized by joining at a temperature of 35% or less.
アルミニウム合金材を一方の被接合部材とし、アルミニウム以外の金属又はその金属合金を他方の被接合部材として、前記一方の被接合部材と他方の被接合部材を接合する方法において、
前記一方の被接合部材はMg濃度が0.2質量%以上2.0質量%以下を含有するアルミニウム合金からなり、
他方の被接合部材は、前記一方のアルミニウム合金より固相線温度が高い金属又はその金属合金からなり、
真空中または非酸化性雰囲気中で、前記一方の被接合部材であるアルミニウム合金材の全質量に対する前記アルミニウム合金内に発生する液相の質量の比が5%以上35%以下となる温度において接合することを特徴とするアルミニウム合金材と異種金属材との接合方法。
In the method of joining the one member to be joined and the other member to be joined, using an aluminum alloy material as one member to be joined, a metal other than aluminum or its metal alloy as the other member to be joined,
The one member to be joined is made of an aluminum alloy containing Mg concentration of 0.2% by mass or more and 2.0% by mass or less,
The other member to be joined is made of a metal having a higher solidus temperature than the one aluminum alloy or a metal alloy thereof,
Bonding in a vacuum or in a non-oxidizing atmosphere at a temperature at which the ratio of the mass of the liquid phase generated in the aluminum alloy to the total mass of the aluminum alloy material as the one member to be bonded is 5% or more and 35% or less A method for joining an aluminum alloy material and a dissimilar metal material.
一方の被接合部材であるアルミニウム合金材において、アルミニウム合金材の全質量に対する前記アルミニウム合金材内に生成する液相の質量の比が5%以上である時間が、30秒以上3600秒以内である請求項1又は2に記載のアルミニウム合金材と異種金属材との接合方法。   In the aluminum alloy material which is one member to be joined, the time during which the ratio of the mass of the liquid phase generated in the aluminum alloy material to the total mass of the aluminum alloy material is 5% or more is 30 seconds or more and 3600 seconds or less. The joining method of the aluminum alloy material of Claim 1 or 2, and a dissimilar metal material. 一方の被接合部材であるアルミニウム合金材に発生する最大応力をP(kPa)とし、前記アルミニウム合金材の全質量に対する前記アルミニウム合金材内に生成する液相の質量の比をV(%)としたときに、P≦460−12Vを満たす条件で接合する請求項1〜請求項3のいずれか一項に記載のアルミニウム合金材と異種金属材との接合方法。   The maximum stress generated in the aluminum alloy material that is one member to be joined is P (kPa), and the ratio of the mass of the liquid phase generated in the aluminum alloy material to the total mass of the aluminum alloy material is V (%). When joining, the joining method of the aluminum alloy material and dissimilar metal material as described in any one of Claims 1-3 which join on the conditions which satisfy | fill P <= 460-12V. 他方の被接合部材は、鉄、銅、チタン、ニッケル、マグネシウムのいずれかの金属又はその金属基とする合金からなる請求項1〜請求項4のいずれか一項に記載のアルミニウム合金材と異種金属材の接合方法。
The other member to be joined is made of any metal of iron, copper, titanium, nickel, magnesium, or an alloy based on the metal, and is different from the aluminum alloy material according to any one of claims 1 to 4. Metal material joining method.
JP2011264846A 2011-12-02 2011-12-02 Joining method of aluminum alloy material and dissimilar metal material Pending JP2013116483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011264846A JP2013116483A (en) 2011-12-02 2011-12-02 Joining method of aluminum alloy material and dissimilar metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011264846A JP2013116483A (en) 2011-12-02 2011-12-02 Joining method of aluminum alloy material and dissimilar metal material

Publications (1)

Publication Number Publication Date
JP2013116483A true JP2013116483A (en) 2013-06-13

Family

ID=48711403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011264846A Pending JP2013116483A (en) 2011-12-02 2011-12-02 Joining method of aluminum alloy material and dissimilar metal material

Country Status (1)

Country Link
JP (1) JP2013116483A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206011A (en) * 2018-05-28 2019-12-05 オリンパス株式会社 Joint structure of dissimilar metallic material and joining method of dissimilar metallic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206011A (en) * 2018-05-28 2019-12-05 オリンパス株式会社 Joint structure of dissimilar metallic material and joining method of dissimilar metallic material
JP7049917B2 (en) 2018-05-28 2022-04-07 オリンパス株式会社 Bonding structure of dissimilar metal materials and joining method of dissimilar metal materials

Similar Documents

Publication Publication Date Title
JP5021097B2 (en) Joining method of aluminum alloy material
JP6060090B2 (en) Bonded body of aluminum alloy and copper alloy and bonding method thereof
JP6188511B2 (en) Aluminum alloy brazing sheet for fluxless brazing and manufacturing method thereof
JP5284542B1 (en) Method for producing aluminum alloy clad material
JP5629130B2 (en) Joining method of metal materials
JP6023074B2 (en) Aluminum member joining method
JP6426883B2 (en) Method of manufacturing joined body excellent in corrosion resistance
JP2013116483A (en) Joining method of aluminum alloy material and dissimilar metal material
JP6023078B2 (en) Joining method of aluminum alloy material
JP6033542B2 (en) CONNECTED BODY AND METHOD FOR PRODUCING THE SAME
JP6218903B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JP5901251B2 (en) Manufacturing method of structure
JP5956228B2 (en) Joining method of aluminum alloy
JP6745578B2 (en) Brazing sheet for surface bonding
JP2006326621A (en) Solder material wire for soldering aluminum alloy
JP2018098469A (en) Air-cooled module
JP2013116474A (en) Method for joining aluminum alloy material, method for manufacturing aluminum alloy joined body, and aluminum alloy joined body
JP2016112585A (en) Brazing filler material sheet for surface joint
JP2013146755A (en) Aluminum alloy brazing sheet and method for manufacturing the same, and method for brazing aluminum-made heat exchanger
BR112012030857B1 (en) METHOD OF JOINING ALUMINUM ALLOY MATERIALS BETWEEN THEMSELVES