JP6021333B2 - Toner production method - Google Patents

Toner production method Download PDF

Info

Publication number
JP6021333B2
JP6021333B2 JP2011286212A JP2011286212A JP6021333B2 JP 6021333 B2 JP6021333 B2 JP 6021333B2 JP 2011286212 A JP2011286212 A JP 2011286212A JP 2011286212 A JP2011286212 A JP 2011286212A JP 6021333 B2 JP6021333 B2 JP 6021333B2
Authority
JP
Japan
Prior art keywords
fine particles
resin fine
resin
acid
aqueous dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011286212A
Other languages
Japanese (ja)
Other versions
JP2013133450A5 (en
JP2013133450A (en
Inventor
祥平 福谷
祥平 福谷
正郎 鈴木
正郎 鈴木
東 隆司
隆司 東
崇 平佐
崇 平佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011286212A priority Critical patent/JP6021333B2/en
Publication of JP2013133450A publication Critical patent/JP2013133450A/en
Publication of JP2013133450A5 publication Critical patent/JP2013133450A5/ja
Application granted granted Critical
Publication of JP6021333B2 publication Critical patent/JP6021333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、樹脂微粒子の水系媒体を用いるトナーの製造方法に関する。   The present invention relates to a toner production method using an aqueous medium of resin fine particles.

樹脂微粒子の水系分散体は、トナー、インクジェットプリンタ用インク、静電印刷等の液体現像剤等の多岐にわたる分野で使用されている。いずれの分野においても、樹脂微粒子の水系分散体における樹脂微粒子の粒径、粒度分布の制御は重要であり、特に小粒径でかつ粒度分布がシャープである樹脂微粒子が望まれている。   Aqueous dispersions of resin fine particles are used in various fields such as toner, ink for inkjet printers, liquid developers for electrostatic printing, and the like. In any field, control of the particle size and particle size distribution of the resin fine particles in the aqueous dispersion of resin fine particles is important. Particularly, resin fine particles having a small particle size and a sharp particle size distribution are desired.

樹脂微粒子の水系分散体をトナーの製造に使用する場合、より精密に粒径が制御された樹脂微粒子の水系分散体が望まれている。これは、樹脂微粒子の粒径や粒度分布がトナー粒度分布、形状等を大きく左右し、トナーの現像性等に大きな影響を与えるためである。   When an aqueous dispersion of resin fine particles is used in the production of toner, an aqueous dispersion of resin fine particles having a more precisely controlled particle size is desired. This is because the particle size and particle size distribution of the resin fine particles greatly affect the toner particle size distribution, shape, and the like, and greatly affect the developability of the toner.

特許文献1には、樹脂微粒子の製造方法として、転相乳化法と呼ばれる有機溶剤を使用した方法が提案されている。また、特許文献2や3には、環境負荷低減、省資源の観点から、有機溶剤をほとんど使用せずに樹脂分散体を得る、無溶剤乳化方法が提案されている。   Patent Document 1 proposes a method using an organic solvent called a phase inversion emulsification method as a method for producing resin fine particles. Patent Documents 2 and 3 propose a solvent-free emulsification method in which a resin dispersion is obtained without using an organic solvent from the viewpoint of reducing environmental burden and saving resources.

特開平8−211655JP-A-8-21655 特開2004−189765JP2004-189765 特開2007−106906JP 2007-106906 A

特許文献1〜3に記載の方法では、酸基を有する樹脂を乳化する場合、酸基由来の負電荷と界面活性剤の負電荷との静電反発により、樹脂に対する界面活性剤の吸着が阻害されることから、界面活性剤の付着量にムラができてしまう。そのため、分散体表面への界面活性剤の付着量が不均一となることから、形成される樹脂微粒子の粒度分布が幅広くなり、望ましい粒径のトナーが得られない場合がある。   In the methods described in Patent Documents 1 to 3, when emulsifying a resin having an acid group, adsorption of the surfactant to the resin is inhibited by electrostatic repulsion between the negative charge derived from the acid group and the negative charge of the surfactant. As a result, the adhesion amount of the surfactant becomes uneven. For this reason, the amount of the surfactant adhering to the surface of the dispersion becomes non-uniform, so that the particle size distribution of the resin fine particles to be formed becomes wide and a toner having a desired particle size may not be obtained.

近年、電子写真分野では低温定着性と保存安定性を両立させるため、低軟化点樹脂からなるコアを高軟化点樹脂からなるシェルで被覆した構造を持つ、コアシェルトナーが広く用いられている。シェルの構成材料として、粒径が大きく、粒度分布が広い樹脂微粒子の水系分散体を用いた場合、コア粒子へのシェル粒子付着が不均一となり、トナーの保存安定性が低下してしまう。上記課題を解決するために、シェルの被覆量を増加させることも考えられるが、この場合トナー全体の軟化点が上昇してしまい、低温定着性が悪化する。従って、保存安定性と低温定着性の両立のため、樹脂微粒子を十分に小粒径化し、粒度分布を狭くすることは大きな課題である。   In recent years, in order to achieve both low-temperature fixability and storage stability in the electrophotographic field, core-shell toners having a structure in which a core made of a low softening point resin is covered with a shell made of a high softening point resin have been widely used. When an aqueous dispersion of resin fine particles having a large particle size and a wide particle size distribution is used as a constituent material of the shell, shell particle adhesion to the core particles becomes non-uniform, and the storage stability of the toner decreases. In order to solve the above problem, it is conceivable to increase the coating amount of the shell, but in this case, the softening point of the entire toner is increased, and the low-temperature fixability is deteriorated. Therefore, in order to achieve both storage stability and low-temperature fixability, it is a big problem to make the resin fine particles sufficiently small and narrow the particle size distribution.

本発明は上記の課題を解決するものである。すなわち、本発明の目的は、小粒径かつ粒度分布の狭い樹脂微粒子の水系分散体の製造方法を提供することである。また、該樹脂微粒子の水系分散体を用いることで、低温定着性や保存安定性に優れたトナーの製造方法を提供することである。   The present invention solves the above problems. That is, an object of the present invention is to provide a method for producing an aqueous dispersion of resin fine particles having a small particle size and a narrow particle size distribution. Another object of the present invention is to provide a toner production method that is excellent in low-temperature fixability and storage stability by using an aqueous dispersion of the resin fine particles.

本発明は、
樹脂微粒子の水系分散体を製造する工程と、
該樹脂微粒子の水系分散体と着色剤とを混合し、該樹脂微粒子及び該着色剤を水系媒体中で凝集させて重量平均粒径(D4)が4.5μm以上7.0μm以下の凝集体を形成する凝集工程と、
該凝集体を加熱し、融合させる融合工程と、
を有するトナーの製造方法において、
該樹脂微粒子の水系分散体を製造する工程は、
(i)酸基を有する樹脂、アニオン性界面活性剤、水系媒体、酸及び下記式1で表わされる3級アミンを混合して混合物を得る混合工程と、
NR 式1
[式1において、R、R、及びRは、それぞれ、ヒドロキシル基を有していてもよい炭素数1以上8以下の炭化水素基を表す。]
(ii)該酸基を有する樹脂のガラス転移点以上の温度で、該混合物を撹拌し、体積分布基準の50%粒径が0.02μm以上1.00μm以下の該樹脂微粒子の水系分散体を得る乳化工程を有し
該乳化工程において、該水系分散体の水相中における、該3級アミンと該酸とから生成するアミノカチオンの濃度が、下記の臨界凝集濃度以下であることを特徴とするトナーの製造方法。
[臨界凝集濃度とは、3級アミンと酸を水に溶解して作成した水溶液を添加した樹脂微粒子の水系分散体の樹脂微粒子の体積分布基準50%粒径が、該水溶液を添加する前の樹脂微粒子の水系分散体における樹脂微粒子の体積分布基準50%粒径の1.5倍を超えた時点での、該水系分散体の水相におけるアミノカチオン濃度である。]。
更に、本発明は、
樹脂微粒子の水系分散体を製造する工程と、
該樹脂微粒子の水系分散体と着色剤とを混合し、該樹脂微粒子及び該着色剤を水系媒体中で凝集させて重量平均粒径(D4)が4.5μm以上7.0μm以下の凝集体を形成する凝集工程と、
該凝集体を加熱し、融合させる融合工程と、
を有するトナーの製造方法において、
該樹脂微粒子の水系分散体を製造する工程は、
(i)酸基を有する樹脂、該酸基を有する樹脂が可溶な溶剤及びアニオン性界面活性剤、を混合して混合物を得る混合工程と、
(ii)該混合物に酸、水及び下記式1で表される3級アミンを添加して撹拌をおこない体積分布基準の50%粒径が0.02μm以上1.00μm以下の該樹脂微粒子の水系分散体を得る乳化工程を有し
NR 式1
[式1において、R、R、及びRは、それぞれ、ヒドロキシル基を有していてもよい炭素数1以上8以下の炭化水素基を表す。]
該乳化工程において、該水系分散体の水相中における、該3級アミンと該酸とから生成するアミノカチオンの濃度が、臨界凝集濃度以下であることを特徴とするトナーの製造方法。
[臨界凝集濃度とは、3級アミンと酸を水に溶解して作成した水溶液を添加した樹脂微粒子の水系分散体の樹脂微粒子の体積分布基準50%粒径が、該水溶液を添加する前の樹脂微粒子の水系分散体における樹脂微粒子の体積分布基準50%粒径の1.5倍を超えた時点での、該水系分散体の水相におけるアミノカチオン濃度である。]。
The present invention
Producing an aqueous dispersion of resin fine particles;
An aqueous dispersion of the resin fine particles and a colorant are mixed, and the resin fine particles and the colorant are aggregated in an aqueous medium to obtain an aggregate having a weight average particle diameter (D4) of 4.5 μm or more and 7.0 μm or less. An aggregation process to form;
A fusing step of heating and fusing the aggregates;
In a method for producing a toner having
The step of producing an aqueous dispersion of the resin fine particles includes:
(I) a mixing step of mixing a resin having an acid group, an anionic surfactant, an aqueous medium, an acid and a tertiary amine represented by the following formula 1 to obtain a mixture;
NR 1 R 2 R 3 Formula 1
[In Formula 1, R 1 , R 2 , and R 3 each represent a hydrocarbon group having 1 to 8 carbon atoms that may have a hydroxyl group. ]
(Ii) Stirring the mixture at a temperature equal to or higher than the glass transition point of the resin having an acid group to obtain an aqueous dispersion of the resin fine particles having a 50% particle size of 0.02 μm or more and 1.00 μm or less based on volume distribution. An emulsifying step to obtain, wherein in the emulsifying step, the concentration of the amino cation generated from the tertiary amine and the acid in the aqueous phase of the aqueous dispersion is equal to or less than the following critical aggregation concentration. Toner manufacturing method.
[Critical coagulation concentration refers to the volume distribution standard 50% particle size of resin fine particles of an aqueous dispersion of resin fine particles to which an aqueous solution prepared by dissolving tertiary amine and acid in water is added. This is the amino cation concentration in the aqueous phase of the aqueous dispersion at a time when it exceeds 1.5 times the 50% particle diameter of the resin fine particles in the aqueous dispersion of the resin fine particles. ].
Furthermore, the present invention provides
Producing an aqueous dispersion of resin fine particles;
An aqueous dispersion of the resin fine particles and a colorant are mixed, and the resin fine particles and the colorant are aggregated in an aqueous medium to obtain an aggregate having a weight average particle diameter (D4) of 4.5 μm or more and 7.0 μm or less. An aggregation process to form;
A fusing step of heating and fusing the aggregates;
In a method for producing a toner having
The step of producing an aqueous dispersion of the resin fine particles includes:
(I) a mixing step of mixing a resin having an acid group, a solvent in which the resin having an acid group is soluble, and an anionic surfactant to obtain a mixture;
(Ii) An aqueous system of the resin fine particles in which 50% particle size based on volume distribution is 0.02 μm or more and 1.00 μm or less by adding acid, water and a tertiary amine represented by the following formula 1 to the mixture and stirring the mixture. It has an emulsification step to obtain a dispersion. NR 1 R 2 R 3 Formula 1
[In Formula 1, R 1 , R 2 , and R 3 each represent a hydrocarbon group having 1 to 8 carbon atoms that may have a hydroxyl group. ]
In the emulsification step, the concentration of an amino cation generated from the tertiary amine and the acid in the aqueous phase of the aqueous dispersion is not more than a critical aggregation concentration.
[Critical coagulation concentration refers to the volume distribution standard 50% particle size of resin fine particles of an aqueous dispersion of resin fine particles to which an aqueous solution prepared by dissolving tertiary amine and acid in water is added. This is the amino cation concentration in the aqueous phase of the aqueous dispersion at a time when it exceeds 1.5 times the 50% particle diameter of the resin fine particles in the aqueous dispersion of the resin fine particles. ].

本発明により、酸基を有する樹脂を用いた場合でも、従来よりも、小粒径かつ粒度分布の狭い樹脂微粒子の水系分散体を提供することが可能となる。また、本発明により製造した、小粒径かつ粒度分布の狭い樹脂微粒子の水系分散体を利用してトナーを製造することにより、低温定着性や保存安定性に優れたトナーを得ることができる。   According to the present invention, even when an acid group-containing resin is used, it is possible to provide an aqueous dispersion of resin fine particles having a smaller particle size and a narrower particle size distribution than before. Further, by producing a toner using an aqueous dispersion of resin fine particles having a small particle size and a narrow particle size distribution produced according to the present invention, a toner excellent in low-temperature fixability and storage stability can be obtained.

<樹脂微粒子の水系分散体の製造方法>
まず、樹脂微粒子の水系分散体の製造方法のうち、第一の態様について説明する。
<Method for producing aqueous dispersion of resin fine particles>
First, the first aspect of the method for producing an aqueous dispersion of resin fine particles will be described.

本発明の製造方法の第一の態様は、酸基を有する樹脂及びアニオン性界面活性剤を混合して混合物を得る混合工程を有する。   The 1st aspect of the manufacturing method of this invention has the mixing process of mixing resin which has an acid group, and anionic surfactant, and obtaining a mixture.

本発明で用いられる酸基を有する樹脂とは、分子鎖の末端や側鎖に、カルボキシル基、スルホ基、又はこれらの塩を有する樹脂を意味する。具体的には、アクリル系樹脂、メタクリル系樹脂、スチレン−アクリル共重合体、スチレン−メタクリル共重合体、ポリエステル樹脂、ポリアミド酸系樹脂等が好適に例示できる。その中でも、トナー用材料として使用する場合には、トナーの軟化温度(Tm)とガラス転移点(Tg)の差を小さくすることができるという観点から、ポリエステル樹脂が好ましい。   The resin having an acid group used in the present invention means a resin having a carboxyl group, a sulfo group, or a salt thereof at the end or side chain of a molecular chain. Specifically, an acrylic resin, a methacrylic resin, a styrene-acrylic copolymer, a styrene-methacrylic copolymer, a polyester resin, a polyamic acid resin, and the like can be preferably exemplified. Among these, when used as a toner material, a polyester resin is preferable from the viewpoint that the difference between the softening temperature (Tm) of the toner and the glass transition point (Tg) can be reduced.

ポリエステル樹脂は、酸成分とアルコール成分を縮重合することにより得られる。ポリエステル樹脂を製造する際、酸成分としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、グルタコン酸、アゼライン酸、セバシン酸、ノナンジカルボン酸、デカンジカルボン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、マレイン酸、フマル酸、メサコン酸、シトラコン酸、イタコン酸、イソフタル酸、テレフタル酸、n−ドデシルコハク酸、n−デドセニルコハク酸、シクロヘキサンジカルボン酸等のジカルボン酸の他、トリメリット酸、2,5,7−ナフタレントリカルボン酸、1,2,4−ナフタレントリカルボン酸、ピロメリット酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシル−2−メチル−2−メチレンカルボキシプロパン等、3価以上の多価カルボン酸、及びこれらの酸無水物又は低級アルキルエステル等の誘導体等が挙げられる。   The polyester resin is obtained by polycondensing an acid component and an alcohol component. When the polyester resin is produced, the acid component includes oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, peric acid, glutaconic acid, azelaic acid, sebacic acid, nonanedicarboxylic acid, decanedicarboxylic acid, In addition to dicarboxylic acids such as undecane dicarboxylic acid, dodecane dicarboxylic acid, maleic acid, fumaric acid, mesaconic acid, citraconic acid, itaconic acid, isophthalic acid, terephthalic acid, n-dodecyl succinic acid, n-dedecenyl succinic acid, cyclohexane dicarboxylic acid, Trimellitic acid, 2,5,7-naphthalenetricarboxylic acid, 1,2,4-naphthalenetricarboxylic acid, pyromellitic acid, 1,2,4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1, 3-dicarboxyl-2-methyl-2-methylenecarb Propane, tri- or higher carboxylic acid, and derivatives such as their anhydrides or lower alkyl esters.

アルコール成分としては、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9―ノナンジオール、1,10−デカンジオール、1,11−ドデカンジオール、1,12−ウンデカンジオール、1,13−トリデカンジオール、1,14−テトラデカンジオール、1,18−オクタデカンジオール、1,20−エイコサンジオール等の脂肪族ジオールの他、ポリオキシエチレン化ビスフェノールA、ポリオキシプロピレン化ビスフェノールA、1,4−シクロヘキサンジメタノール等の2価のアルコール、1,3,5−トリヒドロキシメチルベンゼン等の芳香族アルコール、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、グリセリン、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン等の3価のアルコール等を用いても良い。   Examples of the alcohol component include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, , 9-nonanediol, 1,10-decanediol, 1,11-dodecanediol, 1,12-undecanediol, 1,13-tridecanediol, 1,14-tetradecanediol, 1,18-octadecanediol, In addition to aliphatic diols such as 20-eicosanediol, dihydric alcohols such as polyoxyethylenated bisphenol A, polyoxypropylenated bisphenol A, 1,4-cyclohexanedimethanol, 1,3,5-trihydroxy Aromatic alcohols such as methylbenzene, pentaerythritol Dipentaerythritol, tripentaerythritol, 1,2,4-butanetriol, 1,2,5-pentanetriol, glycerin, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, trimethylolethane Trivalent alcohol such as trimethylolpropane may be used.

本発明に用いられる酸基を有する樹脂のガラス転移点(Tg)は、トナーとして使用する場合には、ブロッキング防止の観点から50℃以上であることが好ましく、低温定着性の観点から80℃以下であることが好ましい。   When used as a toner, the glass transition point (Tg) of the resin having an acid group used in the present invention is preferably 50 ° C. or higher from the viewpoint of blocking prevention, and 80 ° C. or lower from the viewpoint of low-temperature fixability. It is preferable that

本発明に用いられる酸基を有する樹脂の軟化温度(Tm)は、トナーとして使用する場合には、低温定着性の観点から150℃以下であることが好ましく、トナーの耐熱保管性の観点からは90℃以上が好ましい。   The softening temperature (Tm) of the resin having an acid group used in the present invention is preferably 150 ° C. or less from the viewpoint of low-temperature fixability when used as a toner, and from the viewpoint of heat-resistant storage properties of the toner. 90 degreeC or more is preferable.

本発明に用いられる酸基を有する樹脂は、該樹脂のテトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフィー(GPC)により測定される分子量分布において、分子量3,500以上15,000以下の範囲にメインピークのピークトップを有することが好ましい。メインピークのピークトップが上記の範囲内であれば、樹脂微粒子の水系分散体を凝集トナーの製造に用いた場合の熱安定性が高い。   The resin having an acid group used in the present invention has a molecular weight range of 3,500 to 15,000 in the molecular weight distribution measured by gel permeation chromatography (GPC) soluble in tetrahydrofuran (THF) of the resin. It is preferable to have a peak top of the main peak. When the peak top of the main peak is within the above range, the thermal stability is high when an aqueous dispersion of resin fine particles is used in the production of the aggregated toner.

本発明に用いられる酸基を有する樹脂は、酸価が1mgKOH/g以上30mgKOH/g以下であることが好ましい。樹脂の酸価が1以上であれば、トナーとした際に帯電性が高く、飛散やかぶりが抑制される。また、酸価が30以下であれば、樹脂の吸湿が抑制され、温度の異なる環境下においても、トナー特性が変動しにくい。 The resin having an acid group used in the present invention preferably has an acid value of 1 mgKOH / g or more and 30 mgKOH / g or less . When the acid value of the resin is 1 or more, the chargeability is high when the toner is used, and scattering and fogging are suppressed. Further, if the acid value is 30 or less, the moisture absorption of the resin is suppressed, and the toner characteristics hardly change even in environments with different temperatures.

本発明に用いられるアニオン性界面活性剤は、疎水性置換基として、直鎖または枝分かれ構造を有する炭化水素鎖、フッ化炭素鎖、あるいはベンゼン、ナフタレン等の芳香環を有する疎水基と、スルホン酸エステル、カルボン酸、あるいはスルホン酸を有する親水基とを有する化合物であることが好ましい。アニオン性界面活性剤としては、硫酸エステル塩、スルホン酸塩、リン酸エステル、せっけん、アミン塩型、4級アンモニウム塩型等が挙げられる。具体的には、ラウリン酸カリウム、オレイン酸ナトリウム、ヒマシ油ナトリウム等の脂肪酸セッケン類;オクチルサルフェート、ラウリルサルフェート、ラウリルエーテルサルフェート、ノニルフェニルエーテルサルフェート等の硫酸エステル類;ラウリルスルホネート、ドデシルベンゼンスルホネート、トリイソプロピルナフタレンスルホネート、ジブチルナフタレンスルホネートなどのアルキルナフタレンスルホン酸ナトリウム;ナフタレンスルホネートホルマリン縮合物、モノオクチルスルホサクシネート、ジオクチルスルホサクシネート、ラウリン酸アミドスルホネート、オレイン酸アミドスルホネート等のスルホン酸塩類;ラウリルホスフェート、イソプロピルホスフェート、ノニルフェニルエーテルホスフェート等のリン酸エステル類;ジオクチルスルホコハク酸ナトリウムなどのジアルキルスルホコハク酸塩類;スルホコハク酸ラウリル2ナトリウム等のスルホコハク酸塩類が挙げられる。界面活性剤は、液中の濃度が、臨界ミセル濃度以上になるように添加されることが好ましい。界面活性剤は、1種単独で使用してもよいし、2種以上を併用してもよい。   The anionic surfactant used in the present invention includes, as a hydrophobic substituent, a hydrocarbon group having a linear or branched structure, a fluorocarbon chain, or a hydrophobic group having an aromatic ring such as benzene or naphthalene, and a sulfonic acid A compound having an ester, a carboxylic acid, or a hydrophilic group having a sulfonic acid is preferable. Examples of the anionic surfactant include sulfate ester salt, sulfonate salt, phosphate ester, soap, amine salt type, and quaternary ammonium salt type. Specifically, fatty acid soaps such as potassium laurate, sodium oleate, and castor oil sodium; sulfates such as octyl sulfate, lauryl sulfate, lauryl ether sulfate, and nonylphenyl ether sulfate; lauryl sulfonate, dodecylbenzene sulfonate, tri Alkylnaphthalene sodium sulfonates such as isopropyl naphthalene sulfonate and dibutyl naphthalene sulfonate; sulfonates such as naphthalene sulfonate formalin condensate, monooctyl sulfosuccinate, dioctyl sulfosuccinate, lauric acid amide sulfonate, oleic acid amide sulfonate; lauryl phosphate; Phosphoric acid esters such as isopropyl phosphate and nonylphenyl ether phosphate Le ethers; dialkyl sulfosuccinate salts such as sodium dioctyl sulfosuccinate; sulfosuccinate salts such as sulfosuccinate lauryl disodium and the like. The surfactant is preferably added so that the concentration in the liquid is equal to or higher than the critical micelle concentration. Surfactant may be used individually by 1 type and may use 2 or more types together.

本発明における混合工程では、酸基を有する樹脂とアニオン性界面活性剤とをそのまま混合しても良いし、あるいは水の存在下でこれらの材料を混合しても良い。   In the mixing step in the present invention, the acid group-containing resin and the anionic surfactant may be mixed as they are, or these materials may be mixed in the presence of water.

本発明の製造方法の第一の態様は、酸基を有する樹脂のガラス転移点以上の温度で、水系媒体、酸、NRで表される3級アミン及び混合物を撹拌し、樹脂乳化物を得る乳化工程を有する。 In the first aspect of the production method of the present invention, the aqueous medium, the acid, the tertiary amine represented by NR 1 R 2 R 3 and the mixture are stirred at a temperature equal to or higher than the glass transition point of the resin having an acid group, An emulsification step of obtaining a resin emulsion.

撹拌装置としては、高速回転式ホモジナイザーや高圧式ホモジナイザーが挙げられる。   Examples of the stirring device include a high-speed rotation type homogenizer and a high-pressure type homogenizer.

本発明では乳化工程において、3級アミンと酸により生じるアミノカチオンが、酸基を有する樹脂の酸基由来の負電荷を遮蔽する。これにより、樹脂の酸基由来の負電荷とアニオン性界面活性との静電反発が弱められ、界面活性剤がより多量かつ均一に近い状態で、樹脂表面に付着すると考えられる。そのため、粒径が小さくシャープな粒度分布を持つ樹脂微粒子の水系分散体が得られる。一方で、水系媒体中のアミノカチオンの濃度が高過ぎる場合、酸基を有する樹脂に対するアミノカチオンの電荷遮蔽効果が強くなりすぎ、樹脂微粒子同士の凝集が生じる。その結果、樹脂微粒子の粒径が大きく、粒度分布がブロードな樹脂微粒子の水系分散体となってしまう。   In the present invention, in the emulsification step, the amino cation generated by the tertiary amine and the acid shields the negative charge derived from the acid group of the resin having an acid group. Thereby, the electrostatic repulsion between the negative charge derived from the acid group of the resin and the anionic surface activity is weakened, and it is considered that the surfactant adheres to the resin surface in a state where the amount of the surface active agent is larger and nearly uniform. Therefore, an aqueous dispersion of resin fine particles having a small particle size and a sharp particle size distribution can be obtained. On the other hand, when the concentration of the amino cation in the aqueous medium is too high, the charge shielding effect of the amino cation with respect to the resin having an acid group becomes too strong, causing aggregation of resin fine particles. As a result, the resin fine particles have a large particle size and a broad dispersion of resin fine particles is obtained.

そのため、本発明の乳化工程では、水相中における3級アミンと酸から生成するアミノカチオンの濃度が、臨界凝集濃度以下である必要がある。尚、本発明におけるアミノカチオンの濃度とは、水相中における3級アミンと酸の濃度のうち、低い方の濃度を意味する。   Therefore, in the emulsification step of the present invention, the concentration of the amino cation generated from the tertiary amine and acid in the aqueous phase needs to be not more than the critical aggregation concentration. The concentration of amino cation in the present invention means the lower concentration of the tertiary amine and acid in the aqueous phase.

臨界凝集濃度は、具体的には、次のような方法で測定される。   Specifically, the critical aggregation concentration is measured by the following method.

まず、3級アミンと酸を添加せずに作製した樹脂微粒子の水系分散体を作製し、該樹脂微粒子の水系分散体における樹脂微粒子の体積分布基準50%粒径を測定する。   First, an aqueous dispersion of resin fine particles prepared without adding a tertiary amine and an acid is prepared, and a volume distribution reference 50% particle diameter of the resin fine particles in the aqueous dispersion of the resin fine particles is measured.

次に、20℃において、クレアミックス2.2S(エム・テクニック社製)で、回転速度10,000r/分で該樹脂微粒子の水系分散体を撹拌しつつ、アミノカチオンの濃度が、5.0mol/Lとなるように、等モルの3級アミンと塩酸を水に溶解して作製した水溶液を徐々に添加し、随時、樹脂微粒子の体積分布基準50%粒径を測定する。   Next, at 20 ° C., while stirring the aqueous dispersion of the resin fine particles with Claremix 2.2S (manufactured by M Technique Co., Ltd.) at a rotation speed of 10,000 r / min, the concentration of amino cation is 5.0 mol. An aqueous solution prepared by dissolving equimolar tertiary amine and hydrochloric acid in water so as to be / L is gradually added, and the volume distribution standard 50% particle diameter of the resin fine particles is measured as needed.

そして、上記水溶液を添加した水系分散体における樹脂微粒子の体積分布基準50%粒径が、上記水溶液を添加する前の樹脂乳化物における樹脂微粒子の体積分布基準50%粒径の1.5倍を超えた時点での、水相におけるアミノカチオンの濃度を臨界凝集濃度とする。   The volume distribution standard 50% particle size of the resin fine particles in the aqueous dispersion to which the aqueous solution is added is 1.5 times the volume distribution standard 50% particle size of the resin fine particles in the resin emulsion before the aqueous solution is added. The concentration of the amino cation in the aqueous phase at the time when the concentration is exceeded is defined as the critical aggregation concentration.

樹脂微粒子の粒径の測定には、動的光散乱式粒度分布測定装置(ナノトラックUPA150:日機装社製)を用い、該装置の操作マニュアルに従い粒径を測定する。   For measuring the particle size of the resin fine particles, a dynamic light scattering particle size distribution measuring device (Nanotrack UPA150: manufactured by Nikkiso Co., Ltd.) is used, and the particle size is measured according to the operation manual of the device.

本発明における3級アミンと酸の量は、水相中のアミノカチオンの濃度が臨界凝集濃度以下となればよいが、3級アミンと酸のいずれかの量が多いと、例えば樹脂ポリエステルを使用した場合、水相のpHが、塩基性または酸性にる場合があり、樹脂の加水分解を促進してしまう。このことから、3級アミンと酸は、等モル量添加することが好ましい。 本発明における乳化工程では、水系媒体、酸、下記式1で表される3級アミン及び混合物の撹拌が行われる。
NR 式1
[式1において、R、R及びは、それぞれ、ヒドロキシル基を有していてもよい炭素数1以上以下の炭化水素基を表。]
In the present invention, the amount of the tertiary amine and the acid may be such that the concentration of the amino cation in the aqueous phase is equal to or less than the critical aggregation concentration. If the amount of either the tertiary amine or the acid is large, for example, a resin polyester is used. If you, pH of the aqueous phase, may Ru polarized in basic or acidic, thereby promoting the hydrolysis of resin. From this, it is preferable to add equimolar amounts of the tertiary amine and the acid. In the emulsification step in the present invention, an aqueous medium, an acid, a tertiary amine represented by the following formula 1 and a mixture are stirred.
NR 1 R 2 R 3 Formula 1
[In formula 1, R 1, R 2, and R 3, respectively, to display the good number 1 to 8 hydrocarbon group carbon atoms which may have a hydroxyl group. ]

式1におけるR、R、Rは、それぞれ、炭素数1以上以下の炭化水素基、もしくはヒドロキシル基を有する炭素数1以上以下の炭化水素基であることが好ましい。また、式1におけるR、R、Rは、それぞれ、炭素数1以上以下の炭化水素基、もしくはヒドロキシル基を有する炭素数2の炭化水素基であることがより好ましい。3級アミンとしては、具体的には、以下の化合物が挙げられる。2−(ジメチルアミノ)エタノール、2−ジエチルアミノエタノール、2−(ジブチルアミノ)エタノール、N−エチルジエタノールアミン、トリエタノールアミン、トリエチルアミン、トリプロピルアミン、トリアミルアミン、トリヘキシルアミン、トリ−n−オクチルアミン、トリドデシルアミン。これらの3級アミンの中でも、樹脂微粒子の水系分散体の保存安定性の観点から、2−(ジメチルアミノ)エタノール、2−ジエチルアミノエタノール、2−(ジブチルアミノ)エタノール、N−エチルジエタノールアミンからなる群から選択される1以上の3級アミンを用いることが特に好ましい。 R 1, R 2, R 3 in Formula 1, respectively, is preferably a hydrocarbon group having 1 to 3 carbon atoms having a hydrocarbon group or a hydroxyl group, having 1 to 8 carbon atoms. R 1 , R 2 and R 3 in Formula 1 are each more preferably a hydrocarbon group having 1 to 8 carbon atoms or a hydrocarbon group having 2 carbon atoms having a hydroxyl group. Specific examples of the tertiary amine include the following compounds. 2- (dimethylamino) ethanol, 2-diethylaminoethanol, 2- (dibutylamino) ethanol, N-ethyldiethanolamine, triethanolamine, triethylamine, tripropylamine, triamylamine, trihexylamine, tri-n-octylamine , Tridodecylamine. Among these tertiary amines, the group consisting of 2- (dimethylamino) ethanol, 2-diethylaminoethanol, 2- (dibutylamino) ethanol, and N-ethyldiethanolamine from the viewpoint of storage stability of the aqueous dispersion of resin fine particles. It is particularly preferred to use one or more tertiary amines selected from

3級アミンは、SP値が17以上28以下であることが好ましく、19以上25以下であることがより好ましい。3級アミンのSP値が前記範囲内であることによって、樹脂微粒子の水系分散体の保存安定性が良好となる。 The tertiary amine preferably has an SP value of 17 or more and 28 or less , and more preferably 19 or more and 25 or less . When the SP value of the tertiary amine is within the above range, the storage stability of the aqueous dispersion of resin fine particles is improved.

SP値(溶解性パラメータ(δ))は、2つ以上の化合物の親和性の目安となる指標の一つであり、分子の凝集エネルギーの平方根で表わされる。SP値は、Hansen溶解度パラメータ(HSPiP第3版,Ver.3.1.14)を使用し、化合物の構造式から算出する。なお、アミンのSP値は、酸で中和されていないアミンの状態で算出する。   The SP value (solubility parameter (δ)) is one of the indexes serving as a measure of the affinity of two or more compounds, and is represented by the square root of the cohesive energy of molecules. The SP value is calculated from the structural formula of the compound using the Hansen solubility parameter (HSPiP 3rd edition, Ver. 3.1.14). In addition, the SP value of amine is calculated in the state of an amine that is not neutralized with an acid.

本発明で用いられる酸としては、塩酸、硝酸、燐酸、硫酸等の無機酸;酢酸、乳酸、グリコール酸、クエン酸、コハク酸、マレイン酸等の有機酸が挙げられる。   Examples of the acid used in the present invention include inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid and sulfuric acid; and organic acids such as acetic acid, lactic acid, glycolic acid, citric acid, succinic acid and maleic acid.

乳化工程では、必要に応じ塩基性物質を添加してもよい。酸基を有する樹脂をそのまま水系媒体中で微粒化させるとpHが3〜4となり、例えば、酸基を有する樹脂がポリエステル樹脂等の加水分解性樹脂である場合には、樹脂の加水分解が促進してしまう。従って、特に加水分解性樹脂を用いる場合には、塩基性物質を添加することが好ましい。塩基性物質としては、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、及び、炭酸水素カリウム等の無機塩基類;ジメチルアミン、ジエチルアミン、及びトリエチルアミン等の有機塩基類が挙げられる。この中でも、塩基性条件下での加水分解抑制の観点から、弱塩基である、ジメチルアミンやトリエチルアミン等のアミンを用いることが好ましい。塩基性物質を用いる場合、水系媒体中のpHが6〜11となるように、添加量を調整することが好ましい。   In the emulsification step, a basic substance may be added as necessary. When an acid group-containing resin is atomized in an aqueous medium as it is, the pH becomes 3-4. For example, when the acid group-containing resin is a hydrolyzable resin such as a polyester resin, the hydrolysis of the resin is accelerated. Resulting in. Therefore, it is preferable to add a basic substance, particularly when using a hydrolyzable resin. Basic substances include inorganic bases such as ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, and potassium bicarbonate; organic bases such as dimethylamine, diethylamine, and triethylamine. Can be mentioned. Among these, from the viewpoint of inhibiting hydrolysis under basic conditions, it is preferable to use weak bases such as dimethylamine and triethylamine. When using a basic substance, it is preferable to adjust the addition amount so that the pH in the aqueous medium is 6 to 11.

本発明の第一の態様における、混合工程及び乳化工程の詳細な手順の一例について説明する。酸基を有する樹脂、界面活性剤、酸及び3級アミンを、塩基性物質が存在している水系媒体中に投入し、次いで混合する。次に、該酸基を有する樹脂のガラス転移点(Tg)より高い温度に加熱し、せん断力を加えながら混合物を撹拌し、乳化物を得る。さらに、得られた乳化物を該樹脂のガラス転移点以下の温度までせん断力を加えて撹拌しながら冷却し、樹脂微粒子の水系分散体を得る。   An example of detailed procedures of the mixing step and the emulsification step in the first aspect of the present invention will be described. A resin having an acid group, a surfactant, an acid and a tertiary amine are put into an aqueous medium in which a basic substance is present, and then mixed. Next, it heats to temperature higher than the glass transition point (Tg) of resin which has this acid group, stirs a mixture, applying a shear force, and obtains an emulsion. Further, the obtained emulsion is cooled with stirring while applying a shearing force to a temperature not higher than the glass transition point of the resin to obtain an aqueous dispersion of resin fine particles.

上記乳化工程において、酸基を有する樹脂の溶融粘度が10Pa・sより大きくなる場合、目的とする粒径の乳化物が得にくくなる場合がある。従って、第一の態様の乳化工程においては、樹脂溶融粘度を10Pa・s以下にするために、酸基を有する樹脂の軟化点以上に加温しながら混合物の撹拌を行う。なお、樹脂溶融粘度とは、水中における樹脂の溶融粘度を意味する。乳化工程における温度は、高い温度が好ましいが、樹脂溶融粘度が10Pa・s以下となる温度で十分である。逆に、乳化工程における温度が高すぎると、樹脂の加水分解が促進される場合があるため、乳化時の温度は150℃以下であることが好ましい。 In the emulsification step, when the melt viscosity of the resin having an acid group is greater than 10 3 Pa · s, it may be difficult to obtain an emulsion having a target particle size. Therefore, in the emulsification step of the first aspect, the mixture is stirred while heating at a temperature equal to or higher than the softening point of the resin having an acid group in order to reduce the resin melt viscosity to 10 3 Pa · s or less. The resin melt viscosity means the resin melt viscosity in water. The temperature in the emulsification step is preferably a high temperature, but a temperature at which the resin melt viscosity is 10 3 Pa · s or less is sufficient. Conversely, if the temperature in the emulsification step is too high, the hydrolysis of the resin may be promoted, and therefore the temperature during emulsification is preferably 150 ° C. or lower.

乳化工程において加熱温度が100℃以上になる場合は、密閉加圧できる容器内で乳化工程を行ってもよい。   When the heating temperature is 100 ° C. or higher in the emulsification step, the emulsification step may be performed in a container that can be hermetically pressurized.

本発明の樹脂微粒子の水系分散体の製造方法では、乳化工程の後、得られた乳化物を、せん断力を加えながら、酸基を有する樹脂のTg以下の温度まで冷却する冷却工程を有することが好ましい。冷却工程での冷却速度は、0.5℃/分以上10.0℃/分以下であることが好ましく、1.0℃/分以上10.0℃/分以下であることがより好ましく、1.0℃/分以上5.0℃/分以下であることが特に好ましい。冷却速度が上記の範囲内であれば、粗大粒子の発生や、樹脂微粒子の粒度分布のブロード化を抑制することができる。なお、樹脂微粒子の水系分散体をTg以下の温度から室温まで冷却する際には、冷却速度は特に制限されない。   In the method for producing an aqueous dispersion of resin fine particles of the present invention, after the emulsification step, the obtained emulsion is cooled to a temperature not higher than Tg of the resin having an acid group while applying a shearing force. Is preferred. The cooling rate in the cooling step is preferably from 0.5 ° C./min to 10.0 ° C./min, more preferably from 1.0 ° C./min to 10.0 ° C./min, It is particularly preferable that the temperature is from 0 ° C / min to 5.0 ° C / min. When the cooling rate is within the above range, generation of coarse particles and broadening of the particle size distribution of resin fine particles can be suppressed. In addition, when cooling the aqueous dispersion of resin fine particles from a temperature of Tg or less to room temperature, the cooling rate is not particularly limited.

樹脂微粒子の水系分散体に含まれる樹脂微粒子は、体積分布基準50%粒径が0.02μm以上1.00μm以下であることが好ましく、0.02μm以上0.40μm以下であることがより好ましい。樹脂微粒子の体積分布基準50%粒径が上記の範囲内であれば、樹脂微粒子の安定性が良好であり、沈降分離が起こりにくい。また、凝集法によるトナーの製造に用いる場合には、トナー1粒子間におけるトナー組成の均一性を保つことが容易となる。   The resin fine particles contained in the aqueous dispersion of resin fine particles preferably have a volume distribution standard 50% particle size of 0.02 μm or more and 1.00 μm or less, and more preferably 0.02 μm or more and 0.40 μm or less. If the volume distribution reference 50% particle diameter of the resin fine particles is within the above range, the stability of the resin fine particles is good, and sedimentation separation hardly occurs. Further, when used for the production of toner by the aggregation method, it becomes easy to maintain the uniformity of the toner composition among the toner particles.

上記樹脂微粒子の体積分布基準50%粒径を上記範囲に調整するためには、界面活性剤の量、塩基性物質の量、3級アミンの量、酸の量、乳化工程時の加熱温度、及び、乳化工程や冷却工程での剪断力の強さを適宜調整するとよい。   In order to adjust the volume distribution standard 50% particle size of the resin fine particles to the above range, the amount of surfactant, the amount of basic substance, the amount of tertiary amine, the amount of acid, the heating temperature during the emulsification step, And it is good to adjust suitably the strength of the shearing force in an emulsification process or a cooling process.

次に、樹脂微粒子の水系分散体の製造方法のうち、第二の態様について説明する。   Next, a second aspect of the method for producing an aqueous dispersion of resin fine particles will be described.

第二の態様においては、酸基を有する樹脂、酸基を有する樹脂が可溶な溶剤を混合して混合物を得る混合工程の後に、せん断力を加えて混合物を撹拌し、樹脂乳化物を得る乳化工程を行う。その際、乳化工程は、水、酸、アニオン性界面活性剤、及び3級アミンの存在下で行われる。   In the second embodiment, after the mixing step of mixing a resin having an acid group and a solvent in which the resin having an acid group is soluble to obtain a mixture, a shearing force is applied to stir the mixture to obtain a resin emulsion. An emulsification step is performed. In that case, an emulsification process is performed in presence of water, an acid, an anionic surfactant, and a tertiary amine.

第二の態様における、酸基を有する樹脂、アニオン性界面活性剤、塩基性物質、酸、3級アミンについては、第一の態様で述べたものと同様のものを使用することができる。   Regarding the resin having an acid group, the anionic surfactant, the basic substance, the acid, and the tertiary amine in the second embodiment, the same as those described in the first embodiment can be used.

第二の態様で用いられる、樹脂が可溶な溶剤とは、室温から乳化温度の範囲で、溶剤100質量部に対して、酸基を有する樹脂10質量部を溶解させることが可能な溶剤を意味する。溶剤は水溶性でも非水溶性でも良いが、溶剤の除去の観点から、比較的沸点が低い水溶性溶剤が好ましい。具体的には、酢酸エチル、酢酸ブチル、メチルエチルケトン、テトラヒドロフラン、ジオキサン、メタノール、エタノール、イソプロピルアルコールが挙げられ、これらの溶剤は、単独で又は2種以上を混合して用いることができる。   The resin-soluble solvent used in the second embodiment is a solvent capable of dissolving 10 parts by mass of an acid group-containing resin with respect to 100 parts by mass of the solvent in a range from room temperature to an emulsification temperature. means. The solvent may be water-soluble or water-insoluble, but a water-soluble solvent having a relatively low boiling point is preferable from the viewpoint of removing the solvent. Specific examples include ethyl acetate, butyl acetate, methyl ethyl ketone, tetrahydrofuran, dioxane, methanol, ethanol and isopropyl alcohol. These solvents can be used alone or in admixture of two or more.

第二の態様における乳化工程では、第一の態様と同様の、乳化装置、塩基性物質、水溶性無機塩を使用することができる。   In the emulsification step in the second aspect, the same emulsification apparatus, basic substance, and water-soluble inorganic salt as in the first aspect can be used.

第二の態様における、混合工程及び乳化工程の詳細な手順の一例について説明する。酸基を有する樹脂、アニオン性界面活性剤、塩基性物質、及び樹脂が可溶な溶剤を投入し、樹脂が溶剤に均一に溶解するまで撹拌を行う。次いで、せん断力を加えながら、酸、水及び3級アミンの混合物を滴下し、樹脂を転相乳化させる。転相乳化を行う際の温度は、取扱上の観点から溶剤の沸点以下であることが好ましく、室温条件下で行うことがより好ましい。その後、加熱又は減圧して溶剤を除去することで、樹脂微粒子の水系分散体を得る。   An example of detailed procedures of the mixing step and the emulsification step in the second aspect will be described. A resin having an acid group, an anionic surfactant, a basic substance, and a solvent in which the resin is soluble are added, and stirring is performed until the resin is uniformly dissolved in the solvent. Next, while applying a shearing force, a mixture of an acid, water and a tertiary amine is added dropwise to phase inversion emulsify the resin. The temperature at which phase inversion emulsification is carried out is preferably below the boiling point of the solvent from the viewpoint of handling, and more preferably at room temperature. Thereafter, the solvent is removed by heating or decompression to obtain an aqueous dispersion of resin fine particles.

上記樹脂微粒子の体積分布基準50%粒径を所望の範囲に調整するためには、界面活性剤の量、塩基性物質の量、3級アミンの量、酸の量、樹脂が可溶な溶剤の量、乳化工程時の剪断力の強さを適宜調整するとよい。   In order to adjust the volume distribution reference 50% particle size of the resin fine particles to a desired range, the amount of surfactant, the amount of basic substance, the amount of tertiary amine, the amount of acid, the solvent in which the resin is soluble And the strength of the shearing force during the emulsification step may be appropriately adjusted.

なお、第二の態様において、アニオン性界面活性剤は、必ずしも混合工程から添加する必要は無く、例えば乳化工程において、水、酸、3級アミンと共に添加しても良い。   In the second embodiment, the anionic surfactant is not necessarily added from the mixing step, and may be added together with water, acid, and tertiary amine in the emulsification step, for example.

<トナーの製造方法>
本発明で得られた樹脂微粒子の水系分散体は、凝集法等のトナーの製造に用いることが可能である。凝集法によってトナーを製造する場合、上記樹脂微粒子の水系分散体と着色剤とを混合し、樹脂微粒子及び着色剤を水系媒体中で凝集させ凝集体を形成する凝集工程、前記凝集体を加熱し融合させる融合工程を経て、トナーを得る。以下、トナーの製造方法について詳細に説明するが、本発明におけるトナーの製造方法は下記方法に限定されるものではない。
<Toner production method>
The aqueous dispersion of resin fine particles obtained in the present invention can be used for toner production such as an agglomeration method. When the toner is produced by a coagulation method, by mixing the colorant with an aqueous dispersion of the resin fine particles, aggregating step of forming an aggregate of the resin fine particles and colorant are aggregated in an aqueous medium, heating the aggregates and, through the fusion process Ru fused to obtain toner. Hereinafter, the toner production method will be described in detail, but the toner production method in the present invention is not limited to the following method.

凝集工程では、上述の樹脂微粒子の水系分散体、着色剤微粒子の水系分散体、さらに必要に応じて、例えば離型剤のようなトナー成分を、混合して混合液を調製し、混合液中に含まれる粒子を凝集し、凝集体を形成する。凝集体を形成するための方法としては、例えば、凝集剤を上記混合液中に添加・混合し、温度を調整したり、機械的動力を適宜加えたりする方法が挙げられる。   In the agglomeration step, the above-mentioned aqueous dispersion of resin fine particles, an aqueous dispersion of colorant fine particles, and, if necessary, a toner component such as a release agent are mixed to prepare a liquid mixture. The particles contained in the particles are aggregated to form aggregates. Examples of the method for forming the aggregate include a method in which a flocculant is added and mixed in the above-mentioned mixed solution, the temperature is adjusted, and mechanical power is appropriately applied.

着色剤は、顔料であっても染料であってもよいが、耐光性等の観点から顔料が好ましく使用される。なお、この場合の顔料とは、水に対して不溶な、有機または無機の有色の化合物のことである。   The colorant may be a pigment or a dye, but a pigment is preferably used from the viewpoint of light resistance and the like. In this case, the pigment is an organic or inorganic colored compound that is insoluble in water.

無機系顔料としては、以下のものが挙げられる。コバルトブルー、セルシアンブルー、コバルトバイオレット、コバルトグリーン、ジンクホワイト、チタニウムホワイト、ライトレッド、クロムオキサイドグリーン、マルスブラック等の酸化物顔料;ビリジャン、イェローオーカー、アルミナホワイト等の水酸化物顔料;ウルトラマリーン、タルク、ホワイトカーボン等のケイ酸塩顔料;金粉、銀粉、ブロンズ粉等の金属粉;カーボンブラック。有機系顔料としては、以下のものが挙げられる。βナフトール系アゾ化合物、ナフトールAS系アゾ化合物、モノアゾ型あるいはジスアゾ型アセト酢酸アリリド系アゾ化合物、ピラゾン系アゾ化合物、縮合系アゾ顔料、フタロシアニン系化合物、サブフタロシアニン系化合物、ポルフィリン系化合物、キナクリドン系化合物、イソインドリン系化合物、イソインドリノン系化合物、スレン系化合物、ペリレン系化合物、ぺリノン系化合物、チオインジゴ系化合物、ジオキサジン化合物、キノフタロン系化合物、ジケトピロロピロール系化合物。以下に、黒、シアン、マゼンタ、イエローにおいて、市販されている色材を例示する。   The following are mentioned as an inorganic pigment. Oxide pigments such as cobalt blue, celsian blue, cobalt violet, cobalt green, zinc white, titanium white, light red, chrome oxide green, and mars black; hydroxide pigments such as viridan, yellow ocher, and alumina white; ultramarine Silicate pigments such as talc and white carbon; metal powders such as gold powder, silver powder and bronze powder; carbon black. The following are mentioned as an organic pigment. β-naphthol azo compounds, naphthol AS azo compounds, monoazo or disazo acetoacetate allylide azo compounds, pyrazone azo compounds, condensed azo pigments, phthalocyanine compounds, subphthalocyanine compounds, porphyrin compounds, quinacridone compounds , Isoindoline compounds, isoindolinone compounds, selenium compounds, perylene compounds, perinone compounds, thioindigo compounds, dioxazine compounds, quinophthalone compounds, diketopyrrolopyrrole compounds. The following are examples of commercially available color materials for black, cyan, magenta, and yellow.

黒色の色材としては、Raven1060、Raven1080、Raven1170、Raven1200、Raven1250、Raven1255、Raven1500、Raven2000、Raven3500、Raven5250、Raven5750、Raven7000、Raven5000 ULTRAII、Raven1190 ULTRAII(以上、コロンビアン・カーボン社製);Black Pearls L、MOGUL−L、Regal400R、Regal660R、Regal330R、Monarch 800、Monarch 880、Monarch 900、Monarch 1000、Monarch 1300、Monarch 1400(以上、キャボット社製);Color Black FW1、Color Black FW2、Color Black FW200、Color Black 18、Color Black S160、Color Black S170、Special Black 4、Special Black 4A、Special Black 6、Printex35、PrintexU、Printex140U、PrintexV、Printex140V(以上デグッサ社製);No.25、No.33、No.40、No.47、No.52、No.900、No.2300、MCF−88、MA600、MA7、MA8、MA100(以上三菱化学社製)が挙げられる。   Raven1060, Raven1080, Raven1170, Raven1200, Raven1250, Raven1255, Raven1500, Raven2000, Raven3500, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000 , MOGUL-L, Regal 400R, Regal 660R, Regal 330R, Monarch 800, Monarch 880, Monarch 900, Monarch 1000, Monarch 1300, Monarch 1400 (above, manufactured by Cabot Corporation); Color Black F 1, Color Black FW2, Color Black FW200, Color Black 18, Color Black S160, Color Black S170, Special Black 4P, Special Black 4A, Special Black 140P, BlackPr 140, Color Black S170, Color Black S170, Color Black S170, Special Black No. 25, no. 33, no. 40, no. 47, no. 52, no. 900, no. 2300, MCF-88, MA600, MA7, MA8, MA100 (manufactured by Mitsubishi Chemical Corporation).

シアン色の色材としては、C.I.Pigment Blue−1、C.I.Pigment Blue−2、C.I.Pigment Blue−3、C.I.Pigment Blue−15、C.I.Pigment Blue−15:2、C.I.Pigment Blue−15:3、C.I.Pigment Blue−15:4、C.I.Pigment Blue−16、C.I.Pigment Blue−22、C.I.Pigment Blue−60等が挙げられる。   Examples of cyan color materials include C.I. I. Pigment Blue-1, C.I. I. Pigment Blue-2, C.I. I. Pigment Blue-3, C.I. I. Pigment Blue-15, C.I. I. Pigment Blue-15: 2, C.I. I. Pigment Blue-15: 3, C.I. I. Pigment Blue-15: 4, C.I. I. Pigment Blue-16, C.I. I. Pigment Blue-22, C.I. I. Pigment Blue-60 and the like.

マゼンタ色の色材としては、C.I.Pigment Red−5、C.I.Pigment Red−7、C.I.Pigment Red−12、C.I.Pigment Red−48、C.I.Pigment Red−48:1、C.I.Pigment Red−57、C.I.Pigment Red−112、C.I.Pigment Red−122、C.I.Pigment Red−123、C.I.Pigment Red−146、C.I.Pigment Red−168、C.I.Pigment Red−184、C.I.Pigment Red−202、C.I.Pigment Red−207等が挙げられる。   Examples of the magenta color material include C.I. I. Pigment Red-5, C.I. I. Pigment Red-7, C.I. I. Pigment Red-12, C.I. I. Pigment Red-48, C.I. I. Pigment Red-48: 1, C.I. I. Pigment Red-57, C.I. I. Pigment Red-112, C.I. I. Pigment Red-122, C.I. I. Pigment Red-123, C.I. I. Pigment Red-146, C.I. I. Pigment Red-168, C.I. I. Pigment Red-184, C.I. I. Pigment Red-202, C.I. I. Pigment Red-207 and the like.

イエローの色材としては、C.I.Pigment Yellow−12、C.I.Pigment Yellow−13、C.I.Pigment Yellow−14、C.I.Pigment Yellow−16、C.I.Pigment Yellow−17、C.I.Pigment Yellow−74、C.I.Pigment Yellow−83、C.I.Pigment Yellow−93、C.I.PigmentYellow−95、C.I.Pigment Yellow−97、C.I.Pigment Yellow−98、C.I.Pigment Yellow−114、C.I.Pigment Yellow−128、C.I.Pigment Yellow−129、C.I.Pigment Yellow−151、C.I.Pigment Yellow−154等が挙げられる。   Examples of yellow color materials include C.I. I. Pigment Yellow-12, C.I. I. Pigment Yellow-13, C.I. I. Pigment Yellow-14, C.I. I. Pigment Yellow-16, C.I. I. Pigment Yellow-17, C.I. I. Pigment Yellow-74, C.I. I. Pigment Yellow-83, C.I. I. Pigment Yellow-93, C.I. I. Pigment Yellow-95, C.I. I. Pigment Yellow-97, C.I. I. Pigment Yellow-98, C.I. I. Pigment Yellow-114, C.I. I. Pigment Yellow-128, C.I. I. Pigment Yellow-129, C.I. I. Pigment Yellow-151, C.I. I. Pigment Yellow-154 and the like.

離型剤としては、以下のものが挙げられる。ポリエチレン等の低分子量ポリオレフィン類;融点(軟化点)を有するシリコーン類;オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等の脂肪酸アミド類;ステアリン酸ステアリル等のエステルワックス類;カルナバワックス、ライスワックス、キャンデリラワックス、木ロウ、ホホバ油等の植物系ワックス;ミツロウ等の動物系ワックス;モンタンワックス、オゾケライト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス、エステルワックス等の鉱物・石油系ワックス;及びそれらの変性物などが挙げられる。   Examples of the release agent include the following. Low molecular weight polyolefins such as polyethylene; silicones having a melting point (softening point); fatty acid amides such as oleic acid amide, erucic acid amide, ricinoleic acid amide, stearic acid amide; ester waxes such as stearyl stearate; carnauba wax Plant waxes such as rice wax, candelilla wax, tree wax and jojoba oil; animal waxes such as beeswax; minerals such as montan wax, ozokerite, ceresin, paraffin wax, microcrystalline wax, Fischer-Tropsch wax and ester wax Petroleum wax; and modified products thereof.

トナーには必要に応じて帯電制御剤を添加してもよい。帯電制御剤としてはクロム系アゾ染料、鉄系アゾ染料、アルミニウムアゾ染料、サリチル酸金属錯体や高分子系帯電制御剤などが使用できる。   A charge control agent may be added to the toner as necessary. As the charge control agent, a chrome azo dye, an iron azo dye, an aluminum azo dye, a salicylic acid metal complex, a polymer charge control agent, or the like can be used.

凝集剤としては、例えば、ナトリウム、カリウム等の一価の金属の金属塩;カルシウム、マグネシウム等の二価の金属の金属塩;鉄、アルミニウム等の三価の金属の金属塩が挙げられる。凝集剤を添加、混合する際には、混合液中に含まれる樹脂粒子(酸基を有する樹脂)のガラス転移点(Tg)以下の温度であることが好ましい。この温度条件下で上記混合を行うと、凝集が安定した状態で進行する。上記混合は、公知の混合装置、ホモジナイザー、ミキサー等を用いて行うことができる。   Examples of the flocculant include metal salts of monovalent metals such as sodium and potassium; metal salts of divalent metals such as calcium and magnesium; metal salts of trivalent metals such as iron and aluminum. When adding and mixing the flocculant, the temperature is preferably equal to or lower than the glass transition point (Tg) of the resin particles (resin having an acid group) contained in the mixed solution. When the above mixing is performed under this temperature condition, aggregation proceeds in a stable state. The said mixing can be performed using a well-known mixing apparatus, a homogenizer, a mixer, etc.

ここで形成される凝集体の平均粒径としては、特に制限はないが、通常、得ようとするトナー粒子の平均粒径と同じ程度になるように制御するとよい。凝集体の平均粒径の制御は、例えば、上記凝集剤等の添加・混合時の温度と上記攪拌混合の条件を適宜設定・変更することにより容易に行うことができる。   The average particle size of the aggregate formed here is not particularly limited, but it is usually preferable to control the average particle size to be approximately the same as the average particle size of the toner particles to be obtained. The average particle size of the aggregate can be easily controlled by, for example, appropriately setting / changing the temperature at the time of addition / mixing of the flocculant or the like and the conditions of the stirring / mixing.

融合工程とは、上記凝集体を、第一の樹脂のガラス転移点(Tg)以上に加熱し融合させることで、凝集体表面を平滑化させたトナー粒子(コア粒子)を得る工程である。本工程により、上記凝集体の表面積が減少し、良好な形状のトナー粒子を得ることが可能になる。また、後述の付着工程にてシェル粒子を付着させる場合、シェル粒子が効率的にコア粒子に付着する。一次融合工程に入る前に、トナー粒子間の融着を防ぐため、キレート剤、pH調整剤、界面活性剤等を適宜投入することができる。 The fusing step, the aggregate, by heating the glass transition point (Tg) or more of the first resin, obtained in Rukoto fused, toner particles aggregate surface was smoothed (core particles) process is there. By this step, the surface area of the agglomerates is reduced, and toner particles having a good shape can be obtained. In addition, when shell particles are attached in the attaching step described later, the shell particles are efficiently attached to the core particles. Before entering the primary fusing step, a chelating agent, a pH adjusting agent, a surfactant and the like can be appropriately added in order to prevent fusion between toner particles.

キレート剤の例としては、エチレンジアミンテトラ酢酸及びそのNa塩等のアルカリ金属塩、グルコン酸ナトリウム、酒石酸ナトリウム、クエン酸カリウム、クエン酸ナトリウム、ニトロトリアセテート塩、COOH及びOHの両方の官能性を含む多くの水溶性ポリマー類(高分子電解質)が挙げられる。   Examples of chelating agents include alkali metal salts such as ethylenediaminetetraacetic acid and its Na salt, sodium gluconate, sodium tartrate, potassium citrate, sodium citrate, nitrotriacetate salts, many containing both functionality of COOH and OH. And water-soluble polymers (polyelectrolytes).

融合工程における加熱温度としては、凝集体に含まれる酸基を有する樹脂のガラス転移点(Tg)から、樹脂が熱分解する温度の間であればよい。加熱・融合の時間としては、加熱の温度が高ければ短い時間で足り、加熱の温度が低ければ長い時間が必要である。即ち、加熱・融合の時間は、加熱の温度に依存するので一概に規定することはできないが、一般的には10分〜10時間である。なお、融合工程の後、必要に応じて下記のトナー冷却工程を行ってもよい。   The heating temperature in the fusion step may be between the glass transition point (Tg) of the resin having an acid group contained in the aggregate and the temperature at which the resin is thermally decomposed. As the heating / fusion time, a short time is sufficient if the heating temperature is high, and a long time is required if the heating temperature is low. That is, the heating / fusion time depends on the temperature of heating and cannot be defined unconditionally, but is generally 10 minutes to 10 hours. Note that the toner cooling step described below may be performed as necessary after the fusing step.

トナー冷却工程とは、上記トナー粒子を含む水系媒体の温度を、酸基を有する樹脂のガラス転移点(Tg)より低い温度まで冷却する工程である。Tgより低い温度まで水系媒体の冷却を行わないと、後述の付着工程を行う場合、凝集剤を添加した際に粗大粒子が発生してしまう。具体的な冷却速度は0.1〜50℃/分である。なお、コア粒子としては、上述した凝集工程及び融合工程を経て得られたものが好ましいが、他の製造方法によって得たコア粒子を用いても良い。   The toner cooling step is a step of cooling the temperature of the aqueous medium containing the toner particles to a temperature lower than the glass transition point (Tg) of the resin having an acid group. If the aqueous medium is not cooled to a temperature lower than Tg, coarse particles are generated when the flocculant is added when the adhesion step described later is performed. A specific cooling rate is 0.1 to 50 ° C./min. In addition, as a core particle, what was obtained through the aggregation process and fusion process mentioned above is preferable, However, You may use the core particle obtained by the other manufacturing method.

次に、コア粒子にシェル粒子を付着させる付着工程について詳細に説明する。付着工程とは、コア粒子に含まれる酸基を有する樹脂(第一の樹脂)のガラス転移点(Tg)より低い温度で、第二の樹脂を有する第二の樹脂微粒子の水系分散体、コア粒子及び凝集剤を混合し、水系分散体中の第二の樹脂微粒子をコア粒子の表面に付着させる工程である。付着工程はトナー冷却工程に次いで実施されることが好ましい。   Next, the attaching process for attaching the shell particles to the core particles will be described in detail. The adhesion step refers to an aqueous dispersion of the second resin fine particles having the second resin and the core at a temperature lower than the glass transition point (Tg) of the resin having the acid group (first resin) contained in the core particles. In this step, the particles and the aggregating agent are mixed to attach the second resin fine particles in the aqueous dispersion to the surface of the core particles. The adhering step is preferably performed after the toner cooling step.

凝集剤としては、ナトリウム、カリウム等の一価の金属の金属塩;カルシウム、マグネシウム等の二価の金属の金属塩;鉄、アルミニウム等の三価の金属の金属塩が挙げられる。凝集剤は、第二の樹脂微粒子の水系分散体と同時に混合しても良いし、またその前後に混合しても良い。なお、付着工程の後、必要に応じて下記の二次融合工程および洗浄、二次冷却工程を行ってもよい。   Examples of the flocculant include metal salts of monovalent metals such as sodium and potassium; metal salts of divalent metals such as calcium and magnesium; metal salts of trivalent metals such as iron and aluminum. The flocculant may be mixed simultaneously with the aqueous dispersion of the second resin fine particles, or may be mixed before and after that. In addition, you may perform the following secondary fusion process, washing | cleaning, and a secondary cooling process as needed after an adhesion process.

二次融合工程とは、付着工程により得られたシェル付着体を、酸基を有する樹脂(第一の樹脂)のガラス転移点(Tg)以上に加熱し融合させることで、粒子表面を平滑化する工程である。二次融合工程により、コア樹脂とシェル樹脂が十分に固着され、後述の洗浄やろ過等の操作で、シェルがコア粒子から脱離することを抑制する。二次融合工程に入る前に、トナー粒子間の融着を防ぐため、キレート剤、pH調整剤、界面活性剤等を適宜投入することができる。 The secondary fusing step, the resulting shell adhering member by adhesion process, by heating the glass transition point (Tg) or more of the resin (first resin) having an acid group, in Rukoto fusing, the particle surface This is a smoothing process. The core resin and the shell resin are sufficiently fixed by the secondary fusion process, and the shell is prevented from being detached from the core particles by operations such as washing and filtration described later. Before entering the secondary fusion step, a chelating agent, a pH adjuster, a surfactant, and the like can be appropriately added in order to prevent fusion between toner particles.

二次融合工程における加熱温度としては、凝集体に含まれる酸基を有する樹脂のガラス転移点(Tg)から樹脂が熱分解する温度の間であればよい。加熱・融合の時間としては、加熱の温度が高ければ短い時間で足り、加熱の温度が低ければ長い時間が必要である。即ち、加熱・融合の時間は、加熱の温度に依存するので一概に規定することはできないが、一般的には10分〜10時間である。   The heating temperature in the secondary fusion step may be between the glass transition point (Tg) of the resin having an acid group contained in the aggregate and the temperature at which the resin is thermally decomposed. As the heating / fusion time, a short time is sufficient if the heating temperature is high, and a long time is required if the heating temperature is low. That is, the heating / fusion time depends on the temperature of heating and cannot be defined unconditionally, but is generally 10 minutes to 10 hours.

二次融合工程の後に、得られた粒子を適切な条件で室温まで冷却し、洗浄、ろ過、乾燥等することにより、トナー粒子を得る。更に、得られたトナー粒子の表面に、シリカ、アルミナ、チタニア、炭酸カルシウム等の無機粒体や、ビニル系樹脂、ポリエステル樹脂、シリコーン樹脂等の樹脂粒子を添加してもよい。これらの無機粒体や樹脂粒子は、流動性助剤やクリーニング助剤等の外添剤として機能する。   After the secondary coalescence step, the obtained particles are cooled to room temperature under appropriate conditions, and washed, filtered, dried, etc. to obtain toner particles. Further, inorganic particles such as silica, alumina, titania and calcium carbonate, and resin particles such as vinyl resin, polyester resin and silicone resin may be added to the surface of the obtained toner particles. These inorganic particles and resin particles function as external additives such as fluidity aids and cleaning aids.

トナーの重量平均粒径(D4)は4.5〜7.0μmであることが好ましく、5.0〜6.5μmであることがより好ましい。   The weight average particle diameter (D4) of the toner is preferably 4.5 to 7.0 μm, and more preferably 5.0 to 6.5 μm.

以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれらに限定されない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, the aspect of this invention is not limited to these.

<樹脂のテトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフィー(GPC)により測定される分子量分布、重量平均分子量(Mw)、数平均分子量(Mn)等の測定>
樹脂微粒子のTHF可溶分のGPCにより測定される分子量分布及び重量平均分子量(Mw)、数平均分子量(Mn)等は以下のように求められる。
<Measurement of Molecular Weight Distribution, Weight Average Molecular Weight (Mw), Number Average Molecular Weight (Mn), etc. Measured by Gel Permeation Chromatography (GPC) of Resin Tetrahydrofuran (THF)>
The molecular weight distribution, weight average molecular weight (Mw), number average molecular weight (Mn) and the like measured by GPC of the THF soluble content of the resin fine particles are determined as follows.

40℃のヒートチャンバ中でカラムを安定化させ、この温度におけるカラムに、溶媒としてテトラヒドロフラン(THF)を毎分1mlの流速で流し、THF試料溶液を約100μl注入して測定する。試料の分子量測定にあたっては、試料の有する分子量分布を、数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出する。検量線作成用の標準ポリスチレン試料としては、例えば、東ソー社製或いは、昭和電工社製の分子量が10〜10程度のものを用い、少なくとも10点程度の標準ポリスチレン試料を用いるのが適当である。検出器にはRI(屈折率)検出器を用いる。カラムとしては、市販のポリスチレンジェルカラムを複数本組み合わせるのが良く、例えば昭和電工社製のshodex GPC KF−801,802,803,804,805,806,807,800Pの組み合わせや、東ソー社製のTSKgelG1000H(HXL),G2000H(HXL),G3000H(HXL),G4000H(HXL),G5000H(HXL),G6000H(HXL),G7000H(HXL),TSKguardcolumnの組み合わせが挙げられる。 The column is stabilized in a heat chamber at 40 ° C., and tetrahydrofuran (THF) as a solvent is allowed to flow through the column at this temperature at a flow rate of 1 ml / min, and about 100 μl of THF sample solution is injected and measured. In measuring the molecular weight of a sample, the molecular weight distribution of the sample is calculated from the relationship between the logarithmic value of a calibration curve prepared from several types of monodisperse polystyrene standard samples and the number of counts. As a standard polystyrene sample for preparing a calibration curve, for example, a standard polystyrene sample having a molecular weight of about 10 2 to 10 7 manufactured by Tosoh Corporation or Showa Denko is preferably used. is there. An RI (refractive index) detector is used as the detector. As the column, it is preferable to combine a plurality of commercially available polystyrene gel columns. Examples include combinations of TSKgel G1000H (HXL), G2000H (HXL), G3000H (HXL), G4000H (HXL), G5000H (HXL), G6000H (HXL), G7000H (HXL), and TSKguardcolumn.

試料は以下のようにして作製する。
樹脂(試料)をテトラヒドロフラン(THF)中に入れ、数時間放置した後、十分振とうし、試料の合一体がなくなるまでTHFと良く混ぜ、更に12時間以上静置する。このとき、THF中への放置時間が24時間以上となるようにする。その後、サンプル処理フィルター(ポアサイズ0.45〜0.5μm、例えば、マイショリディスクH−25−5:東ソー社製、エキクロディスク25CR:ゲルマン・サイエンス・ジャパン社製などが利用できる)を通過させたものを、GPCの試料とする。試料濃度は、樹脂成分が0.5〜5mg/mlとなるように調整する。
The sample is prepared as follows.
Place the resin (sample) in tetrahydrofuran (THF), leave it for several hours, shake well, mix well with THF until the sample is no longer united, and let stand for more than 12 hours. At this time, the standing time in THF is set to be 24 hours or longer. Thereafter, a sample processing filter (pore size 0.45 to 0.5 μm, for example, Mysori Disc H-25-5: manufactured by Tosoh Corporation, Excro Disc 25CR: manufactured by Gelman Science Japan Co., Ltd., etc. can be used) is passed. This is used as a GPC sample. The sample concentration is adjusted so that the resin component is 0.5 to 5 mg / ml.

<樹脂の酸価の測定>
樹脂の酸価は以下のように求められる。尚、基本操作は、JIS−K0070に準ずる。酸価は試料1g中に含有されている酸基を中和するのに要する水酸化カリウムのmg数を示す。
(1)試薬
(a)溶剤:エチルエーテル−エチルアルコール混液(1+1または2+1)またはベンゼン−エチルアルコール混液(1+1または2+1)を使用直前にフェノールフタレインを指示薬としてN/10水酸化カリウムエチルアルコール溶液で中和しておく。
(b)フェノールフタレイン溶液:フェノールフタレイン1gをエチルアルコール(95v/v%)100mlに溶かす。
(c)N/10水酸化カリウム−エチルアルコール溶液:水酸化カリウム7.0gをできるだけ少量の水に溶かしエチルアルコール(95v/v%)を加えて1リットルとし、2〜3日放置後ろ過する。標定はJIS K 8006(試薬の含量試験中滴定に関する基本事項)に準じて行う。
<Measurement of acid value of resin>
The acid value of the resin is determined as follows. The basic operation conforms to JIS-K0070. The acid value indicates the number of mg of potassium hydroxide required to neutralize the acid group contained in 1 g of the sample.
(1) Reagent (a) Solvent: N / 10 potassium hydroxide ethyl alcohol solution using phenolphthalein as an indicator immediately before use of ethyl ether-ethyl alcohol mixture (1 + 1 or 2 + 1) or benzene-ethyl alcohol mixture (1 + 1 or 2 + 1) Neutralize with.
(B) Phenolphthalein solution: 1 g of phenolphthalein is dissolved in 100 ml of ethyl alcohol (95 v / v%).
(C) N / 10 potassium hydroxide-ethyl alcohol solution: Dissolve 7.0 g of potassium hydroxide in as little water as possible, add ethyl alcohol (95 v / v%) to 1 liter, leave it for 2 to 3 days, and filter. . The standardization is performed according to JIS K 8006 (basic matters concerning titration during the reagent content test).

(2)操作
樹脂(試料)1〜20gを正しくはかりとり、これに溶剤100ml及び指示薬としてフェノールフタレイン溶液数滴を加え、試料が完全に溶けるまで十分に振る。固体試料の場合は水浴上で加温して溶かす。冷却後これを0.1モル/L水酸化カリウムエチルアルコール溶液で滴定し、指示薬の微紅色が30秒間続いたときを中和の終点とする。
(2) Operation Weigh 1-20 g of resin (sample) correctly, add 100 ml of solvent and a few drops of phenolphthalein solution as an indicator, and shake well until the sample is completely dissolved. In the case of a solid sample, dissolve it by heating on a water bath. After cooling, this was titrated with a 0.1 mol / L potassium hydroxide ethyl alcohol solution, and the end point of neutralization was reached when the indicator was slightly red for 30 seconds.

(3)計算式
次の式によって酸価を算出する。
(3) Calculation formula The acid value is calculated by the following formula.

A=B×f×5.611/S
A:酸価
B:0.1モル/L水酸化カリウムエチルアルコール溶液の使用量(ml)
f:0.1モル/L水酸化カリウムエチルアルコール溶液のファクター
S:試料(g)
A = B × f × 5.661 / S
A: Acid value B: Amount used of 0.1 mol / L potassium hydroxide ethyl alcohol solution (ml)
f: Factor of 0.1 mol / L potassium hydroxide ethyl alcohol solution S: Sample (g)

<樹脂微粒子および着色剤微粒子の粒度分布解析>
上記粒度分布の解析には、動的光散乱式粒度分布測定装置(ナノトラックUPA150:日機装社製)を用い、該装置の操作マニュアルに従い測定する。具体的な測定方法としては、イオン交換水に界面活性剤水溶液を滴下後、樹脂微粒子または着色剤微粒子分散液を機器の最適濃度に調整し、超音波分散機で30秒間分散処理を行う。得られた分散処理液を測定し、体積分布基準の50%粒径及び変動係数を求める。
<Particle size distribution analysis of resin fine particles and colorant fine particles>
For the analysis of the particle size distribution, a dynamic light scattering type particle size distribution measuring device (Nanotrack UPA150: manufactured by Nikkiso Co., Ltd.) is used, and the particle size distribution is measured according to the operation manual of the device. As a specific measurement method, a surfactant aqueous solution is dropped into ion-exchanged water, and then the resin fine particle or colorant fine particle dispersion is adjusted to the optimum concentration of the device, and the dispersion treatment is performed for 30 seconds with an ultrasonic disperser. The obtained dispersion treatment liquid is measured, and the 50% particle size and coefficient of variation based on the volume distribution are obtained.

<トナーの粒度分布解析>
トナーの粒度分布はコールター法による粒度分布解析にて測定する。測定装置として、マルチサイザーIV(コールター社製)を用い、該装置の操作マニュアルに従い測定する。電解液は、1級塩化ナトリウムを用いて、約1%塩化ナトリウム水溶液を調製する。該電解液として、例えば、ISOTON−II(コールターサイエンティフィックジャパン社製)が使用できる。具体的な測定方法としては、前記電解水溶液100〜150ml中に分散剤として、界面活性剤(好ましくはアルキルベンゼンスルホン酸塩)を、0.1〜5ml加え、さらに測定試料(トナー)を2〜20mg加える。試料を懸濁した電解液は、超音波分散器で約1〜3分間分散処理を行う。得られた分散処理液を、アパーチャーとして100μmアパーチャーを装着した前記測定装置により、2.00μm以上のトナーの体積、個数を測定してトナーの体積分布と個数分布とを算出する。その算出結果から、トナーの重量平均粒径(D4)を求める。
<Toner particle size distribution analysis>
The particle size distribution of the toner is measured by particle size distribution analysis by the Coulter method. As a measuring device, Multisizer IV (manufactured by Coulter, Inc.) is used, and measurement is performed according to the operation manual of the device. About 1% sodium chloride aqueous solution is prepared using 1st grade sodium chloride as electrolyte solution. As the electrolytic solution, for example, ISOTON-II (manufactured by Coulter Scientific Japan) can be used. Specifically, 0.1 to 5 ml of a surfactant (preferably alkylbenzene sulfonate) is added as a dispersant in 100 to 150 ml of the electrolytic aqueous solution, and 2 to 20 mg of a measurement sample (toner) is further added. Add. The electrolytic solution in which the sample is suspended is subjected to a dispersion treatment with an ultrasonic disperser for about 1 to 3 minutes. The obtained dispersion treatment liquid is subjected to measurement of the volume and number of toners of 2.00 μm or more by means of the measurement apparatus equipped with a 100 μm aperture as an aperture, and the volume distribution and number distribution of the toner are calculated. From the calculation result, the weight average particle diameter (D4) of the toner is obtained.

<樹脂のガラス転移点(Tg)の測定>
樹脂のガラス転移点(Tg)は、示差走査熱量計(DSC)測定装置(DSC822:メトラー・トレド社製)を用いて測定する。DSC測定では、測定原理から、高精度の内熱式入力補償型の示差走査熱量計で測定を行う。測定方法は、ASTM D3418−82に準じて行う。具体的には、1回昇温、降温させ前履歴を取った後、10℃/分で昇温させた時に測定されるDSC曲線からTg計算する。吸熱前後のベースラインと吸熱による曲線の接線との交点の中心値をTg(℃)とする。
<Measurement of glass transition point (Tg) of resin>
The glass transition point (Tg) of the resin is measured using a differential scanning calorimeter (DSC) measuring device (DSC822: manufactured by METTLER TOLEDO). In the DSC measurement, measurement is performed with a differential scanning calorimeter of high accuracy internal heat input compensation type from the measurement principle. The measurement method is performed according to ASTM D3418-82. Specifically, Tg is calculated from the DSC curve measured when the temperature is raised and lowered once, the previous history is taken, and the temperature is raised at 10 ° C./min. The central value of the intersection point between the baseline before and after the endotherm and the tangent to the endothermic curve is defined as Tg (° C.).

<樹脂の軟化温度(Tm)の測定>
樹脂の軟化温度(Tm)は、フローテスター(CFT−500D:島津製作所社製)を用いて測定される。測定する試料(樹脂)1.5gを秤量し、高さが1.0mmで直径1.0mmのダイを使用し、昇温速度4.0℃/分、予熱時間300秒、荷重5kg、測定温度範囲60.0〜200.0℃の条件で測定を行う。溶融開始温度と溶融終了温度の中間値を軟化温度(Tm)とする。
<Measurement of softening temperature (Tm) of resin>
The softening temperature (Tm) of the resin is measured using a flow tester (CFT-500D: manufactured by Shimadzu Corporation). Weigh 1.5 g of the sample (resin) to be measured, use a die with a height of 1.0 mm and a diameter of 1.0 mm, a heating rate of 4.0 ° C./min, a preheating time of 300 seconds, a load of 5 kg, and a measurement temperature. The measurement is performed in the range of 60.0 to 200.0 ° C. An intermediate value between the melting start temperature and the melting end temperature is defined as a softening temperature (Tm).

<樹脂微粒子の水系分散体の製造>
〔樹脂製造例1〕
ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン50質量部、テレフタル酸28質量部、イソフタル酸20質量部、ジブチル錫オキシド0.03質量部を3つ口フラスコに仕込み、窒素気流下、230℃で24時間撹拌を行った後、トリメリット酸2質量部を添加し、200℃で1時間撹拌を行った。その後、温度を保持しつつ3mmHgの減圧条件下で4時間撹拌することで、Mwが20,500、Mnが7,200、Tgが71℃、酸価が9mgKOH/gのポリエステル樹脂1を得た。
<Production of aqueous dispersion of resin fine particles>
[Resin production example 1]
Three-neck flask containing 50 parts by mass of polyoxypropylene (2.2) -2,2-bis (4-hydroxyphenyl) propane, 28 parts by mass of terephthalic acid, 20 parts by mass of isophthalic acid, and 0.03 parts by mass of dibutyltin oxide After stirring at 230 ° C. for 24 hours under a nitrogen stream, 2 parts by weight of trimellitic acid was added, and stirring was performed at 200 ° C. for 1 hour. Thereafter, the polyester resin 1 having an Mw of 20,500, an Mn of 7,200, a Tg of 71 ° C., and an acid value of 9 mgKOH / g was obtained by stirring for 4 hours under reduced pressure conditions of 3 mmHg while maintaining the temperature. .

〔樹脂製造例2〕
ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン50質量部、テレフタル酸28質量部、イソフタル酸20質量部、ジブチル錫オキシド0.03質量部を3つ口フラスコに仕込み、窒素気流下、230℃で24時間撹拌を行った後、トリメリット酸1質量部を添加し、200℃で1時間撹拌を行った。その後、1mmHgで減圧を行いながら4時間撹拌することで、Mwが21,500、Mnが7,400、Tgが73℃、酸価が2mgKOH/gのポリエステル樹脂2を得た。
[Resin production example 2]
Three-neck flask containing 50 parts by mass of polyoxypropylene (2.2) -2,2-bis (4-hydroxyphenyl) propane, 28 parts by mass of terephthalic acid, 20 parts by mass of isophthalic acid, and 0.03 parts by mass of dibutyltin oxide After stirring at 230 ° C. for 24 hours under a nitrogen stream, 1 part by weight of trimellitic acid was added and stirring was performed at 200 ° C. for 1 hour. Then, the polyester resin 2 having Mw of 21,500, Mn of 7,400, Tg of 73 ° C., and acid value of 2 mgKOH / g was obtained by stirring for 4 hours while reducing the pressure at 1 mmHg.

〔樹脂製造例3〕
ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン50質量部、テレフタル酸28質量部、フマル酸20質量部、ジブチル錫オキシド0.03質量部を3つ口フラスコに仕込み、窒素気流下、230℃で24時間撹拌を行った後、トリメリット酸3質量部を添加し、200℃で30分間撹拌を行った。その後、温度を保持しつつ5mmHgの減圧下で2時間撹拌することで、Mwが22,500、Mnが7,200、Tgが65℃、酸価が13mgKOH/gのポリエステル樹脂3を得た。
[Resin Production Example 3]
Three-neck flask containing 50 parts by mass of polyoxypropylene (2.2) -2,2-bis (4-hydroxyphenyl) propane, 28 parts by mass of terephthalic acid, 20 parts by mass of fumaric acid, and 0.03 parts by mass of dibutyltin oxide After stirring at 230 ° C. for 24 hours under a nitrogen stream, 3 parts by weight of trimellitic acid was added and stirred at 200 ° C. for 30 minutes. Then, the polyester resin 3 with Mw of 22,500, Mn of 7,200, Tg of 65 ° C., and acid value of 13 mgKOH / g was obtained by stirring for 2 hours under a reduced pressure of 5 mmHg while maintaining the temperature.

〔実施例1〕
・ポリエステル樹脂1 430質量部
・水系媒体(イオン交換水) 490.6質量部
・アニオン界面活性剤(第一工業製薬社製:ネオゲンRK) 86.0質量部
・樹脂中和用 塩基性物質(2−ジエチルアミノエタノール) 12.13質量部
アミノカチオンを生成するための材料
・3級アミン(2−(ジメチルアミノ)エタノール、SP値:23.2) 13.37質量部
・酸(1モル/L塩酸) 150質量部
を1,500mlの耐圧丸底ステンレス容器に入れ混合した。水相中のアミノカチオン濃度は、0.234mol/Lであった。
[Example 1]
-Polyester resin 1 430 parts by mass-Aqueous medium (ion-exchanged water) 490.6 parts by mass-Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) 86.0 parts by mass-Basic substance for resin neutralization ( 2-Diethylaminoethanol) 12.13 parts by weight Material for producing amino cation
-Tertiary amine (2- (dimethylamino) ethanol, SP value: 23.2) 13.37 parts by mass-Acid (1 mol / L hydrochloric acid) 150 parts by mass in a 1500 ml pressure-resistant round bottom stainless steel container and mixed did. The amino cation concentration in the aqueous phase was 0.234 mol / L.

次に、高速剪断乳化装置クレアミックス(エム・テクニック社製:CLM−2.2S)を上記耐圧丸底ステンレス容器に密閉接続した。密閉された容器内の混合物を、140℃に加温しながら、クレアミックスのローター回転数を20,000r/分とし10分間剪断分散した。その後、50℃になるまで、20,000r/分の回転を維持しながら、1.0℃/分の冷却速度で冷却を行い、樹脂微粒子の体積分布基準の50%粒径が0.20μm、変動係数が28%である樹脂微粒子の水系分散体1を得た。上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.73mol/Lであった。   Next, a high-speed shearing emulsifier CLEARMIX (M Technique Co., Ltd .: CLM-2.2S) was hermetically connected to the pressure-resistant round bottom stainless steel container. While the mixture in the sealed container was heated to 140 ° C., the Claremix rotor was rotated at a rotational speed of 20,000 r / min for 10 minutes and subjected to shear dispersion. Thereafter, cooling is performed at a cooling rate of 1.0 ° C./min while maintaining rotation of 20,000 r / min until 50 ° C., and the 50% particle size based on the volume distribution of the resin fine particles is 0.20 μm, An aqueous dispersion 1 of resin fine particles having a variation coefficient of 28% was obtained. When the critical aggregation concentration under the above emulsification conditions was separately measured, the critical aggregation concentration was 0.73 mol / L.

尚、樹脂微粒子の水系分散体1を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.20μmであり、良好な分散状態が保たれていた。   The resin fine particle aqueous dispersion 1 was allowed to stand for one month, and then the particle size of the resin fine particle was measured again. As a result, the 50% particle size on the basis of the volume distribution of the resin fine particle was 0.20 μm. The state was kept.

〔比較例1〕
アミノカチオンを生成するための3級アミン及び酸を未添加とし、その質量分のイオン交換水を加えた以外は実施例1と同様にして、樹脂微粒子の水系分散体2を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.35μm、変動係数は110%であり、実施例1に比べ大きく、粒度分布がブロードなものであった。
[Comparative Example 1]
An aqueous dispersion 2 of resin fine particles was obtained in the same manner as in Example 1 except that the tertiary amine and acid for generating the amino cation were not added and ion-exchanged water corresponding to the mass was added. The obtained resin fine particles had a volume distribution standard 50% particle size of 0.35 μm and a coefficient of variation of 110%, which was larger than that of Example 1 and a broad particle size distribution.

尚、樹脂微粒子の水系分散体2を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.46μmであり、乳化直後よりも粒径が大きくなった。   In addition, after the aqueous dispersion 2 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 0.46 μm. Also increased in particle size.

〔実施例2〕
水相中のアミノカチオン濃度を0.077mol/Lにするために、3級アミンとして、2−(ジメチルアミノ)エタノール4.46質量部、酸として、1モル/L塩酸50質量部を用い、総質量の差分のイオン交換水を加えた以外は、実施例1と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.30μm、変動係数が75%である樹脂微粒子の水系分散体3を得た。
[Example 2]
In order to adjust the amino cation concentration in the aqueous phase to 0.077 mol / L, 4.46 parts by mass of 2- (dimethylamino) ethanol as a tertiary amine and 50 parts by mass of 1 mol / L hydrochloric acid as an acid were used. Except for adding ion-exchanged water with a difference in total mass, the same procedure as in Example 1 was performed, and the resin fine particles having a 50% particle size of 0.30 μm based on the volume distribution standard of the resin fine particles and a coefficient of variation of 75% An aqueous dispersion 3 was obtained.

尚、樹脂微粒子の水系分散体3を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.32μmであり、良好な分散状態が保たれていた。   The resin fine particle aqueous dispersion 3 was allowed to stand for one month, and then the particle size of the resin fine particle was measured again. As a result, the 50% particle size on the basis of the volume distribution of the resin fine particle was 0.32 μm. The state was kept.

〔実施例3〕
水相中のアミノカチオン濃度を0.155mol/Lに相当するために、3級アミンとして、2−(ジメチルアミノ)エタノール8.91質量部、酸として、1モル/L塩酸100質量部を用い、総質量の差分のイオン交換水を加えた以外は、実施例1と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.22μm、変動係数が34%である樹脂微粒子の水系分散体4を得た。
Example 3
In order to correspond to an amino cation concentration in the aqueous phase of 0.155 mol / L, 8.91 parts by mass of 2- (dimethylamino) ethanol as a tertiary amine and 100 parts by mass of 1 mol / L hydrochloric acid as an acid were used. Resin fine particles having a 50% particle diameter of 0.22 μm and a coefficient of variation of 34% based on the volume distribution of the resin fine particles, except that ion exchange water having a difference in total mass is added. An aqueous dispersion 4 was obtained.

尚、樹脂微粒子の水系分散体4を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.24μmであり、良好な分散状態が保たれていた。   The aqueous dispersion 4 of resin fine particles was allowed to stand for one month, and then the particle size of the resin fine particles was measured again. As a result, the 50% particle size of the resin fine particles based on the volume distribution was 0.24 μm, and the good dispersion was obtained. The state was kept.

〔実施例4〕
水相中のアミノカチオン濃度を0.314mol/Lにするために、3級アミンとして、2−(ジメチルアミノ)エタノール17.83質量部、酸として、1モル/L塩酸200質量部を用い、総質量の差分のイオン交換水を減らした以外は、実施例1と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.23μm、変動係数が32%である樹脂微粒子の水系分散体5を得た。
Example 4
In order to adjust the amino cation concentration in the aqueous phase to 0.314 mol / L, 17.83 parts by mass of 2- (dimethylamino) ethanol as a tertiary amine and 200 parts by mass of 1 mol / L hydrochloric acid as an acid were used. Except that the ion exchange water of the total mass difference was reduced, the conditions were the same as in Example 1, and the resin fine particles having a 50% particle size of 0.23 μm based on the volume distribution standard of resin fine particles and a coefficient of variation of 32% were used. An aqueous dispersion 5 was obtained.

尚、樹脂微粒子の水系分散体5を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.25μmであり、良好な分散状態が保たれていた。   The resin fine particle aqueous dispersion 5 was allowed to stand for one month, and then the particle size of the resin fine particle was measured again. As a result, the 50% particle size on the basis of the volume distribution of the resin fine particle was 0.25 μm, indicating good dispersion. The state was kept.

〔実施例5〕
水相中のアミノカチオン濃度を0.647mol/Lにするために、3級アミンとして、2−(ジメチルアミノ)エタノール35.66質量部、酸として、1モル/L塩酸400質量部を用い、総質量の差分のイオン交換水を減らした以外は、実施例1と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.33μm、変動係数が102%である樹脂微粒子の水系分散体6を得た。
Example 5
In order to adjust the amino cation concentration in the aqueous phase to 0.647 mol / L, 35.66 parts by mass of 2- (dimethylamino) ethanol as a tertiary amine and 400 parts by mass of 1 mol / L hydrochloric acid as an acid were used. Except that the ion exchange water of the difference in total mass was reduced, it was performed under the same conditions as in Example 1, and the resin fine particles having a volume distribution standard 50% particle size of 0.33 μm and a coefficient of variation of 102% were used. An aqueous dispersion 6 was obtained.

尚、樹脂微粒子の水系分散体6を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.41μmであり、乳化直後よりも粒径がやや大きくなった。   Incidentally, after the aqueous dispersion 6 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 0.41 μm. The particle size was slightly larger.

〔比較例2〕
水相中のアミノカチオン濃度を0.785mol/Lにするために、3級アミンとして、2−(ジメチルアミノ)エタノール42.79質量部、酸として、1モル/L塩酸480質量部を用い、総質量の差分のイオン交換水を減らした以外は、実施例1と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.47μm、変動係数が122%である樹脂微粒子の水系分散体7を得た。これは、乳化中に凝集が起こり、比較例1よりも粒径が大きく、粒度分布が広がったものと考えられる。
[Comparative Example 2]
In order to adjust the amino cation concentration in the aqueous phase to 0.785 mol / L, 42.79 parts by mass of 2- (dimethylamino) ethanol as a tertiary amine and 480 parts by mass of 1 mol / L hydrochloric acid as an acid were used. Except that the ion exchange water of the difference in total mass was reduced, it was performed under the same conditions as in Example 1, and the resin fine particles having a 50% particle size of 0.47 μm based on the volume distribution standard of the resin fine particles and a coefficient of variation of 122%. An aqueous dispersion 7 was obtained. It is considered that this is because aggregation occurs during emulsification, the particle size is larger than that of Comparative Example 1, and the particle size distribution is widened.

尚、樹脂微粒子の水系分散体7を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.55μmであり、乳化直後よりも粒径が大きくなった。   Incidentally, after the aqueous dispersion 7 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 0.55 μm. Also increased in particle size.

〔比較例3〕
アミノカチオンを生成するための酸を未添加とし、その質量分のイオン交換水を加えたした以外は実施例1と同様にして、樹脂微粒子の水系分散体8を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.40μm、変動係数は136%であり、実施例1及び比較例1に比べ大きく、粒度分布がブロードなものであった。
[Comparative Example 3]
An aqueous dispersion 8 of resin fine particles was obtained in the same manner as in Example 1 except that the acid for generating the amino cation was not added and ion-exchanged water corresponding to the mass was added. The obtained resin fine particles had a 50% particle size of 0.40 μm based on volume distribution and a coefficient of variation of 136%, which were larger than those of Example 1 and Comparative Example 1, and the particle size distribution was broad.

尚、樹脂微粒子の水系分散体8を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.56μmであり、乳化直後よりも粒径が大きくなった。   In addition, after the aqueous dispersion 8 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 0.56 μm. Also increased in particle size.

〔実施例6〕
3級アミンとして2−ジエチルアミノエタノール(SP値=20.6)17.58質量部を用い、総質量をイオン交換水量で調整した以外は、実施例1と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.21μm、変動係数が32%である樹脂微粒子の水系分散体9を得た。水相中のアミノカチオン濃度は、0.236mol/Lであった。
Example 6
Except that 17.58 parts by mass of 2-diethylaminoethanol (SP value = 20.6) was used as the tertiary amine and the total mass was adjusted by the amount of ion-exchanged water, the same procedure as in Example 1 was carried out. An aqueous dispersion 9 of resin fine particles having a 50% particle size on the distribution basis of 0.21 μm and a coefficient of variation of 32% was obtained. The amino cation concentration in the aqueous phase was 0.236 mol / L.

尚、樹脂微粒子の水系分散体9を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.23μmであり、良好な分散状態が保たれていた。   After the aqueous dispersion 9 of the resin fine particles was allowed to stand for 1 month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size on the basis of the volume distribution of the resin fine particles was 0.23 μm. The state was kept.

〔実施例7〕
3級アミンとして2−(ジブチルアミノ)エタノール(SP値=19.3)、26.00質量部を用い、総質量をイオン交換水量で調整した以外は、実施例1と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.23μm、変動係数が31%、である樹脂微粒子の水系分散体10を得た。水相中のアミノカチオン濃度は、0.239mol/Lであった。
Example 7
Using 2- (dibutylamino) ethanol (SP value = 19.3) as a tertiary amine, 26.00 parts by mass, and adjusting the total mass with the amount of ion-exchanged water, it was carried out under the same conditions as in Example 1, An aqueous dispersion 10 of resin fine particles having a 50% particle size of 0.23 μm and a coefficient of variation of 31% based on the volume distribution of resin fine particles was obtained. The amino cation concentration in the aqueous phase was 0.239 mol / L.

尚、樹脂微粒子の水系分散体10を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.24μmであり、良好な分散状態が保たれていた。   The resin fine particle aqueous dispersion 10 was allowed to stand for one month, and then the particle size of the resin fine particle was measured again. As a result, the 50% particle size on the basis of the volume distribution of the resin fine particle was 0.24 μm. The state was kept.

〔実施例8〕
3級アミンとしてN−エチルジエタノールアミン(SP値=24.6)、19.98質量部を用い、総質量をイオン交換水量で調整した以外は、実施例1と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.22μm、変動係数が33%である樹脂微粒子の水系分散体11を得た。水相中のアミノカチオン濃度は、0.237mol/Lであった。
Example 8
Using N-ethyldiethanolamine (SP value = 24.6) as a tertiary amine, 19.98 parts by mass, and adjusting the total mass with the amount of ion-exchanged water, the same procedure as in Example 1 was performed. An aqueous dispersion 11 of resin fine particles having a 50% particle size of 0.22 μm based on volume distribution and a variation coefficient of 33% was obtained. The amino cation concentration in the aqueous phase was 0.237 mol / L.

尚、樹脂微粒子の水系分散体11を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.22μmであり、良好な分散状態が保たれていた。   The resin fine particle aqueous dispersion 11 was allowed to stand for one month, and then the particle size of the resin fine particle was measured again. As a result, the 50% particle size on the basis of the volume distribution of the resin fine particle was 0.22 μm, indicating good dispersion. The state was kept.

〔実施例9〕
3級アミンとしてトリエタノールアミン(SP値=28.2)、22.38質量部を用い、総質量をイオン交換水量で調整した以外は、実施例1と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.22μm、変動係数が35%である樹脂微粒子の水系分散体12を得た。水相中のアミノカチオン濃度は、0.237mol/Lであった。
Example 9
The volume of the resin fine particles is the same as in Example 1 except that triethanolamine (SP value = 28.2) and 22.38 parts by mass are used as the tertiary amine and the total mass is adjusted by the amount of ion-exchanged water. An aqueous dispersion 12 of resin fine particles having a distribution basis 50% particle size of 0.22 μm and a coefficient of variation of 35% was obtained. The amino cation concentration in the aqueous phase was 0.237 mol / L.

尚、樹脂微粒子の水系分散体12を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が1.21μmであり、乳化直後よりも粒径が大きくなった。   In addition, after the aqueous dispersion 12 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 1.21 μm. Also increased in particle size.

〔実施例10〕
3級アミンとしてトリエチルアミン(SP値=15.5)、15.18質量部を用い、総質量をイオン交換水量で調整した以外は、実施例1と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.24μm、変動係数が42%である樹脂微粒子の水系分散体13を得た。水相中のアミノカチオン濃度は、0.235mol/Lであった。
Example 10
The same procedure as in Example 1 was carried out except that triethylamine (SP value = 15.5) and 15.18 parts by mass were used as the tertiary amine, and the total mass was adjusted with the amount of ion-exchanged water. An aqueous dispersion 13 of resin fine particles having a 50% particle size of 0.24 μm and a coefficient of variation of 42% was obtained. The amino cation concentration in the aqueous phase was 0.235 mol / L.

尚、樹脂微粒子の水系分散体13を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が1.17μmであり、乳化直後よりも粒径が大きくなった。   In addition, after the aqueous dispersion 13 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 1.17 μm. Also increased in particle size.

〔実施例11〕
3級アミンとしてトリプロピルアミン(SP値=16.4)、21.49質量部を用い、総質量をイオン交換水量で調整した以外は、実施例1と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.21μm、変動係数が38%、である樹脂微粒子の水系分散体14を得た。水相中のアミノカチオン濃度は、0.237mol/Lであった。
Example 11
Except that tripropylamine (SP value = 16.4) and 21.49 parts by mass were used as the tertiary amine and the total mass was adjusted by the amount of ion-exchanged water, the same procedure as in Example 1 was carried out. An aqueous dispersion 14 of resin fine particles having a 50% particle size on the basis of distribution of 0.21 μm and a coefficient of variation of 38% was obtained. The amino cation concentration in the aqueous phase was 0.237 mol / L.

尚、樹脂微粒子の水系分散体14を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が1.16μmであり、乳化直後よりも粒径が大きくなった。   After the aqueous dispersion 14 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 1.16 μm. Also increased in particle size.

〔実施例12〕
3級アミンとしてトリアミルアミン(SP値=15.9)、34.11質量部を用い、総質量をイオン交換水量で調整した以外は、実施例1と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.25μm、変動係数が40%である樹脂微粒子の水系分散体15を得た。水相中のアミノカチオン濃度は、0.242mol/Lであった。
Example 12
The volume of the resin fine particles is the same as in Example 1 except that triamylamine (SP value = 15.9) and 34.11 parts by mass are used as the tertiary amine and the total mass is adjusted by the amount of ion-exchanged water. An aqueous dispersion 15 of resin fine particles having a distribution standard 50% particle size of 0.25 μm and a coefficient of variation of 40% was obtained. The amino cation concentration in the aqueous phase was 0.242 mol / L.

尚、樹脂微粒子の水系分散体15を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が1.13μmであり、乳化直後よりも粒径が大きくなった。   In addition, after the aqueous dispersion 15 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 1.13 μm. Also increased in particle size.

〔実施例13〕
3級アミンとしてトリヘキシルアミン(SP値=16.1)、40.43質量部を用い、総質量をイオン交換水量で調整した以外は、実施例1と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.26μm、変動係数が70%である樹脂微粒子の水系分散体16を得た。水相中のアミノカチオン濃度は、0.244mol/Lであった。
Example 13
The volume of the resin fine particles is the same as in Example 1 except that trihexylamine (SP value = 16.1) and 40.43 parts by mass are used as the tertiary amine and the total mass is adjusted by the amount of ion-exchanged water. An aqueous dispersion 16 of resin fine particles having a distribution standard 50% particle size of 0.26 μm and a coefficient of variation of 70% was obtained. The amino cation concentration in the aqueous phase was 0.244 mol / L.

尚、樹脂微粒子の水系分散体16を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が1.29μmであり、乳化直後よりも粒径が大きくなった。   Incidentally, after the aqueous dispersion 16 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 1.29 μm. Also increased in particle size.

〔実施例14〕
3級アミンとしてトリ−n−オクチルアミン(SP値=16.3)、53.05質量部を用い、総質量をイオン交換水量で調整した以外は、実施例1と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.28μm、変動係数が88%である樹脂微粒子の水系分散体17を得た。水相中のアミノカチオン濃度は、0.250mol/Lであった。
Example 14
Resin was used under the same conditions as in Example 1 except that tri-n-octylamine (SP value = 16.3), 53.05 parts by mass was used as the tertiary amine, and the total mass was adjusted with the amount of ion-exchanged water. An aqueous dispersion 17 of resin fine particles having a 50% particle size of 0.28 μm and a coefficient of variation of 88% based on the volume distribution of the fine particles was obtained. The amino cation concentration in the aqueous phase was 0.250 mol / L.

尚、樹脂微粒子の水系分散体17を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が1.27μmであり、乳化直後よりも粒径が大きくなった。   In addition, after the aqueous dispersion 17 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 1.27 μm. Also increased in particle size.

〔比較例4〕
3級アミンとしてトリドデシルアミン、78.30質量部を用い、総質量をイオン交換水量で調整した以外は、実施例1と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.39μm、変動係数が115%であり、実施例1に比べ大きく、粒度分布がブロードなものである樹脂微粒子の水系分散体18を得た。水相中のアミノカチオン濃度は、0.261mol/Lであった。
[Comparative Example 4]
The same procedure as in Example 1 was conducted except that 78.30 parts by mass of tridodecylamine was used as the tertiary amine and the total mass was adjusted by the amount of ion-exchanged water. An aqueous dispersion 18 of resin fine particles having 0.39 μm and a coefficient of variation of 115%, which is larger than that of Example 1 and has a broad particle size distribution, was obtained. The amino cation concentration in the aqueous phase was 0.261 mol / L.

〔実施例15〕
・ポリエステル樹脂2 430質量部
・水系媒体(イオン交換水) 554.5質量部
・アニオン界面活性剤(第一工業製薬社製:ネオゲンRK) 86.0質量部
・樹脂中和用 塩基性物質(2−ジエチルアミノエタノール) 2.69質量部
アミノカチオンを生成するための材料
・3級アミン(2−(ジメチルアミノ)エタノール、SP値=23.2)8.91質量部
・酸(1モル/L塩酸) 100質量部
を1,500mlの耐圧丸底ステンレス容器に入れ混合した。水相中のアミノカチオン濃度は、0.153mol/Lであった。
Example 15
-Polyester resin 2 430 parts by mass-Aqueous medium (ion exchange water) 554.5 parts by mass-Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) 86.0 parts by mass-Basic substance for resin neutralization ( 2-diethylaminoethanol) 2.69 parts by mass Material for generating an amino cation Tertiary amine (2- (dimethylamino) ethanol, SP value = 23.2) 8.91 parts by mass Acid (1 mol / L) Hydrochloric acid) 100 parts by mass was placed in a 1,500 ml pressure-resistant round bottom stainless steel container and mixed. The amino cation concentration in the aqueous phase was 0.153 mol / L.

次に、高速剪断乳化装置クレアミックス(エム・テクニック社製:CLM−2.2S)を上記耐圧丸底ステンレス容器に密閉接続した。密閉された容器内の混合物を、140℃に加温しながら、クレアミックスのローター回転数を20,000r/分とし10分間剪断分散した。その後、50℃になるまで、20,000r/分の回転を維持しながら、1.0℃/分の冷却速度で冷却を行い、樹脂微粒子の体積分布基準の50%粒径が0.24μm、変動係数が48%である樹脂微粒子の水系分散体19を得た。上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.42mol/Lであった。   Next, a high-speed shearing emulsifier CLEARMIX (M Technique Co., Ltd .: CLM-2.2S) was hermetically connected to the pressure-resistant round bottom stainless steel container. While the mixture in the sealed container was heated to 140 ° C., the Claremix rotor was rotated at a rotational speed of 20,000 r / min for 10 minutes and subjected to shear dispersion. Thereafter, cooling is performed at a cooling rate of 1.0 ° C./min while maintaining rotation at 20,000 r / min until 50 ° C., and the 50% particle size based on the volume distribution of the resin fine particles is 0.24 μm, An aqueous dispersion 19 of resin fine particles having a variation coefficient of 48% was obtained. When the critical aggregation concentration under the above emulsification conditions was separately measured, the critical aggregation concentration was 0.42 mol / L.

尚、樹脂微粒子の水系分散体19を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.23μmであり、良好な分散状態が保たれていた。   The resin fine particle aqueous dispersion 19 was allowed to stand for one month, and then the particle size of the resin fine particle was measured again. As a result, the 50% particle size on the basis of the volume distribution of the resin fine particle was 0.23 μm. The state was kept.

〔比較例5〕
3級アミン及び酸を未添加とし、総質量をイオン交換水量で調整した以外は、実施例15と同様に乳化を行い、樹脂微粒子の水系分散体20を得た。得られた樹脂微粒子の体積分布基準の50%粒径は1.32μm、変動係数は125%であった。
[Comparative Example 5]
Emulsification was carried out in the same manner as in Example 15 except that the tertiary amine and acid were not added, and the total mass was adjusted with the amount of ion-exchanged water, to obtain an aqueous dispersion 20 of resin fine particles. The resin fine particles obtained had a 50% particle diameter of 1.32 μm and a coefficient of variation of 125% based on the volume distribution.

尚、樹脂微粒子の水系分散体20を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が1.42μmであり、乳化直後よりも粒径が大きくなった。   In addition, after the aqueous dispersion 20 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 1.42 μm. Also increased in particle size.

〔実施例16〕
3級アミン(2−(ジメチルアミノ)エタノール)17.83質量部、及び酸(1モル/L塩酸)200質量部を用い、総質量をイオン交換水量で調整した以外は、実施例15と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.36μm、変動係数が72%である樹脂微粒子の水系分散体21を得た。水相中のアミノカチオン濃度は、0.310mol/Lであった。
Example 16
The same as Example 15 except that 17.83 parts by mass of tertiary amine (2- (dimethylamino) ethanol) and 200 parts by mass of acid (1 mol / L hydrochloric acid) were used and the total mass was adjusted with the amount of ion-exchanged water. Thus, an aqueous dispersion 21 of resin fine particles having a 50% particle size of 0.36 μm and a coefficient of variation of 72% based on the volume distribution of the resin fine particles was obtained. The amino cation concentration in the aqueous phase was 0.310 mol / L.

尚、樹脂微粒子の水系分散体21を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.37μmであり、良好な分散状態が保たれていた。   The resin fine particle aqueous dispersion 21 was allowed to stand for one month, and then the particle size of the resin fine particle was measured again. As a result, the 50% particle size on the basis of the volume distribution of the resin fine particle was 0.37 μm. The state was kept.

〔比較例6〕
3級アミン(2−(ジメチルアミノ)エタノール)26.74質量部、及び酸(1モル/L塩酸)300質量部を用い、総質量をイオン交換水量で調整した以外は、実施例15と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が1.45μm、変動係数が144%である樹脂微粒子の水系分散体22を得た。これは、乳化中に凝集が起こり、比較例5よりも粒径が大きく、粒度分布が広がったものと考えられる。水相中のアミノカチオン濃度は、0.471mol/Lであった。
[Comparative Example 6]
The same as Example 15 except that 26.74 parts by mass of tertiary amine (2- (dimethylamino) ethanol) and 300 parts by mass of acid (1 mol / L hydrochloric acid) were used and the total mass was adjusted with the amount of ion-exchanged water. Thus, an aqueous dispersion 22 of resin fine particles having a 50% particle diameter of 1.45 μm and a coefficient of variation of 144% based on the volume distribution of the resin fine particles was obtained. This is considered that aggregation occurred during emulsification, the particle size was larger than that of Comparative Example 5, and the particle size distribution was widened. The amino cation concentration in the aqueous phase was 0.471 mol / L.

尚、樹脂微粒子の水系分散体22を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が1.88μmであり、乳化直後よりも粒径が大きくなった。   In addition, after the aqueous dispersion 22 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 1.88 μm. Also increased in particle size.

〔実施例17〕
・ポリエステル樹脂3 430質量部
・水系媒体(イオン交換水) 430.8質量部
・アニオン界面活性剤(第一工業製薬社製:ネオゲンRK) 86.0質量部
・樹脂中和用 塩基性物質(10% アンモニア水) 20.0質量部
アミノカチオンを生成するための材料
・3級アミン(2−(ジメチルアミノ)エタノールSP値=23.2)17.83質量部
・酸(1モル/L塩酸) 200質量部
を1,500mlの耐圧丸底ステンレス容器に入れ混合した。水相中のアミノカチオン濃度は、0.318mol/Lであった。
Example 17
-Polyester resin 3 430 parts by mass-Aqueous medium (ion exchange water) 430.8 parts by mass-Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) 86.0 parts by mass-Basic substance for resin neutralization ( 10% ammonia water) 20.0 parts by mass Material for producing amino cation, tertiary amine (2- (dimethylamino) ethanol SP value = 23.2) 17.83 parts by mass, acid (1 mol / L hydrochloric acid) ) 200 parts by mass was placed in a 1,500 ml pressure-resistant round bottom stainless steel container and mixed. The amino cation concentration in the aqueous phase was 0.318 mol / L.

次に、高速剪断乳化装置クレアミックス(エム・テクニック社製:CLM−2.2S)を上記耐圧丸底ステンレス容器に密閉接続した。密閉された容器内の混合物を、140℃に加温しながら、クレアミックスのローター回転数を20,000r/分とし10分間剪断分散した。その後、50℃になるまで、20,000r/分の回転を維持しながら、1.0℃/分の冷却速度で冷却を行い、樹脂微粒子の体積分布基準の50%粒径が0.04μm、変動係数が32%である樹脂微粒子の水系分散体23を得た。上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.87mol/Lであった。   Next, a high-speed shearing emulsifier CLEARMIX (M Technique Co., Ltd .: CLM-2.2S) was hermetically connected to the pressure-resistant round bottom stainless steel container. While the mixture in the sealed container was heated to 140 ° C., the Claremix rotor was rotated at a rotational speed of 20,000 r / min for 10 minutes and subjected to shear dispersion. Thereafter, cooling is performed at a cooling rate of 1.0 ° C./min while maintaining a rotation of 20,000 r / min until 50 ° C., and the 50% particle size based on the volume distribution of the resin fine particles is 0.04 μm, An aqueous dispersion 23 of resin fine particles having a variation coefficient of 32% was obtained. When the critical aggregation concentration under the above emulsification conditions was separately measured, the critical aggregation concentration was 0.87 mol / L.

尚、樹脂微粒子の水系分散体23を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.04μmであり、良好な分散状態が保たれていた。   After the aqueous dispersion 23 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size on the basis of the volume distribution of the resin fine particles was 0.04 μm, indicating good dispersion The state was kept.

〔比較例7〕
3級アミン及び酸を未添加とし、総質量をイオン交換水量で調整した以外は実施例17と同様に乳化を行い、樹脂微粒子の水系分散体24を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.06μm、変動係数は66%であり、実施例17より大きくまた粒度分布がブロードなものであった。
[Comparative Example 7]
Emulsification was carried out in the same manner as in Example 17 except that the tertiary amine and acid were not added, and the total mass was adjusted with the amount of ion-exchanged water, to obtain an aqueous dispersion 24 of resin fine particles. The obtained resin fine particles had a 50% particle size of 0.06 μm based on volume distribution and a coefficient of variation of 66%, which was larger than Example 17 and broad in particle size distribution.

尚、樹脂微粒子の水系分散体24を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.08μmであり、乳化直後よりも粒径が大きくなった。   In addition, after the aqueous dispersion 24 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 0.08 μm. Also increased in particle size.

〔実施例18〕
3級アミン(2−(ジメチルアミノ)エタノール)44.57質量部、及び酸(1モル/L塩酸)500質量部を用い、総質量をイオン交換水量で調整した以外は、実施例17と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.05μm、変動係数が45%である樹脂微粒子の水系分散体25を得た。水相中のアミノカチオン濃度は、0.831mol/Lであった。
Example 18
The same as Example 17 except that 44.57 parts by mass of tertiary amine (2- (dimethylamino) ethanol) and 500 parts by mass of acid (1 mol / L hydrochloric acid) were used and the total mass was adjusted with the amount of ion-exchanged water. Thus, an aqueous dispersion 25 of resin fine particles having a 50% particle size of 0.05 μm based on the volume distribution of the resin fine particles and a coefficient of variation of 45% was obtained. The amino cation concentration in the aqueous phase was 0.831 mol / L.

尚、樹脂微粒子の水系分散体25を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.05μmであり、良好な分散状態が保たれていた。   Incidentally, after the aqueous dispersion 25 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size on the basis of the volume distribution of the resin fine particles was 0.05 μm. The state was kept.

〔比較例8〕
3級アミン(2−(ジメチルアミノ)エタノール)49.03質量部、及び酸(1モル/L塩酸)550質量部を用い、総質量をイオン交換水量で調整した以外は、実施例17と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.33μm、変動係数が102%である樹脂微粒子の水系分散体26を得た。これは、乳化中に凝集が起こり、比較例7よりも粒径が大きく、粒度分布が広がったものと考えられる。水相中のアミノカチオン濃度は、0.921mol/Lであった。
[Comparative Example 8]
The same as Example 17 except that 49.03 parts by mass of tertiary amine (2- (dimethylamino) ethanol) and 550 parts by mass of acid (1 mol / L hydrochloric acid) were used and the total mass was adjusted with the amount of ion-exchanged water. Thus, an aqueous dispersion 26 of resin fine particles having a 50% particle size based on the volume distribution of resin fine particles of 0.33 μm and a coefficient of variation of 102% was obtained. This is considered that aggregation occurred during emulsification, the particle size was larger than that of Comparative Example 7, and the particle size distribution was widened. The amino cation concentration in the aqueous phase was 0.921 mol / L.

尚、樹脂微粒子の水系分散体26を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.41μmであり、乳化直後よりも粒径が大きくなった。   Incidentally, after the aqueous dispersion 26 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 0.41 μm. Also increased in particle size.

〔実施例19〕
ポリエステル樹脂1を100質量部、アニオン性界面活性剤(第一工業製薬社製:ネオゲンRK)を2.0質量部、樹脂中和用塩基性物質(水酸化ナトリウム)を1.20質量部、500mlのビーカーに投入し、カイ型の攪拌機で200r/分の攪拌下、95℃で120分間混合した。
Example 19
100 parts by weight of polyester resin 1, 2.0 parts by weight of an anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK), 1.20 parts by weight of basic substance for resin neutralization (sodium hydroxide), The mixture was put into a 500 ml beaker, and mixed at 95 ° C. for 120 minutes with a chi-type stirrer while stirring at 200 r / min.

その後、温度を保ちつつ、カイ型の攪拌機で200r/分の攪拌下、3級アミン(2−(ジメチルアミノ)エタノール)3.12質量部、及び酸(1モル/L塩酸)35質量部をイオン交換水200質量部に溶解させた95℃に加熱した水溶液を、2時間かけて滴下し、体積分布基準の50%粒径が0.27μm、変動係数が50%である樹脂微粒子の水系分散体27を得た。水相中のアミノカチオン濃度は、0.149mol/Lであった。また、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.71mol/Lであった。   Thereafter, while maintaining the temperature, 3.12 parts by mass of tertiary amine (2- (dimethylamino) ethanol) and 35 parts by mass of acid (1 mol / L hydrochloric acid) were stirred with a chi-type stirrer at 200 r / min. An aqueous solution heated to 95 ° C. dissolved in 200 parts by mass of ion-exchanged water is dropped over 2 hours, and aqueous dispersion of resin fine particles having a 50% particle size of 0.27 μm and a coefficient of variation of 50% based on volume distribution. A body 27 was obtained. The amino cation concentration in the aqueous phase was 0.149 mol / L. Moreover, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.71 mol / L.

尚、樹脂微粒子の水系分散体27を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.27μmであり、良好な分散状態が保たれていた。   The resin fine particle aqueous dispersion 27 was allowed to stand for one month, and then the particle size of the resin fine particle was measured again. As a result, the 50% particle size on the basis of the volume distribution of the resin fine particle was 0.27 μm. The state was kept.

〔比較例9〕
3級アミン及び酸を未添加とした以外は実施例19と同様に乳化を行い、樹脂微粒子の水系分散体28を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.48μm、変動係数が152%であり、実施例19より大きく、また粒度分布がブロードなものであった。
[Comparative Example 9]
Emulsification was carried out in the same manner as in Example 19 except that the tertiary amine and acid were not added, to obtain an aqueous dispersion 28 of resin fine particles. The obtained resin fine particles had a 50% particle size based on volume distribution of 0.48 μm and a coefficient of variation of 152%, which was larger than that of Example 19, and the particle size distribution was broad.

尚、樹脂微粒子の水系分散体28を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.59μmであり、乳化直後よりも粒径が大きくなった。   In addition, after the aqueous dispersion 28 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 0.59 μm. Also increased in particle size.

〔実施例20〕
ポリエステル樹脂1を60質量部、アニオン界面活性剤(第一工業製薬社製:ネオゲンRK)を7.2質量部、樹脂中和用塩基性物質(10%アンモニア水)1.12質量部、メチルエチルケトン150質量部、イソプロピルアルコール50質量部、を混合し、溶解し、超高速攪拌装置T.K.ロボミックス(プライミクス社製)を用いて4,000r/分で攪拌した。
Example 20
60 parts by mass of polyester resin 1, 7.2 parts by mass of anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK), 1.12 parts by mass of basic substance for resin neutralization (10% ammonia water), methyl ethyl ketone 150 parts by mass and 50 parts by mass of isopropyl alcohol are mixed and dissolved. K. The mixture was stirred at 4,000 r / min using Robomix (manufactured by Primics).

さらに、3級アミン(2−(ジメチルアミノ)エタノール)2.46質量部、及び酸(1モル/L塩酸)21質量部(アミノカチオンとして、ポリエステル樹脂100質量部に対し0.035molに相当する添加量)をイオン交換水177.8質量部に溶解させた水溶液を滴下し、その後、エバポレーターを用いてテトラヒドロフランを除去した。そして、樹脂微粒子の体積分布基準の50%粒径が0.21μm、変動係数が26%である樹脂微粒子の水系分散体29を得た。水相中のアミノカチオン濃度は、0.106mol/Lであった。また、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.72mol/Lであった。   Further, 2.46 parts by mass of tertiary amine (2- (dimethylamino) ethanol) and 21 parts by mass of acid (1 mol / L hydrochloric acid) (corresponding to 0.035 mol as an amino cation with respect to 100 parts by mass of the polyester resin). An aqueous solution in which the addition amount was dissolved in 177.8 parts by mass of ion-exchanged water was dropped, and then the tetrahydrofuran was removed using an evaporator. Then, an aqueous dispersion 29 of resin fine particles having a 50% particle size based on the volume distribution of resin fine particles of 0.21 μm and a variation coefficient of 26% was obtained. The amino cation concentration in the aqueous phase was 0.106 mol / L. Moreover, when the critical aggregation density | concentration in the said emulsification conditions was measured separately, the critical aggregation density | concentration was 0.72 mol / L.

尚、樹脂微粒子の水系分散体29を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.21μmであり、良好な分散状態が保たれていた。   After the aqueous dispersion 29 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 0.21 μm, indicating good dispersion. The state was kept.

〔比較例10〕
3級アミン及び酸を未添加とした以外は実施例20と同様に乳化を行い、樹脂微粒子の水系分散体30を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.31μm、変動係数が111%であり、実施例20より大きくまた粒度分布がブロードなものであった。
[Comparative Example 10]
Emulsification was carried out in the same manner as in Example 20 except that the tertiary amine and acid were not added, to obtain an aqueous dispersion 30 of resin fine particles. The obtained resin fine particles had a volume distribution standard 50% particle size of 0.31 μm and a coefficient of variation of 111%, which was larger than Example 20 and a broad particle size distribution.

尚、樹脂微粒子の水系分散体30を1か月静置した後、樹脂微粒子の粒径を再度測定したところ、樹脂微粒子の体積分布基準の50%粒径が0.34μmであり、乳化直後よりも粒径が大きくなった。   In addition, after the aqueous dispersion 30 of the resin fine particles was allowed to stand for one month, the particle size of the resin fine particles was measured again. As a result, the 50% particle size based on the volume distribution of the resin fine particles was 0.34 μm. Also increased in particle size.

実施例1〜20、比較例1〜10において用いられた材料、得られた樹脂微粒子の物性等を表1、2に示す。なお、表1、2において、「アミノカチオン量」とは、ポリエステル樹脂100質量部に対するアミノカチオンの量(mol)を表す。実施例1〜20、比較例1〜10の結果から、アミノカチオンを添加することで、水系分散体の樹脂微粒子を小粒径にし、かつ樹脂微粒子の粒径を均一に近い状態で制御できることが示された。   Tables 1 and 2 show the materials used in Examples 1 to 20 and Comparative Examples 1 to 10, physical properties of the obtained resin fine particles, and the like. In Tables 1 and 2, “amino cation amount” represents the amount (mol) of amino cation with respect to 100 parts by mass of the polyester resin. From the results of Examples 1-20 and Comparative Examples 1-10, by adding an amino cation, the resin fine particles of the aqueous dispersion can be made small, and the particle size of the resin fine particles can be controlled in a nearly uniform state. Indicated.

<凝集トナーの製造>
〔実施例21〕
(離型剤水系分散液の調製)
・エステルワックス(ベヘン酸ベヘニル、融点75℃) 100質量部
・アニオン性界面活性剤(第一工業製薬社製:ネオゲンRK) 10質量部
・イオン交換水 890質量部
上記材料をジャケット付混合容器に投入した後、90℃に加熱し、定量ポンプにて循環させながら、クレアミックスW−モーション(エム・テクニック社製)を用いて、ローター回転数19,000r/分、スクリーン回転数19,000r/分の条件にて撹拌し、60分間分散処理した。60分間の分散処理の後、引き続きローター回転数1,000r/分、スクリーン回転数0r/分、冷却速度10℃/分の条件にて40℃まで冷却することで、離型剤水系分散液を得た。このサンプルを動的光散乱式粒度分布測定装置(ナノトラックUPA150:日機装社製)を用い測定したところ、体積分布基準の50%粒径は0.15μmであり、また、0.8μm以上の粗大粒子は0.01体積%以下であった。
<Manufacture of agglomerated toner>
Example 21
(Preparation of release agent aqueous dispersion)
・ Ester wax (behenyl behenate, melting point: 75 ° C.) 100 parts by mass ・ Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) 10 parts by mass ・ Ion-exchanged water 890 parts by mass After charging, while heating to 90 ° C. and circulating with a metering pump, using CLEARMIX W-Motion (M Technique Co., Ltd.), rotor rotation speed 19,000r / min, screen rotation speed 19,000r / The mixture was stirred for 60 minutes and dispersed for 60 minutes. After the dispersion treatment for 60 minutes, the release agent aqueous dispersion is subsequently cooled to 40 ° C. under conditions of a rotor rotation speed of 1,000 r / min, a screen rotation speed of 0 r / min, and a cooling rate of 10 ° C./min. Obtained. When this sample was measured using a dynamic light scattering type particle size distribution analyzer (Nanotrack UPA150: manufactured by Nikkiso Co., Ltd.), the 50% particle size based on volume distribution was 0.15 μm, and the coarseness was 0.8 μm or more. Particles were 0.01 volume% or less.

(着色剤水系分散液の調製)
・シアン顔料(C.I.ピグメントブルー15:3) 100質量部
・アニオン界面活性剤(第一工業製薬社製:ネオゲンRK) 10質量部
・イオン交換水 890質量部
上記材料を混合し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて、回転数24,000r/分で30分間分散を行った。その後、さらに高圧衝撃式分散機ナノマイザー(吉田機械興業社製)を用いて、圧力条件200MPaにて分散を行い、シアン顔料を分散させてなる着色剤水系分散液を調製した。着色剤水系分散液における着色剤(シアン顔料)の体積分布基準の50%粒径は0.12μm、着色剤濃度は10質量%であった。
(Preparation of colorant aqueous dispersion)
-Cyan pigment (CI Pigment Blue 15: 3) 100 parts by mass-Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) 10 parts by mass-Ion-exchanged water 890 parts by mass The above materials are mixed and a homogenizer (IKA: Ultra Turrax T50) was used for dispersion for 30 minutes at a rotation speed of 24,000 r / min. Thereafter, using a high-pressure impact disperser Nanomizer (manufactured by Yoshida Kikai Kogyo Co., Ltd.), dispersion was performed under a pressure condition of 200 MPa to prepare a colorant aqueous dispersion in which a cyan pigment was dispersed. The 50% particle size based on the volume distribution of the colorant (cyan pigment) in the colorant aqueous dispersion was 0.12 μm, and the colorant concentration was 10% by mass.

(凝集工程)
・樹脂微粒子の水系分散体23 50質量部
・着色剤水系分散液 10質量部
・離型剤水系分散液 20質量部
・1質量%硫酸マグネシウム水溶液 20質量部
・イオン交換水 100質量部
上記の各成分を丸型ステンレス製フラスコに投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて5,000r/分で10分間混合、分散した。その後、加熱用ウォーターバス中で撹拌翼を用いて、混合液が撹拌されるような回転数に適宜調節しながらで48℃まで加熱した。48℃で1時間保持した後、形成された凝集粒子の体積平均粒径を、フロー式粒子像分析装置(シスメックス社製:FPIA−3000)を用い、該装置の操作マニュアルに従い測定した。その結果、体積平均粒径が約5.1μmである凝集粒子が形成されていることが確認された。
(Aggregation process)
-Resin fine particle aqueous dispersion 23 50 parts-Colorant aqueous dispersion 10 parts by weight-Release agent aqueous dispersion 20 parts by weight-1% by weight magnesium sulfate aqueous solution 20 parts by weight-Ion-exchanged water 100 parts by weight The components were put into a round stainless steel flask, and mixed and dispersed at 5,000 r / min for 10 minutes using a homogenizer (manufactured by IKA: Ultra Turrax T50). Then, it heated to 48 degreeC, adjusting suitably the rotation speed so that a liquid mixture might be stirred using the stirring blade in the water bath for heating. After maintaining at 48 ° C. for 1 hour, the volume average particle diameter of the formed aggregated particles was measured using a flow type particle image analyzer (manufactured by Sysmex Corporation: FPIA-3000) according to the operation manual of the apparatus. As a result, it was confirmed that aggregated particles having a volume average particle diameter of about 5.1 μm were formed.

<融合工程>
その後、ここに38質量部のイオン交換水に対し、クエン酸三ナトリウム2質量部を溶解させた水溶液を追加した後、撹拌を継続しながら75℃まで加熱し、2時間保持した。得られた粒子の体積平均粒径及び平均円形度をフロー式粒子像分析装置(シスメックス社製:FPIA−3000)を用い、該装置の操作マニュアルに従い測定した。その結果、体積平均粒径が約5.4μm、平均円形度が0.963である十分に融合、合一した粒子が形成されていることが確認された。
<ろ過、洗浄、乾燥工程>
その後、得られた液を冷却し、ろ過を行った。ろ物をイオン交換水で十分に洗浄し、真空乾燥機を用いて乾燥することにより、トナー粒子1を得た。
<Fusion process>
Thereafter, an aqueous solution in which 2 parts by mass of trisodium citrate was dissolved was added to 38 parts by mass of ion-exchanged water, and then the mixture was heated to 75 ° C. and kept for 2 hours while continuing stirring. The volume average particle diameter and average circularity of the obtained particles were measured using a flow type particle image analyzer (manufactured by Sysmex Corporation: FPIA-3000) according to the operation manual of the apparatus. As a result, it was confirmed that sufficiently fused and united particles having a volume average particle diameter of about 5.4 μm and an average circularity of 0.963 were formed.
<Filtering, washing, drying process>
Then, the obtained liquid was cooled and filtered. The filter cake was sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles 1.

(トナーの作製)
該トナー粒子100質量部に、BET法で測定した比表面積が200m/gである疎水化処理されたシリカ微粉体1.8質量部をヘンシェルミキサー(三井鉱山社製)で乾式混合してトナーとした。そして、下記の方法で定着性の評価を行った。
(Production of toner)
To 100 parts by mass of the toner particles, 1.8 parts by mass of hydrophobized silica fine powder having a specific surface area measured by the BET method of 200 m 2 / g is dry-mixed with a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.), and the toner is mixed. It was. Then, the fixing property was evaluated by the following method.

市販のフルカラーデジタル複写機(CLC1100、キヤノン社製)を使用し、普通紙(64g/m)上に未定着のトナー画像(0.6mg/cm)を形成した。次に、市販のカラーレーザープリンター(LBP−5500、キヤノン社製)から取り外した定着ユニットを定着温度が調節できるように改造し、これを用いて未定着画像の定着試験を行った。その際、定着試験は常温常湿下で行い、プロセススピードは100mm/秒に設定した。また、定着温度を10℃ずつ温度を上げ、それぞれの定着温度において未定着画像の定着を行った。前記未定着画像を定着させたときの定着画像のオフセットの有無を目視にて確認したところ、オフセットが発生しなかった定着温度の範囲は105〜145℃であった。 An unfixed toner image (0.6 mg / cm 2 ) was formed on plain paper (64 g / m 2 ) using a commercially available full color digital copying machine (CLC1100, manufactured by Canon Inc.). Next, a fixing unit removed from a commercially available color laser printer (LBP-5500, manufactured by Canon Inc.) was modified so that the fixing temperature could be adjusted, and a fixing test for an unfixed image was performed using this. At that time, the fixing test was performed under normal temperature and humidity, and the process speed was set to 100 mm / second. Further, the fixing temperature was increased by 10 ° C., and an unfixed image was fixed at each fixing temperature. When the presence or absence of an offset in the fixed image when the unfixed image was fixed was visually confirmed, the fixing temperature range in which no offset occurred was 105 to 145 ° C.

〔比較例11〕
樹脂微粒子の水系分散体23を水系分散体24とする以外は、実施例21と同様にして行い、トナー粒子2を得た。ろ過工程におけるろ液が、離型剤分散液の脱離による白濁液となった。白濁液中の離型剤成分を分析したところ、トナー粒子製造に用いた離型剤の35%が流れ出ていた。実施例21と同様の手順で該トナー粒子の定着試験を行ったところ、定着温度の範囲は105〜120℃であった。
[Comparative Example 11]
Toner particles 2 were obtained in the same manner as in Example 21 except that the aqueous dispersion 23 of resin fine particles was changed to the aqueous dispersion 24. The filtrate in the filtration step became a cloudy liquid due to the release of the release agent dispersion. When the release agent component in the white turbid liquid was analyzed, 35% of the release agent used for the toner particle production flowed out. When a fixing test of the toner particles was performed in the same procedure as in Example 21, the fixing temperature range was 105 to 120 ° C.

〔実施例22〕
融合工程までの工程を実施例21と同様の条件で行い、さらに次に説明する付着工程を行った。
[Example 22]
The process up to the fusion process was performed under the same conditions as in Example 21, and the adhesion process described below was further performed.

(付着工程)
実施例21の融合工程と同様にして粒子の融合を行った後、攪拌を継続しながら、ウォーターバス内に水を入れ、コア粒子を25℃まで冷却した。次いで、樹脂微粒子の水系分散体1を7.7質量部添加した。尚、樹脂微粒子の水系分散体1の添加量は、コア粒子を球状粒子と仮定し、5.5μmのコア粒子を0.20μmのシェル粒子1層で覆うのに必要なシェルとなる量とした。
(Adhesion process)
After fusing the particles in the same manner as in the fusing step of Example 21, water was placed in a water bath while stirring was continued, and the core particles were cooled to 25 ° C. Next, 7.7 parts by mass of the aqueous dispersion 1 of resin fine particles was added. The addition amount of the resin fine particle aqueous dispersion 1 is assumed to be an amount necessary to cover the 5.5 μm core particles with one layer of 0.20 μm shell particles, assuming that the core particles are spherical particles. .

その後、10分間攪拌を行い、さらに2質量%塩化カルシウム水溶液60質量部を滴下し、35℃に昇温した。この状態で、随時、液を少量抽出し、2μmのマイクロフィルターに通し、ろ液が透明になるまで、35℃で攪拌を継続した。ろ液が透明になったのを確認後、40℃に昇温して1時間攪拌した後、5質量%クエン酸三ナトリウム水溶液35質量部を添加し、65℃に昇温して1.5時間攪拌を行った。   Then, it stirred for 10 minutes, and also 60 mass parts of 2 mass% calcium chloride aqueous solution was dripped, and it heated up at 35 degreeC. In this state, a small amount of the liquid was extracted at any time, passed through a 2 μm microfilter, and stirring was continued at 35 ° C. until the filtrate became transparent. After confirming that the filtrate became transparent, the mixture was heated to 40 ° C. and stirred for 1 hour, and then 35 parts by mass of a 5 mass% trisodium citrate aqueous solution was added, and the temperature was raised to 65 ° C. Stir for hours.

(ろ過、洗浄、乾燥工程)
その後、得られた液を冷却し、ろ過を行った。ろ物をイオン交換水で十分に洗浄し、真空乾燥機を用いて乾燥することにより、トナー粒子3を得た。トナー粒子3の重量平均粒径(D4)は5.9μmであった。
(Filtration, washing, drying process)
Then, the obtained liquid was cooled and filtered. The filter cake was sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles 3. The weight average particle diameter (D4) of the toner particles 3 was 5.9 μm.

次いで、反射型電子顕微鏡でトナー粒子を観測したところ、コア粒子がシェル粒子によって十分被覆されていた。得られたトナー粒子を温度が40℃、相対湿度が80%の環境下で1週間保存したところ、目視上、トナーの凝集が起こっておらず、トナーが良好な保存安定性を有していることが示された。   Next, when the toner particles were observed with a reflection electron microscope, the core particles were sufficiently covered with the shell particles. The obtained toner particles were stored for 1 week in an environment of a temperature of 40 ° C. and a relative humidity of 80%. As a result, no toner aggregation occurred and the toner had good storage stability. It was shown that.

〔比較例12〕
樹脂微粒子の水系分散体1を水系分散体2とする以外は、実施例22と同様にして付着工程を行い、トナー粒子4を得た。乾燥後のトナー粒子を反射型電子顕微鏡で観測したところ、シェル粒子のコア粒子への被覆は不十分であった。得られたトナー粒子を温度が40℃、相対湿度が80%の環境下で1週間保存したところ、3日目からトナー粒子の融着が始まり、4日目以降は固まり状となり、この環境下ではトナー形状を維持することはできなかった。
[Comparative Example 12]
Except that the aqueous dispersion 1 of resin fine particles was changed to the aqueous dispersion 2, an adhesion process was performed in the same manner as in Example 22 to obtain toner particles 4. When the toner particles after drying were observed with a reflection electron microscope, the coating of the shell particles onto the core particles was insufficient. When the obtained toner particles were stored for 1 week in an environment of 40 ° C. and 80% relative humidity, the toner particles began to fuse from the third day and became agglomerated after the fourth day. However, the toner shape could not be maintained.

本発明によって得られる樹脂微粒子の水系分散体は、電子写真用トナー、インク、塗料、接着剤、粘着剤、繊維加工、製紙、紙加工等の製造に好適に用いることができる。
The aqueous dispersion of resin fine particles obtained by the present invention can be suitably used for the production of electrophotographic toners, inks, paints, adhesives, pressure-sensitive adhesives, fiber processing, papermaking, paper processing and the like.

Claims (10)

樹脂微粒子の水系分散体を製造する工程と、
該樹脂微粒子の水系分散体と着色剤とを混合し、該樹脂微粒子及び該着色剤を水系媒体中で凝集させて重量平均粒径(D4)が4.5μm以上7.0μm以下の凝集体を形成する凝集工程と、
該凝集体を加熱し、融合させる融合工程と、
を有するトナーの製造方法において、
該樹脂微粒子の水系分散体を製造する工程は、
(i)酸基を有する樹脂、アニオン性界面活性剤、水系媒体、酸及び下記式1で表れる3級アミンを混合して混合物を得る混合工程と、
NR 式1
[式1において、R、R、及びRは、それぞれ、ヒドロキシル基を有していてもよい炭素数1以上8以下の炭化水素基を表す。]
(ii)該酸基を有する樹脂のガラス転移点以上の温度で、該混合物を撹拌し、体積分布基準の50%粒径が0.02μm以上1.00μm以下の該樹脂微粒子の水系分散体を得る乳化工程を有し
該乳化工程において、該水系分散体の水相中における、該3級アミンと該酸とから生成するアミノカチオンの濃度が、下記の臨界凝集濃度以下であることを特徴とするトナーの製造方法。
[臨界凝集濃度とは、3級アミンと酸を水に溶解して作成した水溶液を添加した樹脂微粒子の水系分散体の樹脂微粒子の体積分布基準50%粒径が、該水溶液を添加する前の樹脂微粒子の水系分散体における樹脂微粒子の体積分布基準50%粒径の1.5倍を超えた時点での、該水系分散体の水相におけるアミノカチオン濃度である。]。
Producing an aqueous dispersion of resin fine particles;
An aqueous dispersion of the resin fine particles and a colorant are mixed, and the resin fine particles and the colorant are aggregated in an aqueous medium to obtain an aggregate having a weight average particle diameter (D4) of 4.5 μm or more and 7.0 μm or less. An aggregation process to form;
A fusing step of heating and fusing the aggregates;
In a method for producing a toner having
The step of producing an aqueous dispersion of the resin fine particles includes:
(I) a resin having an acid group, an anionic surfactant, a mixing step of obtaining an aqueous medium, a mixture of tertiary amines Tables acid and the following formula 1 mixture
NR 1 R 2 R 3 Formula 1
[In Formula 1, R 1 , R 2 , and R 3 each represent a hydrocarbon group having 1 to 8 carbon atoms that may have a hydroxyl group. ]
(Ii) Stirring the mixture at a temperature equal to or higher than the glass transition point of the resin having an acid group to obtain an aqueous dispersion of the resin fine particles having a 50% particle size of 0.02 μm or more and 1.00 μm or less based on volume distribution. An emulsifying step to obtain, wherein in the emulsifying step, the concentration of the amino cation generated from the tertiary amine and the acid in the aqueous phase of the aqueous dispersion is equal to or less than the following critical aggregation concentration. Toner manufacturing method.
[Critical coagulation concentration refers to the volume distribution standard 50% particle size of resin fine particles of an aqueous dispersion of resin fine particles to which an aqueous solution prepared by dissolving tertiary amine and acid in water is added. This is the amino cation concentration in the aqueous phase of the aqueous dispersion at a time when it exceeds 1.5 times the 50% particle diameter of the resin fine particles in the aqueous dispersion of the resin fine particles. ].
樹脂微粒子の水系分散体を製造する工程と、
該樹脂微粒子の水系分散体と着色剤とを混合し、該樹脂微粒子及び該着色剤を水系媒体中で凝集させて重量平均粒径(D4)が4.5μm以上7.0μm以下の凝集体を形成する凝集工程と、
該凝集体を加熱し、融合させる融合工程と、
を有するトナーの製造方法において、
該樹脂微粒子の水系分散体を製造する工程は、
(i)酸基を有する樹脂、該酸基を有する樹脂が可溶な溶剤、アニオン性界面活性剤及び塩基性物質を混合して混合物を得る混合工程と、
(ii)該混合物に酸、水及び下記式1で表される3級アミンを添加して撹拌をおこない体積分布基準の50%粒径が0.02μm以上1.00μm以下の該樹脂微粒子の水系分散体を得る乳化工程を有し
NR 式1
[式1において、R 、R 、及びR は、それぞれ、ヒドロキシル基を有していてもよい炭素数1以上8以下の炭化水素基を表す。]
該乳化工程において、該水系分散体の水相中における、該3級アミンと該酸とから生成するアミノカチオンの濃度が、臨界凝集濃度以下であることを特徴とするトナーの製造方法。
[臨界凝集濃度とは、3級アミンと酸を水に溶解して作成した水溶液を添加した樹脂微粒子の水系分散体の樹脂微粒子の体積分布基準50%粒径が、該水溶液を添加する前の樹脂微粒子の水系分散体における樹脂微粒子の体積分布基準50%粒径の1.5倍を超えた時点での、該水系分散体の水相におけるアミノカチオン濃度である。]。
Producing an aqueous dispersion of resin fine particles;
An aqueous dispersion of the resin fine particles and a colorant are mixed, and the resin fine particles and the colorant are aggregated in an aqueous medium to obtain an aggregate having a weight average particle diameter (D4) of 4.5 μm or more and 7.0 μm or less. An aggregation process to form;
A fusing step of heating and fusing the aggregates;
In a method for producing a toner having
The step of producing an aqueous dispersion of the resin fine particles includes:
(I) a mixing step of mixing a resin having an acid group, a solvent in which the resin having an acid group is soluble, an anionic surfactant and a basic substance to obtain a mixture;
(Ii) An aqueous system of the resin fine particles in which 50% particle size based on volume distribution is 0.02 μm or more and 1.00 μm or less by adding acid, water and a tertiary amine represented by the following formula 1 to the mixture and stirring the mixture. Having an emulsification step to obtain a dispersion
NR 1 R 2 R 3 Formula 1
[In Formula 1, R 1 , R 2 , and R 3 each represent a hydrocarbon group having 1 to 8 carbon atoms that may have a hydroxyl group. ]
In the emulsification step, the concentration of an amino cation generated from the tertiary amine and the acid in the aqueous phase of the aqueous dispersion is not more than a critical aggregation concentration.
[Critical coagulation concentration refers to the volume distribution standard 50% particle size of resin fine particles of an aqueous dispersion of resin fine particles to which an aqueous solution prepared by dissolving tertiary amine and acid in water is added. This is the amino cation concentration in the aqueous phase of the aqueous dispersion at a time when it exceeds 1.5 times the 50% particle diameter of the resin fine particles in the aqueous dispersion of the resin fine particles. ].
前記酸基を有する樹脂のガラス転移点が、50℃以上80℃以下である請求項1又は2に記載のトナーの製造方法。   The toner production method according to claim 1, wherein the resin having an acid group has a glass transition point of 50 ° C. or more and 80 ° C. or less. 前記酸基を有する樹脂が、加水分解性樹脂である請求項1又は2に記載のトナーの製造方法。   The toner production method according to claim 1, wherein the resin having an acid group is a hydrolyzable resin. 前記乳化工程で、塩基性物質を添加する請求項3に記載のトナーの製造方法。   The toner production method according to claim 3, wherein a basic substance is added in the emulsification step. 前記酸基を有する樹脂が、ポリエステル樹脂である請求項1〜4のいずれか1項に記載のトナーの製造方法。   The method for producing a toner according to claim 1, wherein the resin having an acid group is a polyester resin. 前記酸基を有する樹脂の酸価が、1mgKOH/g以上30mgKOH/g以下である請求項1〜5のいずれか1項に記載のトナーの製造方法。   The method for producing a toner according to claim 1, wherein the acid value of the resin having an acid group is 1 mgKOH / g or more and 30 mgKOH / g or less. 前記3級アミンのSP値が、17以上28以下である請求項1〜6のいずれか1項に記載のトナーの製造方法。   The toner production method according to claim 1, wherein the tertiary amine has an SP value of 17 or more and 28 or less. 前記3級アミンが、2−(ジメチルアミノ)エタノール、2−ジエチルアミノエタノール、2−(ジブチルアミノ)エタノール、N−エチルジエタノールアミン、トリエタノールアミン、トリエチルアミン、トリプロピルアミン、トリアミルアミン、トリヘキシルアミン、トリ−n−オクチルアミンからなる群から選択される1種以上の3級アミンである請求項1〜7のいずれか1項に記載のトナーの製造方法。   The tertiary amine is 2- (dimethylamino) ethanol, 2-diethylaminoethanol, 2- (dibutylamino) ethanol, N-ethyldiethanolamine, triethanolamine, triethylamine, tripropylamine, triamylamine, trihexylamine, The toner production method according to claim 1, wherein the toner is one or more tertiary amine selected from the group consisting of tri-n-octylamine. 前記酸が、塩酸である請求項1〜8のいずれか1項に記載のトナーの製造方法。
The method for producing a toner according to claim 1, wherein the acid is hydrochloric acid.
JP2011286212A 2011-12-27 2011-12-27 Toner production method Active JP6021333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011286212A JP6021333B2 (en) 2011-12-27 2011-12-27 Toner production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011286212A JP6021333B2 (en) 2011-12-27 2011-12-27 Toner production method

Publications (3)

Publication Number Publication Date
JP2013133450A JP2013133450A (en) 2013-07-08
JP2013133450A5 JP2013133450A5 (en) 2015-04-09
JP6021333B2 true JP6021333B2 (en) 2016-11-09

Family

ID=48910367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011286212A Active JP6021333B2 (en) 2011-12-27 2011-12-27 Toner production method

Country Status (1)

Country Link
JP (1) JP6021333B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6402529B2 (en) * 2014-08-07 2018-10-10 藤倉化成株式会社 Toner and method for producing the same
JP6551037B2 (en) * 2015-08-12 2019-07-31 富士ゼロックス株式会社 Method of producing resin particle dispersion, method of producing electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming method, and image forming apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4718391B2 (en) * 2005-08-03 2011-07-06 三洋化成工業株式会社 Resin particles
JP4634273B2 (en) * 2005-10-14 2011-02-16 花王株式会社 Method for producing resin emulsion
JP5230435B2 (en) * 2007-02-19 2013-07-10 キヤノン株式会社 Method for producing aqueous dispersion of resin fine particles, aqueous dispersion of resin fine particles, method for producing toner, and toner
US20090130579A1 (en) * 2007-11-15 2009-05-21 Kabushiki Kaisha Toshiba Developing agent and method for manufacturing the same
JP5286207B2 (en) * 2008-09-17 2013-09-11 株式会社東芝 Method for producing developer
WO2010137599A1 (en) * 2009-05-28 2010-12-02 Canon Kabushiki Kaisha Toner production process and toner
CN102236276A (en) * 2010-04-26 2011-11-09 东芝泰格有限公司 Electrohphotographic toner

Also Published As

Publication number Publication date
JP2013133450A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP2013177583A (en) Method of manufacturing aqueous dispersion of resin fine particle and method of manufacturing toner
JP5739124B2 (en) Toner having titania and process for producing the same
US8709693B2 (en) Polyester resin for toner, electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP5545173B2 (en) Toner for developing electrostatic image and method for producing the same
JP2012229420A (en) Polyester resin for toner, toner, developer, toner cartridge, process cartridge, and image forming apparatus
KR20060055309A (en) Electrostatic latent image developing toner and manufacturing method thereof
JP6405173B2 (en) Binder resin composition for electrostatic image developing toner
JP2010276719A (en) Method for producing electrophotographic toner
CN101105651B (en) Toner for electrostatic image development, manufacturing method thereof, electrostatic image developer and image forming method
JP5192158B2 (en) Resin emulsion
JP2007121462A (en) Toner for electrostatic image development, method for manufacturing toner therefor, electrostatic image developer and image forming method
JP4770611B2 (en) Method for producing toner for developing electrostatic image
JP2007086494A (en) Electrostatic charge image developing toner and method for manufacturing the same, and image forming method
JP2013092767A (en) Manufacturing method of core-shell structure type fine particle, and toner
JP6021333B2 (en) Toner production method
JP5973896B2 (en) Method for producing toner for electrophotography
JP5463217B2 (en) Toner for electrophotography
JP6021332B2 (en) Toner production method
JP5502632B2 (en) Toner for electrophotography
JP2008176170A (en) Toner and method for manufacturing the same
US20220306814A1 (en) Method for producing resin particle dispersion, method for producing toner for electrostatic image development, and toner for electrostatic image development
JP6235935B2 (en) Method for producing toner for developing electrostatic image
JP2022151291A (en) Method for producing resin particle dispersion, method for producing toner for developing electrostatic image and toner for developing electrostatic image
JP2022151290A (en) Method for producing resin particle dispersion, method for producing toner for developing electrostatic image and toner for developing electrostatic image
JP2011065144A (en) Method of manufacturing toner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161004

R151 Written notification of patent or utility model registration

Ref document number: 6021333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151