JP6021332B2 - Toner production method - Google Patents

Toner production method Download PDF

Info

Publication number
JP6021332B2
JP6021332B2 JP2011286211A JP2011286211A JP6021332B2 JP 6021332 B2 JP6021332 B2 JP 6021332B2 JP 2011286211 A JP2011286211 A JP 2011286211A JP 2011286211 A JP2011286211 A JP 2011286211A JP 6021332 B2 JP6021332 B2 JP 6021332B2
Authority
JP
Japan
Prior art keywords
fine particles
resin fine
resin
aqueous dispersion
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011286211A
Other languages
Japanese (ja)
Other versions
JP2013133449A5 (en
JP2013133449A (en
Inventor
祥平 福谷
祥平 福谷
東 隆司
隆司 東
正郎 鈴木
正郎 鈴木
崇 平佐
崇 平佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011286211A priority Critical patent/JP6021332B2/en
Publication of JP2013133449A publication Critical patent/JP2013133449A/en
Publication of JP2013133449A5 publication Critical patent/JP2013133449A5/ja
Application granted granted Critical
Publication of JP6021332B2 publication Critical patent/JP6021332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、樹脂微粒子の水系媒体を用いるトナーの製造方法に関する。   The present invention relates to a toner production method using an aqueous medium of resin fine particles.

樹脂微粒子の水系分散体は、トナー、インクジェットプリンタ用インク、静電印刷等の液体現像剤等の多岐にわたる分野で使用されている。いずれの分野においても、樹脂微粒子の水系分散体における樹脂微粒子の粒径、粒度分布の制御は重要であり、特に小粒径でかつ粒度分布がシャープである樹脂微粒子が望まれている。   Aqueous dispersions of resin fine particles are used in various fields such as toner, ink for inkjet printers, liquid developers for electrostatic printing, and the like. In any field, control of the particle size and particle size distribution of the resin fine particles in the aqueous dispersion of resin fine particles is important. Particularly, resin fine particles having a small particle size and a sharp particle size distribution are desired.

樹脂微粒子の水系分散体をトナーの製造に使用する場合、より精密に粒径が制御された樹脂微粒子の水系分散体が望まれている。これは、樹脂微粒子の粒径や粒度分布がトナー粒度分布、形状等を大きく左右し、トナーの現像性等に大きな影響を与えるためである。   When an aqueous dispersion of resin fine particles is used in the production of toner, an aqueous dispersion of resin fine particles having a more precisely controlled particle size is desired. This is because the particle size and particle size distribution of the resin fine particles greatly affect the toner particle size distribution, shape, and the like, and greatly affect the developability of the toner.

特許文献1には、樹脂微粒子の製造方法として、転相乳化法と呼ばれる有機溶剤を使用した方法が記載されている。また、特許文献2や3には、環境負荷低減、省資源の観点から、有機溶剤をほとんど使用せずに樹脂分散体を得る、無溶剤乳化方法が記載されている。   Patent Document 1 describes a method using an organic solvent called a phase inversion emulsification method as a method for producing resin fine particles. Patent Documents 2 and 3 describe a solvent-free emulsification method in which a resin dispersion is obtained without using an organic solvent from the viewpoint of reducing environmental burden and saving resources.

特開平8−211655JP-A-8-21655 特開2004−189765JP2004-189765 特開2007−106906JP 2007-106906 A

特許文献1〜3に記載の方法では、酸基を有する樹脂を乳化する場合、酸基由来の負電荷と界面活性剤の負電荷との静電反発により、樹脂に対する界面活性剤の吸着が阻害されることから、界面活性剤の付着量にムラができてしまう。そのため、分散体表面への界面活性剤の付着量が不均一となることから、形成される樹脂微粒子の粒度分布が幅広くなり、望ましい粒径のトナーが得られない場合がある。   In the methods described in Patent Documents 1 to 3, when emulsifying a resin having an acid group, adsorption of the surfactant to the resin is inhibited by electrostatic repulsion between the negative charge derived from the acid group and the negative charge of the surfactant. As a result, the adhesion amount of the surfactant becomes uneven. For this reason, the amount of the surfactant adhering to the surface of the dispersion becomes non-uniform, so that the particle size distribution of the resin fine particles to be formed becomes wide and a toner having a desired particle size may not be obtained.

近年、電子写真分野では低温定着性と保存安定性を両立させるため、低軟化点樹脂からなるコアを高軟化点樹脂からなるシェルで被覆した構造を持つ、コアシェルトナーが広く用いられている。シェルの構成材料として、粒径が大きく、粒度分布が広い樹脂微粒子の水系分散体を用いた場合、コア粒子へのシェル粒子付着が不均一となり、トナーの保存安定性が低下してしまう。上記課題を解決するために、シェルの被覆量を増加させることも考えられるが、この場合トナー全体の軟化点が上昇してしまい、低温定着性が悪化する。従って、保存安定性と低温定着性の両立のため、樹脂微粒子を十分に小粒径化し、粒度分布を狭くすることは大きな課題である。   In recent years, in order to achieve both low-temperature fixability and storage stability in the electrophotographic field, core-shell toners having a structure in which a core made of a low softening point resin is covered with a shell made of a high softening point resin have been widely used. When an aqueous dispersion of resin fine particles having a large particle size and a wide particle size distribution is used as a constituent material of the shell, shell particle adhesion to the core particles becomes non-uniform, and the storage stability of the toner decreases. In order to solve the above problem, it is conceivable to increase the coating amount of the shell, but in this case, the softening point of the entire toner is increased, and the low-temperature fixability is deteriorated. Therefore, in order to achieve both storage stability and low-temperature fixability, it is a big problem to make the resin fine particles sufficiently small and narrow the particle size distribution.

本発明は上記の課題を解決するものである。すなわち、本発明の目的は、小粒径かつ粒度分布の狭い樹脂微粒子の水系分散体の製造方法を提供することである。また、該樹脂微粒子の水系分散体を用いることで、低温定着性と保存安定性を両立したトナーの製造方法を提供することである。   The present invention solves the above problems. That is, an object of the present invention is to provide a method for producing an aqueous dispersion of resin fine particles having a small particle size and a narrow particle size distribution. Another object of the present invention is to provide a toner production method that achieves both low-temperature fixability and storage stability by using an aqueous dispersion of the resin fine particles.

本発明は、
樹脂微粒子の水系分散体を製造する工程と、
該樹脂微粒子の水系分散体と着色剤とを混合し、該樹脂微粒子及び該着色剤を水系媒体中で凝集させて重量平均粒径(D4)が4.5μm以上7.0μm以下の凝集体を形成する凝集工程と、
該凝集体を加熱し、融合させる融合工程と、
を有するトナーの製造方法において、
該樹脂微粒子の水系分散体を製造する工程は、
(i)酸基を有する樹脂、アニオン性界面活性剤、水及び水溶性無機塩を混合して混合物を得る混合工程と、
(ii)該酸基を有する樹脂のガラス転移点以上の温度で、該混合物の撹拌を行い、体積分布基準の50%粒径が0.02μm以上1.00μm以下の該樹脂微粒子の水系分散体を得る乳化工程を有し
該水溶性無機塩が、塩化ナトリウム、塩化カリウム又は塩化リチウムであり、
該乳化工程において、該水系分散体の水相中における該水溶性無機塩の濃度が、下記臨界凝集濃度以下であることを特徴とするトナーの製造方法。
[臨界凝集濃度とは、水溶性無機塩を添加した樹脂微粒子の水系分散体の体積分布基準50%粒径が、水溶性無機塩を添加する前の樹脂微粒子の水系分散体における樹脂微粒子の体積分布基準50%粒径の1.5倍を超えた時点での、該水系分散体の水相における水溶性無機塩の濃度である。]
更に、
樹脂微粒子の水系分散体を製造する工程と、
該樹脂微粒子の水系分散体と着色剤とを混合し、該樹脂微粒子及び該着色剤を水系媒体中で凝集させて重量平均粒径(D4)が4.5μm以上7.0μm以下の凝集体を形成する凝集工程と、
該凝集体を加熱し、融合させる融合工程と、
を有するトナーの製造方法において、
該樹脂微粒子の水系分散体を製造する工程は、
(i)酸基を有する樹脂、該酸其を有する樹脂が可溶な溶剤、アニオン性界面活性剤、を混合して混合物を得る混合工程と、
(ii)該混合物に水溶性無機塩及び水を添加し撹拌を行い、体積分布基準の50%粒径が0.02μm以上1.00μm以下の該樹脂微粒子の水系分散体を得る乳化工程を有し
該樹脂微粒子の水系分散体を製造する工程は、
該乳化工程において、該水系分散体の水相中における該水溶性無機塩の濃度が、下記で定義する臨界凝集濃度以下であることを特徴とするトナーの製造方法。
[臨界凝集濃度とは、水溶性無機塩を添加した樹脂微粒子の水系分散体の体積分布基準50%粒径が、水溶性無機塩を添加する前の樹脂微粒子の水系分散体における樹脂微粒子の体積分布基準50%粒径の1.5倍を超えた時点での、該水系分散体の水相における水溶性無機塩の濃度である。]
に関する。
The present invention
Producing an aqueous dispersion of resin fine particles;
An aqueous dispersion of the resin fine particles and a colorant are mixed, and the resin fine particles and the colorant are aggregated in an aqueous medium to obtain an aggregate having a weight average particle diameter (D4) of 4.5 μm or more and 7.0 μm or less. An aggregation process to form;
A fusing step of heating and fusing the aggregates;
In a method for producing a toner having
The step of producing an aqueous dispersion of the resin fine particles includes:
(I) a mixing step of obtaining a mixture by mixing a resin having an acid group, an anionic surfactant, water and a water-soluble inorganic salt;
(Ii) Stirring of the mixture at a temperature equal to or higher than the glass transition temperature of the resin having an acid group, and an aqueous dispersion of the resin fine particles having a 50% particle size based on volume distribution of 0.02 μm to 1.00 μm Having an emulsification step
The water-soluble inorganic salt is sodium chloride, potassium chloride or lithium chloride;
In the emulsification step, a toner production method, wherein the concentration of the water-soluble inorganic salt in the aqueous phase of the aqueous dispersion is not more than the following critical aggregation concentration.
[Critical aggregation concentration is the volume distribution of the resin fine particles in the aqueous dispersion of the resin fine particles before the addition of the water soluble inorganic salt, in which the volume distribution standard 50% particle size of the resin fine particles added with the water-soluble inorganic salt is 50%. This is the concentration of the water-soluble inorganic salt in the aqueous phase of the aqueous dispersion when it exceeds 1.5 times the distribution standard 50% particle size. ]
Furthermore,
Producing an aqueous dispersion of resin fine particles;
An aqueous dispersion of the resin fine particles and a colorant are mixed, and the resin fine particles and the colorant are aggregated in an aqueous medium to obtain an aggregate having a weight average particle diameter (D4) of 4.5 μm or more and 7.0 μm or less. An aggregation process to form;
A fusing step of heating and fusing the aggregates;
In a method for producing a toner having
The step of producing an aqueous dispersion of the resin fine particles includes:
(I) a mixing step of mixing a resin having an acid group, a solvent in which the resin having the acid group is soluble, and an anionic surfactant to obtain a mixture;
(Ii) An emulsification step of adding a water-soluble inorganic salt and water to the mixture and stirring to obtain an aqueous dispersion of the resin fine particles having a 50% particle size based on volume distribution of 0.02 μm or more and 1.00 μm or less. And the step of producing an aqueous dispersion of the resin fine particles,
In the emulsification step, a method for producing a toner, wherein the concentration of the water-soluble inorganic salt in the aqueous phase of the aqueous dispersion is not more than the critical aggregation concentration defined below.
[Critical aggregation concentration is the volume distribution of the resin fine particles in the aqueous dispersion of the resin fine particles before the addition of the water soluble inorganic salt, in which the volume distribution standard 50% particle size of the resin fine particles added with the water-soluble inorganic salt is 50%. This is the concentration of the water-soluble inorganic salt in the aqueous phase of the aqueous dispersion when it exceeds 1.5 times the distribution standard 50% particle size. ]
About.

本発明により、酸基を有する樹脂を用いた場合でも、従来よりも、小粒径かつ粒度分布の狭い樹脂微粒子の水系分散体を提供することが可能となる。また、本発明により製造した、小粒径かつ粒度分布の狭い樹脂微粒子の水系分散体を利用してトナーを製造することにより、低温定着性と保存安定性を両立したトナーを得ることができる。   According to the present invention, even when an acid group-containing resin is used, it is possible to provide an aqueous dispersion of resin fine particles having a smaller particle size and a narrower particle size distribution than before. Further, by producing a toner using an aqueous dispersion of resin fine particles having a small particle size and a narrow particle size distribution produced according to the present invention, a toner having both low temperature fixability and storage stability can be obtained.

<樹脂微粒子の水系分散体の製造方法>
まず、樹脂微粒子の水系分散体の製造方法のうち、第一の態様について説明する。
<Method for producing aqueous dispersion of resin fine particles>
First, the first aspect of the method for producing an aqueous dispersion of resin fine particles will be described.

本発明の製造方法の第一の態様は、酸基を有する樹脂及びアニオン性界面活性剤を混合して混合物を得る混合工程を有する。   The 1st aspect of the manufacturing method of this invention has the mixing process of mixing resin which has an acid group, and anionic surfactant, and obtaining a mixture.

本発明で用いられる酸基を有する樹脂とは、分子鎖の末端や側鎖に、カルボキシル基、スルホ基、又はこれらの塩を有する樹脂を意味する。具体的には、アクリル系樹脂、メタクリル系樹脂、スチレン−アクリル共重合体、スチレン−メタクリル共重合体、ポリエステル樹脂、ポリアミド酸系樹脂等が好適に例示できる。その中でも、トナー用材料として使用する場合には、トナーの軟化温度(Tm)とガラス転移点(Tg)の差を小さくすることができるという観点から、ポリエステル樹脂が好ましい。   The resin having an acid group used in the present invention means a resin having a carboxyl group, a sulfo group, or a salt thereof at the end or side chain of a molecular chain. Specifically, an acrylic resin, a methacrylic resin, a styrene-acrylic copolymer, a styrene-methacrylic copolymer, a polyester resin, a polyamic acid resin, and the like can be preferably exemplified. Among these, when used as a toner material, a polyester resin is preferable from the viewpoint that the difference between the softening temperature (Tm) of the toner and the glass transition point (Tg) can be reduced.

ポリエステル樹脂は、酸成分とアルコール成分を縮重合することにより得られる。ポリエステル樹脂を製造する際、酸成分としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、グルタコン酸、アゼライン酸、セバシン酸、ノナンジカルボン酸、デカンジカルボン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、マレイン酸、フマル酸、メサコン酸、シトラコン酸、イタコン酸、イソフタル酸、テレフタル酸、n−ドデシルコハク酸、n−デドセニルコハク酸、シクロヘキサンジカルボン酸等のジカルボン酸の他、トリメリット酸、2,5,7−ナフタレントリカルボン酸、1,2,4−ナフタレントリカルボン酸、ピロメリット酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシル−2−メチル−2−メチレンカルボキシプロパン等、3価以上の多価カルボン酸、及びこれらの酸無水物又は低級アルキルエステル等の誘導体等が挙げられる。   The polyester resin is obtained by polycondensing an acid component and an alcohol component. When the polyester resin is produced, the acid component includes oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, peric acid, glutaconic acid, azelaic acid, sebacic acid, nonanedicarboxylic acid, decanedicarboxylic acid, In addition to dicarboxylic acids such as undecane dicarboxylic acid, dodecane dicarboxylic acid, maleic acid, fumaric acid, mesaconic acid, citraconic acid, itaconic acid, isophthalic acid, terephthalic acid, n-dodecyl succinic acid, n-dedecenyl succinic acid, cyclohexane dicarboxylic acid, Trimellitic acid, 2,5,7-naphthalenetricarboxylic acid, 1,2,4-naphthalenetricarboxylic acid, pyromellitic acid, 1,2,4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1, 3-dicarboxyl-2-methyl-2-methylenecarbox Propane, tri- or higher carboxylic acid, and derivatives such as their anhydrides or lower alkyl esters.

アルコール成分としては、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9―ノナンジオール、1,10−デカンジオール、1,11−ドデカンジオール、1,12−ウンデカンジオール、1,13−トリデカンジオール、1,14−テトラデカンジオール、1,18−オクタデカンジオール、1,20−エイコサンジオール等の脂肪族ジオールの他、ポリオキシエチレン化ビスフェノールA、ポリオキシプロピレン化ビスフェノールA、1,4−シクロヘキサンジメタノール等の2価のアルコール、1,3,5−トリヒドロキシメチルベンゼン等の芳香族アルコール、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、グリセリン、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン等の3価のアルコール等を用いても良い。   Examples of the alcohol component include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, , 9-nonanediol, 1,10-decanediol, 1,11-dodecanediol, 1,12-undecanediol, 1,13-tridecanediol, 1,14-tetradecanediol, 1,18-octadecanediol, In addition to aliphatic diols such as 20-eicosanediol, dihydric alcohols such as polyoxyethylenated bisphenol A, polyoxypropylenated bisphenol A, 1,4-cyclohexanedimethanol, 1,3,5-trihydroxy Aromatic alcohols such as methylbenzene, pentaerythritol Dipentaerythritol, tripentaerythritol, 1,2,4-butanetriol, 1,2,5-pentanetriol, glycerin, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, trimethylolethane Trivalent alcohol such as trimethylolpropane may be used.

本発明に用いられる酸基を有する樹脂のガラス転移点(Tg)は、トナーとして使用する場合には、ブロッキング防止の観点から50℃以上であることが好ましく、低温定着性の観点から80℃以下であることが好ましい。   When used as a toner, the glass transition point (Tg) of the resin having an acid group used in the present invention is preferably 50 ° C. or higher from the viewpoint of blocking prevention, and 80 ° C. or lower from the viewpoint of low-temperature fixability. It is preferable that

本発明に用いられる酸基を有する樹脂の軟化温度(Tm)は、トナーとして使用する場合には、低温定着性の観点から150℃以下であることが好ましく、トナーの耐熱保管性の観点からは90℃以上が好ましい。   The softening temperature (Tm) of the resin having an acid group used in the present invention is preferably 150 ° C. or less from the viewpoint of low-temperature fixability when used as a toner, and from the viewpoint of heat-resistant storage properties of the toner. 90 degreeC or more is preferable.

本発明に用いられる酸基を有する樹脂は、該樹脂のテトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフィー(GPC)により測定される分子量分布において、分子量3,500以上15,000以下の範囲にメインピークのピークトップを有することが好ましい。メインピークのピークトップが上記の範囲内であれば、樹脂微粒子の水系分散体を凝集トナーの製造に用いた場合の熱安定性が高い。   The resin having an acid group used in the present invention has a molecular weight range of 3,500 to 15,000 in the molecular weight distribution measured by gel permeation chromatography (GPC) soluble in tetrahydrofuran (THF) of the resin. It is preferable to have a peak top of the main peak. When the peak top of the main peak is within the above range, the thermal stability is high when an aqueous dispersion of resin fine particles is used in the production of the aggregated toner.

本発明に用いられる酸基を有する樹脂は、酸価が1mgKOH/g以上30mgKOH/g以下であることが好ましい。樹脂の酸価が1以上であれば、トナーとした際に帯電性が高く、飛散やかぶりが抑制される。また、酸価が30以下であれば、樹脂の吸湿が抑制され、温度の異なる環境下においても、トナー特性が変動しにくい。 The resin having an acid group used in the present invention preferably has an acid value of 1 mgKOH / g or more and 30 mgKOH / g or less . When the acid value of the resin is 1 or more, the chargeability is high when the toner is used, and scattering and fogging are suppressed. Further, if the acid value is 30 or less, the moisture absorption of the resin is suppressed, and the toner characteristics hardly change even in environments with different temperatures.

本発明に用いられるアニオン性界面活性剤は、疎水性置換基として、直鎖または枝分かれ構造を有する炭化水素鎖、炭化ふっ素鎖、あるいはベンゼン、ナフタレン等の芳香環を有する疎水基と、スルホン酸エステル、カルボン酸、あるいはスルホン酸を有する親水基とを有する化合物であることが好ましい。アニオン性界面活性剤としては、硫酸エステル塩、スルホン酸塩、リン酸エステル、せっけん、アミン塩型、4級アンモニウム塩型等が挙げられる。具体的には、ラウリン酸カリウム、オレイン酸ナトリウム、ヒマシ油ナトリウム等の脂肪酸セッケン類;オクチルサルフェート、ラウリルサルフェート、ラウリルエーテルサルフェート、ノニルフェニルエーテルサルフェート等の硫酸エステル類;ラウリルスルホネート、ドデシルベンゼンスルホネート、トリイソプロピルナフタレンスルホネート、ジブチルナフタレンスルホネートなどのアルキルナフタレンスルホン酸ナトリウム;ナフタレンスルホネートホルマリン縮合物、モノオクチルスルホサクシネート、ジオクチルスルホサクシネート、ラウリン酸アミドスルホネート、オレイン酸アミドスルホネート等のスルホン酸塩類;ラウリルホスフェート、イソプロピルホスフェート、ノニルフェニルエーテルホスフェート等のリン酸エステル類;ジオクチルスルホコハク酸ナトリウムなどのジアルキルスルホコハク酸塩類;スルホコハク酸ラウリル2ナトリウム等のスルホコハク酸塩類が挙げられる。界面活性剤は、液中の濃度が、臨界ミセル濃度以上になるように添加されることが好ましい。界面活性剤は、1種単独で使用してもよいし、2種以上を併用してもよい。   The anionic surfactant used in the present invention includes, as a hydrophobic substituent, a hydrocarbon group having a linear or branched structure, a fluorocarbon chain, or a hydrophobic group having an aromatic ring such as benzene or naphthalene, and a sulfonate ester. , A compound having a hydrophilic group having a carboxylic acid or a sulfonic acid. Examples of the anionic surfactant include sulfate ester salt, sulfonate salt, phosphate ester, soap, amine salt type, and quaternary ammonium salt type. Specifically, fatty acid soaps such as potassium laurate, sodium oleate, and castor oil sodium; sulfates such as octyl sulfate, lauryl sulfate, lauryl ether sulfate, and nonylphenyl ether sulfate; lauryl sulfonate, dodecylbenzene sulfonate, tri Alkylnaphthalene sodium sulfonates such as isopropyl naphthalene sulfonate and dibutyl naphthalene sulfonate; sulfonates such as naphthalene sulfonate formalin condensate, monooctyl sulfosuccinate, dioctyl sulfosuccinate, lauric acid amide sulfonate, oleic acid amide sulfonate; lauryl phosphate; Phosphoric acid esters such as isopropyl phosphate and nonylphenyl ether phosphate Le ethers; dialkyl sulfosuccinate salts such as sodium dioctyl sulfosuccinate; sulfosuccinate salts such as sulfosuccinate lauryl disodium and the like. The surfactant is preferably added so that the concentration in the liquid is equal to or higher than the critical micelle concentration. Surfactant may be used individually by 1 type and may use 2 or more types together.

本発明における混合工程では、酸基を有する樹脂とアニオン性界面活性剤とをそのまま混合しても良いし、あるいは水の存在下でこれらの材料を混合しても良い。   In the mixing step in the present invention, the acid group-containing resin and the anionic surfactant may be mixed as they are, or these materials may be mixed in the presence of water.

本発明の製造方法の第一の態様は、酸基を有する樹脂のガラス転移点以上の温度で、水及び水溶性無機塩の存在下で混合物の撹拌を行い、樹脂乳化物を得る乳化工程を有する。   The first aspect of the production method of the present invention includes an emulsification step of stirring the mixture in the presence of water and a water-soluble inorganic salt at a temperature equal to or higher than the glass transition point of the resin having an acid group to obtain a resin emulsion. Have.

撹拌装置としては、高速回転式ホモジナイザーや高圧式ホモジナイザーが挙げられる。   Examples of the stirring device include a high-speed rotation type homogenizer and a high-pressure type homogenizer.

乳化工程では、必要に応じ塩基性物質を添加してもよい。酸基を有する樹脂をそのまま水系媒体中で微粒化させるとpHが3〜4となり、酸性側に偏りすぎてしまい、例えば、酸基を有する樹脂がポリエステル樹脂等の加水分解性樹脂である場合は、加水分解が促進されてしまう。従って、特に加水分解性樹脂を用いる場合には、塩基性物質を添加することが好ましい。塩基性物質としては、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、及び、炭酸水素カリウム等の無機塩基類;ジメチルアミン、ジエチルアミン、及びトリエチルアミン等の有機塩基類が挙げられる。この中でも、塩基性条件下での加水分解抑制の観点から、弱塩基である、ジメチルアミンやトリエチルアミン等のアミンを用いることが好ましい。   In the emulsification step, a basic substance may be added as necessary. If the resin having an acid group is atomized as it is in an aqueous medium, the pH becomes 3 to 4 and is too biased toward the acidic side. For example, when the resin having an acid group is a hydrolyzable resin such as a polyester resin , Hydrolysis is accelerated. Therefore, it is preferable to add a basic substance, particularly when using a hydrolyzable resin. Basic substances include inorganic bases such as ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, and potassium bicarbonate; organic bases such as dimethylamine, diethylamine, and triethylamine. Can be mentioned. Among these, from the viewpoint of inhibiting hydrolysis under basic conditions, it is preferable to use weak bases such as dimethylamine and triethylamine.

塩基性物質を用いる場合、水系媒体中のpHが6〜11となるように、添加量を調整することが好ましい。塩基性物質は、その添加量が増加すると樹脂微粒子の粒子径を小さくする傾向がある。これは、塩基性物質によって樹脂の酸基が塩構造をとり、樹脂の自己乳化性が高くなるためである。ただし、水系媒体中のpHが塩基性になってしまうと、樹脂の加水分解が生じてしまうことがある。そのため、塩基性物質として強塩基を使用する場合には、加水分解を生じさせないように添加量を制限する必要がある。上記の観点から、塩基性物質の好ましい添加量は、樹脂の酸基の数に対して、0.1当量以上10.0当量以下であることが好ましく、0.9当量以上3.0当量以下であることがより好ましい。   When using a basic substance, it is preferable to adjust the addition amount so that the pH in the aqueous medium is 6 to 11. The basic substance tends to reduce the particle size of the resin fine particles as the amount of the basic substance increases. This is because the acid group of the resin takes a salt structure by the basic substance, and the self-emulsifying property of the resin becomes high. However, if the pH in the aqueous medium becomes basic, hydrolysis of the resin may occur. Therefore, when a strong base is used as the basic substance, it is necessary to limit the addition amount so as not to cause hydrolysis. From the above viewpoint, the preferable addition amount of the basic substance is preferably 0.1 equivalents or more and 10.0 equivalents or less, and 0.9 equivalents or more and 3.0 equivalents or less with respect to the number of acid groups of the resin. It is more preferable that

本発明における乳化工程では、水及び水溶性無機塩の存在下で混合物の撹拌が行われる。乳化工程において水溶性無機塩が存在すると、水溶性無機塩から電離したカチオンが、樹脂の酸基由来の負電荷を遮蔽する。これにより、樹脂の酸基由来の負電荷とアニオン性界面活性との静電反発が弱められ、界面活性剤がより多量かつ均一に、樹脂表面に付着すると考えられる。そのため、粒径が小さくシャープな粒度分布を持つ樹脂微粒子の水系分散体が得られる。   In the emulsification step in the present invention, the mixture is stirred in the presence of water and a water-soluble inorganic salt. When a water-soluble inorganic salt is present in the emulsification step, cations ionized from the water-soluble inorganic salt shield a negative charge derived from the acid group of the resin. Thereby, the electrostatic repulsion between the negative charge derived from the acid group of the resin and the anionic surface activity is weakened, and the surfactant is considered to adhere to the resin surface in a larger amount and more uniformly. Therefore, an aqueous dispersion of resin fine particles having a small particle size and a sharp particle size distribution can be obtained.

水溶性無機塩としては、例えば、塩化ナトリウム、塩化カリウム、塩化リチウム等の一価の無機塩;塩化マグネシウム等の二価の無機塩;塩化アルミニウム等の三価の無機塩が挙げられる。一般的には、価数の高い塩の方が上記の遮蔽効果が高いが、樹脂微粒子同士の凝集が起こり易い傾向がある。そのため、樹脂微粒子同士の凝集が起こりにくいという観点から、一価の無機塩が好ましく用いられる。   Examples of the water-soluble inorganic salt include monovalent inorganic salts such as sodium chloride, potassium chloride, and lithium chloride; divalent inorganic salts such as magnesium chloride; and trivalent inorganic salts such as aluminum chloride. In general, a salt having a higher valence has a higher shielding effect, but the resin fine particles tend to aggregate. Therefore, a monovalent inorganic salt is preferably used from the viewpoint that aggregation of resin fine particles hardly occurs.

一方で、樹脂微粒子が水系媒体中に分散しているときに水溶性無機塩を添加すると、樹脂微粒子の電気二重層の薄層化が起こる。すなわち、水溶性無機塩の陽イオンによって樹脂微粒子表面間の静電反発力が弱まり、樹脂微粒子が水系媒体中で不安定化する。そのため、水溶性無機塩を過剰に添加した場合には、樹脂微粒子同士の凝集が生じ、樹脂微粒子が粗大化する。そこで、本発明の乳化工程では、水相中における水溶性無機塩の濃度が、臨界凝集濃度以下に調整される。   On the other hand, when the water-soluble inorganic salt is added when the resin fine particles are dispersed in the aqueous medium, the electric double layer of the resin fine particles is thinned. That is, the electrostatic repulsion between the resin fine particle surfaces is weakened by the cation of the water-soluble inorganic salt, and the resin fine particles become unstable in the aqueous medium. Therefore, when an excessive amount of the water-soluble inorganic salt is added, the resin fine particles are aggregated and the resin fine particles are coarsened. Therefore, in the emulsification step of the present invention, the concentration of the water-soluble inorganic salt in the aqueous phase is adjusted to a critical aggregation concentration or less.

臨界凝集濃度は、具体的には、次のような方法で測定される。まず、水溶性無機塩を添加せずに作製した樹脂微粒子の水系分散体を用意し、該樹脂微粒子の水系分散体における樹脂微粒子の体積分布基準50%粒径を測定する。次に、20℃において、クレアミックス2.2S(エム・テクニック社製)で、回転速度10,000r/分で該樹脂乳化物を撹拌しつつ、高濃度(塩化ナトリウムでは5.0mol/L)の水溶性無機塩の水溶液を徐々に添加し、随時、樹脂微粒子の体積分布基準50%粒径を測定する。そして、水溶性無機塩を添加した樹脂乳化物における樹脂微粒子の体積分布基準50%粒径が、水溶性無機塩を添加する前の樹脂乳化物における樹脂微粒子の体積分布基準50%粒径の1.5倍を超えた時点での、水相における水溶性無機塩の濃度を臨界凝集濃度とする。樹脂微粒子の粒径の測定には、動的光散乱式粒度分布測定装置(ナノトラックUPA150:日機装社製)を用い、該装置の操作マニュアルに従い粒径を測定する。   Specifically, the critical aggregation concentration is measured by the following method. First, an aqueous dispersion of resin fine particles prepared without adding a water-soluble inorganic salt is prepared, and the volume distribution reference 50% particle diameter of the resin fine particles in the aqueous dispersion of the resin fine particles is measured. Next, at 20 ° C., the resin emulsion was stirred at Claremix 2.2S (manufactured by M Technique Co., Ltd.) at a rotation speed of 10,000 r / min, while high concentration (5.0 mol / L for sodium chloride). The aqueous solution of the water-soluble inorganic salt is gradually added, and the volume distribution standard 50% particle size of the resin fine particles is measured at any time. The volume distribution standard 50% particle size of the resin fine particles in the resin emulsion to which the water-soluble inorganic salt is added is 1 of the volume distribution standard 50% particle size of the resin fine particles in the resin emulsion before the addition of the water-soluble inorganic salt. The concentration of the water-soluble inorganic salt in the aqueous phase at the time of exceeding 5 times is defined as the critical aggregation concentration. For measuring the particle size of the resin fine particles, a dynamic light scattering particle size distribution measuring device (Nanotrack UPA150: manufactured by Nikkiso Co., Ltd.) is used, and the particle size is measured according to the operation manual of the device.

臨界凝集濃度を超える水溶性無機塩を添加すると、電荷遮蔽効果が強くなりすぎ、樹脂粒子が水系媒体中で不安定化するため、乳化中に凝集がおこる。その結果、粒径が大きくブロードな粒度分布をもつ樹脂微粒子の水系分散体となってしまう。従って、一価の水溶性無機塩を用いる場合、水溶性無機塩の添加量は0.01mol/L以上0.50mol/L以下であることが好ましく、0.10mol/L以上0.20mol/L以下であることがより好ましい。   When a water-soluble inorganic salt exceeding the critical aggregation concentration is added, the charge shielding effect becomes too strong, and the resin particles become unstable in the aqueous medium, and thus aggregation occurs during emulsification. As a result, an aqueous dispersion of resin fine particles having a large particle size and a broad particle size distribution is obtained. Therefore, when a monovalent water-soluble inorganic salt is used, the addition amount of the water-soluble inorganic salt is preferably 0.01 mol / L or more and 0.50 mol / L or less, preferably 0.10 mol / L or more and 0.20 mol / L. The following is more preferable.

乳化温度は、溶融樹脂の粘度を低下させる観点から、高い温度とすることが好ましいが、酸基を有する樹脂の溶融粘度が10Pa・s以下となる温度であれば十分である。また、乳化温度が高すぎると、樹脂の加水分解が起こる可能性があるため、乳化温度は150℃以下であることが好ましい。なお、この場合の溶融粘度とは、水中における酸基を有する樹脂の溶融粘度を意味する。 The emulsification temperature is preferably a high temperature from the viewpoint of lowering the viscosity of the molten resin, but is sufficient if the melt viscosity of the resin having an acid group is 10 3 Pa · s or less. Moreover, since the hydrolysis of resin may occur when the emulsification temperature is too high, the emulsification temperature is preferably 150 ° C. or lower. In this case, the melt viscosity means the melt viscosity of a resin having an acid group in water.

第一の態様における、混合工程及び乳化工程の詳細な手順の一例について説明する。酸基を有する樹脂、界面活性剤及び水溶性無機塩を、塩基性物質が存在している水系媒体中に投入し、次いで混合する。次に、該酸基を有する樹脂のガラス転移点(Tg)より高い温度に加熱し、せん断力を加えながら混合物を撹拌し、乳化物を得る。さらに、得られた乳化物を該樹脂のガラス転移点以下の温度までせん断力を加えて撹拌しながら冷却し、樹脂微粒子の水系分散体を得る。   An example of detailed procedures of the mixing step and the emulsification step in the first aspect will be described. A resin having an acid group, a surfactant, and a water-soluble inorganic salt are put into an aqueous medium in which a basic substance is present, and then mixed. Next, it heats to temperature higher than the glass transition point (Tg) of resin which has this acid group, stirs a mixture, applying a shear force, and obtains an emulsion. Further, the obtained emulsion is cooled with stirring while applying a shearing force to a temperature not higher than the glass transition point of the resin to obtain an aqueous dispersion of resin fine particles.

乳化工程において加熱温度が100℃以上になる場合は、密閉加圧できる容器内で乳化工程を行ってもよい。   When the heating temperature is 100 ° C. or higher in the emulsification step, the emulsification step may be performed in a container that can be hermetically pressurized.

本発明の樹脂微粒子の水系分散体の製造方法では、乳化工程の後、得られた乳化物を、せん断力を加えながら、酸基を有する樹脂のTg以下の温度まで冷却する冷却工程を有することが好ましい。冷却工程での冷却速度は、0.5℃/分以上10.0℃/分以下であることが好ましく、1.0℃/分以上10.0℃/分以下であることがより好ましく、1.0℃/分以上5.0℃/分以下であることが特に好ましい。冷却速度が上記の範囲内であれば、粗大粒子の発生や、樹脂微粒子の粒度分布のブロード化を抑制することができる。なお、樹脂微粒子の水系分散体をTg以下の温度から室温まで冷却する際には、冷却速度は特に制限されない。   In the method for producing an aqueous dispersion of resin fine particles of the present invention, after the emulsification step, the obtained emulsion is cooled to a temperature not higher than Tg of the resin having an acid group while applying a shearing force. Is preferred. The cooling rate in the cooling step is preferably from 0.5 ° C./min to 10.0 ° C./min, more preferably from 1.0 ° C./min to 10.0 ° C./min, It is particularly preferable that the temperature is from 0 ° C / min to 5.0 ° C / min. When the cooling rate is within the above range, generation of coarse particles and broadening of the particle size distribution of resin fine particles can be suppressed. In addition, when cooling the aqueous dispersion of resin fine particles from a temperature of Tg or less to room temperature, the cooling rate is not particularly limited.

樹脂微粒子の水系分散体に含まれる樹脂微粒子は、体積分布基準50%粒径が0.02μm以上1.00μm以下であることが好ましく、0.02μm以上0.40μm以下であることがより好ましい。樹脂微粒子の体積分布基準50%粒径が上記の範囲内であれば、樹脂微粒子の安定性が良好であり、沈降分離が起こりにくい。また、凝集法によるトナーの製造に用いる場合には、トナー1粒子毎の組成を均一に保つことが容易となる。   The resin fine particles contained in the aqueous dispersion of resin fine particles preferably have a volume distribution standard 50% particle size of 0.02 μm or more and 1.00 μm or less, and more preferably 0.02 μm or more and 0.40 μm or less. If the volume distribution reference 50% particle diameter of the resin fine particles is within the above range, the stability of the resin fine particles is good, and sedimentation separation hardly occurs. Further, when used for toner production by the aggregation method, it becomes easy to keep the composition of each toner particle uniform.

樹脂微粒子の体積分布基準の50%粒径を上記範囲に調整するためには、界面活性剤の量、水溶性無機塩の量、塩基性物質の量、乳化工程時の加熱温度、及び、乳化工程及び冷却工程でのせん断力の強さを適宜調整するとよい。   In order to adjust the 50% particle size of the resin fine particle based on the volume distribution to the above range, the amount of the surfactant, the amount of the water-soluble inorganic salt, the amount of the basic substance, the heating temperature during the emulsification step, and the emulsification The strength of the shearing force in the process and the cooling process may be adjusted as appropriate.

次に、樹脂微粒子の水系分散体の製造方法のうち、第二の態様について説明する。   Next, a second aspect of the method for producing an aqueous dispersion of resin fine particles will be described.

第二の態様においては、酸基を有する樹脂、酸基を有する樹脂が可溶な溶剤を混合して混合物を得る混合工程の後に、せん断力を加えて混合物を撹拌し、樹脂乳化物を得る乳化工程を行う。その際、乳化工程は、アニオン性界面活性剤、臨界凝集濃度以下の水溶性無機塩、及び水の存在下で行われる。   In the second embodiment, after the mixing step of mixing a resin having an acid group and a solvent in which the resin having an acid group is soluble to obtain a mixture, a shearing force is applied to stir the mixture to obtain a resin emulsion. An emulsification step is performed. At that time, the emulsification step is performed in the presence of an anionic surfactant, a water-soluble inorganic salt having a critical aggregation concentration or less, and water.

第二の態様における、酸基を有する樹脂、アニオン性界面活性剤、塩基性物質、水溶性無機塩については、第一の態様で述べたものと同様のものを使用することができる。   Regarding the resin having an acid group, the anionic surfactant, the basic substance, and the water-soluble inorganic salt in the second aspect, the same ones as described in the first aspect can be used.

第二の態様で用いられる、樹脂が可溶な溶剤とは、室温から乳化温度の範囲で、溶剤100質量部に対して、酸基を有する樹脂10質量部を溶解させることが可能な溶剤を意味する。溶剤は水溶性でも非水溶性でも良いが、溶剤の除去の観点から、比較的沸点が低い水溶性溶剤が好ましい。具体的には、酢酸エチル、酢酸ブチル、メチルエチルケトン、テトラヒドロフラン、ジオキサン、メタノール、エタノール、イソプロピルアルコールが挙げられ、これらの溶剤は、単独で又は2種以上を混合して用いることができる。   The resin-soluble solvent used in the second embodiment is a solvent capable of dissolving 10 parts by mass of an acid group-containing resin with respect to 100 parts by mass of the solvent in a range from room temperature to an emulsification temperature. means. The solvent may be water-soluble or water-insoluble, but a water-soluble solvent having a relatively low boiling point is preferable from the viewpoint of removing the solvent. Specific examples include ethyl acetate, butyl acetate, methyl ethyl ketone, tetrahydrofuran, dioxane, methanol, ethanol and isopropyl alcohol. These solvents can be used alone or in admixture of two or more.

第二の態様における乳化工程では、第一の態様と同様の、乳化装置、塩基性物質、水溶性無機塩を使用することができる。   In the emulsification step in the second aspect, the same emulsification apparatus, basic substance, and water-soluble inorganic salt as in the first aspect can be used.

第二の態様における、混合工程及び乳化工程の詳細な手順の一例について説明する。容器内に、酸基を有する樹脂、アニオン性界面活性剤、塩基性物質、及び樹脂が可溶な溶剤を投入し、樹脂が溶剤に均一に溶解するまで撹拌を行う。次いで、せん断力を加えながら、水溶性無機塩と水の混合物を滴下し、樹脂を転相乳化させる。転相乳化を行う際の温度は、取扱上の観点から溶剤の沸点以下であることが好ましく、室温条件下で行うことがより好ましい。その後、加熱又は/および減圧して溶剤を除去することで、樹脂微粒子の水系分散体を得る。   An example of detailed procedures of the mixing step and the emulsification step in the second aspect will be described. A resin having an acid group, an anionic surfactant, a basic substance, and a solvent in which the resin is soluble are placed in the container, and stirring is performed until the resin is uniformly dissolved in the solvent. Next, while applying a shearing force, a mixture of a water-soluble inorganic salt and water is dropped, and the resin is phase-inverted and emulsified. The temperature at which phase inversion emulsification is carried out is preferably below the boiling point of the solvent from the viewpoint of handling, and more preferably at room temperature. Thereafter, the solvent is removed by heating or / and decompressing to obtain an aqueous dispersion of resin fine particles.

なお、第二の態様において、アニオン性界面活性剤は、必ずしも混合工程から添加する必要は無く、例えば乳化工程において、水や水溶性無機塩と共に添加しても良い。   In the second embodiment, the anionic surfactant is not necessarily added from the mixing step, and may be added together with water or a water-soluble inorganic salt, for example, in the emulsification step.

<トナーの製造方法>
本発明で得られた樹脂微粒子の水系分散体は、凝集法等のトナーの製造に用いることが可能である。凝集法によってトナーを製造する場合、上記樹脂微粒子の水系分散体と着色剤とを混合し、樹脂微粒子及び着色剤を水系媒体中で凝集させ凝集体を形成する凝集工程、前記凝集体を加熱し融合させる融合工程を経て、トナーを得る。以下、トナーの製造方法について詳細に説明するが、本発明におけるトナーの製造方法は下記方法に限定されるものではない。
<Toner production method>
The aqueous dispersion of resin fine particles obtained in the present invention can be used for toner production such as an agglomeration method. When the toner is produced by a coagulation method, by mixing the colorant with an aqueous dispersion of the resin fine particles, aggregating step of forming an aggregate of the resin fine particles and colorant are aggregated in an aqueous medium, heating the aggregates and, through the fusion process Ru fused to obtain toner. Hereinafter, the toner production method will be described in detail, but the toner production method in the present invention is not limited to the following method.

凝集工程では、上述の樹脂微粒子の水系分散体、着色剤微粒子の水系分散体、さらに必要に応じて、例えば離型剤のようなトナー成分を、混合して混合液を調製し、混合液中に含まれる粒子を凝集し、凝集体を形成する。凝集体を形成するための方法としては、例えば、凝集剤を上記混合液中に添加・混合し、温度を調整したり、機械的動力を適宜加えたりする方法が挙げられる。   In the agglomeration step, the above-mentioned aqueous dispersion of resin fine particles, an aqueous dispersion of colorant fine particles, and, if necessary, a toner component such as a release agent are mixed to prepare a liquid mixture. The particles contained in the particles are aggregated to form aggregates. Examples of the method for forming the aggregate include a method in which a flocculant is added and mixed in the above-mentioned mixed solution, the temperature is adjusted, and mechanical power is appropriately applied.

着色剤は、顔料であっても染料であってもよいが、耐光性等の観点から顔料が好ましく使用される。なお、この場合の顔料とは、水に対して不溶な、有機または無機の有色の化合物のことである。   The colorant may be a pigment or a dye, but a pigment is preferably used from the viewpoint of light resistance and the like. In this case, the pigment is an organic or inorganic colored compound that is insoluble in water.

無機系顔料としては、以下のものが挙げられる。コバルトブルー、セルシアンブルー、コバルトバイオレット、コバルトグリーン、ジンクホワイト、チタニウムホワイト、ライトレッド、クロムオキサイドグリーン、マルスブラック等の酸化物顔料;ビリジャン、イェローオーカー、アルミナホワイト等の水酸化物顔料;ウルトラマリーン、タルク、ホワイトカーボン等のケイ酸塩顔料;金粉、銀粉、ブロンズ粉等の金属粉;カーボンブラック。有機系顔料としては、以下のものが挙げられる。βナフトール系アゾ化合物、ナフトールAS系アゾ化合物、モノアゾ型あるいはジスアゾ型アセト酢酸アリリド系アゾ化合物、ピラゾン系アゾ化合物、縮合系アゾ顔料、フタロシアニン系化合物、サブフタロシアニン系化合物、ポルフィリン系化合物、キナクリドン系化合物、イソインドリン系化合物、イソインドリノン系化合物、スレン系化合物、ペリレン系化合物、ぺリノン系化合物、チオインジゴ系化合物、ジオキサジン化合物、キノフタロン系化合物、ジケトピロロピロール系化合物。以下に、黒、シアン、マゼンタ、イエローにおいて、市販されている色材を例示する。   The following are mentioned as an inorganic pigment. Oxide pigments such as cobalt blue, celsian blue, cobalt violet, cobalt green, zinc white, titanium white, light red, chrome oxide green, and mars black; hydroxide pigments such as viridan, yellow ocher, and alumina white; ultramarine Silicate pigments such as talc and white carbon; metal powders such as gold powder, silver powder and bronze powder; carbon black. The following are mentioned as an organic pigment. β-naphthol azo compounds, naphthol AS azo compounds, monoazo or disazo acetoacetate allylide azo compounds, pyrazone azo compounds, condensed azo pigments, phthalocyanine compounds, subphthalocyanine compounds, porphyrin compounds, quinacridone compounds , Isoindoline compounds, isoindolinone compounds, selenium compounds, perylene compounds, perinone compounds, thioindigo compounds, dioxazine compounds, quinophthalone compounds, diketopyrrolopyrrole compounds. The following are examples of commercially available color materials for black, cyan, magenta, and yellow.

黒色の色材としては、Raven1060、Raven1080、Raven1170、Raven1200、Raven1250、Raven1255、Raven1500、Raven2000、Raven3500、Raven5250、Raven5750、Raven7000、Raven5000 ULTRAII、Raven1190 ULTRAII(以上、コロンビアン・カーボン社製);Black Pearls L、MOGUL−L、Regal400R、Regal660R、Regal330R、Monarch 800、Monarch 880、Monarch 900、Monarch 1000、Monarch 1300、Monarch 1400(以上、キャボット社製);Color Black FW1、Color Black FW2、Color Black FW200、Color Black 18、Color Black S160、Color Black S170、Special Black 4、Special Black 4A、Special Black 6、Printex35、PrintexU、Printex140U、PrintexV、Printex140V(以上デグッサ社製);No.25、No.33、No.40、No.47、No.52、No.900、No.2300、MCF−88、MA600、MA7、MA8、MA100(以上三菱化学社製)が挙げられる。   Raven1060, Raven1080, Raven1170, Raven1200, Raven1250, Raven1255, Raven1500, Raven2000, Raven3500, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000, Raven5000 , MOGUL-L, Regal 400R, Regal 660R, Regal 330R, Monarch 800, Monarch 880, Monarch 900, Monarch 1000, Monarch 1300, Monarch 1400 (above, manufactured by Cabot Corporation); Color Black F 1, Color Black FW2, Color Black FW200, Color Black 18, Color Black S160, Color Black S170, Special Black 4P, Special Black 4A, Special Black 140P, BlackPr 140, Color Black S170, Color Black S170, Color Black S170, Special Black No. 25, no. 33, no. 40, no. 47, no. 52, no. 900, no. 2300, MCF-88, MA600, MA7, MA8, MA100 (manufactured by Mitsubishi Chemical Corporation).

シアン色の色材としては、C.I.Pigment Blue−1、C.I.Pigment Blue−2、C.I.Pigment Blue−3、C.I.Pigment Blue−15、C.I.Pigment Blue−15:2、C.I.Pigment Blue−15:3、C.I.Pigment Blue−15:4、C.I.Pigment Blue−16、C.I.Pigment Blue−22、C.I.Pigment Blue−60等が挙げられる。   Examples of cyan color materials include C.I. I. Pigment Blue-1, C.I. I. Pigment Blue-2, C.I. I. Pigment Blue-3, C.I. I. Pigment Blue-15, C.I. I. Pigment Blue-15: 2, C.I. I. Pigment Blue-15: 3, C.I. I. Pigment Blue-15: 4, C.I. I. Pigment Blue-16, C.I. I. Pigment Blue-22, C.I. I. Pigment Blue-60 and the like.

マゼンタ色の色材としては、C.I.Pigment Red−5、C.I.Pigment Red−7、C.I.Pigment Red−12、C.I.Pigment Red−48、C.I.Pigment Red−48:1、C.I.Pigment Red−57、C.I.Pigment Red−112、C.I.Pigment Red−122、C.I.Pigment Red−123、C.I.Pigment Red−146、C.I.Pigment Red−168、C.I.Pigment Red−184、C.I.Pigment Red−202、C.I.Pigment Red−207等が挙げられる。   Examples of the magenta color material include C.I. I. Pigment Red-5, C.I. I. Pigment Red-7, C.I. I. Pigment Red-12, C.I. I. Pigment Red-48, C.I. I. Pigment Red-48: 1, C.I. I. Pigment Red-57, C.I. I. Pigment Red-112, C.I. I. Pigment Red-122, C.I. I. Pigment Red-123, C.I. I. Pigment Red-146, C.I. I. Pigment Red-168, C.I. I. Pigment Red-184, C.I. I. Pigment Red-202, C.I. I. Pigment Red-207 and the like.

イエローの色材としては、C.I.Pigment Yellow−12、C.I.Pigment Yellow−13、C.I.Pigment Yellow−14、C.I.Pigment Yellow−16、C.I.Pigment Yellow−17、C.I.Pigment Yellow−74、C.I.Pigment Yellow−83、C.I.Pigment Yellow−93、C.I.PigmentYellow−95、C.I.Pigment Yellow−97、C.I.Pigment Yellow−98、C.I.Pigment Yellow−114、C.I.Pigment Yellow−128、C.I.Pigment Yellow−129、C.I.Pigment Yellow−151、C.I.Pigment Yellow−154等が挙げられる。   Examples of yellow color materials include C.I. I. Pigment Yellow-12, C.I. I. Pigment Yellow-13, C.I. I. Pigment Yellow-14, C.I. I. Pigment Yellow-16, C.I. I. Pigment Yellow-17, C.I. I. Pigment Yellow-74, C.I. I. Pigment Yellow-83, C.I. I. Pigment Yellow-93, C.I. I. Pigment Yellow-95, C.I. I. Pigment Yellow-97, C.I. I. Pigment Yellow-98, C.I. I. Pigment Yellow-114, C.I. I. Pigment Yellow-128, C.I. I. Pigment Yellow-129, C.I. I. Pigment Yellow-151, C.I. I. Pigment Yellow-154 and the like.

離型剤としては、以下のものが挙げられる。ポリエチレン等の低分子量ポリオレフィン類;融点(軟化点)を有するシリコーン類;オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等の脂肪酸アミド類;ステアリン酸ステアリル等のエステルワックス類;カルナバワックス、ライスワックス、キャンデリラワックス、木ロウ、ホホバ油等の植物系ワックス;ミツロウ等の動物系ワックス;モンタンワックス、オゾケライト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス、エステルワックス等の鉱物・石油系ワックス;及びそれらの変性物などが挙げられる。   Examples of the release agent include the following. Low molecular weight polyolefins such as polyethylene; silicones having a melting point (softening point); fatty acid amides such as oleic acid amide, erucic acid amide, ricinoleic acid amide, stearic acid amide; ester waxes such as stearyl stearate; carnauba wax Plant waxes such as rice wax, candelilla wax, tree wax and jojoba oil; animal waxes such as beeswax; minerals such as montan wax, ozokerite, ceresin, paraffin wax, microcrystalline wax, Fischer-Tropsch wax and ester wax Petroleum wax; and modified products thereof.

トナーには必要に応じて帯電制御剤を添加してもよい。帯電制御剤としてはクロム系アゾ染料、鉄系アゾ染料、アルミニウムアゾ染料、サリチル酸金属錯体や高分子系帯電制御剤などが使用できる。   A charge control agent may be added to the toner as necessary. As the charge control agent, a chrome azo dye, an iron azo dye, an aluminum azo dye, a salicylic acid metal complex, a polymer charge control agent, or the like can be used.

凝集剤としては、例えば、ナトリウム、カリウム等の一価の金属の金属塩;カルシウム、マグネシウム等の二価の金属の金属塩;鉄、アルミニウム等の三価の金属の金属塩が挙げられる。凝集剤を添加、混合する際には、混合液中に含まれる樹脂粒子(酸基を有する樹脂)のガラス転移点(Tg)以下の温度であることが好ましい。この温度条件下で上記混合を行うと、凝集が安定した状態で進行する。上記混合は、公知の混合装置、ホモジナイザー、ミキサー等を用いて行うことができる。   Examples of the flocculant include metal salts of monovalent metals such as sodium and potassium; metal salts of divalent metals such as calcium and magnesium; metal salts of trivalent metals such as iron and aluminum. When adding and mixing the flocculant, the temperature is preferably equal to or lower than the glass transition point (Tg) of the resin particles (resin having an acid group) contained in the mixed solution. When the above mixing is performed under this temperature condition, aggregation proceeds in a stable state. The said mixing can be performed using a well-known mixing apparatus, a homogenizer, a mixer, etc.

ここで形成される凝集体の平均粒径としては、特に制限はないが、通常、得ようとするトナー粒子の平均粒径と同じ程度になるように制御するとよい。凝集体の平均粒径の制御は、例えば、上記凝集剤等の添加・混合時の温度と上記攪拌混合の条件を適宜設定・変更することにより容易に行うことができる。   The average particle size of the aggregate formed here is not particularly limited, but it is usually preferable to control the average particle size to be approximately the same as the average particle size of the toner particles to be obtained. The average particle size of the aggregate can be easily controlled by, for example, appropriately setting / changing the temperature at the time of addition / mixing of the flocculant or the like and the conditions of the stirring / mixing.

融合工程とは、上記凝集体を、第一の樹脂のガラス転移点(Tg)以上に加熱し融合させることで、凝集体表面を平滑化させたトナー粒子(コア粒子)を得る工程である。本工程により、上記凝集体の表面積が減少し、良好な形状のトナー粒子を得ることが可能になる。また、後述の付着工程にてシェル粒子を付着させる場合、シェル粒子が効率的にコア粒子に付着する。一次融合工程に入る前に、トナー粒子間の融着を防ぐため、キレート剤、pH調整剤、界面活性剤等を適宜投入することができる。 The fusing step, the aggregate, by heating the glass transition point (Tg) or more of the first resin, obtained in Rukoto fused, toner particles aggregate surface was smoothed (core particles) process is there. By this step, the surface area of the agglomerates is reduced, and toner particles having a good shape can be obtained. In addition, when shell particles are attached in the attaching step described later, the shell particles are efficiently attached to the core particles. Before entering the primary fusing step, a chelating agent, a pH adjusting agent, a surfactant and the like can be appropriately added in order to prevent fusion between toner particles.

キレート剤の例としては、エチレンジアミンテトラ酢酸及びそのNa塩等のアルカリ金属塩、グルコン酸ナトリウム、酒石酸ナトリウム、クエン酸カリウム、クエン酸ナトリウム、ニトロトリアセテート塩、COOH及びOHの両方の官能性を含む多くの水溶性ポリマー類(高分子電解質)が挙げられる。   Examples of chelating agents include alkali metal salts such as ethylenediaminetetraacetic acid and its Na salt, sodium gluconate, sodium tartrate, potassium citrate, sodium citrate, nitrotriacetate salts, many containing both functionality of COOH and OH. And water-soluble polymers (polyelectrolytes).

融合工程における加熱温度としては、凝集体に含まれる酸基を有する樹脂のガラス転移点(Tg)から、樹脂が熱分解する温度の間であればよい。加熱・融合の時間としては、加熱の温度が高ければ短い時間で足り、加熱の温度が低ければ長い時間が必要である。即ち、加熱・融合の時間は、加熱の温度に依存するので一概に規定することはできないが、一般的には10分〜10時間である。なお、融合工程の後、必要に応じて下記のトナー冷却工程を行ってもよい。   The heating temperature in the fusion step may be between the glass transition point (Tg) of the resin having an acid group contained in the aggregate and the temperature at which the resin is thermally decomposed. As the heating / fusion time, a short time is sufficient if the heating temperature is high, and a long time is required if the heating temperature is low. That is, the heating / fusion time depends on the temperature of heating and cannot be defined unconditionally, but is generally 10 minutes to 10 hours. Note that the toner cooling step described below may be performed as necessary after the fusing step.

トナー冷却工程とは、上記トナー粒子を含む水系媒体の温度を、酸基を有する樹脂のガラス転移点(Tg)より低い温度まで冷却する工程である。Tgより低い温度まで水系媒体の冷却を行わないと、後述の付着工程を行う場合、凝集剤を添加した際に粗大粒子が発生してしまう。具体的な冷却速度は0.1〜50℃/分である。なお、コア粒子としては、上述した凝集工程及び融合工程を経て得られたものが好ましいが、他の製造方法によって得たコア粒子を用いても良い。   The toner cooling step is a step of cooling the temperature of the aqueous medium containing the toner particles to a temperature lower than the glass transition point (Tg) of the resin having an acid group. If the aqueous medium is not cooled to a temperature lower than Tg, coarse particles are generated when the flocculant is added when the adhesion step described later is performed. A specific cooling rate is 0.1 to 50 ° C./min. In addition, as a core particle, what was obtained through the aggregation process and fusion process mentioned above is preferable, However, You may use the core particle obtained by the other manufacturing method.

次に、コア粒子にシェル粒子を付着させる付着工程について詳細に説明する。付着工程とは、コア粒子に含まれる酸基を有する樹脂(第一の樹脂)のガラス転移点(Tg)より低い温度で、第二の樹脂を有する第二の樹脂微粒子の水系分散体、コア粒子及び凝集剤を混合し、水系分散体中の第二の樹脂微粒子をコア粒子の表面に付着させる工程である。付着工程はトナー冷却工程に次いで実施されることが好ましい。   Next, the attaching process for attaching the shell particles to the core particles will be described in detail. The adhesion step refers to an aqueous dispersion of the second resin fine particles having the second resin and the core at a temperature lower than the glass transition point (Tg) of the resin having the acid group (first resin) contained in the core particles. In this step, the particles and the aggregating agent are mixed to attach the second resin fine particles in the aqueous dispersion to the surface of the core particles. The adhering step is preferably performed after the toner cooling step.

凝集剤としては、ナトリウム、カリウム等の一価の金属の金属塩;カルシウム、マグネシウム等の二価の金属の金属塩;鉄、アルミニウム等の三価の金属の金属塩が挙げられる。凝集剤は、第二の樹脂微粒子の水系分散体と同時に混合しても良いし、またその前後に混合しても良い。なお、付着工程の後、必要に応じて下記の二次融合工程および洗浄、二次冷却工程を行ってもよい。   Examples of the flocculant include metal salts of monovalent metals such as sodium and potassium; metal salts of divalent metals such as calcium and magnesium; metal salts of trivalent metals such as iron and aluminum. The flocculant may be mixed simultaneously with the aqueous dispersion of the second resin fine particles, or may be mixed before and after that. In addition, you may perform the following secondary fusion process, washing | cleaning, and a secondary cooling process as needed after an adhesion process.

二次融合工程とは、付着工程により得られたシェル付着体を、酸基を有する樹脂(第一の樹脂)のガラス転移点(Tg)以上に加熱し融合させることで、粒子表面を平滑化する工程である。二次融合工程により、コア樹脂とシェル樹脂が十分に固着され、後述の洗浄やろ過等の操作で、シェルがコア粒子から脱離することを抑制する。二次融合工程に入る前に、トナー粒子間の融着を防ぐため、キレート剤、pH調整剤、界面活性剤等を適宜投入することができる。 The secondary fusing step, the resulting shell adhering member by adhesion process, by heating the glass transition point (Tg) or more of the resin (first resin) having an acid group, in Rukoto fusing, the particle surface This is a smoothing process. The core resin and the shell resin are sufficiently fixed by the secondary fusion process, and the shell is prevented from being detached from the core particles by operations such as washing and filtration described later. Before entering the secondary fusion step, a chelating agent, a pH adjuster, a surfactant, and the like can be appropriately added in order to prevent fusion between toner particles.

二次融合工程における加熱温度としては、凝集体に含まれる酸基を有する樹脂のガラス転移点(Tg)から樹脂が熱分解する温度の間であればよい。加熱・融合の時間としては、加熱の温度が高ければ短い時間で足り、加熱の温度が低ければ長い時間が必要である。即ち、加熱・融合の時間は、加熱の温度に依存するので一概に規定することはできないが、一般的には10分〜10時間である。   The heating temperature in the secondary fusion step may be between the glass transition point (Tg) of the resin having an acid group contained in the aggregate and the temperature at which the resin is thermally decomposed. As the heating / fusion time, a short time is sufficient if the heating temperature is high, and a long time is required if the heating temperature is low. That is, the heating / fusion time depends on the temperature of heating and cannot be defined unconditionally, but is generally 10 minutes to 10 hours.

二次融合工程の後に、得られた粒子を適切な条件で室温まで冷却し、洗浄、ろ過、乾燥等することにより、トナー粒子を得る。更に、得られたトナー粒子の表面に、シリカ、アルミナ、チタニア、炭酸カルシウム等の無機粒体や、ビニル系樹脂、ポリエステル樹脂、シリコーン樹脂等の樹脂粒子を添加してもよい。これらの無機粒体や樹脂粒子は、流動性助剤やクリーニング助剤等の外添剤として機能する。   After the secondary coalescence step, the obtained particles are cooled to room temperature under appropriate conditions, and washed, filtered, dried, etc. to obtain toner particles. Further, inorganic particles such as silica, alumina, titania and calcium carbonate, and resin particles such as vinyl resin, polyester resin and silicone resin may be added to the surface of the obtained toner particles. These inorganic particles and resin particles function as external additives such as fluidity aids and cleaning aids.

トナーの重量平均粒径(D4)は4.5〜7.0μmであることが好ましく、5.0〜6.5μmであることがより好ましい。   The weight average particle diameter (D4) of the toner is preferably 4.5 to 7.0 μm, and more preferably 5.0 to 6.5 μm.

以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれらに限定されない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, the aspect of this invention is not limited to these.

<樹脂のテトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフィー(GPC)により測定される分子量分布、重量平均分子量(Mw)、数平均分子量(Mn)等の測定>
樹脂微粒子のTHF可溶分のGPCにより測定される分子量分布及び重量平均分子量(Mw)、数平均分子量(Mn)等は以下のように求められる。
<Measurement of Molecular Weight Distribution, Weight Average Molecular Weight (Mw), Number Average Molecular Weight (Mn), etc. Measured by Gel Permeation Chromatography (GPC) of Resin Tetrahydrofuran (THF)>
The molecular weight distribution, weight average molecular weight (Mw), number average molecular weight (Mn) and the like measured by GPC of the THF soluble content of the resin fine particles are determined as follows.

40℃のヒートチャンバ中でカラムを安定化させ、この温度におけるカラムに、溶媒としてテトラヒドロフラン(THF)を毎分1mlの流速で流し、THF試料溶液を約100μl注入して測定する。試料の分子量測定にあたっては、試料の有する分子量分布を、数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出する。検量線作成用の標準ポリスチレン試料としては、例えば、東ソー社製或いは、昭和電工社製の分子量が10〜10程度のものを用い、少なくとも10点程度の標準ポリスチレン試料を用いるのが適当である。検出器にはRI(屈折率)検出器を用いる。カラムとしては、市販のポリスチレンジェルカラムを複数本組み合わせるのが良く、例えば昭和電工社製のshodex GPC KF−801,802,803,804,805,806,807,800Pの組み合わせや、東ソー社製のTSKgelG1000H(HXL),G2000H(HXL),G3000H(HXL),G4000H(HXL),G5000H(HXL),G6000H(HXL),G7000H(HXL),TSKguardcolumnの組み合わせが挙げられる。 The column is stabilized in a heat chamber at 40 ° C., and tetrahydrofuran (THF) as a solvent is allowed to flow through the column at this temperature at a flow rate of 1 ml / min, and about 100 μl of THF sample solution is injected and measured. In measuring the molecular weight of a sample, the molecular weight distribution of the sample is calculated from the relationship between the logarithmic value of a calibration curve prepared from several types of monodisperse polystyrene standard samples and the number of counts. As a standard polystyrene sample for preparing a calibration curve, for example, a standard polystyrene sample having a molecular weight of about 10 2 to 10 7 manufactured by Tosoh Corporation or Showa Denko is preferably used. is there. An RI (refractive index) detector is used as the detector. As the column, it is preferable to combine a plurality of commercially available polystyrene gel columns. Examples include combinations of TSKgel G1000H (HXL), G2000H (HXL), G3000H (HXL), G4000H (HXL), G5000H (HXL), G6000H (HXL), G7000H (HXL), and TSKguardcolumn.

試料は以下のようにして作製する。   The sample is prepared as follows.

樹脂(試料)をテトラヒドロフラン(THF)中に入れ、数時間放置した後、十分振とうし、試料の合一体がなくなるまでTHFと良く混ぜ、更に12時間以上静置する。このとき、THF中への放置時間が24時間以上となるようにする。その後、サンプル処理フィルター(ポアサイズ0.45〜0.5μm、例えば、マイショリディスクH−25−5:東ソー社製、エキクロディスク25CR:ゲルマン・サイエンス・ジャパン社製などが利用できる)を通過させたものを、GPCの試料とする。試料濃度は、樹脂成分が0.5〜5mg/mlとなるように調整する。   Place the resin (sample) in tetrahydrofuran (THF), leave it for several hours, shake well, mix well with THF until the sample is no longer united, and let stand for more than 12 hours. At this time, the standing time in THF is set to be 24 hours or longer. Thereafter, a sample processing filter (pore size 0.45 to 0.5 μm, for example, Mysori Disc H-25-5: manufactured by Tosoh Corporation, Excro Disc 25CR: manufactured by Gelman Science Japan Co., Ltd., etc. can be used) is passed. This is used as a GPC sample. The sample concentration is adjusted so that the resin component is 0.5 to 5 mg / ml.

<樹脂の酸価の測定>
樹脂の酸価は以下のように求められる。尚、基本操作は、JIS−K0070に準ずる。酸価は試料1g中に含有されている酸基を中和するのに要する水酸化カリウムのmg数を示す。
<Measurement of acid value of resin>
The acid value of the resin is determined as follows. The basic operation conforms to JIS-K0070. The acid value indicates the number of mg of potassium hydroxide required to neutralize the acid group contained in 1 g of the sample.

(1)試薬
(a)溶剤:エチルエーテル−エチルアルコール混液(1+1または2+1)またはベンゼン−エチルアルコール混液(1+1または2+1)を使用直前にフェノールフタレインを指示薬として0.1mol/L水酸化カリウムエチルアルコール溶液で中和しておく。
(b)フェノールフタレイン溶液:フェノールフタレイン1gをエチルアルコール(95v/v%)100mlに溶かす。
(c)0.1mol/L水酸化カリウム−エチルアルコール溶液:水酸化カリウム7.0gをできるだけ少量の水に溶かしエチルアルコール(95v/v%)を加えて1リットルとし、2〜3日放置後ろ過する。標定はJIS K 8006(試薬の含量試験中滴定に関する基本事項)に準じて行う。
(1) Reagent (a) Solvent: 0.1 mol / L potassium potassium hydroxide with phenolphthalein as an indicator immediately before use of ethyl ether-ethyl alcohol mixture (1 + 1 or 2 + 1) or benzene-ethyl alcohol mixture (1 + 1 or 2 + 1) Neutralize with alcohol solution.
(B) Phenolphthalein solution: 1 g of phenolphthalein is dissolved in 100 ml of ethyl alcohol (95 v / v%).
(C) 0.1 mol / L potassium hydroxide-ethyl alcohol solution: Dissolve 7.0 g of potassium hydroxide in as little water as possible, add ethyl alcohol (95 v / v%) to 1 liter, and leave it for 2 to 3 days. I have. The standardization is performed according to JIS K 8006 (basic matters concerning titration during the reagent content test).

(2)操作
樹脂(試料)1〜20gを正しくはかりとり、これに溶剤100ml及び指示薬としてフェノールフタレイン溶液数滴を加え、試料が完全に溶けるまで十分に振る。固体試料の場合は水浴上で加温して溶かす。冷却後これを0.1mol/L水酸化カリウムエチルアルコール溶液で滴定し、指示薬の微紅色が30秒間続いたときを中和の終点とする。
(2) Operation Weigh 1-20 g of resin (sample) correctly, add 100 ml of solvent and a few drops of phenolphthalein solution as an indicator, and shake well until the sample is completely dissolved. In the case of a solid sample, dissolve it by heating on a water bath. After cooling, this is titrated with a 0.1 mol / L potassium hydroxide ethyl alcohol solution, and the end point of neutralization is taken when the indicator is slightly red for 30 seconds.

(3)計算式
次の式によって酸価を算出する。
A=B×f×5.611/S
A:酸価
B:0.1mol/L水酸化カリウムエチルアルコール溶液の使用量(ml)
f:0.1mol/L水酸化カリウムエチルアルコール溶液のファクター
S:試料(g)
(3) Calculation formula The acid value is calculated by the following formula.
A = B × f × 5.661 / S
A: Acid value B: Amount of 0.1 mol / L potassium hydroxide ethyl alcohol solution used (ml)
f: Factor of 0.1 mol / L potassium hydroxide ethyl alcohol solution S: Sample (g)

<樹脂微粒子および着色剤微粒子の粒度分布解析>
上記粒度分布の解析には、動的光散乱式粒度分布測定装置(ナノトラックUPA150:日機装社製)を用い、該装置の操作マニュアルに従い測定する。イオン交換水に界面活性剤水溶液を滴下後、樹脂微粒子または着色剤微粒子分散液を機器の最適濃度に調整し、超音波分散機で30秒間分散処理を行う。得られた分散処理液を測定し、体積分布基準50%粒径及び変動係数を求める。
<Particle size distribution analysis of resin fine particles and colorant fine particles>
For the analysis of the particle size distribution, a dynamic light scattering type particle size distribution measuring device (Nanotrack UPA150: manufactured by Nikkiso Co., Ltd.) is used, and the particle size distribution is measured according to the operation manual of the device. After dropping the surfactant aqueous solution into ion-exchanged water, the resin fine particle or colorant fine particle dispersion is adjusted to the optimum concentration of the device, and dispersion treatment is performed for 30 seconds with an ultrasonic disperser. The obtained dispersion treatment liquid is measured, and the volume distribution reference 50% particle size and coefficient of variation are obtained.

<トナーの粒度分布解析>
トナーの粒度分布はコールター法による粒度分布解析にて測定する。測定装置として、マルチサイザーIV(コールター社製)を用い、該装置の操作マニュアルに従い測定する。電解液は、1級塩化ナトリウムを用いて、約1%塩化ナトリウム水溶液を調製する。該電解液として、例えば、ISOTON−II(コールターサイエンティフィックジャパン社製)が使用できる。具体的な測定方法としては、前記電解水溶液100〜150ml中に分散剤として、界面活性剤(好ましくはアルキルベンゼンスルホン酸塩)を、0.1〜5ml加え、さらに測定試料(トナー)を2〜20mg加える。試料を懸濁した電解液は、超音波分散器で約1〜3分間分散処理を行う。得られた分散処理液を、アパーチャーとして100μmアパーチャーを装着した前記測定装置により、2.00μm以上のトナーの体積、個数を測定してトナーの体積分布と個数分布とを算出する。その算出結果から、トナーの重量平均粒径(D4)を求める。
<Toner particle size distribution analysis>
The particle size distribution of the toner is measured by particle size distribution analysis by the Coulter method. As a measuring device, Multisizer IV (manufactured by Coulter, Inc.) is used, and measurement is performed according to the operation manual of the device. About 1% sodium chloride aqueous solution is prepared using 1st grade sodium chloride as electrolyte solution. As the electrolytic solution, for example, ISOTON-II (manufactured by Coulter Scientific Japan) can be used. Specifically, 0.1 to 5 ml of a surfactant (preferably alkylbenzene sulfonate) is added as a dispersant in 100 to 150 ml of the electrolytic aqueous solution, and 2 to 20 mg of a measurement sample (toner) is further added. Add. The electrolytic solution in which the sample is suspended is subjected to a dispersion treatment with an ultrasonic disperser for about 1 to 3 minutes. The obtained dispersion treatment liquid is subjected to measurement of the volume and number of toners of 2.00 μm or more by means of the measurement apparatus equipped with a 100 μm aperture as an aperture, and the volume distribution and number distribution of the toner are calculated. From the calculation result, the weight average particle diameter (D4) of the toner is obtained.

<樹脂のガラス転移点(Tg)の測定>
樹脂のガラス転移点(Tg)は、示差走査熱量計(DSC)測定装置(DSC822:メトラー・トレド社製)を用いて測定する。DSC測定では、測定原理から、高精度の内熱式入力補償型の示差走査熱量計で測定を行う。測定方法は、ASTM D3418−82に準じて行う。具体的には、1回昇温、降温させ前履歴を取った後、10℃/分で昇温させた時に測定されるDSC曲線からTg計算する。吸熱前後のベースラインと吸熱による曲線の接線との交点の中心値をTg(℃)とする。
<Measurement of glass transition point (Tg) of resin>
The glass transition point (Tg) of the resin is measured using a differential scanning calorimeter (DSC) measuring device (DSC822: manufactured by METTLER TOLEDO). In the DSC measurement, measurement is performed with a differential scanning calorimeter of high accuracy internal heat input compensation type from the measurement principle. The measurement method is performed according to ASTM D3418-82. Specifically, Tg is calculated from the DSC curve measured when the temperature is raised and lowered once, the previous history is taken, and the temperature is raised at 10 ° C./min. The central value of the intersection point between the baseline before and after the endotherm and the tangent to the endothermic curve is defined as Tg (° C.).

<樹脂の軟化温度(Tm)の測定>
樹脂の軟化温度(Tm)は、フローテスター(CFT−500D:島津製作所社製)を用いて測定される。測定する試料(樹脂)1.5gを秤量し、高さが1.0mmで直径1.0mmのダイを使用し、昇温速度4.0℃/min、予熱時間300秒、荷重5kg、測定温度範囲60.0〜200.0℃の条件で測定を行う。溶融開始温度と溶融終了温度の中間値を軟化温度(Tm)とする。
<Measurement of softening temperature (Tm) of resin>
The softening temperature (Tm) of the resin is measured using a flow tester (CFT-500D: manufactured by Shimadzu Corporation). A sample (resin) 1.5 g to be measured is weighed, a die having a height of 1.0 mm and a diameter of 1.0 mm is used, a heating rate of 4.0 ° C./min, a preheating time of 300 seconds, a load of 5 kg, and a measuring temperature. The measurement is performed in the range of 60.0 to 200.0 ° C. An intermediate value between the melting start temperature and the melting end temperature is defined as a softening temperature (Tm).

<樹脂微粒子の水系分散体の製造>
〔樹脂製造例1〕
ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン25質量部、ポリオキシエチレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン25質量部、テレフタル酸20質量部、フマル酸30質量部、ジブチル錫オキシド0.03質量部を3つ口フラスコに仕込み、窒素気流下、230℃で24時間撹拌を行った後、トリメリット酸4質量部を添加し、200℃で30分間撹拌を行った。その後、温度を保持しつつ、5mmHgの減圧下1時間撹拌することで、Mwが10,500、Mnが3,200、Tgが52℃、酸価が15mgKOH/gのポリエステル樹脂1を得た。
<Production of aqueous dispersion of resin fine particles>
[Resin production example 1]
25 parts by mass of polyoxypropylene (2.2) -2,2-bis (4-hydroxyphenyl) propane, 25 parts by mass of polyoxyethylene (2.2) -2,2-bis (4-hydroxyphenyl) propane, After charging 20 parts by mass of terephthalic acid, 30 parts by mass of fumaric acid and 0.03 parts by mass of dibutyltin oxide into a three-necked flask and stirring at 230 ° C. for 24 hours under a nitrogen stream, 4 parts by mass of trimellitic acid was added. The mixture was added and stirred at 200 ° C. for 30 minutes. Then, while maintaining the temperature, the mixture was stirred for 1 hour under a reduced pressure of 5 mmHg to obtain a polyester resin 1 having an Mw of 10,500, an Mn of 3,200, a Tg of 52 ° C., and an acid value of 15 mgKOH / g.

〔樹脂製造例2〕
ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン50質量部、テレフタル酸28質量部、イソフタル酸酸20質量部、ジブチル錫オキシド0.03質量部を3つ口フラスコに仕込み、窒素気流下、230℃で24時間撹拌を行った後、トリメリット酸2質量部を添加し、200℃で1時間撹拌を行った。その後、温度を保持しつつ3mmHgの減圧条件下で4時間撹拌することで、Mwが20,500、Mnが7,200、Tgが71℃、酸価が9mgKOH/gのポリエステル樹脂2を得た。
[Resin production example 2]
Three mouthpieces of 50 parts by mass of polyoxypropylene (2.2) -2,2-bis (4-hydroxyphenyl) propane, 28 parts by mass of terephthalic acid, 20 parts by mass of isophthalic acid, and 0.03 parts by mass of dibutyltin oxide The flask was charged and stirred at 230 ° C. for 24 hours under a nitrogen stream, and then 2 parts by weight of trimellitic acid was added and stirred at 200 ° C. for 1 hour. Thereafter, the polyester resin 2 having an Mw of 20,500, an Mn of 7,200, a Tg of 71 ° C., and an acid value of 9 mgKOH / g was obtained by stirring for 4 hours under a reduced pressure of 3 mmHg while maintaining the temperature. .

〔樹脂製造例3〕
ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン50質量部、テレフタル酸28質量部、イソフタル酸酸20質量部、ジブチル錫オキシド0.03質量部を3つ口フラスコに仕込み、窒素気流下、230℃で24時間撹拌を行った後、トリメリット酸1質量部を添加し、200℃で1時間撹拌を行った。その後、1mmHgで減圧を行いながら4時間撹拌することで、Mwが21,500、Mnが7,400、Tgが73℃、酸価が2mgKOH/gのポリエステル樹脂3を得た。
[Resin Production Example 3]
Three mouthpieces of 50 parts by mass of polyoxypropylene (2.2) -2,2-bis (4-hydroxyphenyl) propane, 28 parts by mass of terephthalic acid, 20 parts by mass of isophthalic acid, and 0.03 parts by mass of dibutyltin oxide The flask was charged and stirred at 230 ° C. for 24 hours under a nitrogen stream, and then 1 part by weight of trimellitic acid was added and stirred at 200 ° C. for 1 hour. Then, the polyester resin 3 having Mw of 21,500, Mn of 7,400, Tg of 73 ° C., and acid value of 2 mgKOH / g was obtained by stirring for 4 hours while reducing the pressure at 1 mmHg.

〔樹脂製造例4〕
ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン50質量部、テレフタル酸28質量部、イソフタル酸酸20質量部、ジブチル錫オキシド0.03質量部を3つ口フラスコに仕込み、窒素気流下、230℃で24時間撹拌を行った後、トリメリット酸3質量部を添加し、200℃で30分間撹拌を行った。その後、温度を保持しつつ5mmHgの減圧下2時間撹拌することで、Mwが22,500、Mnが7,200、Tgが72℃、酸価が20mgKOH/gのポリエステル樹脂4を得た。
[Resin Production Example 4]
Three mouthpieces of 50 parts by mass of polyoxypropylene (2.2) -2,2-bis (4-hydroxyphenyl) propane, 28 parts by mass of terephthalic acid, 20 parts by mass of isophthalic acid, and 0.03 parts by mass of dibutyltin oxide The flask was charged and stirred at 230 ° C. for 24 hours under a nitrogen stream, and then 3 parts by weight of trimellitic acid was added and stirred at 200 ° C. for 30 minutes. Then, the polyester resin 4 with Mw of 22,500, Mn of 7,200, Tg of 72 ° C., and acid value of 20 mgKOH / g was obtained by stirring for 2 hours under a reduced pressure of 5 mmHg while maintaining the temperature.

〔樹脂製造例5〕
ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン50質量部、テレフタル酸28質量部、イソフタル酸酸20質量部、ジブチル錫オキシド0.03質量部を3つ口フラスコに仕込み、窒素気流下、230℃で24時間撹拌を行った後、トリメリット酸4質量部を添加し、200℃で30分間撹拌を行った。その後、温度を保持しつつ、5mmHgの減圧下1時間撹拌することで、Mwが23,500、Mnが6,800、Tgが71℃、酸価が30mgKOH/gのポリエステル樹脂5を得た。
[Resin production example 5]
Three mouthpieces of 50 parts by mass of polyoxypropylene (2.2) -2,2-bis (4-hydroxyphenyl) propane, 28 parts by mass of terephthalic acid, 20 parts by mass of isophthalic acid, and 0.03 parts by mass of dibutyltin oxide The flask was charged and stirred at 230 ° C. for 24 hours under a nitrogen stream, 4 parts by weight of trimellitic acid was added, and the mixture was stirred at 200 ° C. for 30 minutes. Thereafter, the mixture was stirred for 1 hour under a reduced pressure of 5 mmHg while maintaining the temperature to obtain a polyester resin 5 having an Mw of 23,500, an Mn of 6,800, a Tg of 71 ° C., and an acid value of 30 mgKOH / g.

〔実施例1〕
アニオン界面活性剤(第一工業製薬社製:ネオゲンRK)5.4質量部、N,N−ジエチルアミノエタノール(塩基性物質)8.46質量部、及び塩化ナトリウム0.80質量部(0.10mol/Lに相当する添加量)を、イオン交換水(水系媒体)142質量部に溶解して分散媒体液を調製した。この分散媒体液を350mlの耐圧丸底ステンレス容器に入れ、続いてポリエステル樹脂1を108質量部投入し混合した。
[Example 1]
Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) 5.4 parts by mass, N, N-diethylaminoethanol (basic substance) 8.46 parts by mass, and sodium chloride 0.80 parts by mass (0.10 mol) / L) was dissolved in 142 parts by mass of ion-exchanged water (aqueous medium) to prepare a dispersion medium liquid. This dispersion medium liquid was put into a 350 ml pressure-resistant round bottom stainless steel container, and then 108 parts by mass of polyester resin 1 was added and mixed.

次に、高速せん断乳化装置クレアミックス(エム・テクニック社製:CLM−2.2S)を上記耐圧丸底ステンレス容器に密閉接続した。密閉された容器内の混合物を、140℃に加温し、クレアミックスのローター回転数を20,000r/分とし、せん断力を加えながら10分間撹拌した。その後、50℃になるまで、20,000r/分の回転を維持しながら、1.0℃/分の冷却速度で冷却を行い、樹脂微粒子の体積分布基準の50%粒径が0.16μm、変動係数が32%である樹脂微粒子の水系分散体1を得た。   Next, a high-speed shearing emulsifier CLEARMIX (M Technique Co., Ltd .: CLM-2.2S) was hermetically connected to the pressure-resistant round bottom stainless steel container. The mixture in the sealed container was heated to 140 ° C., the rotor rotation speed of CLEARMIX was set to 20,000 r / min, and stirred for 10 minutes while applying a shearing force. Thereafter, cooling is performed at a cooling rate of 1.0 ° C./min while maintaining a rotation of 20,000 r / min until 50 ° C., and the 50% particle size based on the volume distribution of the resin fine particles is 0.16 μm, An aqueous dispersion 1 of resin fine particles having a variation coefficient of 32% was obtained.

なお、上記乳化条件における、塩化ナトリウムの臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.70mol/Lであった。   In addition, when the critical aggregation density | concentration of sodium chloride in the said emulsification conditions was measured separately, the critical aggregation density | concentration was 0.70 mol / L.

〔比較例1〕
塩化ナトリウムを未添加とした以外は実施例1と同様に乳化を行い、樹脂微粒子の水系分散体2を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.33μm、変動係数は122%であった。
[Comparative Example 1]
Emulsification was carried out in the same manner as in Example 1 except that sodium chloride was not added, to obtain an aqueous dispersion 2 of resin fine particles. The resin fine particles obtained had a 50% particle size of 0.33 μm based on volume distribution and a coefficient of variation of 122%.

〔実施例2〕
アニオン界面活性剤(第一工業製薬社製:ネオゲンRK)を21.6質量部、N,N−ジエチルアミノエタノール(塩基性物質)を5.07質量部、樹脂をポリエステル樹脂2とした以外は、実施例1と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.20μm、変動係数が40%である樹脂微粒子の水系分散体3を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.70mol/Lであった。
[Example 2]
Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) was 21.6 parts by mass, N, N-diethylaminoethanol (basic substance) was 5.07 parts by mass, and the resin was polyester resin 2, An aqueous dispersion 3 of resin fine particles having a 50% particle size of 0.20 μm based on the volume distribution of resin fine particles and a coefficient of variation of 40% was obtained under the same conditions as in Example 1. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.70 mol / L.

〔比較例2〕
塩化ナトリウムを未添加とした以外は実施例2と同様に乳化を行い、樹脂微粒子の水系分散体4を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.35μm、変動係数が110%であった。
[Comparative Example 2]
Emulsification was performed in the same manner as in Example 2 except that sodium chloride was not added, to obtain an aqueous dispersion 4 of resin fine particles. The resin fine particles obtained had a 50% particle size of 0.35 μm based on volume distribution and a coefficient of variation of 110%.

〔実施例3〕
N,N−ジエチルアミノエタノール(塩基性物質)を1.13質量部、樹脂をポリエステル樹脂3とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.25μm、変動係数が50%である樹脂微粒子の水系分散体5を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.68mol/Lであった。
Example 3
Except that N, N-diethylaminoethanol (basic substance) was 1.13 parts by mass and the resin was polyester resin 3, it was performed under the same conditions as in Example 2, and the 50% particle size on the basis of volume distribution of resin fine particles was An aqueous dispersion 5 of resin fine particles having a variation coefficient of 0.25 μm and 50% was obtained. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.68 mol / L.

〔比較例3〕
塩化ナトリウムを未添加とした以外は実施例3と同様に乳化を行い、樹脂微粒子の水系分散体6を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.40μm、変動係数が130%であった。
[Comparative Example 3]
Emulsification was carried out in the same manner as in Example 3 except that sodium chloride was not added, to obtain an aqueous dispersion 6 of resin fine particles. The resin fine particles obtained had a 50% particle size of 0.40 μm based on volume distribution and a coefficient of variation of 130%.

〔実施例4〕
N,N−ジエチルアミノエタノール(塩基性物質)を8.46質量部、樹脂をポリエステル樹脂4とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.18μm、変動係数が35%である樹脂微粒子の水系分散体7を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.73mol/Lであった。
Example 4
Except that N, N-diethylaminoethanol (basic substance) was 8.46 parts by mass and the resin was polyester resin 4, it was performed under the same conditions as in Example 2, and the 50% particle size on the basis of volume distribution of resin fine particles was An aqueous dispersion 7 of resin fine particles having 0.18 μm and a variation coefficient of 35% was obtained. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.73 mol / L.

〔比較例4〕
塩化ナトリウムを未添加とした以外は実施例4と同様に乳化を行い、樹脂微粒子の水系分散体8を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.34μm、変動係数が103%であった。
[Comparative Example 4]
Emulsification was carried out in the same manner as in Example 4 except that sodium chloride was not added to obtain an aqueous dispersion 8 of resin fine particles. The resin fine particles obtained had a 50% particle size of 0.34 μm based on volume distribution and a coefficient of variation of 103%.

〔実施例5〕
N,N−ジエチルアミノエタノール(塩基性物質)を11.2質量部、樹脂をポリエステル樹脂5とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.18μm、変動係数が30%である樹脂微粒子の水系分散体9を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.75mol/Lであった。
Example 5
Except that 11.2 parts by mass of N, N-diethylaminoethanol (basic substance) and polyester resin 5 were used as the resin, it was carried out under the same conditions as in Example 2, and the 50% particle size on the basis of volume distribution of resin fine particles was An aqueous dispersion 9 of resin fine particles having 0.18 μm and a coefficient of variation of 30% was obtained. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.75 mol / L.

〔比較例5〕
塩化ナトリウムを未添加とした以外は実施例5と同様に乳化を行い、樹脂微粒子の水系分散体10を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.29μm、変動係数が63%であった。
[Comparative Example 5]
Emulsification was carried out in the same manner as in Example 5 except that sodium chloride was not added to obtain an aqueous dispersion 10 of resin fine particles. The resin fine particles obtained had a 50% particle size of 0.29 μm based on volume distribution and a coefficient of variation of 63%.

〔実施例6〕
N,N−ジエチルアミノエタノール(塩基性物質)を1.13質量部、樹脂を、酸価2のスチレン−アクリル酸共重合体(Tg=72℃)とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.22μm、変動係数が69%である樹脂微粒子の水系分散体11を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.66mol/Lであった。
Example 6
The same conditions as in Example 2 except that 1.13 parts by mass of N, N-diethylaminoethanol (basic substance) and the resin was a styrene-acrylic acid copolymer having an acid value of 2 (Tg = 72 ° C.). Thus, an aqueous dispersion 11 of resin fine particles having a 50% particle size of 0.22 μm based on the volume distribution of the resin fine particles and a coefficient of variation of 69% was obtained. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.66 mol / L.

〔比較例6〕
塩化ナトリウムを未添加とした以外は実施例6と同様に乳化を行い、樹脂微粒子の水系分散体12を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.50μm、変動係数が110%であった。
[Comparative Example 6]
Emulsification was carried out in the same manner as in Example 6 except that sodium chloride was not added to obtain an aqueous dispersion 12 of resin fine particles. The resin fine particles obtained had a 50% particle size of 0.50 μm and a coefficient of variation of 110% based on volume distribution.

〔実施例7〕
N,N−ジエチルアミノエタノール(塩基性物質)を5.07質量部、樹脂を酸価9のスチレン−アクリル酸共重合体(Tg=71℃)とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.23μm、変動係数が60%である樹脂微粒子の水系分散体13を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.68mol/Lであった。
Example 7
Under the same conditions as in Example 2, except that 5.07 parts by mass of N, N-diethylaminoethanol (basic substance) and a styrene-acrylic acid copolymer having an acid value of 9 (Tg = 71 ° C.) were used. As a result, an aqueous dispersion 13 of resin fine particles having a 50% particle size of 0.23 μm based on the volume distribution of the resin fine particles and a variation coefficient of 60% was obtained. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.68 mol / L.

〔比較例7〕
塩化ナトリウムを未添加とした以外は実施例7と同様に乳化を行い、樹脂微粒子の水系分散体14を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.45μm、変動係数が130%であった。
[Comparative Example 7]
Emulsification was carried out in the same manner as in Example 7 except that sodium chloride was not added to obtain an aqueous dispersion 14 of resin fine particles. The obtained resin fine particles had a 50% particle size of 0.45 μm based on volume distribution and a coefficient of variation of 130%.

〔実施例8〕
N,N−ジエチルアミノエタノール(塩基性物質)を8.46質量部、樹脂を酸価15のスチレン−アクリル酸共重合体(Tg=71℃)とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.21μm、変動係数が42%である樹脂微粒子の水系分散体15を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.73mol/Lであった。
Example 8
Under the same conditions as in Example 2, except that 8.46 parts by mass of N, N-diethylaminoethanol (basic substance) and a styrene-acrylic acid copolymer having an acid value of 15 (Tg = 71 ° C.) were used. As a result, an aqueous dispersion 15 of resin fine particles having a 50% particle size of 0.21 μm and a coefficient of variation of 42% based on the volume distribution of the resin fine particles was obtained. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.73 mol / L.

〔比較例8〕
塩化ナトリウムを未添加とした以外は実施例8と同様に乳化を行い、樹脂微粒子の水系分散体16を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.40μm、変動係数が75%であった。
[Comparative Example 8]
Emulsification was carried out in the same manner as in Example 8 except that sodium chloride was not added, to obtain an aqueous dispersion 16 of resin fine particles. The resin fine particles obtained had a 50% particle size of 0.40 μm based on volume distribution and a coefficient of variation of 75%.

〔実施例9〕
N,N−ジエチルアミノエタノール(塩基性物質)を11.2質量部、樹脂を酸価20のスチレン−アクリル酸共重合体(Tg=71℃)とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.20μm、変動係数が38%である樹脂微粒子の水系分散体17を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.75mol/Lであった。
Example 9
Under the same conditions as in Example 2, except that 11.2 parts by mass of N, N-diethylaminoethanol (basic substance) and styrene-acrylic acid copolymer having an acid value of 20 (Tg = 71 ° C.) were used. As a result, an aqueous dispersion 17 of resin fine particles having a 50% particle size of 0.20 μm based on the volume distribution of the resin fine particles and a coefficient of variation of 38% was obtained. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.75 mol / L.

〔比較例9〕
塩化ナトリウムを未添加とした以外は実施例9と同様に乳化を行い、樹脂微粒子の水系分散体18を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.35μm、変動係数が60%であった。
[Comparative Example 9]
Emulsification was carried out in the same manner as in Example 9 except that sodium chloride was not added, to obtain an aqueous dispersion 18 of resin fine particles. The resin fine particles obtained had a 50% particle size of 0.35 μm based on volume distribution and a coefficient of variation of 60%.

〔実施例10〕
加熱温度を100℃とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.30μm、変動係数が55%である樹脂微粒子の水系分散体19を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.72mol/Lであった。
Example 10
Except that the heating temperature was set to 100 ° C., it was performed under the same conditions as in Example 2 and the resin fine particle aqueous dispersion 19 having a 50% particle size of 0.30 μm and a coefficient of variation of 55% based on the volume distribution of the fine resin particles. Got. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.72 mol / L.

〔比較例10〕
塩化ナトリウムを未添加とした以外は実施例10と同様に乳化を行い、樹脂微粒子の水系分散体20を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.60μm、変動係数が156%であった。
[Comparative Example 10]
Emulsification was carried out in the same manner as in Example 10 except that sodium chloride was not added, to obtain an aqueous dispersion 20 of resin fine particles. The resin fine particles obtained had a 50% particle size of 0.60 μm based on volume distribution and a coefficient of variation of 156%.

〔実施例11〕
加熱温度を120℃とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.22μm、変動係数が42%である樹脂微粒子の水系分散体21を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.71mol/Lであった。
Example 11
Except that the heating temperature was 120 ° C., it was carried out under the same conditions as in Example 2, and the resin fine particle aqueous dispersion 21 having a 50% particle diameter of 0.22 μm and a coefficient of variation of 42% based on the volume distribution of the resin fine particles. Got. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.71 mol / L.

〔比較例11〕
塩化ナトリウムを未添加とした以外は実施例11と同様に乳化を行い、樹脂微粒子の水系分散体22を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.51μm、変動係数が60%であった。
[Comparative Example 11]
Emulsification was carried out in the same manner as in Example 11 except that sodium chloride was not added, to obtain an aqueous dispersion 22 of resin fine particles. The obtained resin fine particles had a 50% particle size of 0.51 μm based on volume distribution and a coefficient of variation of 60%.

〔実施例12〕
塩化ナトリウムを0.04質量部(0.01mol/Lに相当する添加量)とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.30μm、変動係数が98%である樹脂微粒子の水系分散体23を得た。塩を添加していない水系分散体4よりも、小粒径かつ粒度分布の狭い樹脂微粒子となった。
Example 12
Except that sodium chloride was changed to 0.04 parts by mass (addition amount corresponding to 0.01 mol / L), the same procedure as in Example 2 was performed, and the 50% particle size based on the volume distribution of the resin fine particles was 0.30 μm. An aqueous dispersion 23 of resin fine particles having a coefficient of variation of 98% was obtained. Resin fine particles having a smaller particle diameter and a narrower particle size distribution than the aqueous dispersion 4 to which no salt was added were obtained.

〔実施例13〕
塩化ナトリウムを1.6質量部(0.20mol/Lに相当する添加量)とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.21μm、変動係数が35%である樹脂微粒子の水系分散体24を得た。
Example 13
Except that sodium chloride was changed to 1.6 parts by mass (addition amount corresponding to 0.20 mol / L), it was performed under the same conditions as in Example 2, and the 50% particle size on the basis of volume distribution of resin fine particles was 0.21 μm. An aqueous dispersion 24 of resin fine particles having a coefficient of variation of 35% was obtained.

〔実施例14〕
塩化ナトリウムを5.2質量部(0.65mol/Lに相当する添加量)とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.22μm、変動係数が31%である樹脂微粒子の水系分散体25を得た。
Example 14
Except that sodium chloride was changed to 5.2 parts by mass (addition amount corresponding to 0.65 mol / L), it was performed under the same conditions as in Example 2, and the 50% particle size on the basis of volume distribution of resin fine particles was 0.22 μm. An aqueous dispersion 25 of resin fine particles having a coefficient of variation of 31% was obtained.

〔比較例12〕
塩化ナトリウムの添加量を6.0質量部(0.75mol/Lに相当する添加量)とした以外は実施例2と同様に乳化を行い、樹脂微粒子の水系分散体26を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.42μm、変動係数が115%であった。
[Comparative Example 12]
Emulsification was carried out in the same manner as in Example 2 except that the addition amount of sodium chloride was changed to 6.0 parts by mass (addition amount corresponding to 0.75 mol / L) to obtain an aqueous dispersion 26 of resin fine particles. The resin fine particles obtained had a 50% particle size of 0.42 μm based on volume distribution and a coefficient of variation of 115%.

〔実施例15〕
塩化ナトリウムを0.04質量部(0.01mol/Lに相当する添加量)とした以外は、実施例3と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.39μm、変動係数が125%、である樹脂微粒子の水系分散体27を得た。塩を添加していない水系分散体6よりも、小粒径かつ粒度分布の狭い樹脂微粒子となった。
Example 15
Except that sodium chloride was changed to 0.04 parts by mass (addition amount corresponding to 0.01 mol / L), the same conditions as in Example 3 were used, and the 50% particle size based on the volume distribution of resin fine particles was 0.39 μm. An aqueous dispersion 27 of resin fine particles having a coefficient of variation of 125% was obtained. Resin fine particles having a smaller particle size and a narrower particle size distribution were obtained than the aqueous dispersion 6 to which no salt was added.

〔実施例16〕
塩化ナトリウムを1.6質量部(0.20mol/Lに相当する添加量)とした以外は、実施例3と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.25μm、変動係数が48%である樹脂微粒子の水系分散体28を得た。
Example 16
Except that sodium chloride was changed to 1.6 parts by mass (addition amount corresponding to 0.20 mol / L), it was performed under the same conditions as in Example 3, and the 50% particle size based on the volume distribution of the resin fine particles was 0.25 μm. An aqueous dispersion 28 of resin fine particles having a coefficient of variation of 48% was obtained.

〔実施例17〕
塩化ナトリウムを5.1質量部(0.63mol/Lに相当する添加量)とした以外は、実施例3と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.27μm、変動係数が47%である樹脂微粒子の水系分散体29を得た。
Example 17
Except that sodium chloride was changed to 5.1 parts by mass (addition amount corresponding to 0.63 mol / L), it was performed under the same conditions as in Example 3, and the 50% particle size based on volume distribution of resin fine particles was 0.27 μm. An aqueous dispersion 29 of resin fine particles having a variation coefficient of 47% was obtained.

〔比較例13〕
塩化ナトリウムの添加量を5.9質量部(0.73mol/Lに相当する添加量、この乳化条件における臨界凝集濃度を超える)とした以外は実施例3と同様に乳化を行い、樹脂微粒子の水系分散体30を得た。得られ樹脂微粒子の体積分布基準の50%粒径は0.46μm、変動係数が144%であった。
[Comparative Example 13]
Emulsification was performed in the same manner as in Example 3 except that the addition amount of sodium chloride was 5.9 parts by mass (the addition amount corresponding to 0.73 mol / L, exceeding the critical aggregation concentration in this emulsification condition). An aqueous dispersion 30 was obtained. The resin fine particles obtained had a 50% particle size of 0.46 μm and a coefficient of variation of 144% based on the volume distribution.

〔実施例18〕
塩化ナトリウムを0.04質量部(0.01mol/Lに相当する添加量)とした以外は、実施例4と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.24μm、変動係数が66%である樹脂微粒子の水系分散体31を得た。塩を添加していない水系分散体8よりも、小粒径かつ粒度分布の狭い樹脂微粒子となった。
Example 18
Except that sodium chloride was changed to 0.04 parts by mass (addition amount corresponding to 0.01 mol / L), the same procedure as in Example 4 was performed, and the 50% particle size based on the volume distribution of the resin fine particles was 0.24 μm. An aqueous dispersion 31 of resin fine particles having a coefficient of variation of 66% was obtained. Resin fine particles having a smaller particle size and a narrower particle size distribution than the aqueous dispersion 8 to which no salt was added were obtained.

〔実施例19〕
塩化ナトリウムを1.6質量部(0.20mol/Lに相当する添加量)とした以外は、実施例4と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.21μm、変動係数が32%である樹脂微粒子の水系分散体32を得た。
Example 19
Except that sodium chloride was changed to 1.6 parts by mass (addition amount corresponding to 0.20 mol / L), it was carried out under the same conditions as in Example 4, and the 50% particle size on the basis of volume distribution of resin fine particles was 0.21 μm. An aqueous dispersion 32 of resin fine particles having a coefficient of variation of 32% was obtained.

〔実施例20〕
塩化ナトリウムを5.4質量部(0.68mol/Lに相当する添加量)とした以外は、実施例4と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.21μm、変動係数が33%である樹脂微粒子の水系分散体33を得た。
Example 20
Except that sodium chloride was changed to 5.4 parts by mass (addition amount corresponding to 0.68 mol / L), it was carried out under the same conditions as in Example 4, and the 50% particle size on the basis of volume distribution of resin fine particles was 0.21 μm. An aqueous dispersion 33 of resin fine particles having a coefficient of variation of 33% was obtained.

〔比較例14〕
塩化ナトリウムの添加量を6.2質量部(0.78mol/Lに相当する添加量、この乳化条件における臨界凝集濃度を超える)とした以外は実施例4と同様に乳化を行い、樹脂微粒子の水系分散体34を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.39μm、変動係数が119%であった。
[Comparative Example 14]
Emulsification was carried out in the same manner as in Example 4 except that the addition amount of sodium chloride was 6.2 parts by mass (the addition amount corresponding to 0.78 mol / L, exceeding the critical aggregation concentration in this emulsification condition). An aqueous dispersion 34 was obtained. The resin fine particles obtained had a 50% particle size of 0.39 μm based on volume distribution and a coefficient of variation of 119%.

〔実施例21〕
加熱せん断時間を15分とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.21μm、変動係数が45%である樹脂微粒子の水系分散体35を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.69mol/Lであった。
Example 21
Except that the heating shearing time was set to 15 minutes, it was carried out under the same conditions as in Example 2, and the aqueous dispersion of resin fine particles having a 50% particle size of 0.21 μm and a coefficient of variation of 45% based on the volume distribution of resin fine particles 35 was obtained. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.69 mol / L.

〔比較例15〕
塩化ナトリウムを未添加とした以外は実施例21と同様に乳化を行い、樹脂微粒子の水系分散体36を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.35μm、変動係数が126%であった。
[Comparative Example 15]
Emulsification was carried out in the same manner as in Example 21 except that sodium chloride was not added, to obtain an aqueous dispersion 36 of resin fine particles. The resin fine particles obtained had a 50% particle size of 0.35 μm based on volume distribution and a coefficient of variation of 126%.

〔実施例22〕
加熱せん断時間を20分とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.22μm、変動係数が48%である樹脂微粒子の水系分散体37を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.70mol/Lであった。
[Example 22]
Except that the heating shear time was set to 20 minutes, the same procedure as in Example 2 was carried out, and an aqueous dispersion of resin fine particles having a 50% particle diameter of 0.22 μm and a coefficient of variation of 48% based on the volume distribution of the resin fine particles. 37 was obtained. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.70 mol / L.

〔比較例16〕
塩化ナトリウムを未添加とした以外は実施例22と同様に乳化を行い、樹脂微粒子の水系分散体38を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.36μm、変動係数が131%であった。
[Comparative Example 16]
Emulsification was performed in the same manner as in Example 22 except that sodium chloride was not added, to obtain an aqueous dispersion 38 of resin fine particles. The resin fine particles obtained had a 50% particle size of 0.36 μm based on volume distribution and a coefficient of variation of 131%.

〔実施例23〕
アニオン界面活性剤を、ノンサールLN−1(日油社製)を21.6質量部とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.20μm、変動係数が40%である樹脂微粒子の水系分散体39を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.71mol/Lであった。
Example 23
The anionic surfactant was used under the same conditions as in Example 2 except that Nonsar LN-1 (manufactured by NOF Corporation) was 21.6 parts by mass, and the 50% particle size based on the volume distribution of the resin fine particles was 0. An aqueous dispersion 39 of resin fine particles having a diameter of 20 μm and a variation coefficient of 40% was obtained. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.71 mol / L.

〔比較例17〕
塩化ナトリウムを未添加とした以外は実施例23と同様に乳化を行い、樹脂微粒子の水系分散体40を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.30μm、変動係数が108%であった。
[Comparative Example 17]
Emulsification was carried out in the same manner as in Example 23 except that sodium chloride was not added, to obtain an aqueous dispersion 40 of resin fine particles. The resin fine particles obtained had a 50% particle size of 0.30 μm based on volume distribution and a coefficient of variation of 108%.

〔実施例24〕
塩化ナトリウムを塩化カリウム1.1質量部(0.10mol/Lに相当する添加量)とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.23μm、変動係数が41%である樹脂微粒子の水系分散体41を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.74mol/Lであった。
Example 24
Except that sodium chloride was changed to 1.1 parts by mass of potassium chloride (addition amount corresponding to 0.10 mol / L), it was carried out under the same conditions as in Example 2, and the 50% particle size on the basis of volume distribution of resin fine particles was 0. An aqueous dispersion 41 of resin fine particles having a diameter of .23 μm and a variation coefficient of 41% was obtained. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.74 mol / L.

〔実施例25〕
塩化ナトリウムを塩化リチウム0.60質量部(0.10mol/Lに相当する添加量)とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.18μm、変動係数が37%である樹脂微粒子の水系分散体42を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.65mol/Lであった。
Example 25
Except that sodium chloride was changed to 0.60 part by mass of lithium chloride (addition amount corresponding to 0.10 mol / L), it was performed under the same conditions as in Example 2, and the 50% particle size based on the volume distribution of the resin fine particles was 0. An aqueous dispersion 42 of resin fine particles having a .18 μm and a variation coefficient of 37% was obtained. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.65 mol / L.

〔実施例26〕
塩化ナトリウムを塩化マグネシウム0.014質量部(0.001mol/Lに相当する添加量)とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.32μm、変動係数が86%である樹脂微粒子の水系分散体43を得た。塩を添加していない水系分散体4よりも、小粒径かつ粒度分布の狭い樹脂微粒子となった。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.011mol/Lであった。
Example 26
Except that sodium chloride was changed to 0.014 part by mass of magnesium chloride (addition amount corresponding to 0.001 mol / L), it was performed under the same conditions as in Example 2, and the 50% particle size on the basis of volume distribution of resin fine particles was 0. An aqueous dispersion 43 of resin fine particles having a .32 μm and a variation coefficient of 86% was obtained. Resin fine particles having a smaller particle diameter and a narrower particle size distribution than the aqueous dispersion 4 to which no salt was added were obtained. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.011 mol / L.

〔実施例27〕
塩化ナトリウムを塩化マグネシウム0.068質量部(0.005mol/Lに相当する添加量)とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.31μm、変動係数が35%である樹脂微粒子の水系分散体44を得た。
Example 27
Except that sodium chloride was changed to 0.068 parts by mass of magnesium chloride (addition amount corresponding to 0.005 mol / L), it was performed under the same conditions as in Example 2, and the 50% particle size based on the volume distribution of the resin fine particles was 0. An aqueous dispersion 44 of resin fine particles having a coefficient of variation of 35% was obtained.

〔実施例28〕
塩化ナトリウムを塩化マグネシウム0.14質量部(0.010mol/Lに相当する添加量)とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.30μm、変動係数が30%である樹脂微粒子の水系分散体45を得た。
Example 28
Except that sodium chloride was changed to 0.14 parts by mass of magnesium chloride (added amount corresponding to 0.010 mol / L), the same procedure as in Example 2 was performed, and the 50% particle size based on the volume distribution of the resin fine particles was 0. An aqueous dispersion 45 of resin fine particles having a thickness of 30 μm and a variation coefficient of 30% was obtained.

〔比較例18〕
塩化ナトリウムを塩化マグネシウム0.21質量部(0.015mol/Lに相当する添加量、この乳化条件における臨界凝集濃度を超える)とした以外は実施例2と同様に乳化を行い、樹脂微粒子の水系分散体46を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.42μm、変動係数が111%であった。
[Comparative Example 18]
Emulsification was carried out in the same manner as in Example 2 except that sodium chloride was used in an amount of 0.21 parts by mass of magnesium chloride (addition amount corresponding to 0.015 mol / L, exceeding the critical coagulation concentration under the emulsification conditions), and aqueous resin fine particles were obtained. Dispersion 46 was obtained. The resin fine particles obtained had a 50% particle size of 0.42 μm based on volume distribution and a variation coefficient of 111%.

〔実施例29〕
塩化ナトリウムを塩化アルミニウム0.002質量部(0.0001mol/Lに相当する添加量)とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.32μm、変動係数が78%である樹脂微粒子の水系分散体47を得た。塩を添加していない水系分散体4よりも、小粒径かつ粒度分布の狭い樹脂微粒子となった。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.0012mol/Lであった。
Example 29
Except that sodium chloride was changed to 0.002 part by mass of aluminum chloride (addition amount corresponding to 0.0001 mol / L), it was performed under the same conditions as in Example 2, and the 50% particle size based on the volume distribution of the resin fine particles was 0. An aqueous dispersion 47 of resin fine particles having a .32 μm and a variation coefficient of 78% was obtained. Resin fine particles having a smaller particle diameter and a narrower particle size distribution than the aqueous dispersion 4 to which no salt was added were obtained. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.0012 mol / L.

〔実施例30〕
塩化ナトリウムを塩化アルミニウム0.009質量部(0.0005mol/Lに相当する添加量)とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.31μm、変動係数が32%である樹脂微粒子の水系分散体48を得た。
Example 30
Except that sodium chloride was changed to 0.009 part by mass of aluminum chloride (addition amount corresponding to 0.0005 mol / L), the same conditions as in Example 2 were applied, and the 50% particle size based on the volume distribution of the resin fine particles was 0. An aqueous dispersion 48 of resin fine particles having a coefficient of variation of .31 μm and a coefficient of 32% was obtained.

〔実施例31〕
塩化ナトリウムを塩化アルミニウム0.019質量部(0.0010mol/Lに相当する添加量)とした以外は、実施例2と同様の条件で行い、樹脂微粒子の体積分布基準の50%粒径が0.29μm、変動係数が31%である樹脂微粒子の水系分散体49を得た。
Example 31
Except that sodium chloride was used in 0.019 parts by mass of aluminum chloride (addition amount corresponding to 0.0010 mol / L), it was carried out under the same conditions as in Example 2, and the 50% particle size on the basis of volume distribution of resin fine particles was 0. An aqueous dispersion 49 of resin fine particles having a diameter of .29 μm and a variation coefficient of 31% was obtained.

〔比較例19〕
塩化ナトリウムを塩化アルミニウム0.029質量部(0.0015mol/Lに相当する添加量、この乳化条件における臨界凝集濃度を超える)とした以外は実施例2と同様に乳化を行い、樹脂微粒子の水系分散体50を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.44μm、変動係数が122%、であった。
[Comparative Example 19]
Emulsification was carried out in the same manner as in Example 2 except that sodium chloride was used in an amount of 0.029 parts by mass of aluminum chloride (addition amount corresponding to 0.0015 mol / L, exceeding the critical coagulation concentration in the emulsification conditions). Dispersion 50 was obtained. The resin fine particles obtained had a 50% particle size of 0.44 μm and a coefficient of variation of 122% based on volume distribution.

〔実施例32〕
ポリエステル樹脂2を100.0質量部、アニオン性界面活性剤(第一工業製薬社製:ネオゲンRK)を2.0質量部、ジエチルアミノエタノール(キシダ化学社製)4.70質量部を、500mlのビーカーに投入し、カイ型の攪拌機で200r/分の攪拌下、95℃で120分間、混合した。その後、温度を保ちつつ、カイ型の攪拌機で200r/分の攪拌下、95℃に加熱した、塩化ナトリウム1.2質量部(0.10mol/Lに相当する添加量)をイオン交換水200.0質量部に溶解させた水溶液を、2時間かけて滴下し、体積分布基準の50%粒径が0.25μm、変動係数が45%である樹脂微粒子の水系分散体51を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、0.65mol/Lであった。
[Example 32]
100.0 parts by mass of polyester resin 2, 2.0 parts by mass of an anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK), 4.70 parts by mass of diethylaminoethanol (Kishida Chemical Co., Ltd.) The mixture was put into a beaker and mixed at 95 ° C. for 120 minutes under stirring at 200 r / min with a Kai-type stirrer. Thereafter, 1.2 parts by mass of sodium chloride (added amount corresponding to 0.10 mol / L) heated to 95 ° C. with stirring at 200 r / min with a Kai-type stirrer while maintaining the temperature was charged with 200. An aqueous solution dissolved in 0 part by mass was added dropwise over 2 hours to obtain an aqueous dispersion 51 of resin fine particles having a 50% particle size of 0.25 μm based on volume distribution and a coefficient of variation of 45%. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 0.65 mol / L.

〔比較例20〕
塩化ナトリウムを未添加とした以外は実施例32と同様に乳化を行い、樹脂微粒子の水系分散体52を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.48μm、変動係数が152%、であった。
[Comparative Example 20]
Emulsification was carried out in the same manner as in Example 32 except that sodium chloride was not added to obtain an aqueous dispersion 52 of resin fine particles. The resin fine particles thus obtained had a 50% particle size of 0.48 μm and a coefficient of variation of 152% based on volume distribution.

〔比較例21〕
塩化ナトリウムを8.4質量部(0.71mol/Lに相当する添加量、この乳化条件における臨界凝集濃度を超える)とした以外は、実施例32と同様に乳化を行い、樹脂微粒子の水系分散体53を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.53μm、変動係数が160%であった。
[Comparative Example 21]
Emulsification was carried out in the same manner as in Example 32 except that sodium chloride was used in an amount of 8.4 parts by mass (addition amount corresponding to 0.71 mol / L, exceeding the critical aggregation concentration under the emulsification conditions), and aqueous dispersion of resin fine particles was performed. A body 53 was obtained. The resin fine particles obtained had a 50% particle diameter of 0.53 μm and a coefficient of variation of 160% based on the volume distribution.

〔実施例33〕
ポリエステル樹脂2を60質量部、アニオン界面活性剤(第一工業製薬社製:ネオゲンRK)を12質量部、N,N−ジエチルアミノエタノールを2.8質量部、テトラヒドロフラン(和光純薬製)を200質量部、混合し、溶解し、超高速攪拌装置T.K.ロボミックス(プライミクス社製)を用いて4,000r/分でせん断力を加えながら室温で攪拌した。そして、撹拌を継続しながら、塩化ナトリウム1.0質量部(0.10mol/Lに相当する添加量)をイオン交換水177.8質量部に溶解させた水溶液を徐々に滴下し、樹脂微粒子を析出させた。その後、エバポレーターを用いてテトラヒドロフランを除去し、樹脂微粒子の体積分布基準の50%粒径が0.08μm、変動係数が25%である樹脂微粒子の水系分散体54を得た。なお、上記乳化条件における臨界凝集濃度を別途測定したところ、臨界凝集濃度は、1.10mol/Lであった。
Example 33
60 parts by mass of polyester resin 2, 12 parts by mass of an anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK), 2.8 parts by mass of N, N-diethylaminoethanol, and 200 of tetrahydrofuran (manufactured by Wako Pure Chemical Industries) Part by mass, mixed, dissolved K. The mixture was stirred at room temperature while applying a shearing force at 4,000 r / min using Robomix (manufactured by Primics). Then, while continuing stirring, an aqueous solution in which 1.0 part by mass of sodium chloride (addition amount corresponding to 0.10 mol / L) was dissolved in 177.8 parts by mass of ion-exchanged water was gradually added dropwise. Precipitated. Thereafter, tetrahydrofuran was removed using an evaporator to obtain an aqueous dispersion 54 of resin fine particles having a 50% particle size of 0.08 μm and a coefficient of variation of 25% based on the volume distribution of the resin fine particles. In addition, when the critical aggregation concentration in the said emulsification conditions was measured separately, the critical aggregation concentration was 1.10 mol / L.

〔比較例22〕
塩化ナトリウムを未添加とした以外は実施例33と同様に乳化を行い、樹脂微粒子の水系分散体55を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.10μm、変動係数26が%であった。
[Comparative Example 22]
Emulsification was carried out in the same manner as in Example 33 except that sodium chloride was not added, to obtain an aqueous dispersion 55 of resin fine particles. The obtained resin fine particles had a volume distribution standard 50% particle size of 0.10 μm and a coefficient of variation of 26%.

〔比較例23〕
塩化ナトリウムを11.5質量部(1.15mol/Lに相当する添加量、この乳化条件における臨界凝集濃度を超える)とした以外は、実施例34と同様に乳化を行い、樹脂微粒子の水系分散体56を得た。得られた樹脂微粒子の体積分布基準の50%粒径は0.15μm、変動係数が33%であった。
[Comparative Example 23]
Emulsification was carried out in the same manner as in Example 34 except that 11.5 parts by mass of sodium chloride (addition amount corresponding to 1.15 mol / L, exceeding the critical coagulation concentration in this emulsification condition), and aqueous dispersion of resin fine particles was performed. A body 56 was obtained. The resin fine particles obtained had a 50% particle size of 0.15 μm based on volume distribution and a coefficient of variation of 33%.

実施例1〜33、比較例1〜23おいて用いられた材料、乳化工程における条件、得られた樹脂微粒子の物性等を表1〜表3に示す。実施例1〜33、比較例1〜23の結果から、水溶性無機塩を添加することで、水系分散体の樹脂微粒子を小粒径にし、かつ樹脂微粒子の粒径を均一に近い状態で制御できることが示された。   Tables 1 to 3 show materials used in Examples 1 to 33 and Comparative Examples 1 to 23, conditions in the emulsification step, physical properties of the obtained resin fine particles, and the like. From the results of Examples 1 to 33 and Comparative Examples 1 to 23, by adding a water-soluble inorganic salt, the resin fine particles of the aqueous dispersion are made small, and the particle size of the resin fine particles is controlled in a nearly uniform state. It was shown that it can be done.

<凝集トナーの製造>
〔実施例34〕
(離型剤水系分散液の調製)
・エステルワックス(ベヘン酸ベヘニル、融点75℃) 100質量部
・アニオン性界面活性剤(第一工業製薬社製:ネオゲンRK) 10質量部
・イオン交換水 880質量部
上記材料をジャケット付混合容器に投入した後、90℃に加熱し、定量ポンプにて循環させながら、クレアミックスW−モーション(エム・テクニック社製)を用いて、ローター回転数19,000r/分、スクリーン回転数19,000r/分の条件にて撹拌し、60分間分散処理した。60分間の分散処理の後、引き続きローター回転数1,000r/分、スクリーン回転数0r/分、冷却速度10℃/分の条件にて40℃まで冷却することで、離型剤水系分散液を得た。このサンプルを動的光散乱式粒度分布測定装置(ナノトラックUPA150:日機装社製)を用い測定したところ、体積分布基準の50%粒径は0.15μmであり、また、0.8μm以上の粗大粒子は0.01体積%以下であった。
<Manufacture of agglomerated toner>
Example 34
(Preparation of release agent aqueous dispersion)
・ Ester wax (behenyl behenate, melting point: 75 ° C.) 100 parts by mass ・ Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) 10 parts by mass ・ Ion-exchanged water 880 parts by mass After charging, while heating to 90 ° C. and circulating with a metering pump, using CLEARMIX W-Motion (M Technique Co., Ltd.), rotor rotation speed 19,000r / min, screen rotation speed 19,000r / The mixture was stirred for 60 minutes and dispersed for 60 minutes. After the dispersion treatment for 60 minutes, the release agent aqueous dispersion is subsequently cooled to 40 ° C. under conditions of a rotor rotation speed of 1,000 r / min, a screen rotation speed of 0 r / min, and a cooling rate of 10 ° C./min. Obtained. When this sample was measured using a dynamic light scattering type particle size distribution analyzer (Nanotrack UPA150: manufactured by Nikkiso Co., Ltd.), the 50% particle size based on volume distribution was 0.15 μm, and the coarseness was 0.8 μm or more. Particles were 0.01 volume% or less.

(着色剤水系分散液の調製)
・シアン顔料(C.I.ピグメントブルー15:3) 100質量部
・アニオン界面活性剤(第一工業製薬社製:ネオゲンRK) 10質量部
・イオン交換水 890質量部
上記材料を混合し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて、回転数24,000r/分で30分間分散を行った。その後、さらに高圧衝撃式分散機ナノマイザー(吉田機械興業社製)を用いて、圧力条件200MPaにて分散を行い、シアン顔料を分散させてなる着色剤水系分散液を調製した。着色剤水系分散液における着色剤(シアン顔料)の体積分布基準の50%粒径は、0.12μm、着色剤濃度は10質量%であった。
(Preparation of colorant aqueous dispersion)
-Cyan pigment (CI Pigment Blue 15: 3) 100 parts by mass-Anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd .: Neogen RK) 10 parts by mass-Ion-exchanged water 890 parts by mass The above materials are mixed and a homogenizer (IKA: Ultra Turrax T50) was used for dispersion for 30 minutes at a rotation speed of 24,000 r / min. Thereafter, using a high-pressure impact disperser Nanomizer (manufactured by Yoshida Kikai Kogyo Co., Ltd.), dispersion was performed under a pressure condition of 200 MPa to prepare a colorant aqueous dispersion in which a cyan pigment was dispersed. The 50% particle size based on volume distribution of the colorant (cyan pigment) in the colorant aqueous dispersion was 0.12 μm, and the colorant concentration was 10% by mass.

(凝集工程)
・樹脂微粒子の水系分散体1 50質量部
・着色剤水系分散液 10質量部
・離型剤水系分散液 20質量部
・1質量%硫酸マグネシウム水溶液 20質量部
・イオン交換水 100質量部
上記の各成分を丸型ステンレス製フラスコに投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて5,000r/分で10分間混合、分散した。その後、加熱用ウォーターバス中で撹拌翼を用いて、混合液が撹拌されるような回転数に適宜調節しながらで48℃まで加熱した。48℃で1時間保持した後、形成された凝集粒子の体積平均粒径を、フロー式粒子像分析装置(シスメックス社製:FPIA−3000)を用い、該装置の操作マニュアルに従い測定した。その結果、体積平均粒径が約5.1μmである凝集粒子が形成されていることが確認された。
(Aggregation process)
・ Aqueous dispersion 1 of resin fine particles 1 50 parts by mass ・ Coloring agent aqueous dispersion 10 parts by mass ・ Mold release agent aqueous dispersion 20 parts by mass ・ 1 mass% magnesium sulfate aqueous solution 20 parts by mass ・ Ion-exchanged water 100 parts by mass The components were put into a round stainless steel flask, and mixed and dispersed at 5,000 r / min for 10 minutes using a homogenizer (manufactured by IKA: Ultra Turrax T50). Then, it heated to 48 degreeC, adjusting suitably the rotation speed so that a liquid mixture might be stirred using the stirring blade in the water bath for heating. After maintaining at 48 ° C. for 1 hour, the volume average particle diameter of the formed aggregated particles was measured using a flow type particle image analyzer (manufactured by Sysmex Corporation: FPIA-3000) according to the operation manual of the apparatus. As a result, it was confirmed that aggregated particles having a volume average particle diameter of about 5.1 μm were formed.

(融合工程)
その後、ここに38質量部のイオン交換水に対し、クエン酸三ナトリウム2質量部を溶解させた水溶液を追加した後、撹拌を継続しながら75℃まで加熱し、2時間保持した。得られた粒子の体積平均粒径及び平均円形度をフロー式粒子像分析装置(シスメックス社製:FPIA−3000)を用い、該装置の操作マニュアルに従い測定した。その結果、体積平均粒径が約5.4μm、平均円形度が0.963である十分に融合、合一した粒子が形成されていることが確認された。
(Fusion process)
Thereafter, an aqueous solution in which 2 parts by mass of trisodium citrate was dissolved was added to 38 parts by mass of ion-exchanged water, and then the mixture was heated to 75 ° C. and kept for 2 hours while continuing stirring. The volume average particle diameter and average circularity of the obtained particles were measured using a flow type particle image analyzer (manufactured by Sysmex Corporation: FPIA-3000) according to the operation manual of the apparatus. As a result, it was confirmed that sufficiently fused and united particles having a volume average particle diameter of about 5.4 μm and an average circularity of 0.963 were formed.

(ろ過、洗浄、乾燥工程)
その後、得られた液を冷却し、ろ過を行った。ろ物をイオン交換水で十分に洗浄し、真空乾燥機を用いて乾燥することにより、トナー粒子1を得た。
(Filtration, washing, drying process)
Then, the obtained liquid was cooled and filtered. The filter cake was sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles 1.

(トナーの作製)
該トナー粒子100質量部に、BET法で測定した比表面積が200m/gである疎水化処理されたシリカ微粉体1.8質量部をヘンシェルミキサー(三井鉱山社製)で乾式混合してトナーとした。そして、下記の方法で定着性の評価を行った。
(Production of toner)
To 100 parts by mass of the toner particles, 1.8 parts by mass of hydrophobized silica fine powder having a specific surface area measured by the BET method of 200 m 2 / g is dry-mixed with a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.), and the toner is mixed. It was. Then, the fixing property was evaluated by the following method.

市販のフルカラーデジタル複写機(CLC1100、キヤノン社製)を使用し、普通紙(64g/m)上に未定着のトナー画像(0.6mg/cm)を形成した。次に、市販のカラーレーザープリンター(LBP−5500、キヤノン社製)から取り外した定着ユニットを定着温度が調節できるように改造し、これを用いて未定着画像の定着試験を行った。その際、定着試験は常温常湿下で行い、プロセススピードは100mm/秒に設定した。また、定着温度を10℃ずつ温度を上げ、それぞれの定着温度において未定着画像の定着を行った。前記未定着画像を定着させたときの定着画像のオフセットの有無を目視にて確認したところ、オフセットが発生しなかった定着温度の範囲は100〜130℃であった。 An unfixed toner image (0.6 mg / cm 2 ) was formed on plain paper (64 g / m 2 ) using a commercially available full color digital copying machine (CLC1100, manufactured by Canon Inc.). Next, a fixing unit removed from a commercially available color laser printer (LBP-5500, manufactured by Canon Inc.) was modified so that the fixing temperature could be adjusted, and a fixing test for an unfixed image was performed using this. At that time, the fixing test was performed under normal temperature and humidity, and the process speed was set to 100 mm / second. Further, the fixing temperature was increased by 10 ° C., and an unfixed image was fixed at each fixing temperature. When the presence or absence of an offset in the fixed image when the unfixed image was fixed was visually confirmed, the fixing temperature range in which no offset occurred was 100 to 130 ° C.

〔比較例24〕
樹脂微粒子の水系分散体1を水系分散体2とする以外は、実施例34と同様にして行い、トナー粒子2を得た。ろ過工程におけるろ液が、離型剤分散液の脱離による白濁液となった。白濁液中の離型剤成分を分析したところ、トナー粒子製造に用いた離型剤の35%が流れ出ていた。実施例34と同様の手順で該トナー粒子の定着試験を行ったところ、定着温度の範囲は100〜105℃であった。
[Comparative Example 24]
A toner particle 2 was obtained in the same manner as in Example 34 except that the aqueous dispersion 1 of resin fine particles was changed to the aqueous dispersion 2. The filtrate in the filtration step became a cloudy liquid due to the release of the release agent dispersion. When the release agent component in the white turbid liquid was analyzed, 35% of the release agent used for the toner particle production flowed out. When a fixing test of the toner particles was performed in the same procedure as in Example 34, the fixing temperature range was 100 to 105 ° C.

〔実施例35〕
融合工程までの工程を実施例34と同様の条件で行い、さらに次に説明する付着工程を行った。
Example 35
The steps up to the fusion step were performed under the same conditions as in Example 34, and the attachment step described below was further performed.

(付着工程)
実施例34の融合工程と同様にして粒子の融合を行った後、攪拌を継続しながら、ウォーターバス内に水を入れ、コア粒子を25℃まで冷却した。次いで、樹脂微粒子の水系分散体3を7.7質量部添加した。尚、樹脂微粒子の水系分散体3の添加量は、コア粒子を球状粒子と仮定し、5.5μmのコア粒子を0.20μmのシェル粒子1層で覆うのに必要なシェルとなる量とした。
(Adhesion process)
After fusing the particles in the same manner as in the fusing step of Example 34, water was put in a water bath while stirring was continued, and the core particles were cooled to 25 ° C. Next, 7.7 parts by mass of the aqueous dispersion 3 of resin fine particles was added. The addition amount of the aqueous dispersion 3 of resin fine particles is assumed to be an amount necessary for covering the 5.5 μm core particles with one layer of 0.20 μm shell particles, assuming that the core particles are spherical particles. .

その後、10分間攪拌を行い、さらに2質量%塩化カルシウム水溶液60質量部を滴下し、35℃に昇温した。この状態で、随時、液を少量抽出し、2μmのマイクロフィルターに通し、ろ液が透明になるまで、35℃で攪拌を継続した。ろ液が透明になったのを確認後、40℃に昇温して1時間攪拌した後、5質量%クエン酸三ナトリウム水溶液35質量部を添加し、65℃に昇温して1.5時間攪拌を行った。   Then, it stirred for 10 minutes, and also 60 mass parts of 2 mass% calcium chloride aqueous solution was dripped, and it heated up at 35 degreeC. In this state, a small amount of the liquid was extracted at any time, passed through a 2 μm microfilter, and stirring was continued at 35 ° C. until the filtrate became transparent. After confirming that the filtrate became transparent, the mixture was heated to 40 ° C. and stirred for 1 hour, and then 35 parts by mass of a 5 mass% trisodium citrate aqueous solution was added, and the mixture was heated to 65 ° C. and heated to 1.5 Stir for hours.

(ろ過、洗浄、乾燥工程)
その後、得られた液を冷却し、ろ過を行った。ろ物をイオン交換水で十分に洗浄し、真空乾燥機を用いて乾燥することにより、トナー粒子3を得た。トナー粒子3の重量平均粒径(D4)は5.9μmであった。
(Filtration, washing, drying process)
Then, the obtained liquid was cooled and filtered. The filter cake was sufficiently washed with ion-exchanged water, and dried using a vacuum dryer to obtain toner particles 3. The weight average particle diameter (D4) of the toner particles 3 was 5.9 μm.

次いで、反射型電子顕微鏡でトナー粒子を観測したところ、コア粒子がシェル粒子によって十分被覆されていた。得られたトナー粒子を温度が40℃、相対湿度が80%の環境下で1週間保存したところ、目視上、トナーの凝集が起こっておらず、トナーが良好な保存安定性を有していることが示された。   Next, when the toner particles were observed with a reflection electron microscope, the core particles were sufficiently covered with the shell particles. The obtained toner particles were stored for 1 week in an environment of a temperature of 40 ° C. and a relative humidity of 80%. As a result, no toner aggregation occurred and the toner had good storage stability. It was shown that.

〔比較例25〕
樹脂微粒子の水系分散体3を水系分散体4とする以外は、実施例35と同様にして付着工程を行い、トナー粒子4を得た。乾燥後のトナー粒子を反射型電子顕微鏡で観測したところ、シェル粒子のコア粒子への被覆は不十分であった。得られたトナー粒子を温度が40℃、相対湿度が80%の環境下で1週間保存したところ、3日目からトナー粒子の融着が始まり、4日目以降は固まり状となり、この環境下ではトナー形状を維持することはできなかった。
[Comparative Example 25]
Toner particles 4 were obtained in the same manner as in Example 35 except that the aqueous dispersion 3 of resin fine particles was changed to the aqueous dispersion 4. When the toner particles after drying were observed with a reflection electron microscope, the coating of the shell particles onto the core particles was insufficient. When the obtained toner particles were stored for 1 week in an environment of 40 ° C. and 80% relative humidity, the toner particles began to fuse from the third day and became agglomerated after the fourth day. However, the toner shape could not be maintained.

本発明によって得られる樹脂微粒子の水系分散体は、電子写真用トナー、インク、塗料、接着剤、粘着剤、繊維加工、製紙、紙加工等の製造に好適に用いることができる。
The aqueous dispersion of resin fine particles obtained by the present invention can be suitably used for the production of electrophotographic toners, inks, paints, adhesives, pressure-sensitive adhesives, fiber processing, papermaking, paper processing and the like.

Claims (9)

樹脂微粒子の水系分散体を製造する工程と、
該樹脂微粒子の水系分散体と着色剤とを混合し、該樹脂微粒子及び該着色剤を水系媒体中で凝集させて重量平均粒径(D4)が4.5μm以上7.0μm以下の凝集体を形成する凝集工程と、
該凝集体を加熱し、融合させる融合工程と、
を有するトナーの製造方法において、
該樹脂微粒子の水系分散体を製造する工程は、
(i)酸基を有する樹脂、アニオン性界面活性剤、水及び水溶性無機塩を混合して混合物を得る混合工程と、
(ii)該酸基を有する樹脂のガラス転移点以上の温度で、該混合物の撹拌を行い、体積分布基準の50%粒径が0.02μm以上1.00μm以下の該樹脂微粒子の水系分散体を得る乳化工程を有し
該水溶性無機塩が、塩化ナトリウム、塩化カリウム又は塩化リチウムであり、
該乳化工程において、該水系分散体の水相中における該水溶性無機塩の濃度が、下記臨界凝集濃度以下であることを特徴とするトナーの製造方法。
[臨界凝集濃度とは、水溶性無機塩を添加した樹脂微粒子の水系分散体の体積分布基準50%粒径が、水溶性無機塩を添加する前の樹脂微粒子の水系分散体における樹脂微粒子の体積分布基準50%粒径の1.5倍を超えた時点での、該水系分散体の水相における水溶性無機塩の濃度である。]
Producing an aqueous dispersion of resin fine particles;
An aqueous dispersion of the resin fine particles and a colorant are mixed, and the resin fine particles and the colorant are aggregated in an aqueous medium to obtain an aggregate having a weight average particle diameter (D4) of 4.5 μm or more and 7.0 μm or less. An aggregation process to form;
A fusing step of heating and fusing the aggregates;
In a method for producing a toner having
The step of producing an aqueous dispersion of the resin fine particles includes:
(I) a mixing step of obtaining a mixture by mixing a resin having an acid group, an anionic surfactant, water and a water-soluble inorganic salt;
(Ii) Stirring of the mixture at a temperature equal to or higher than the glass transition temperature of the resin having an acid group, and an aqueous dispersion of the resin fine particles having a 50% particle size based on volume distribution of 0.02 μm to 1.00 μm Having an emulsification step
The water-soluble inorganic salt is sodium chloride, potassium chloride or lithium chloride;
In the emulsification step, a toner production method, wherein the concentration of the water-soluble inorganic salt in the aqueous phase of the aqueous dispersion is not more than the following critical aggregation concentration.
[Critical aggregation concentration is the volume distribution of the resin fine particles in the aqueous dispersion of the resin fine particles before the addition of the water soluble inorganic salt, in which the volume distribution standard 50% particle size of the resin fine particles added with the water-soluble inorganic salt is 50%. This is the concentration of the water-soluble inorganic salt in the aqueous phase of the aqueous dispersion when it exceeds 1.5 times the distribution standard 50% particle size. ]
樹脂微粒子の水系分散体を製造する工程と、
該樹脂微粒子の水系分散体と着色剤とを混合し、該樹脂微粒子及び該着色剤を水系媒体中で凝集させて重量平均粒径(D4)が4.5μm以上7.0μm以下の凝集体を形成する凝集工程と、
該凝集体を加熱し、融合させる融合工程と、
を有するトナーの製造方法において、
該樹脂微粒子の水系分散体を製造する工程は、
(i)酸基を有する樹脂、該酸基を有する樹脂が可溶な溶剤、アニオン性界面活性剤、を混合して混合物を得る混合工程と、
(ii)該混合物に水溶性無機塩及び水を添加し撹拌をおこない、体積分布基準の50%粒径が0.02μm以上1.00μm以下の該樹脂微粒子の水系分散体を得る乳化工程を有し
該樹脂微粒子の水系分散体を製造する工程は、
該乳化工程において、該水系分散体の水相中における該水溶性無機塩の濃度が、下記で定義する臨界凝集濃度以下であることを特徴とするトナーの製造方法。
[臨界凝集濃度とは、水溶性無機塩を添加した樹脂微粒子の水系分散体の体積分布基準50%粒径が、水溶性無機塩を添加する前の樹脂微粒子の水系分散体における樹脂微粒子の体積分布基準50%粒径の1.5倍を超えた時点での、該水系分散体の水相における水溶性無機塩の濃度である。]
Producing an aqueous dispersion of resin fine particles;
An aqueous dispersion of the resin fine particles and a colorant are mixed, and the resin fine particles and the colorant are aggregated in an aqueous medium to obtain an aggregate having a weight average particle diameter (D4) of 4.5 μm or more and 7.0 μm or less. An aggregation process to form;
A fusing step of heating and fusing the aggregates;
In a method for producing a toner having
The step of producing an aqueous dispersion of the resin fine particles includes:
(I) a mixing step of mixing a resin having an acid group, a solvent in which the resin having an acid group is soluble, and an anionic surfactant to obtain a mixture;
(Ii) An emulsification step of adding a water-soluble inorganic salt and water to the mixture and stirring to obtain an aqueous dispersion of the resin fine particles having a 50% particle size on a volume distribution basis of 0.02 μm to 1.00 μm. The step of producing the aqueous dispersion of the resin fine particles includes
In the emulsification step, a method for producing a toner, wherein the concentration of the water-soluble inorganic salt in the aqueous phase of the aqueous dispersion is not more than the critical aggregation concentration defined below.
[Critical aggregation concentration is the volume distribution of the resin fine particles in the aqueous dispersion of the resin fine particles before the addition of the water soluble inorganic salt, in which the volume distribution standard 50% particle size of the resin fine particles added with the water-soluble inorganic salt is 50%. This is the concentration of the water-soluble inorganic salt in the aqueous phase of the aqueous dispersion when it exceeds 1.5 times the distribution standard 50% particle size. ]
前記水溶性無機塩が一価の塩である請求項に記載のトナーの製造方法。 The toner production method according to claim 2 , wherein the water-soluble inorganic salt is a monovalent salt. 前記一価の塩が、塩化ナトリウム、塩化カリウム又は塩化リチウムである請求項に記載に記載のトナーの製造方法。 The toner production method according to claim 3 , wherein the monovalent salt is sodium chloride, potassium chloride, or lithium chloride. 前記酸基を有する樹脂のガラス転移点が、50℃以上80℃以下である請求項1〜4のいずれか1項に記載のトナーの製造方法。 The glass transition point of the resin having an acid group, method for producing a toner according to any one of claims 1-4 is 80 ° C. less than 50 ° C.. 前記酸基を有する樹脂が、加水分解性樹脂である請求項1〜のいずれか1項に記載のトナーの製造方法。 Said resin having an acid group, method for producing a toner according to any one of claims 1 to 5 which is a hydrolyzable resin. 前記乳化工程で、塩基性物質を添加する請求項6に記載のトナーの製造方法。   The toner manufacturing method according to claim 6, wherein a basic substance is added in the emulsification step. 前記酸基を有する樹脂が、ポリエステル樹脂である請求項1〜のいずれか1項に記載のトナーの製造方法。 Resins having an acid group, method for producing a toner according to any one of claims 1 to 7 which is a polyester resin. 前記酸基を有する樹脂の酸価が、1mgKOH/g以上30mgKOH/g以下である請求項1〜のいずれか1項に記載のトナーの製造方法。 The acid value of the resin having the acid group, method for producing a toner according to any one of claims 1-8 is 1 mgKOH / g or more 30 mgKOH / g or less.
JP2011286211A 2011-12-27 2011-12-27 Toner production method Active JP6021332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011286211A JP6021332B2 (en) 2011-12-27 2011-12-27 Toner production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011286211A JP6021332B2 (en) 2011-12-27 2011-12-27 Toner production method

Publications (3)

Publication Number Publication Date
JP2013133449A JP2013133449A (en) 2013-07-08
JP2013133449A5 JP2013133449A5 (en) 2015-04-02
JP6021332B2 true JP6021332B2 (en) 2016-11-09

Family

ID=48910366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011286211A Active JP6021332B2 (en) 2011-12-27 2011-12-27 Toner production method

Country Status (1)

Country Link
JP (1) JP6021332B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113514375A (en) * 2021-03-10 2021-10-19 首钢集团有限公司 Method for measuring mixing efficiency of solid mixer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189765A (en) * 2002-12-06 2004-07-08 Fuji Xerox Co Ltd Superfine particle resin emulsion, method for producing the same and apparatus for production
JP4634273B2 (en) * 2005-10-14 2011-02-16 花王株式会社 Method for producing resin emulsion
JP2008122623A (en) * 2006-11-10 2008-05-29 Sharp Corp Method for producing aggregated particle and electrophotographic toner
JP5230435B2 (en) * 2007-02-19 2013-07-10 キヤノン株式会社 Method for producing aqueous dispersion of resin fine particles, aqueous dispersion of resin fine particles, method for producing toner, and toner
US8697327B2 (en) * 2009-05-28 2014-04-15 Canon Kabushiki Kaisha Toner production process and toner

Also Published As

Publication number Publication date
JP2013133449A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP2013177583A (en) Method of manufacturing aqueous dispersion of resin fine particle and method of manufacturing toner
JP5739124B2 (en) Toner having titania and process for producing the same
JP5544113B2 (en) Method for producing toner for electrophotography
US20130244171A1 (en) Polyester resin for toner, electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2014013384A (en) Electrophotographic toner
JP2012229420A (en) Polyester resin for toner, toner, developer, toner cartridge, process cartridge, and image forming apparatus
JP6405173B2 (en) Binder resin composition for electrostatic image developing toner
JP5192158B2 (en) Resin emulsion
JP2014013385A (en) Electrophotographic toner
WO2010008007A1 (en) Method for producing electrophotographic toner
JP2007121462A (en) Toner for electrostatic image development, method for manufacturing toner therefor, electrostatic image developer and image forming method
JP6496970B2 (en) Method for producing toner for developing electrostatic image
JP4770611B2 (en) Method for producing toner for developing electrostatic image
JP6018668B2 (en) Method for producing toner for developing electrostatic image
JP5973896B2 (en) Method for producing toner for electrophotography
JP6021333B2 (en) Toner production method
JP6021332B2 (en) Toner production method
JP6511661B2 (en) Binder resin composition for toner for electrophotography
JP6082725B2 (en) Toner for electrostatic image development
US20220306814A1 (en) Method for producing resin particle dispersion, method for producing toner for electrostatic image development, and toner for electrostatic image development
JP2022151291A (en) Method for producing resin particle dispersion, method for producing toner for developing electrostatic image and toner for developing electrostatic image
JP2022151290A (en) Method for producing resin particle dispersion, method for producing toner for developing electrostatic image and toner for developing electrostatic image
JP2011065144A (en) Method of manufacturing toner
JP6357059B2 (en) Method for producing toner for developing electrostatic image
JP2015166810A (en) Manufacturing method of toner for development of electrostatic charge image

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161004

R151 Written notification of patent or utility model registration

Ref document number: 6021332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151