JP6018366B2 - Manufacturing method of vacuum valve - Google Patents

Manufacturing method of vacuum valve Download PDF

Info

Publication number
JP6018366B2
JP6018366B2 JP2011140867A JP2011140867A JP6018366B2 JP 6018366 B2 JP6018366 B2 JP 6018366B2 JP 2011140867 A JP2011140867 A JP 2011140867A JP 2011140867 A JP2011140867 A JP 2011140867A JP 6018366 B2 JP6018366 B2 JP 6018366B2
Authority
JP
Japan
Prior art keywords
vacuum valve
fine
contact
fine layer
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011140867A
Other languages
Japanese (ja)
Other versions
JP2013008579A (en
Inventor
直紀 浅利
直紀 浅利
遥 佐々木
遥 佐々木
哲 塩入
哲 塩入
宏通 染井
宏通 染井
義博 竹井
義博 竹井
大竹 史郎
史郎 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011140867A priority Critical patent/JP6018366B2/en
Publication of JP2013008579A publication Critical patent/JP2013008579A/en
Application granted granted Critical
Publication of JP6018366B2 publication Critical patent/JP6018366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

本発明の実施形態は、接離自在の一対の接点を有する真空バルブの製造方法に関する。 Embodiments described herein relate generally to a method of manufacturing a vacuum valve having a pair of contact points that can be separated from each other.

従来、Cu−Cr合金を用いるような接点では、耐弧成分のCr粒子を微細化し、耐電圧特性の向上が図られている。この手段として、真空バルブ組立前の接点表面に、電子線によりエネルギー照射を行うことが知られている(例えば、特許文献1参照。)。また、真空バルブ組立後に、接点間を放電させる電流コンディショニング処理を行うことが知られている(例えば、特許文献2参照。)。   Conventionally, in a contact using a Cu—Cr alloy, Cr particles as arc-resistant components are refined to improve withstand voltage characteristics. As this means, it is known to irradiate energy to the contact surface before assembling the vacuum valve with an electron beam (for example, refer to Patent Document 1). In addition, it is known to perform a current conditioning process for discharging between contacts after assembling the vacuum valve (see, for example, Patent Document 2).

しかしながら、エネルギー照射を行った接点では、真空バルブ組立時の入熱により耐弧成分の粒径が増大することがある。また、組立時には、短時間であるものの、接点が大気に曝され、酸化などが起こり、耐電圧特性の向上をし難くさせる。   However, at the contact subjected to energy irradiation, the particle diameter of the arc-resistant component may increase due to heat input during the assembly of the vacuum valve. Further, at the time of assembling, although the contact time is short, the contact is exposed to the atmosphere, oxidation occurs, and it is difficult to improve the withstand voltage characteristics.

一方、電流コンディショニング処理においては、一般的に数10〜数100回の所定回数の放電を行うものの、接点全域への処理が困難であり、耐電圧特性の向上に限界が生じていた。   On the other hand, in the current conditioning process, although a predetermined number of discharges of several tens to several hundreds are generally performed, it is difficult to process the entire contact area, and there is a limit in improving the withstand voltage characteristics.

特開平8−111131号公報JP-A-8-111131 特開2010−123347号公報JP 2010-123347 A

本発明が解決しようとする課題は、真空バルブ組立前のエネルギー照射による耐弧成分の微細化を保ちつつ、電流コンディショニング処理による微細化を加え、耐電圧特性を向上させることの可能な真空バルブの製造方法を提供することにある。 The problem to be solved by the present invention is that of a vacuum valve capable of improving withstand voltage characteristics by adding miniaturization by current conditioning treatment while maintaining miniaturization of arc resistance component by energy irradiation before vacuum valve assembly . It is to provide a manufacturing method .

上記課題を解決するために、実施形態の真空バルブの製造方法は、接離自在の一対の接点を有する真空バルブの製造方法であって、前記接点を導電成分と耐弧成分とを所定量混合して製造し、先ず、接触面全域にエネルギー照射を行って前記耐弧成分を微細化した第1の微細層を設け、これを冷却後、真空バルブに組込み、そして、前記第1の微細層の表面に電流コンディショニング処理を行い、前記耐弧成分の粒径を前記第1の微細層のものと比べて同等以下とする第2の微細層をランダムに設けたことを特徴とする。 In order to solve the above problems, a manufacturing method of the vacuum valve of the embodiment is a method of manufacturing a vacuum interrupter having a pair of contacts of the universal separable, predetermined amounts mixing the conductive component and arc-proof component the contact First, a first fine layer in which the arc-resistant component is refined by providing energy irradiation over the entire contact surface is provided, and after cooling, this is incorporated into a vacuum valve, and the first fine layer is provided. The surface is subjected to a current conditioning process, and a second fine layer is randomly provided in which the arc-proof component has a grain size equal to or less than that of the first fine layer .

本発明の実施例に係る真空バルブの構成を示す断面図。Sectional drawing which shows the structure of the vacuum valve which concerns on the Example of this invention. 本発明の実施例に係る真空バルブの製造方法を示す図。The figure which shows the manufacturing method of the vacuum valve which concerns on the Example of this invention. 本発明の実施例に係る真空バルブの接点の製造直後を断面して示す説明図。Explanatory drawing which cuts and shows immediately after manufacture of the contact of the vacuum valve which concerns on the Example of this invention. 本発明の実施例に係る真空バルブの接点のエネルギー照射時を断面して示す説明図。Explanatory drawing which shows in cross section the time of energy irradiation of the contact of the vacuum valve which concerns on the Example of this invention. 本発明の実施例に係る真空バルブの接点の電流コンディショニング処理時を断面して示す説明図。Explanatory drawing which shows the cross section at the time of the current conditioning process of the contact of the vacuum valve which concerns on the Example of this invention.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例1に係る真空バルブを図1〜図5を参照して説明する。図1は、本発明の実施例に係る真空バルブの構成を示す断面図、図2は、本発明の実施例に係る真空バルブの製造方法を示す図、図3は、本発明の実施例に係る真空バルブの接点の製造直後を断面して示す説明図、図4は、本発明の実施例に係る真空バルブの接点のエネルギー照射時を断面して示す説明図、図5は、本発明の実施例に係る真空バルブの接点の電流コンディショニング処理時を断面して示す説明図である。   A vacuum valve according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing a configuration of a vacuum valve according to an embodiment of the present invention, FIG. 2 is a diagram showing a manufacturing method of a vacuum valve according to an embodiment of the present invention, and FIG. 3 is an embodiment of the present invention. FIG. 4 is an explanatory view showing a cross section immediately after the manufacture of the contact of the vacuum valve, FIG. 4 is an explanatory view showing the energy irradiation of the contact of the vacuum valve according to the embodiment of the present invention, and FIG. It is explanatory drawing which carries out the cross section at the time of the electric current conditioning process of the contact of the vacuum valve which concerns on an Example.

図1に示すように、アルミナ磁器よりなる筒状の真空絶縁容器1の両端開口部には、固定側封着金具2と可動側封着金具3が封着されている。固定側封着金具2には、中央部に固定側通電軸4が貫通固定され、真空絶縁容器1内の端部に固定側接点5が固着されている。固定側接点5に対向し、接離自在の可動側接点6が可動側封着金具3を移動自在に貫通する可動側通電軸7端部に固着されている。可動側通電軸7の中間部には、伸縮自在のベローズ8の一方端が封着され、他方端が可動側封着金具3の中央開口部に封着されている。これにより、真空絶縁容器1内の真空を保って可動側通電軸7を軸方向に移動させることができる。接点5、6の周りには、筒状のアークシールド9が設けられている。   As shown in FIG. 1, a fixed-side sealing metal fitting 2 and a movable-side sealing metal fitting 3 are sealed at both end openings of a cylindrical vacuum insulating container 1 made of alumina porcelain. The fixed-side sealing metal fitting 2 has a fixed-side energizing shaft 4 penetrating and fixed at the center, and a fixed-side contact 5 is fixed to an end of the vacuum insulating container 1. Opposite to the fixed side contact 5, a movable side contact 6 that is detachable is fixed to the end of the movable side energizing shaft 7 that movably penetrates the movable side sealing fitting 3. One end of a telescopic bellows 8 is sealed at the intermediate portion of the movable side energizing shaft 7, and the other end is sealed at the central opening of the movable side sealing fitting 3. Thereby, the movable side energizing shaft 7 can be moved in the axial direction while maintaining the vacuum in the vacuum insulating container 1. A cylindrical arc shield 9 is provided around the contacts 5 and 6.

ここで、接点5、6は、Cu−Cr合金からなり、この合金の基材層5a、6aと、接離面となる表面全域にエネルギー照射により設けられたCr粒子を微細化した第1の微細層5b、6bと、電流コンディショニング処理によりランダムに設けられたCr粒子を微細化した第2の微細層5c、6cとで構成されている。   Here, the contacts 5 and 6 are made of a Cu—Cr alloy, and the base layers 5a and 6a of this alloy and the first particles obtained by refining Cr particles provided by energy irradiation over the entire surface to be contact and separation surfaces. It is composed of fine layers 5b and 6b and second fine layers 5c and 6c obtained by miniaturizing Cr particles randomly provided by current conditioning.

次に、固定側接点5を用い製造方法を図2〜図5を参照して説明する。可動側接点6も同様である。   Next, a manufacturing method using the fixed contact 5 will be described with reference to FIGS. The same applies to the movable contact 6.

図2に示すように、所定量を混合したCu−Cr合金の焼結体から所定形状の基材層5aを製造する(st1)。基材層5aには、図3に示すように、Cuマトリックス5a1中に、粒径数10μmのCr粒子5a2が混合されている。そして、先ず、基材層5aの接離面となる表面全域に例えば電子線により1W/mmのエネルギーを照射し、深さ20〜30μmを溶融させ(st2)、冷却する(st3)。溶融、冷却により、図4に示すように、第1の微細層5bが形成され、Cr粒子5a2が微細化され、粒径0.数〜数μmの第1の微細Cr粒子5b1が形成される。 As shown in FIG. 2, a base layer 5a having a predetermined shape is manufactured from a sintered body of a Cu—Cr alloy mixed with a predetermined amount (st1). As shown in FIG. 3, in the base material layer 5a, Cr particles 5a2 having a particle size of several tens of μm are mixed in a Cu matrix 5a1. First, the surface of the base material layer 5a is irradiated with energy of 1 W / mm 2 by, for example, an electron beam to melt the depth of 20 to 30 μm (st2) and cool (st3). By melting and cooling, the first fine layer 5b is formed as shown in FIG. First to several μm of first fine Cr particles 5b1 are formed.

次に、第1の微細層5bを有する接点5を、ろう付け作業などにより真空バルブに組込む(st4)。この場合、運搬時などに大気中に曝されることがある。組立後、接点5を所定間隔に開き、数Aの小電流を用い、数10〜数100回の所定回数、放電させる電流コンディショニング処理を行う(st5)。すると、図5に示すように、第1の微細層5bの表面に、ランダムに第2の微細Cr粒子5c1を有する第2の微細層5cが形成される。なお、放電条件によっては、第2の微細層5cが基材層5aに達することがある。   Next, the contact 5 having the first fine layer 5b is incorporated into a vacuum valve by brazing work or the like (st4). In this case, it may be exposed to the atmosphere during transportation. After assembly, the contacts 5 are opened at a predetermined interval, and a current conditioning process is performed to discharge a predetermined number of times from several tens to several hundreds using a small current of several A (st5). Then, as shown in FIG. 5, the second fine layer 5c having the second fine Cr particles 5c1 is randomly formed on the surface of the first fine layer 5b. Depending on the discharge conditions, the second fine layer 5c may reach the base material layer 5a.

第2の微細Cr粒子5c1は、真空バルブ組立時の入熱により成長してCr粒径が増大しても、電流コンディショニング処理で微細化される。また、第1の微細層5bの表面に酸化物などの不純物が付着していても、除去される。なお、溶融、冷却直後の第1の微細層5bの温度が周囲温度(常温)よりも高ければ、微細Cr粒子5b1の粒径の増大が抑制される。   Even if the second fine Cr particles 5c1 grow due to heat input at the time of assembling the vacuum valve and the Cr particle size increases, they are refined by the current conditioning process. Further, even if impurities such as an oxide adhere to the surface of the first fine layer 5b, they are removed. If the temperature of the first fine layer 5b immediately after melting and cooling is higher than the ambient temperature (normal temperature), an increase in the particle size of the fine Cr particles 5b1 is suppressed.

電流コンディショニング処理では、第2の微細層5cが形成される場所を制御できない。しかしながら、第2の微細層5cが形成されていない個所であっても第1の微細層5bが形成されているので、耐電圧特性を向上させることができる。なお、第2の微細Cr粒子5c1の粒径は、第1の微細Cr粒子5b1と比べて同等以下となる。   In the current conditioning process, the place where the second fine layer 5c is formed cannot be controlled. However, the withstand voltage characteristics can be improved because the first fine layer 5b is formed even in the portion where the second fine layer 5c is not formed. The particle diameter of the second fine Cr particles 5c1 is equal to or less than that of the first fine Cr particles 5b1.

Cu65(wt%)−Cr35(wt%)合金で焼結体を製造し、基材層5aのみで求めた破壊電圧に対し、エネルギー照射を行い第1の微細層5bを設けたものでは、約30%の向上があった。これを真空バルブに組込み、50回の電流コンディショニング処理を行い第2の微細層5cを設けたものでは、更に約25%の向上が見られた。破壊電圧は、30回印加後の安定した値である。   In the case where a sintered body is manufactured with a Cu65 (wt%)-Cr35 (wt%) alloy, energy irradiation is performed on the breakdown voltage obtained only by the base material layer 5a, and the first fine layer 5b is provided. There was a 30% improvement. In the case where this was incorporated in a vacuum valve and subjected to the current conditioning process 50 times to provide the second fine layer 5c, an improvement of about 25% was observed. The breakdown voltage is a stable value after 30 times of application.

上記実施例の真空バルブによれば、接点5、6の製造時に接離面全域にエネルギー照射を行い、Cr粒子5a2を微細化し、真空バルブ組立後においても、電流コンディショニング処理を行い、Cr粒子5a2の微細化を確実なものにしているので、耐電圧特性を大幅に向上させることができる。   According to the vacuum valve of the above embodiment, energy is irradiated on the entire contact / separation surface during the manufacture of the contacts 5 and 6, the Cr particles 5a2 are made finer, and after the vacuum valve is assembled, the current conditioning process is performed to obtain the Cr particles 5a2. Therefore, the withstand voltage characteristics can be greatly improved.

上記実施例では、耐弧成分にCrを用いて説明したが、W、Nb、Ta、Ti、Moの炭化物のうち、少なくとも1種類以上を用いることができる。このため、耐弧成分をまとめると、第1の微細Cr粒子5b1を含めたエネルギー照射後の炭化物を第1の微細耐弧成分、第2の微細Cr粒子5c1を含めた電流コンディショニング処理後の炭化物を第2の微細耐弧成分と称することができる。また、補助成分として、Bi、Te、Se、Sb、Coのうち、少なくとも1種類以上を5(wt%)以下含有させることができる。更に、導電成分にCuを用いて説明したが、Agを用いることができる。   In the said Example, although demonstrated using Cr for an arc-proof component, at least 1 or more types can be used among the carbide | carbonized_materials of W, Nb, Ta, Ti, and Mo. For this reason, when the arc resistance component is summarized, the carbide after the energy irradiation including the first fine Cr particles 5b1 is the carbide after the current conditioning treatment including the first fine arc resistance component and the second fine Cr particles 5c1. Can be referred to as a second fine arc resistant component. Further, as an auxiliary component, at least one of Bi, Te, Se, Sb, and Co can be contained in an amount of 5 (wt%) or less. Furthermore, although Cu was used for the conductive component, Ag can be used.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1 真空絶縁容器
2 固定側封着金具
3 可動側封着金具
4 固定側通電軸
5 固定側接点
5a、6a 基材層
5a1 Cuマトリックス
5a2 Cr粒子
5b、6b 第1の微細層
5b1 第1の微細Cr粒子
5c、6c 第2の微細層
5c1 第2の微細Cr粒子
6 可動側接点
7 可動側通電軸
8 ベローズ
9 アークシールド
DESCRIPTION OF SYMBOLS 1 Vacuum insulating container 2 Fixed side sealing metal fitting 3 Movable side sealing metal fitting 4 Fixed side electricity supply axis | shaft 5 Fixed side contact 5a, 6a Base material layer 5a1 Cu matrix 5a2 Cr particle 5b, 6b 1st fine layer 5b1 1st fine layer Cr particle 5c, 6c Second fine layer 5c1 Second fine Cr particle 6 Movable side contact 7 Movable side energizing shaft 8 Bellows 9 Arc shield

Claims (1)

接離自在の一対の接点を有する真空バルブの製造方法であって、
前記接点を導電成分と耐弧成分とを所定量混合して製造し、
先ず、接触面全域にエネルギー照射を行って前記耐弧成分を微細化した第1の微細層を設け、
これを冷却後、真空バルブに組込み、
そして、前記第1の微細層の表面に電流コンディショニング処理を行い、
前記耐弧成分の粒径を前記第1の微細層のものと比べて同等以下とする第2の微細層をランダムに設けたことを特徴とする真空バルブの製造方法
A method for manufacturing a vacuum valve having a pair of contactable and separable contacts,
The contact is produced by mixing a predetermined amount of a conductive component and an arc resistant component,
First, a first fine layer in which the arc-resistant component is refined by performing energy irradiation over the entire contact surface is provided,
After cooling this, it is built into the vacuum valve,
Then, a current conditioning process is performed on the surface of the first fine layer,
A method of manufacturing a vacuum valve , wherein a second fine layer having a particle size of the arc-resistant component equal to or less than that of the first fine layer is randomly provided .
JP2011140867A 2011-06-24 2011-06-24 Manufacturing method of vacuum valve Active JP6018366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011140867A JP6018366B2 (en) 2011-06-24 2011-06-24 Manufacturing method of vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011140867A JP6018366B2 (en) 2011-06-24 2011-06-24 Manufacturing method of vacuum valve

Publications (2)

Publication Number Publication Date
JP2013008579A JP2013008579A (en) 2013-01-10
JP6018366B2 true JP6018366B2 (en) 2016-11-02

Family

ID=47675762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011140867A Active JP6018366B2 (en) 2011-06-24 2011-06-24 Manufacturing method of vacuum valve

Country Status (1)

Country Link
JP (1) JP6018366B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3028968B2 (en) * 1991-04-11 2000-04-04 株式会社東芝 Method of manufacturing contacts for vacuum valve
JPH0864054A (en) * 1994-08-19 1996-03-08 Toshiba Corp Contact material for vacuum valve
JPH08111131A (en) * 1994-10-06 1996-04-30 Toshiba Corp Manufacture of contact for vacuum circuit breaker
JP2004273342A (en) * 2003-03-11 2004-09-30 Toshiba Corp Contact material for vacuum valve, and vacuum valve
JP2010123347A (en) * 2008-11-18 2010-06-03 Toshiba Corp Vacuum valve and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013008579A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
WO2011162398A1 (en) Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker
TW200941530A (en) Electrical contact for vacuum valve
EP2226824A1 (en) Electrode contact member of vacuum circuit breaker and process for production of the same
JP2005197098A (en) Electric contact member and its manufacturing method as well as vacuum valve and vacuum interrupter using the same
CN110225803B (en) Method for producing electrode material and electrode material
JP6050994B2 (en) Electrical contacts, electrical contact manufacturing methods, electrodes, vacuum valves, vacuum switchgear
KR0185509B1 (en) Contact electrode for vacuum interrupter
JP6253494B2 (en) Contact material for vacuum valve and vacuum valve
JP2012004076A (en) Vacuum valve contact and manufacturing method thereof
JP6018366B2 (en) Manufacturing method of vacuum valve
US10058923B2 (en) Method for manufacturing electrode material and electrode material
JP2009129856A (en) Contact point material for vacuum valve, and manufacturing method thereof
JP5142559B2 (en) Contact material for vacuum valve and manufacturing method thereof
JP2003147407A (en) Electric contact, its manufacturing method, and vacuum valve and vacuum circuit breaker using the same
JP5614721B2 (en) Vacuum circuit breaker electrode
JP5506873B2 (en) Contact material and manufacturing method thereof
JP6669327B1 (en) Electrical contacts, vacuum valves with electrical contacts
JP5389622B2 (en) Manufacturing method of contact for vacuum valve
JP5997516B2 (en) Manufacturing method of vacuum valve and contact
JP2006032036A (en) Contact material for vacuum valve
WO2018061269A1 (en) Vacuum valve contact material, production method and vacuum valve
JP6055176B2 (en) Contact material for vacuum valve
JP6983370B1 (en) Manufacturing method of electrical contacts
JP7182946B2 (en) Contact material for vacuum valve, method for manufacturing contact material for vacuum valve, and vacuum valve
JP2009252550A (en) Contact material, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160401

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160422

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160930

R151 Written notification of patent or utility model registration

Ref document number: 6018366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151