JP6017779B2 - WING RUBBER COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND PNEUMATIC TIRE - Google Patents

WING RUBBER COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND PNEUMATIC TIRE Download PDF

Info

Publication number
JP6017779B2
JP6017779B2 JP2011266070A JP2011266070A JP6017779B2 JP 6017779 B2 JP6017779 B2 JP 6017779B2 JP 2011266070 A JP2011266070 A JP 2011266070A JP 2011266070 A JP2011266070 A JP 2011266070A JP 6017779 B2 JP6017779 B2 JP 6017779B2
Authority
JP
Japan
Prior art keywords
rubber
mass
natural rubber
content
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011266070A
Other languages
Japanese (ja)
Other versions
JP2013116994A (en
Inventor
大村 直也
直也 大村
市川 直哉
直哉 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2011266070A priority Critical patent/JP6017779B2/en
Publication of JP2013116994A publication Critical patent/JP2013116994A/en
Application granted granted Critical
Publication of JP6017779B2 publication Critical patent/JP6017779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、ウイング用ゴム組成物、その製造方法及びそれを用いた空気入りタイヤに関する。 The present invention relates to a rubber composition for wing, a production method thereof, and a pneumatic tire using the same.

従来から、タイヤの転がり抵抗を低減して発熱を抑えることにより、車両を低燃費化することが行われている。近年、タイヤの低燃費化への要請はますます強くなり、トレッドやサイドウォール以外のウイングなどの他の部材に対する低燃費化(低発熱化)も必要となっている。 Conventionally, the fuel consumption of a vehicle has been reduced by reducing tire rolling resistance and suppressing heat generation. In recent years, there has been an increasing demand for lower fuel consumption of tires, and it is also necessary to reduce fuel consumption (lower heat generation) for other members such as wings other than treads and sidewalls.

ゴム組成物の低発熱化を図る方法として、低補強性の充填剤を用いる方法、充填剤量を低減する方法などが知られている。しかし、これらの方法では、ゴム組成物の補強性が低下するため、破壊強度が低下してしまう。このように、低燃費性、破壊強度を同時に改善することは困難であった。 Known methods for reducing the heat generation of the rubber composition include a method using a low reinforcing filler and a method for reducing the amount of filler. However, in these methods, since the reinforcing property of the rubber composition is lowered, the breaking strength is lowered. Thus, it has been difficult to improve the fuel efficiency and the breaking strength at the same time.

一方、ウイングには、天然ゴムが広く使用されているが、天然ゴムは他の合成ゴムに比べてムーニー粘度が高く加工性が悪いため、通常しゃっ解剤を添加して素練りを行い、ムーニー粘度を低下させてから使用される。そのため、天然ゴムを使用する場合、生産性が低下する。また素練りにより天然ゴムの分子鎖が切断されるため、本来有する高分子量ポリマーの特性(低燃費性、破壊強度、耐屈曲亀裂成長性など)が失われるという問題もある。 On the other hand, natural rubber is widely used for wings, but natural rubber has a high Mooney viscosity and poor processability compared to other synthetic rubbers. Used after decreasing Mooney viscosity. Therefore, productivity is reduced when natural rubber is used. Further, since the molecular chain of natural rubber is cut by mastication, there is also a problem that the characteristics (low fuel consumption, fracture strength, resistance to flex crack growth, etc.) of the inherent high molecular weight polymer are lost.

特許文献1には、総窒素含有率が0.1重量%以下となるように脱蛋白処理された天然ゴムを用いることが提案されているが、加工性、低燃費性、破壊強度、耐屈曲亀裂成長性をバランスよく改善するという点について未だ改善の余地がある。 Patent Document 1 proposes the use of natural rubber deproteinized so that the total nitrogen content is 0.1% by weight or less. However, the processability, fuel efficiency, breaking strength, and bending resistance are proposed. There is still room for improvement in terms of improving crack growth in a well-balanced manner.

特開平6−329838号公報JP-A-6-329838

本発明は、前記課題を解決し、素練り工程を必要としないような優れた加工性を持ちながら、低燃費性、破壊強度、耐屈曲亀裂成長性を改善できるウイング用ゴム組成物、及び空気入りタイヤを提供することを目的とする。 The present invention provides a rubber composition for wings that can improve the fuel efficiency, fracture strength, flex crack growth resistance, and air, while solving the above-mentioned problems and having excellent processability that does not require a mastication step. An object is to provide a tire entering.

本発明は、リン含有量が200ppm以下の改質天然ゴムと、カーボンブラック及び/又は白色充填剤とを含み、ゴム成分100質量%中の上記改質天然ゴムの含有量が5質量%以上であるウイング用ゴム組成物に関する。 The present invention includes a modified natural rubber having a phosphorus content of 200 ppm or less and carbon black and / or a white filler, and the content of the modified natural rubber in 100% by mass of the rubber component is 5% by mass or more. The present invention relates to a rubber composition for a wing.

上記改質天然ゴムの窒素含有量が0.3質量%以下であり、トルエン不溶分として測定されるゲル含有率が20質量%以下であることが好ましい。
上記改質天然ゴムは、天然ゴムラテックスをケン化処理して得られたものであることが好ましい。
The nitrogen content of the modified natural rubber is preferably 0.3% by mass or less, and the gel content measured as a toluene insoluble content is preferably 20% by mass or less.
The modified natural rubber is preferably obtained by saponifying natural rubber latex.

上記改質天然ゴムは、天然ゴムラテックスをケン化処理し、ケン化天然ゴムラテックスを調製する工程(A)、上記ケン化天然ゴムラテックスを凝集させて得られた凝集ゴムをアルカリ処理する工程(B)、及びゴム中に含まれるリン含有量が200ppm以下になるまで洗浄する工程(C)を行って得られるものであることが好ましい。 The modified natural rubber is a step of saponifying natural rubber latex to prepare a saponified natural rubber latex (A), and a step of alkali-treating the agglomerated rubber obtained by agglomerating the saponified natural rubber latex ( B) and the step (C) of washing until the phosphorus content contained in the rubber is 200 ppm or less are preferred.

上記白色充填剤がシリカであることが好ましい。 The white filler is preferably silica.

本発明はまた、天然ゴムを素練りする工程を含まない上記ウイング用ゴム組成物の製造方法に関する。 The present invention also relates to a method for producing the above rubber composition for a wing that does not include a step of masticating natural rubber.

本発明はまた、前記ゴム組成物を用いて作製したウイングを有する空気入りタイヤに関する。 The present invention also relates to a pneumatic tire having wings produced using the rubber composition.

本発明によれば、所定量のリン含有量が200ppm以下の改質天然ゴムと、カーボンブラック及び/又は白色充填剤とを含むウイング用ゴム組成物であるので、素練り工程を必要としないような優れた加工性を持ちながら、低燃費性、破壊強度、耐屈曲亀裂成長性を改善できる。 According to the present invention, since it is a rubber composition for a wing containing a modified natural rubber having a predetermined phosphorus content of 200 ppm or less and carbon black and / or a white filler, no mastication step is required. With excellent processability, it can improve fuel economy, fracture strength, and flex crack growth resistance.

本発明のウイング用ゴム組成物は、リン含有量が200ppm以下の改質天然ゴムと、カーボンブラック及び/又は白色充填剤とを含む。 The rubber composition for a wing of the present invention contains a modified natural rubber having a phosphorus content of 200 ppm or less, and carbon black and / or a white filler.

天然ゴム中に含まれるリン脂質を低減、除去した改質天然ゴムを用いることで、低燃費性を改善できる。また、改質天然ゴムを配合した未加硫ゴム組成物は加工性に優れ、特段素練り工程を行わなくても充分な混練りが可能であるため、素練りに伴う天然ゴムの破壊強度、耐屈曲亀裂成長性などの低下も抑制でき、低燃費性、破壊強度、耐屈曲亀裂成長性などを効果的に高められる。また、リン脂質だけでなく、タンパク質やゲル分も低減することにより、これらの性能をより改善できる。
更に、改質天然ゴムは小石、木屑などのゴミ成分を含まず、該成分の除去工程が必要ないため、生産性にも優れる。
これらより、本発明では、素練り工程を必要としないような優れた加工性を持ちながら、低燃費性、破壊強度、耐屈曲亀裂成長性をバランスよく改善できる。
By using the modified natural rubber in which the phospholipids contained in the natural rubber are reduced and removed, the fuel efficiency can be improved. In addition, the unvulcanized rubber composition containing the modified natural rubber is excellent in processability and can be sufficiently kneaded without performing a special mastication step. A decrease in bending crack growth resistance and the like can be suppressed, and low fuel consumption, fracture strength, bending crack growth resistance, and the like can be effectively enhanced. In addition to reducing not only phospholipids but also proteins and gels, these performances can be further improved.
Furthermore, the modified natural rubber does not contain trash components such as pebbles and wood chips, and does not require a step for removing the components, so that it is excellent in productivity.
Accordingly, the present invention can improve fuel economy, fracture strength, and flex crack growth resistance in a balanced manner while having excellent processability that does not require a mastication step.

上記改質天然ゴムは、リン含有量が200ppm以下である。200ppmを超えると、tanδが上昇して低燃費性が悪化したり、未加硫ゴムのムーニー粘度が上昇して加工性が悪化する傾向がある。該リン含有量は、150ppm以下が好ましく、100ppm以下がより好ましく、75ppm以下が更に好ましい。ここで、リン含有量は、たとえばICP発光分析など、従来の方法で測定できる。リンは、リン脂質(リン化合物)に由来するものである。 The modified natural rubber has a phosphorus content of 200 ppm or less. If it exceeds 200 ppm, tan δ will increase and fuel efficiency will deteriorate, or the Mooney viscosity of unvulcanized rubber will increase and processability will tend to deteriorate. The phosphorus content is preferably 150 ppm or less, more preferably 100 ppm or less, and even more preferably 75 ppm or less. Here, the phosphorus content can be measured by a conventional method such as ICP emission analysis. Phosphorus is derived from phospholipids (phosphorus compounds).

改質天然ゴムにおいて、窒素含有量は0.3質量%以下が好ましく、0.15質量%以下がより好ましく、0.1質量%以下が更に好ましい。窒素含有量が0.3質量%を超えると、貯蔵中にムーニー粘度が上昇して加工性が悪化したり、低燃費性が悪化する傾向がある。窒素含有量は、例えばケルダール法など、従来の方法で測定できる。窒素は、蛋白質に由来するものである。 In the modified natural rubber, the nitrogen content is preferably 0.3% by mass or less, more preferably 0.15% by mass or less, and further preferably 0.1% by mass or less. When the nitrogen content exceeds 0.3% by mass, the Mooney viscosity increases during storage and the processability tends to deteriorate, or the fuel efficiency tends to deteriorate. The nitrogen content can be measured by a conventional method such as Kjeldahl method. Nitrogen is derived from protein.

改質天然ゴム中のゲル含有率は、20質量%以下が好ましく、10質量%以下がより好ましく、7質量%以下が更に好ましい。20質量%を超えると、加工性が悪化したり、低燃費性が悪化する傾向がある。ゲル含有率とは、非極性溶媒であるトルエンに対する不溶分として測定した値を意味し、以下においては単に「ゲル含有率」又は「ゲル分」と称することがある。ゲル分の含有率の測定方法は次のとおりである。まず、天然ゴム試料を脱水トルエンに浸し、暗所に遮光して1週間放置後、トルエン溶液を1.3×10rpmで30分間遠心分離して、不溶のゲル分とトルエン可溶分とを分離する。不溶のゲル分にメタノールを加えて固形化した後、乾燥し、ゲル分の質量と試料の元の質量との比からゲル含有率が求められる。 The gel content in the modified natural rubber is preferably 20% by mass or less, more preferably 10% by mass or less, and still more preferably 7% by mass or less. If it exceeds 20% by mass, the processability tends to deteriorate or the fuel efficiency tends to deteriorate. The gel content means a value measured as an insoluble content with respect to toluene which is a nonpolar solvent, and may be simply referred to as “gel content” or “gel content” below. The measuring method of the content rate of a gel part is as follows. First, a natural rubber sample is soaked in dehydrated toluene, light-shielded in the dark and left for 1 week, and then the toluene solution is centrifuged at 1.3 × 10 5 rpm for 30 minutes to obtain an insoluble gel content and a toluene soluble content. Isolate. Methanol is added to the insoluble gel and solidified, and then dried, and the gel content is determined from the ratio between the mass of the gel and the original mass of the sample.

改質天然ゴムは、実質的にリン脂質が存在しないことが好ましい。「実質的にリン脂質が存在しない」とは、天然ゴム試料をクロロホルムで抽出し、抽出物の31P−NMR測定において、−3ppm〜1ppmにリン脂質によるピークが存在しない状態を表す。−3ppm〜1ppmに存在するリンのピークとは、リン脂質におけるリンのリン酸エステル構造に由来するピークである。 The modified natural rubber is preferably substantially free of phospholipids. “Substantially free of phospholipid” represents a state in which a natural rubber sample is extracted with chloroform and a peak due to phospholipid does not exist at −3 ppm to 1 ppm in 31 P-NMR measurement of the extract. The peak of phosphorus present at -3 ppm to 1 ppm is a peak derived from the phosphate structure of phosphorus in the phospholipid.

改質天然ゴムは、例えば、特開2010−138359号公報に記載の製法などで得られるが、なかでも、天然ゴムラテックスをケン化処理し、ケン化天然ゴムラテックスを調製する工程(A)、該ケン化天然ゴムラテックスを凝集させて得られた凝集ゴムをアルカリ処理する工程(B)、及びゴム中に含まれるリン含有量が200ppm以下になるまで洗浄する工程(C)を含む製造方法で調製されるものが好ましい。該製法により、リン含有量、窒素含有量などを効果的に減量できる。また、該製法により得られる改質天然ゴムを使用することで、低燃費性、破壊強度、耐屈曲亀裂成長性を顕著に改善でき、これらの性能が高い次元で得られる。また、酸で凝集させた際、残存する酸をアルカリ処理で中和することで、酸によるゴムの劣化を防ぐことができる。 The modified natural rubber can be obtained, for example, by the production method described in JP 2010-138359 A. Among them, the process (A) of preparing a saponified natural rubber latex by saponifying the natural rubber latex, A production method comprising a step (B) of subjecting the agglomerated rubber obtained by agglomerating the saponified natural rubber latex to an alkali treatment and a step (C) of washing until the phosphorus content contained in the rubber is 200 ppm or less. What is prepared is preferred. By this manufacturing method, phosphorus content, nitrogen content, etc. can be reduced effectively. Further, by using the modified natural rubber obtained by the production method, fuel efficiency, fracture strength and flex crack growth resistance can be remarkably improved, and these performances can be obtained at a high level. Further, when the agglomeration with acid is performed, the remaining acid is neutralized with an alkali treatment, whereby deterioration of the rubber by the acid can be prevented.

上記製造方法において、ケン化処理は、天然ゴムラテックスに、アルカリと、必要に応じて界面活性剤を添加して所定温度で一定時間、静置することにより行うことができる。なお、必要に応じて撹拌などを行っても良い。上記製造方法によれば、天然ゴムのリン含有量、窒素含有量を抑えることができる。 In the production method described above, the saponification treatment can be performed by adding an alkali and, if necessary, a surfactant to natural rubber latex and allowing to stand at a predetermined temperature for a certain time. In addition, you may perform stirring etc. as needed. According to the above production method, the phosphorus content and nitrogen content of natural rubber can be suppressed.

天然ゴムラテックスとしては、生ラテックス、精製ラテックス、ハイアンモニアラテックスなどの従来公知のものを使用できる。ケン化処理に用いるアルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アミン化合物などが挙げられ、特に水酸化ナトリウム、水酸化カリウムが好ましい。界面活性剤としては、公知の陰イオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤が使用可能であり、なかでも、陰イオン性界面活性剤が好ましく、スルホン酸系の陰イオン性界面活性剤がより好ましい。 As the natural rubber latex, conventionally known latexes such as raw latex, purified latex, and high ammonia latex can be used. Examples of the alkali used for the saponification treatment include sodium hydroxide, potassium hydroxide, calcium hydroxide, and amine compounds, and sodium hydroxide and potassium hydroxide are particularly preferable. As the surfactant, known anionic surfactants, nonionic surfactants, and amphoteric surfactants can be used. Of these, anionic surfactants are preferred, and sulfonic acid anions are preferred. A surfactant is more preferable.

ケン化処理において、アルカリの添加量は適宜設定すればよいが、天然ゴムラテックスの固形分100質量部に対して、好ましくは0.1〜10質量部である。また、界面活性剤の添加量は、天然ゴムラテックスの固形分100質量部に対して、好ましくは0.01〜6.0質量部である。なお、ケン化処理の温度及び時間も適宜設定すればよく、通常は20〜70℃で1〜72時間程度である。 In the saponification treatment, the amount of alkali added may be set as appropriate, but is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the solid content of the natural rubber latex. The addition amount of the surfactant is preferably 0.01 to 6.0 parts by mass with respect to 100 parts by mass of the solid content of the natural rubber latex. The temperature and time of the saponification treatment may be set as appropriate, and is usually about 20 to 70 ° C. and about 1 to 72 hours.

ケン化反応終了後、反応により得られたケン化天然ゴムラテックスを凝集させて得られた凝集ゴムを、必要に応じて破砕し、次いで、得られた凝集ゴムや破砕ゴムとアルカリを接触させてアルカリ処理を行う。アルカリ処理により、ゴム中の窒素含有量などを効率的に低減でき、本発明の効果が一層発揮される。凝集方法としては、例えば、ギ酸などの酸を添加する方法が挙げられる。アルカリ処理方法としては、ゴムとアルカリを接触させる方法であれば特に限定されず、例えば、凝集ゴムや破砕ゴムをアルカリに浸漬する方法などが挙げられる。アルカリ処理に使用できるアルカリとしては、例えば、上記ケン化処理におけるアルカリの他に、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸リチウム、炭酸水素リチウムなどのアルカリ金属炭酸塩や、アンモニア水などが挙げられる。なかでも、本発明の効果に優れるという点から、アルカリ金属炭酸塩が好ましく、炭酸ナトリウム、炭酸カリウムが好ましい。 After completion of the saponification reaction, the agglomerated rubber obtained by agglomerating the saponified natural rubber latex obtained by the reaction is crushed as necessary, and then the obtained agglomerated rubber or crushed rubber is contacted with an alkali. Perform alkali treatment. By the alkali treatment, the nitrogen content in the rubber can be efficiently reduced, and the effects of the present invention are further exhibited. Examples of the aggregation method include a method of adding an acid such as formic acid. The alkali treatment method is not particularly limited as long as it is a method in which rubber and alkali are brought into contact with each other, and examples thereof include a method in which agglomerated rubber and crushed rubber are immersed in alkali. Examples of the alkali that can be used for the alkali treatment include alkali metal carbonates such as potassium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium carbonate, lithium hydrogen carbonate, and ammonia in addition to the alkali in the saponification treatment described above. Water etc. are mentioned. Of these, alkali metal carbonates are preferable and sodium carbonate and potassium carbonate are preferable from the viewpoint of excellent effects of the present invention.

上記浸漬にてアルカリ処理する場合、好ましくは0.1〜5質量%、より好ましくは0.2〜3質量%の濃度のアルカリ水溶液にゴム(破砕ゴム)を浸漬することにより、処理できる。これにより、ゴム中の窒素量などを一層低減できる。 When the alkali treatment is performed by the above immersion, the treatment can be performed by immersing rubber (crushed rubber) in an alkaline aqueous solution having a concentration of preferably 0.1 to 5 mass%, more preferably 0.2 to 3 mass%. Thereby, the amount of nitrogen in the rubber can be further reduced.

上記浸漬によりアルカリ処理する場合、アルカリ処理の温度は、適宜設定できるが、通常は20〜70℃が好ましい。また、アルカリ処理の時間は、処理温度にもよるが、十分な処理と生産性を併せ考慮すると1〜20時間が好ましく、2〜12時間がより好ましい。 When the alkali treatment is performed by the immersion, the temperature of the alkali treatment can be set as appropriate, but is usually preferably 20 to 70 ° C. The alkali treatment time depends on the treatment temperature, but is preferably 1 to 20 hours, more preferably 2 to 12 hours, considering sufficient treatment and productivity.

アルカリ処理後、洗浄処理を行うことにより、リン含有量を低減できる。洗浄処理としては、例えば、ゴム分を水で希釈して洗浄後、遠心分離処理する方法、静置してゴムを浮かせ、水相のみを排出して、ゴム分を取り出す方法が挙げられる。遠心分離する際は、まず天然ゴムラテックスのゴム分が5〜40質量%、好ましくは10〜30質量%となるように水で希釈する。次いで、5000〜10000rpmで1〜60分間遠心分離すればよく、所望のリン含有量になるまで洗浄を繰り返せばよい。また、静置してゴムを浮かせる場合も水の添加、撹拌を繰り返して、所望のリン含有量になるまで洗浄すればよい。洗浄処理終了後、乾燥することにより、本発明における改質天然ゴムが得られる。 Phosphorus content can be reduced by performing a washing treatment after the alkali treatment. Examples of the washing treatment include a method of diluting a rubber component with water and washing, followed by a centrifugal separation treatment, and a method of leaving the rubber to stand and discharging the aqueous phase and taking out the rubber component. When centrifuging, it is first diluted with water so that the rubber content of the natural rubber latex is 5 to 40% by mass, preferably 10 to 30% by mass. Then, it may be centrifuged at 5000 to 10000 rpm for 1 to 60 minutes, and washing may be repeated until a desired phosphorus content is obtained. In addition, when the rubber is allowed to stand still, the addition of water and stirring may be repeated until the desired phosphorus content is obtained. The modified natural rubber in the present invention is obtained by drying after completion of the washing treatment.

本発明のゴム組成物に含まれるゴム成分100質量%中の改質天然ゴムの含有量は、5質量%以上、好ましくは20質量%以上、より好ましくは35質量%以上である。5質量%未満では、低燃費性、破壊強度、耐屈曲亀裂成長性を充分に改善できないおそれがある。該含有量の上限は、100質量%であってもよいが、好ましくは90質量%以下、より好ましくは75質量%以下である。90質量%を超えると、充分な破壊強度、耐屈曲亀裂成長性が得られないおそれがある。 The content of the modified natural rubber in 100% by mass of the rubber component contained in the rubber composition of the present invention is 5% by mass or more, preferably 20% by mass or more, more preferably 35% by mass or more. If it is less than 5% by mass, fuel economy, fracture strength, and flex crack growth resistance may not be sufficiently improved. The upper limit of the content may be 100% by mass, preferably 90% by mass or less, more preferably 75% by mass or less. If it exceeds 90% by mass, sufficient fracture strength and resistance to flex crack growth may not be obtained.

改質天然ゴム以外に、本発明に使用できるゴム成分としては、例えば、天然ゴム(NR)(非改質)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)などのジエン系ゴムが挙げられる。なかでも、破壊強度、耐屈曲亀裂成長性が良好に得られるという理由から、BRが好ましい。 In addition to the modified natural rubber, examples of rubber components that can be used in the present invention include natural rubber (NR) (non-modified), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), and styrene. Examples include diene rubbers such as isoprene butadiene rubber (SIBR), ethylene propylene diene rubber (EPDM), chloroprene rubber (CR), and acrylonitrile butadiene rubber (NBR). Among these, BR is preferable because the fracture strength and the resistance to bending crack growth can be obtained satisfactorily.

BRとしては特に限定されず、例えば、高シス含有量のBR、シンジオタクチックポリブタジエン結晶を含有するBR等を使用できる。なかでも、シス含有量が95質量%以上のBRが好ましい。 The BR is not particularly limited, and for example, BR having a high cis content, BR containing a syndiotactic polybutadiene crystal, and the like can be used. Among these, BR having a cis content of 95% by mass or more is preferable.

ゴム成分100質量%中のBRの含有量は、好ましくは10質量%以上、より好ましくは25質量%以上である。10質量%未満であると、充分な破壊強度、耐屈曲亀裂成長性が得られないおそれがある。該含有量は、好ましくは95質量%以下、より好ましくは80質量%以下、更に好ましくは65質量%以下である。95質量%を超えると、低燃費性、破壊強度、耐屈曲亀裂成長性を充分に改善できないおそれがある。 The content of BR in 100% by mass of the rubber component is preferably 10% by mass or more, more preferably 25% by mass or more. If it is less than 10% by mass, sufficient fracture strength and bending crack growth resistance may not be obtained. The content is preferably 95% by mass or less, more preferably 80% by mass or less, and still more preferably 65% by mass or less. If it exceeds 95% by mass, fuel economy, fracture strength, and flex crack growth resistance may not be sufficiently improved.

ゴム成分100質量%中の改質天然ゴム及びBRの合計含有量は、好ましくは80質量%以上、より好ましくは100質量%である。該合計含有量が上記範囲内であると、優れた加工性、低燃費性、破壊強度、耐屈曲亀裂成長性が得られる。 The total content of the modified natural rubber and BR in 100% by mass of the rubber component is preferably 80% by mass or more, more preferably 100% by mass. When the total content is within the above range, excellent processability, low fuel consumption, fracture strength, and flex crack growth resistance can be obtained.

カーボンブラックとしては、GPF、FEF、HAF、ISAF、SAFなどが挙げられるが、特に限定されない。カーボンブラックを配合することにより、補強効果が得られるとともに、本発明の効果が良好に得られる。 Examples of carbon black include GPF, FEF, HAF, ISAF, and SAF, but are not particularly limited. By blending carbon black, a reinforcing effect can be obtained and the effects of the present invention can be obtained well.

カーボンブラックの窒素吸着比表面積(NSA)は20m/g以上が好ましく、30m/g以上がより好ましい。20m/g未満では、充分な補強性が得られず、充分な破壊強度、耐屈曲亀裂成長性が得られないおそれがある。該NSAは、80m/g以下が好ましく、55m/g以下がより好ましい。80m/gを超えると、分散させるのが困難となり、低燃費性が悪化する傾向がある。
なお、カーボンブラックのNSAは、JIS K 6217−2:2001によって求められる。
The nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 20 m 2 / g or more, and more preferably 30 m 2 / g or more. If it is less than 20 m 2 / g, sufficient reinforcing properties cannot be obtained, and sufficient fracture strength and resistance to flex crack growth may not be obtained. The N 2 SA is preferably from 80 m 2 / g or less, more preferably 55m 2 / g. If it exceeds 80 m 2 / g, it becomes difficult to disperse and the fuel efficiency tends to deteriorate.
Incidentally, N 2 SA of carbon black, JIS K 6217-2: determined by 2001.

カーボンブラックのジブチルフタレート吸油量(DBP)は、50ml/100g以上が好ましく、75ml/100g以上がより好ましく、100ml/100g以上が更に好ましい。また、該吸油量は、150ml/100g以下が好ましく、140ml/100g以下がより好ましく、125ml/100g以下が更に好ましい。上記範囲内であると、優れた破壊強度、耐屈曲亀裂成長性が得られ、本発明の効果が良好に得られる。
なお、カーボンブラックのDBPは、JIS K6217−4:2001に準拠して測定される。
Carbon black has a dibutyl phthalate oil absorption (DBP) of preferably 50 ml / 100 g or more, more preferably 75 ml / 100 g or more, and still more preferably 100 ml / 100 g or more. The oil absorption is preferably 150 ml / 100 g or less, more preferably 140 ml / 100 g or less, and still more preferably 125 ml / 100 g or less. Within the above range, excellent fracture strength and flex crack growth resistance can be obtained, and the effects of the present invention can be obtained satisfactorily.
The DBP of carbon black is measured according to JIS K6217-4: 2001.

カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは30質量部以上である。5質量部未満では、充分な補強性が得られず、充分な破壊強度、耐屈曲亀裂成長性が得られないおそれがある。該含有量は、好ましくは90質量部以下、より好ましくは70質量部以下、更に好ましくは60質量部以下である。90質量部を超えると、低燃費性が悪化する傾向がある。 The content of carbon black is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and further preferably 30 parts by mass or more with respect to 100 parts by mass of the rubber component. If it is less than 5 parts by mass, sufficient reinforcing properties cannot be obtained, and sufficient fracture strength and resistance to flex crack growth may not be obtained. The content is preferably 90 parts by mass or less, more preferably 70 parts by mass or less, and still more preferably 60 parts by mass or less. If it exceeds 90 parts by mass, the fuel efficiency tends to deteriorate.

白色充填剤としては、ゴム工業で一般的に使用されているもの、たとえば、シリカ、炭酸カルシウム、セリサイトなどの雲母、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウム、クレー、タルク、アルミナ、酸化チタンなどを使用することができる。なかでも、低燃費性、破壊強度、耐屈曲亀裂成長性の点から、シリカが好ましい。 As white filler, those commonly used in the rubber industry, for example, mica such as silica, calcium carbonate, sericite, aluminum hydroxide, magnesium oxide, magnesium hydroxide, clay, talc, alumina, titanium oxide Etc. can be used. Of these, silica is preferable from the viewpoints of low fuel consumption, fracture strength, and resistance to flex crack growth.

シリカとしては特に限定されず、例えば、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などを用いることができる。シラノール基が多いという理由から、湿式法シリカ(含水シリカ)が好ましい。 The silica is not particularly limited, and for example, dry method silica (anhydrous silica), wet method silica (hydrous silica), and the like can be used. Wet silica (hydrous silica) is preferred because of the large number of silanol groups.

シリカの窒素吸着比表面積(NSA)は90m/g以上が好ましく、150m/g以上がより好ましい。90m/g未満では、充分な補強性が得られず、充分な破壊強度、耐屈曲亀裂成長性が得られないおそれがある。また、該NSAは、250m/g以下が好ましく、220m/g以下がより好ましく、200m/g以下が更に好ましい。250m/gを超えると、シリカの分散性が低下し、加工性が悪化する傾向にある。
なお、シリカの窒素吸着比表面積は、ASTM D3037−81に準じてBET法で測定される値である。
The nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 90 m 2 / g or more, and more preferably 150 m 2 / g or more. If it is less than 90 m 2 / g, sufficient reinforcing properties cannot be obtained, and sufficient fracture strength and resistance to flex crack growth may not be obtained. Further, the N 2 SA is preferably 250 meters 2 / g or less, more preferably 220 m 2 / g or less, 200 meters 2 / g or less is more preferable. When it exceeds 250 m < 2 > / g, the dispersibility of a silica will fall and there exists a tendency for workability to deteriorate.
The nitrogen adsorption specific surface area of silica is a value measured by the BET method according to ASTM D3037-81.

白色充填剤(好ましくはシリカ)の含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは20質量部以上である。該含有量は、好ましくは100質量部以下、より好ましくは40質量部以下である。該含有量が上記範囲内であると、良好な加工性、低燃費性、破壊強度、耐屈曲亀裂成長性が得られる。 The content of the white filler (preferably silica) is preferably 5 parts by mass or more, more preferably 20 parts by mass or more with respect to 100 parts by mass of the rubber component. The content is preferably 100 parts by mass or less, more preferably 40 parts by mass or less. When the content is within the above range, good processability, low fuel consumption, fracture strength, and flex crack growth resistance can be obtained.

本発明では、白色充填剤としてシリカを使用する場合、シランカップリング剤を使用することが好ましい。シランカップリング剤としては、例えば、スルフィド系、メルカプト系、ビニル系、アミノ系、グリシドキシ系、ニトロ系、クロロ系シランカップリング剤などが挙げられる。なかでも、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(2−トリエトキシシリルエチル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(2−トリエトキシシリルエチル)ジスルフィドなどのスルフィド系が好ましく、ビス(3−トリエトキシシリルプロピル)テトラスルフィドが特に好ましい。 In the present invention, when silica is used as the white filler, it is preferable to use a silane coupling agent. Examples of the silane coupling agent include sulfide, mercapto, vinyl, amino, glycidoxy, nitro, and chloro silane coupling agents. Among them, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) disulfide, etc. Sulfide systems are preferred, and bis (3-triethoxysilylpropyl) tetrasulfide is particularly preferred.

シランカップリング剤を含有する場合、シランカップリング剤の含有量は、シリカ100質量部に対して2質量部以上が好ましく、6質量部以上がより好ましく、10質量部以上が更に好ましく、また、25質量部以下が好ましく、20質量部以下がより好ましい。該含有量が上記範囲内であると、良好な加工性、低燃費性、破壊強度、耐屈曲亀裂成長性が得られる。 When the silane coupling agent is contained, the content of the silane coupling agent is preferably 2 parts by mass or more, more preferably 6 parts by mass or more, still more preferably 10 parts by mass or more, based on 100 parts by mass of silica. 25 parts by mass or less is preferable, and 20 parts by mass or less is more preferable. When the content is within the above range, good processability, low fuel consumption, fracture strength, and flex crack growth resistance can be obtained.

カーボンブラック及び白色充填剤の合計含有量は、ゴム成分100質量部に対して、好ましくは30質量部以上、より好ましくは40質量部以上、更に好ましくは45質量部以上である。また、該合計含有量は、好ましくは120質量部以下、より好ましくは100質量部以下、更に好ましくは60質量部以下である。該合計含有量が上記範囲内であると、良好な加工性、低燃費性、破壊強度、耐屈曲亀裂成長性が得られる。 The total content of carbon black and white filler is preferably 30 parts by mass or more, more preferably 40 parts by mass or more, and still more preferably 45 parts by mass or more with respect to 100 parts by mass of the rubber component. The total content is preferably 120 parts by mass or less, more preferably 100 parts by mass or less, and still more preferably 60 parts by mass or less. When the total content is within the above range, good processability, low fuel consumption, fracture strength, and flex crack growth resistance can be obtained.

本発明のゴム組成物は、レジンを含むことが好ましい。これにより、補強性が発揮され、優れた破壊強度、耐屈曲亀裂成長性が得られる。レジンとしては、フェノールホルムアルデヒド樹脂、アルキルフェノールホルムアルデヒド樹脂、フェノールフルフラール樹脂などのフェノール系樹脂などが挙げられる。なかでも、充分な分散性が得られ、優れた破壊強度、耐屈曲亀裂成長性が得られるという理由から、アルキルフェノールホルムアルデヒド樹脂が好ましい。 The rubber composition of the present invention preferably contains a resin. Thereby, reinforcement is exhibited and excellent fracture strength and resistance to flex crack growth are obtained. Examples of the resin include phenolic resins such as phenol formaldehyde resin, alkylphenol formaldehyde resin, and phenol furfural resin. Among these, alkylphenol formaldehyde resins are preferred because sufficient dispersibility is obtained and excellent fracture strength and flex crack growth resistance are obtained.

レジンの含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.3質量部以上である。該含有量は、好ましくは2質量部以下、より好ましくは1質量部以下である。下限未満では、補強効果や分散効果が充分に得られない傾向があり、上限を超えると低燃費性が低下する傾向がある。 The content of the resin is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more with respect to 100 parts by mass of the rubber component. The content is preferably 2 parts by mass or less, more preferably 1 part by mass or less. If it is less than the lower limit, the reinforcing effect and the dispersion effect tend not to be sufficiently obtained, and if it exceeds the upper limit, the fuel efficiency tends to be lowered.

本発明では、硫黄を使用することが好ましい。硫黄の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは1.3質量部以上である。該含有量は、好ましくは5質量部以下、より好ましくは3質量部以下、更に好ましくは2質量部以下である。該含有量が上記範囲内であると、良好な加工性、低燃費性、破壊強度、耐屈曲亀裂成長性が得られる。 In the present invention, it is preferable to use sulfur. The sulfur content is preferably 1 part by mass or more and more preferably 1.3 parts by mass or more with respect to 100 parts by mass of the rubber component. The content is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and still more preferably 2 parts by mass or less. When the content is within the above range, good processability, low fuel consumption, fracture strength, and flex crack growth resistance can be obtained.

本発明では、老化防止剤として、破壊強度に優れる点から、アミン系老化防止剤が好適に使用される。アミン系老化防止剤としては、例えば、ジフェニルアミン系、p−フェニレンジアミン系などのアミン誘導体が挙げられる。ジフェニルアミン系誘導体としては、例えば、p−(p−トルエンスルホニルアミド)−ジフェニルアミン、オクチル化ジフェニルアミンなどが挙げられる。p−フェニレンジアミン系誘導体としては、例えば、N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン(6PPD)、N−フェニル−N’−イソプロピル−p−フェニレンジアミン(IPPD)、N,N’−ジ−2−ナフチル−p−フェニレンジアミンなどが挙げられる。 In the present invention, an amine anti-aging agent is preferably used as the anti-aging agent from the viewpoint of excellent breaking strength. Examples of amine-based antioxidants include diphenylamine-based and p-phenylenediamine-based amine derivatives. Examples of the diphenylamine derivative include p- (p-toluenesulfonylamide) -diphenylamine, octylated diphenylamine, and the like. Examples of p-phenylenediamine derivatives include N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine (6PPD), N-phenyl-N′-isopropyl-p-phenylenediamine (IPPD). ), N, N′-di-2-naphthyl-p-phenylenediamine, and the like.

老化防止剤の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上、更に好ましくは2質量部以上であり、好ましくは6質量部以下、より好ましくは4質量部以下である。該含有量が上記範囲内であると、破壊強度が良好に得られる。 The content of the anti-aging agent is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, still more preferably 2 parts by mass or more, and preferably 6 parts by mass or less with respect to 100 parts by mass of the rubber component. More preferably, it is 4 parts by mass or less. When the content is within the above range, the fracture strength can be satisfactorily obtained.

本発明のゴム組成物は、オイルを含むことが好ましい。これにより、カーボンブラックや白色充填剤を充分に分散でき、良好な加工性、低燃費性、破壊強度、耐屈曲亀裂成長性が得られる。オイルとしては、例えば、プロセスオイル(アロマオイル、ミネラルオイルなど)、植物油脂、又はその混合物などを用いることができる。 The rubber composition of the present invention preferably contains oil. Thereby, carbon black and white filler can be sufficiently dispersed, and good processability, low fuel consumption, breaking strength, and flex crack growth resistance can be obtained. As the oil, for example, process oil (aroma oil, mineral oil, etc.), vegetable oil, or a mixture thereof can be used.

オイルの含有量は、ゴム成分100質量部に対して、好ましくは4質量部以上、より好ましくは7質量部以上である。該含有量は、好ましくは15質量部以下、より好ましくは10質量部以下である。下限未満ではカーボンブラックや白色充填剤の分散性改善効果を充分に得られない傾向があり、上限を超えると低燃費性が低下する傾向がある。 The oil content is preferably 4 parts by mass or more, more preferably 7 parts by mass or more with respect to 100 parts by mass of the rubber component. The content is preferably 15 parts by mass or less, more preferably 10 parts by mass or less. If it is less than the lower limit, the effect of improving the dispersibility of carbon black or white filler tends to be insufficient, and if it exceeds the upper limit, fuel economy tends to be lowered.

本発明のゴム組成物には、前記成分以外にも、ゴム組成物の製造に一般に使用される配合剤、例えば、オイル、ステアリン酸、酸化亜鉛、加硫促進剤などを適宜配合できる。 In addition to the above-mentioned components, the rubber composition of the present invention can be appropriately mixed with compounding agents generally used in the production of rubber compositions such as oil, stearic acid, zinc oxide, vulcanization accelerators and the like.

本発明のゴム組成物は、一般的な方法で製造できる。すなわち、バンバリーミキサーやニーダー、オープンロールなどで前記各成分を混練りし、その後加硫する方法などにより製造できる。ここで、天然ゴムを含むゴム組成物を製造する場合、ゴム成分、充填剤などの各成分の混練り工程前に、通常、天然ゴムの素練り工程が行われる。本発明では、改質天然ゴムが使用されているため、該素練り工程を行わなくても良好に混練り工程を実施でき、所望のゴム組成物を作製できる。 The rubber composition of the present invention can be produced by a general method. That is, it can be produced by a method of kneading the above components with a Banbury mixer, kneader, open roll or the like and then vulcanizing. Here, when producing a rubber composition containing natural rubber, a natural rubber mastication step is usually performed before a kneading step of each component such as a rubber component and a filler. In the present invention, since the modified natural rubber is used, the kneading step can be carried out satisfactorily without performing the kneading step, and a desired rubber composition can be produced.

本発明のゴム組成物は、タイヤのウイングに使用される。ウイングとは、トレッドゴムの両側に配される部材であり、具体的には、特開平9−277801号公報の図1〜2、特開平9−164810号公報の図1〜2、特開平11−170814号公報の図1、特開平11−301209号公報の図1〜3及び図5〜8などに示される部材である。 The rubber composition of the present invention is used for tire wings. Wings are members disposed on both sides of the tread rubber. Specifically, FIGS. 1-2 of JP-A-9-277801, FIGS. 1-2 of JP-A-9-164810, JP-A-11 This is a member shown in FIG. 1 of Japanese Patent No. -170814, FIGS. 1 to 3 and FIGS. 5 to 8 of Japanese Patent Laid-Open No. 11-301209.

本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造できる。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤのウイングの形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造できる。 The pneumatic tire of the present invention can be produced by a usual method using the rubber composition. That is, a rubber composition containing various additives as necessary is extruded in accordance with the shape of the wing of the tire at an unvulcanized stage, molded by a normal method on a tire molding machine, etc. After being bonded together with the tire member to form an unvulcanized tire, the tire can be manufactured by heating and pressing in a vulcanizer.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

以下、製造例で使用した各種薬品について、まとめて説明する。なお、薬品は必要に応じて定法に従い精製を行った。
天然ゴムラテックス:Muhibbah Lateks社から入手したフィールドラテックス
界面活性剤:花王(株)製のEmal−E27C(ポリオキシエチレンラウリルエーテル硫酸ナトリウム)
NaOH:和光純薬工業(株)製のNaOH
Hereinafter, various chemicals used in the production examples will be described together. In addition, the chemical | medical agent refine | purified according to the usual method as needed.
Natural rubber latex: Field latex surfactant obtained from Muhibah Lateks, Inc .: Emal-E27C (polyoxyethylene lauryl ether sodium sulfate) manufactured by Kao Corporation
NaOH: NaOH manufactured by Wako Pure Chemical Industries, Ltd.

(ケン化天然ゴムの作製)
製造例1
天然ゴムラテックスの固形分濃度(DRC)を30%(w/v)に調整した後、天然ゴムラテックス1000g(wet状態)に対し、10%Emal−E27C水溶液25gと40%NaOH水溶液50gを加え、室温で48時間ケン化反応を行い、ケン化天然ゴムラテックスを得た。このラテックスに水を添加してDRC15%(w/v)となるまで希釈した後、ゆっくり撹拌しながらギ酸を添加しpHを4.0に調整し、凝集させた。
凝集したゴムを粉砕し、それを1%炭酸ナトリウム水溶液に室温で5時間浸漬した後に引き上げ、水1000mlで洗浄を繰り返し、その後90℃で4時間乾燥して固形ゴム(ケン化天然ゴムA)を得た。
(Production of saponified natural rubber)
Production Example 1
After adjusting solid content concentration (DRC) of natural rubber latex to 30% (w / v), 25 g of 10% Emal-E27C aqueous solution and 50 g of 40% NaOH aqueous solution are added to 1000 g of natural rubber latex (wet state), A saponification reaction was carried out at room temperature for 48 hours to obtain a saponified natural rubber latex. Water was added to the latex to dilute to DRC 15% (w / v), and then formic acid was added with slow stirring to adjust the pH to 4.0 for aggregation.
The agglomerated rubber is pulverized, dipped in a 1% aqueous sodium carbonate solution at room temperature for 5 hours, pulled up, washed repeatedly with 1000 ml of water, and then dried at 90 ° C. for 4 hours to obtain a solid rubber (saponified natural rubber A). Obtained.

製造例2
40%NaOH水溶液の添加量を25gに変更した以外は製造例1と同様に、固形ゴム(ケン化天然ゴムB)を得た。
Production Example 2
A solid rubber (saponified natural rubber B) was obtained in the same manner as in Production Example 1 except that the amount of the 40% NaOH aqueous solution was changed to 25 g.

製造例1〜2により得られた固形ゴム(ケン化天然ゴムA、B)及びTSRについて以下に示す方法により、窒素含有量、リン含有量、ゲル含有率を測定した。結果を表1に示す。 The solid content (saponified natural rubber A, B) and TSR obtained in Production Examples 1 and 2 were measured for nitrogen content, phosphorus content, and gel content by the methods described below. The results are shown in Table 1.

(窒素含有量の測定)
窒素含有量は、CHN CORDER MT−5(ヤナコ分析工業社製)を用いて測定した。測定には、まずアンチピリンを標準物質として、窒素含有量を求めるための検量線を作製した。次いで、試料約10mgを秤量し、3回の測定結果から平均値を求めて、試料の窒素含有量とした。
(Measurement of nitrogen content)
The nitrogen content was measured using CHN CORDER MT-5 (manufactured by Yanaco Analytical Industries). For the measurement, first, a calibration curve for determining the nitrogen content was prepared using antipyrine as a standard substance. Next, about 10 mg of the sample was weighed, and an average value was obtained from the measurement results of three times to obtain the nitrogen content of the sample.

(リン含有量の測定)
ICP発光分析装置(ICPS−8100、(株)島津製作所製)を使用して、試料のリン含有量を求めた。
また、リンの31P−NMR測定は、NMR分析装置(400MHz、AV400M、日本ブルカー社製)を使用し、80%リン酸水溶液のP原子の測定ピークを基準点(0ppm)として、クロロホルムにより生ゴムより抽出した成分を精製し、CDClに溶解して測定した。
(Measurement of phosphorus content)
The phosphorus content of the sample was determined using an ICP emission spectrometer (ICPS-8100, manufactured by Shimadzu Corporation).
In addition, 31 P-NMR measurement of phosphorus uses an NMR analyzer (400 MHz, AV400M, manufactured by Nippon Bruker Co., Ltd.), and uses a measurement peak of P atom in an 80% aqueous phosphoric acid solution as a reference point (0 ppm), and raw rubber with chloroform. More extracted components were purified, dissolved in CDCl 3 and measured.

(ゲル含有率の測定)
1mm×1mmに切断した生ゴムのサンプル70.00mgを計り取り、これに35mLのトルエンを加え1週間冷暗所に静置した。次いで、遠心分離に付してトルエンに不溶のゲル分を沈殿させ上澄みの可溶分を除去し、ゲル分のみをメタノールで固めた後、乾燥し質量を測定した。次の式によりゲル含有率(質量%)を求めた。
ゲル含有率(質量%)=[乾燥後の質量mg/最初のサンプル質量mg]×100
(Measurement of gel content)
A raw rubber sample 70.00 mg cut to 1 mm × 1 mm was weighed, 35 mL of toluene was added thereto, and the mixture was allowed to stand in a cool dark place for 1 week. Subsequently, centrifugation was performed to precipitate a gel component insoluble in toluene, the soluble component of the supernatant was removed, and only the gel component was solidified with methanol, and then dried and the mass was measured. The gel content (mass%) was determined by the following formula.
Gel content (mass%) = [mass mg after drying / mg of initial sample] × 100

Figure 0006017779
Figure 0006017779

表1に示すように、ケン化天然ゴムA、Bは、TSRに比べて、窒素含有量、リン含有量、ゲル含有率が低減していた。
また、31P−NMR測定において、ケン化天然ゴムA、Bは、−3ppm〜1ppmにリン脂質によるピークが存在しなかった。
As shown in Table 1, the saponified natural rubbers A and B had a reduced nitrogen content, phosphorus content, and gel content as compared with TSR.
In 31 P-NMR measurement, the saponified natural rubbers A and B did not have a peak due to phospholipid at -3 ppm to 1 ppm.

以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
NR:TSR20
ケン化天然ゴムA:製造例1
ケン化天然ゴムB:製造例2
BR:宇部興産(株)製のウベポールBR130B(シス含有量:96質量%)
カーボンブラック:東海カーボン(株)の製FEF(N550)(NSA:42m/g、DBP:115ml/100g)
シリカ:エボニックデグッサ社製UltrasilVN3(NSA:175m/g)
シランカップリング剤:エボニックデグッサ社製Si69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
オイル:出光興産(株)製のダイアナプロセスオイルPS323
レジン:Schenectady International社製のSP−1068レジン(アルキルフェノールホルムアルデヒド樹脂)
ワックス:大内新興化学工業(株)製のサンノックワックス
ステアリン酸:日油(株)製の桐
酸化亜鉛:三井金属鉱業(株)製
老化防止剤:フレキシス社製のSANTOFLEX 6PPD(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン)
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーNS(N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド)
Hereinafter, various chemicals used in Examples and Comparative Examples will be described together.
NR: TSR20
Saponified natural rubber A: Production Example 1
Saponified natural rubber B: Production Example 2
BR: Ubepol BR130B manufactured by Ube Industries, Ltd. (cis content: 96% by mass)
Carbon black: FEF (N550) manufactured by Tokai Carbon Co., Ltd. (N 2 SA: 42 m 2 / g, DBP: 115 ml / 100 g)
Silica: Ultrasil VN3 (N 2 SA: 175 m 2 / g) manufactured by Evonik Degussa
Silane coupling agent: Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by Evonik Degussa
Oil: Diana Process Oil PS323 manufactured by Idemitsu Kosan Co., Ltd.
Resin: SP-1068 resin (alkylphenol formaldehyde resin) manufactured by Scientaddy International
Wax: Sannox wax manufactured by Ouchi Shinsei Chemical Co., Ltd. Stearic acid: Tungsten zinc oxide manufactured by NOF Corporation: Anti-aging agent manufactured by Mitsui Kinzoku Mining Co., Ltd .: SANTOFLEX 6PPD manufactured by Flexis (N- ( 1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine)
Sulfur: Powdered sulfur vulcanization accelerator manufactured by Tsurumi Chemical Industry Co., Ltd .: Noxeller NS (N-tert-butyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.

実施例及び比較例
表2に示す配合処方にしたがい、1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて練り込み、未加硫ゴム組成物を得た。
得られた未加硫ゴム組成物を150℃で30分間加硫することにより、加硫ゴム組成物を得た。
Examples and Comparative Examples According to the formulation shown in Table 2, materials other than sulfur and a vulcanization accelerator were kneaded using a 1.7 L Banbury mixer to obtain a kneaded product. Next, sulfur and a vulcanization accelerator were added to the obtained kneaded product, and kneaded using an open roll to obtain an unvulcanized rubber composition.
The obtained unvulcanized rubber composition was vulcanized at 150 ° C. for 30 minutes to obtain a vulcanized rubber composition.

なお、比較例1〜4では、天然ゴム(TSR)100質量部に対してしゃっ解剤を0.4質量部添加し、あらかじめ素練りしたものを使用した。一方、実施例1〜8では素練りを行わなかった。 In Comparative Examples 1 to 4, 0.4 parts by mass of a chelating agent was added to 100 parts by mass of natural rubber (TSR), and then kneaded in advance. On the other hand, practicing was not performed in Examples 1-8.

得られた加硫ゴム組成物(加硫物)について下記の評価を行った。結果を表2に示す。 The following evaluation was performed about the obtained vulcanized rubber composition (vulcanizate). The results are shown in Table 2.

(低燃費性)
粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度50℃、初期歪み10%、動歪み2%、周波数10Hzの条件下で各配合(加硫物)の損失正接(tanδ)を測定し、比較例1の損失正接を100として、下記計算式により指数表示した(低燃費性指数)。指数が大きいほど低燃費性に優れることを示す。
(低燃費性指数)=(比較例1のtanδ)/(各配合のtanδ)×100
(Low fuel consumption)
Loss tangent (tan δ) of each compound (vulcanized product) using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho Co., Ltd.) under the conditions of a temperature of 50 ° C., an initial strain of 10%, a dynamic strain of 2%, and a frequency of 10 Hz. The loss tangent of Comparative Example 1 was taken as 100, and an index was displayed using the following formula (low fuel consumption index). A larger index indicates better fuel economy.
(Low fuel consumption index) = (tan δ of Comparative Example 1) / (tan δ of each formulation) × 100

(破壊強度)
得られた加硫ゴム組成物を用いて、3号ダンベル型ゴム試験片を作製し、JIS K 6251の「加硫ゴムおよび熱可塑性ゴム−引張特性の求め方」に準じて引張試験を行い、破断強度(TB)及び破断時伸び(EB)を測定し、その積(TB×EB)を算出した。下記計算式により、各配合の測定結果を指数表示した。なお、破壊強度指数が大きいほど、破壊強度に優れることを示す。
(破壊強度指数)=(各配合のTB×EB)/(比較例1のTB×EB)×100
(destruction strength)
Using the obtained vulcanized rubber composition, a No. 3 dumbbell-type rubber test piece was prepared, and a tensile test was performed in accordance with JIS K 6251 “Vulcanized rubber and thermoplastic rubber-Determination of tensile properties”. The breaking strength (TB) and the elongation at break (EB) were measured, and the product (TB × EB) was calculated. The measurement results for each formulation were displayed as an index according to the following formula. In addition, it shows that it is excellent in fracture strength, so that a fracture strength index | exponent is large.
(Fracture strength index) = (TB × EB of each formulation) / (TB × EB of Comparative Example 1) × 100

(耐屈曲亀裂成長試験)
加硫ゴム組成物を用い、JIS−K−6260「加硫ゴム及び熱可塑性ゴム−デマッチャ屈曲亀裂試験方法」に基づいてサンプルを作製し、屈曲亀裂成長試験を行い、70%伸張を100万回繰り返してゴムシートを屈曲させたのち、発生した亀裂の長さを測定した。比較例1の測定値(長さ)の逆数を100とし、指数表示した。指数が大きいほど、亀裂の成長が抑制され、耐屈曲亀裂成長性に優れることを示す。
(Flexible crack growth test)
Using a vulcanized rubber composition, a sample was prepared based on JIS-K-6260 “Vulcanized Rubber and Thermoplastic Rubber—Dematcher Bending Crack Test Method”, a bending crack growth test was conducted, and 70% elongation was 1 million times. After repeatedly bending the rubber sheet, the length of the generated crack was measured. The reciprocal of the measured value (length) of Comparative Example 1 was taken as 100, and displayed as an index. The larger the index is, the more the crack growth is suppressed and the resistance to flex crack growth is excellent.

Figure 0006017779
Figure 0006017779

表2に示す通り、カーボンブラック配合、シリカ配合のいずれにおいても、リン含有量200ppm以下の改質天然ゴム(ケン化天然ゴムA、B)を用いた実施例では、低燃費性、破壊強度、耐屈曲亀裂成長性がバランスよく改善された。
また、改質天然ゴムを配合した場合には、素練りを行わなくともゴム組成物を良好に調製できた(実施例1〜8)。
As shown in Table 2, in the examples using the modified natural rubber (saponified natural rubber A, B) having a phosphorus content of 200 ppm or less in both the carbon black compounding and the silica compounding, low fuel consumption, breaking strength, Bending crack growth resistance was improved in a well-balanced manner.
Moreover, when the modified natural rubber was blended, the rubber composition could be prepared satisfactorily without performing mastication (Examples 1 to 8).

Claims (5)

天然ゴムラテックスをケン化処理し、ケン化天然ゴムラテックスを調製する工程(A)、前記ケン化天然ゴムラテックスを凝集させて得られた凝集ゴムをアルカリ処理する工程(B)、ゴム中に含まれるリン含有量が200ppm以下になるまで洗浄する工程(C)、及び前記工程(A)〜(C)を経て得られるリン含有量が200ppm以下の改質天然ゴムと、任意成分としての他のゴムと、カーボンブラック及び/又は白色充填剤とを混練する工程(D)を含み、
前記工程(B)が、アルカリ金属炭酸塩を用いてアルカリ処理する工程であり、
ゴム成分100質量%中の前記改質天然ゴムの含有量が5質量%以上であるウイング用ゴム組成物の製造方法。
Saponifying natural rubber latex to prepare saponified natural rubber latex (A), alkali-treating the agglomerated rubber obtained by agglomerating the saponified natural rubber latex (B), contained in rubber The step (C) of washing until the phosphorus content is 200 ppm or less, the modified natural rubber having a phosphorus content of 200 ppm or less obtained through the steps (A) to (C), and other optional components A step of kneading rubber and carbon black and / or white filler (D),
The step (B) is a step of alkali treatment using an alkali metal carbonate,
The manufacturing method of the rubber composition for wings whose content of the said modified natural rubber in 100 mass% of rubber components is 5 mass% or more.
前記改質天然ゴムの窒素含有量が0.3質量%以下であり、トルエン不溶分として測定されるゲル含有率が20質量%以下である請求項記載のウイング用ゴム組成物の製造方法。 Wherein is the nitrogen content of the modified natural rubber is less than 0.3 wt%, The method according to claim 1 wing rubber composition according gel content measured as toluene-insoluble matter is not more than 20 wt%. 前記白色充填剤がシリカである請求項1又は2記載のウイング用ゴム組成物の製造方法。 The method for producing a rubber composition for a wing according to claim 1 or 2 , wherein the white filler is silica. 天然ゴムを素練りする工程を含まない請求項1〜のいずれかに記載のウイング用ゴム組成物の製造方法。 The manufacturing method of the rubber composition for wings in any one of Claims 1-3 which does not include the process of masticating natural rubber. 天然ゴムラテックスをケン化処理し、ケン化天然ゴムラテックスを調製する工程(A)、前記ケン化天然ゴムラテックスを凝集させて得られた凝集ゴムをアルカリ処理する工程(B)、ゴム中に含まれるリン含有量が200ppm以下になるまで洗浄する工程(C)、前記工程(A)〜(C)を経て得られるリン含有量が200ppm以下の改質天然ゴムと、任意成分としての他のゴムと、カーボンブラック及び/又は白色充填剤とを混練する工程(D)、及び前記工程(D)により得られるゴム成分100質量%中の前記改質天然ゴムの含有量が5質量%以上であるウイング用ゴム組成物を用いてウイングを作製する工程(E)を含み、
前記工程(B)が、アルカリ金属炭酸塩を用いてアルカリ処理する工程である
ウイングを有する空気入りタイヤの製造方法。
Saponifying natural rubber latex to prepare saponified natural rubber latex (A), alkali-treating the agglomerated rubber obtained by agglomerating the saponified natural rubber latex (B), contained in rubber Washing until the phosphorus content is 200 ppm or less, modified natural rubber having a phosphorus content of 200 ppm or less obtained through the steps (A) to (C), and other rubbers as optional components And step (D) of kneading carbon black and / or white filler, and the content of the modified natural rubber in 100% by mass of the rubber component obtained by the step (D) is 5% by mass or more. look including the step (E) to produce a wing with a wing rubber composition,
The method for manufacturing a pneumatic tire having a wing, wherein the step (B) is a step of performing an alkali treatment using an alkali metal carbonate .
JP2011266070A 2011-12-05 2011-12-05 WING RUBBER COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND PNEUMATIC TIRE Expired - Fee Related JP6017779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011266070A JP6017779B2 (en) 2011-12-05 2011-12-05 WING RUBBER COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND PNEUMATIC TIRE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011266070A JP6017779B2 (en) 2011-12-05 2011-12-05 WING RUBBER COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND PNEUMATIC TIRE

Publications (2)

Publication Number Publication Date
JP2013116994A JP2013116994A (en) 2013-06-13
JP6017779B2 true JP6017779B2 (en) 2016-11-02

Family

ID=48711768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011266070A Expired - Fee Related JP6017779B2 (en) 2011-12-05 2011-12-05 WING RUBBER COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND PNEUMATIC TIRE

Country Status (1)

Country Link
JP (1) JP6017779B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5977083B2 (en) * 2012-05-29 2016-08-24 住友ゴム工業株式会社 Rubber composition for case topping and pneumatic tire
JP6073574B2 (en) * 2012-05-29 2017-02-01 住友ゴム工業株式会社 Chafer rubber composition and pneumatic tire
JP6345971B2 (en) * 2014-04-09 2018-06-20 住友ゴム工業株式会社 Pneumatic tire

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1652862B1 (en) * 2003-08-04 2012-02-15 Sumitomo Rubber Industries, Ltd. Deproteinized natural rubber, its composition and use thereof
JP5035839B2 (en) * 2007-06-27 2012-09-26 住友ゴム工業株式会社 Rubber composition for wing and pneumatic tire
JP2009137403A (en) * 2007-12-05 2009-06-25 Sumitomo Rubber Ind Ltd Pneumatic radial-ply tire
JP5373366B2 (en) * 2008-10-29 2013-12-18 住友ゴム工業株式会社 Rubber composition and tire for reinforcing layer for wing or run flat tire
EP2377892B1 (en) * 2008-12-15 2014-05-14 Sumitomo Rubber Industries, Ltd. Natural rubber and manufacturing method thereof, rubber composition and pneumatic tire utilizing the same, modified natural rubber and manufacturing method thereof, and rubber composite for covering threads or carcass cords and pneumatic tire utilizing the same
JP2010242004A (en) * 2009-04-08 2010-10-28 Sumitomo Rubber Ind Ltd Rubber composition for wing, and pneumatic tire
JP2010254857A (en) * 2009-04-27 2010-11-11 Sumitomo Rubber Ind Ltd Rubber composition for wing or rubber chafer and pneumatic tire
JP5519259B2 (en) * 2009-12-15 2014-06-11 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP6049236B2 (en) * 2010-12-08 2016-12-21 住友ゴム工業株式会社 Undertread, rubber composition for wing and tire for passenger car
JP2012144642A (en) * 2011-01-12 2012-08-02 Toyo Tire & Rubber Co Ltd Rubber composition for wing, and pneumatic tire
JP5977083B2 (en) * 2012-05-29 2016-08-24 住友ゴム工業株式会社 Rubber composition for case topping and pneumatic tire
JP6073574B2 (en) * 2012-05-29 2017-02-01 住友ゴム工業株式会社 Chafer rubber composition and pneumatic tire

Also Published As

Publication number Publication date
JP2013116994A (en) 2013-06-13

Similar Documents

Publication Publication Date Title
JP5469151B2 (en) Rubber composition for pneumatic tire and pneumatic tire
JP5216028B2 (en) Rubber composition for inner liner and pneumatic tire
JP5216029B2 (en) Rubber composition for sidewall, insulation or breaker cushion, production method thereof and pneumatic tire
JP5466684B2 (en) Clinch apex rubber composition and pneumatic tire
JP5503396B2 (en) Rubber composition for clinch apex or bead apex, production method thereof and pneumatic tire
JP5086457B2 (en) Rubber composition for breaker and pneumatic tire
JP5411214B2 (en) Rubber composition for tread, method for producing the same, and tire for heavy load
JP5639121B2 (en) Rubber composition for tire and pneumatic tire
JP5977083B2 (en) Rubber composition for case topping and pneumatic tire
JP5466685B2 (en) Rubber composition for tire and pneumatic tire
JP5551972B2 (en) Rubber composition for sidewall, production method and pneumatic tire
JP2011190409A (en) Rubber composition for breaker topping and pneumatic tire using the same
JP6017779B2 (en) WING RUBBER COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND PNEUMATIC TIRE
JP5485865B2 (en) Rubber composition for bead filler and pneumatic tire
JP5848095B2 (en) Rubber composition for breaker / ply strip layer and pneumatic tire
JP6073574B2 (en) Chafer rubber composition and pneumatic tire
JP2014218601A (en) Rubber composition for tread of high load tire and high load tire using the same
JP5646971B2 (en) Rubber composition for tire, method for producing the same, and pneumatic tire
JP5324551B2 (en) Rubber composition and pneumatic tire for insulation or breaker cushion
JP5727896B2 (en) Rubber composition for side wall reinforcing layer and run flat tire
JP2013043956A (en) Rubber composition for bead apex and pneumatic tire
JP2014145033A (en) Rubber composition for inner liner and pneumatic tire
JP5587842B2 (en) Rubber composition for tire, method for producing the same, and pneumatic tire
JP2013122042A (en) Rubber composition for band layer, and pneumatic tire
JP5731320B2 (en) Rubber composition for base tread and tire for heavy load

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160929

R150 Certificate of patent or registration of utility model

Ref document number: 6017779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees