JP6016475B2 - Electron emitter - Google Patents

Electron emitter Download PDF

Info

Publication number
JP6016475B2
JP6016475B2 JP2012144085A JP2012144085A JP6016475B2 JP 6016475 B2 JP6016475 B2 JP 6016475B2 JP 2012144085 A JP2012144085 A JP 2012144085A JP 2012144085 A JP2012144085 A JP 2012144085A JP 6016475 B2 JP6016475 B2 JP 6016475B2
Authority
JP
Japan
Prior art keywords
electron
electrode
emitting device
intermediate layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012144085A
Other languages
Japanese (ja)
Other versions
JP2014007128A (en
Inventor
千佳 平川
千佳 平川
岩松 正
正 岩松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012144085A priority Critical patent/JP6016475B2/en
Publication of JP2014007128A publication Critical patent/JP2014007128A/en
Application granted granted Critical
Publication of JP6016475B2 publication Critical patent/JP6016475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/312Cold cathodes, e.g. field-emissive cathode having an electric field perpendicular to the surface, e.g. tunnel-effect cathodes of metal-insulator-metal [MIM] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/026Eliminating deleterious effects due to thermal effects, electric or magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Description

本発明は、電圧を印加することにより電子を放出する電子放出素子に関する。 The present invention relates to an electron emission element for emitting electrons by application of a voltage.

従来の電子放出素子として、MIM(Metal Insulator Metal)型やMIS(Metal Insulator Semiconductor)型の電子放出素子が開発されている。これらは、素子内部の量子サイズ効果および強電界を利用して電子を加速し、平面状の素子表面から電子を放出させる面放出型の電子放出素子である。これらの電子放出素子は、素子外部に強電界を必要とせず、素子内部の電子加速層で電子を加速させるので、陽イオンやオゾンを発生させずに電子を放出することができる。   As conventional electron-emitting devices, MIM (Metal Insulator Metal) type and MIS (Metal Insulator Semiconductor) type electron-emitting devices have been developed. These are surface-emission electron-emitting devices that accelerate electrons using the quantum size effect and strong electric field inside the device to emit electrons from the planar device surface. Since these electron-emitting devices do not require a strong electric field outside the device and accelerate electrons in the electron acceleration layer inside the device, they can emit electrons without generating cations or ozone.

MIM型の電子放出素子として、例えば、特許文献1を挙げることができる。図7(a)、(b)に、特許文献1の電子放出素子の断面図と平面図を示す。特許文献1の電子放出素子は、ガラス等の絶縁基板61と、電圧印加用の2枚の電極62、64と、該電極間に無機絶縁体膜67を有し、電極62と電極64が重なる部分で電子放出部69を形成している。そして、電子加速層として機能する無機絶縁体膜67が、導電性微粒子68(Au微粒子)を含有するSiO液体コーティング剤で形成されていることを特徴としている。 For example, Patent Document 1 can be cited as an MIM type electron-emitting device. 7A and 7B are a cross-sectional view and a plan view of the electron-emitting device disclosed in Patent Document 1. FIG. The electron-emitting device of Patent Document 1 includes an insulating substrate 61 such as glass, two electrodes 62 and 64 for voltage application, and an inorganic insulator film 67 between the electrodes, and the electrode 62 and the electrode 64 overlap. The electron emission part 69 is formed by the part. The inorganic insulator film 67 that functions as an electron acceleration layer is formed of a SiO 2 liquid coating agent containing conductive fine particles 68 (Au fine particles).

特許文献1の電子放出素子によれば、無機絶縁体膜67が導電性微粒子68を含むことにより、比較的厚い無機絶縁体膜67でも電子放出が可能となり、絶縁耐圧の高い電子放出素子を実現することができる。   According to the electron-emitting device of Patent Document 1, since the inorganic insulator film 67 includes the conductive fine particles 68, electrons can be emitted even with a relatively thick inorganic insulator film 67, and an electron-emitting device having a high withstand voltage is realized. can do.

特開平1−298623号公報JP-A-1-298623

しかしながら、特許文献1の電子放出素子は、導電性微粒子68が分散した無機絶縁体膜67を形成する際に、SiO液体コーティング剤を400℃の高温で焼成する必要があり、絶縁基板61となるガラスやセラミック、電極62となる金属材料、無機絶縁体膜67のそれぞれが異なる熱膨張率の組み合わせを400℃の高温で焼成すると、電極62や絶縁体膜67の剥離や亀裂が生じる場合があった。電極62や無機絶縁体膜67に剥離や亀裂が生じると、剥離や亀裂による部分的な欠損によって電子放出点の不均一化が生じたり、素子自体の破壊につながる。 However, the electron-emitting device disclosed in Patent Document 1 needs to bake a SiO 2 liquid coating agent at a high temperature of 400 ° C. when forming the inorganic insulator film 67 in which the conductive fine particles 68 are dispersed. When a combination of different thermal expansion coefficients of the glass or ceramic to be formed, the metal material to be the electrode 62, and the inorganic insulator film 67 is fired at a high temperature of 400 ° C., the electrode 62 or the insulator film 67 may be peeled off or cracked. there were. When peeling or cracking occurs in the electrode 62 or the inorganic insulating film 67, the electron emission point becomes non-uniform due to partial defects due to peeling or cracking, or the element itself is destroyed.

また、特許文献1の絶縁基板61と電極62の代りに金属基板を用いることも可能であるが、この場合でも上記と同様に熱膨張率の違いから絶縁性膜67に亀裂や膜の剥離が発生する。この金属基板を薄膜化した場合は、金属基板と無機絶縁体膜67の密着力により、金属基板に反りが発生する場合もある。   In addition, it is possible to use a metal substrate instead of the insulating substrate 61 and the electrode 62 of Patent Document 1, but in this case as well, cracks and film peeling occur in the insulating film 67 due to the difference in thermal expansion coefficient as described above. Occur. When this metal substrate is thinned, the metal substrate may be warped due to the adhesion between the metal substrate and the inorganic insulator film 67.

以上のように、高温加熱により無機絶縁体膜を形成する場合は、熱膨張率の違いによる剥離や亀裂、反り等を生じさせないように、加熱温度や基板材料、絶縁体膜の材料選定、膜厚に制限が生じる。   As described above, when an inorganic insulator film is formed by high-temperature heating, the heating temperature, the substrate material, the material selection of the insulator film, the film should be selected so as not to cause peeling, cracking, warping, etc. due to the difference in thermal expansion coefficient. There is a limit to the thickness.

本発明は、このような事情に鑑みてなされたものであり、加熱による薄膜の剥離や亀裂、または金属基板の反りが生じることなく、大気圧および真空中でも安定した電子放出が可能な電子放出素子を提供するものである。   The present invention has been made in view of such circumstances, and an electron-emitting device capable of stable electron emission even under atmospheric pressure and vacuum without causing peeling or cracking of a thin film or warping of a metal substrate due to heating. Is to provide.

上記の課題を解決するため、第1電極と、第1電極の層面と対向して配置された第2電極と、第1電極と第2電極の間の中間層とを有し、第1電極と第2電極の間に電圧を印可することにより、第2電極から電子を放出させる電子放出素子であって、中間層は、導電性微粒子を含んだ樹脂であり、絶縁性微粒子を含まないことを特徴とする。 In order to solve the above-described problem, the first electrode includes a first electrode, a second electrode disposed to face the layer surface of the first electrode, and an intermediate layer between the first electrode and the second electrode. If by applying a voltage between the second electrode, an electron-emitting device to emit the second electrode or et electron, the intermediate layer is a resin containing conductive particles, include the insulating particles It is characterized by not .

本発明に係る電子放出素子では、樹脂は、シリコーン樹脂である構成としてもよい。In the electron-emitting device according to the present invention, the resin may be a silicone resin.

本発明に係る電子放出素子では、第1電極は、可撓性基板上に形成されている構成としてもよい。In the electron-emitting device according to the present invention, the first electrode may be formed on a flexible substrate.

本発明の電子放出素子によれば、基板と樹脂、電極に熱応力による亀裂や剥離が生じない電子放出素子を得ることができる。   According to the electron-emitting device of the present invention, it is possible to obtain an electron-emitting device in which cracks and peeling due to thermal stress do not occur in the substrate, resin, and electrode.

本発明の一実施形態における電子放出素子の構成を示す断面図である。It is sectional drawing which shows the structure of the electron emission element in one Embodiment of this invention. 実施例1の電子放出素子の構成を示す断面図である。2 is a cross-sectional view illustrating a configuration of an electron-emitting device according to Example 1. FIG. 実施例1の電子放出素子の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of the electron-emitting device of Example 1. 大気中での電子放出を確認するための実験系を示す断面図である。It is sectional drawing which shows the experimental system for confirming the electron emission in air | atmosphere. 印加電圧に対する電子放出量を示すグラフである。It is a graph which shows the amount of electron emission with respect to the applied voltage. 真空中での電子放出を確認するための実験系を示す断面図である。It is sectional drawing which shows the experimental system for confirming the electron emission in a vacuum. 実施例2の電子放出素子の構成を示す断面図である。6 is a cross-sectional view illustrating a configuration of an electron-emitting device according to Example 2. FIG. 特許文献1の電子放出素子を示す模式図である。It is a schematic diagram which shows the electron-emitting device of patent document 1.

本発明の一実施形態について図1に基づいて説明すると以下の通りである。なお、以下に記述する構成は、本発明の具体的な一例に過ぎず、本発明はこれに限定されるものではない。   An embodiment of the present invention will be described with reference to FIG. The configuration described below is merely a specific example of the present invention, and the present invention is not limited to this.

図1は、本発明の一実施形態における電子放出素子10と、電子放出素子10を用いた電子放出装置20の構成を示す断面図である。本発明の電子放出素子10は、対向して配置される第1電極1と、第2電極2とを有し、第1電極1と第2電極2との間に中間層3を備えている。そして、中間層3が導電性微粒子5を含んだ樹脂4であることを特徴としている。   FIG. 1 is a cross-sectional view showing a configuration of an electron-emitting device 10 and an electron-emitting device 20 using the electron-emitting device 10 according to an embodiment of the present invention. An electron-emitting device 10 according to the present invention includes a first electrode 1 and a second electrode 2 that are arranged to face each other, and includes an intermediate layer 3 between the first electrode 1 and the second electrode 2. . The intermediate layer 3 is a resin 4 containing conductive fine particles 5.

本発明の電子放出素子10によれば、中間層3が導電性微粒子5を含んだ樹脂4であるため、高温での焼成工程を得ずに中間層3を形成することができ、熱膨張率の異なる中間層3や第1電極1に大きな体積変化を生じさせることがないため、第1電極1に反りを生じさせたり、中間層3の剥離や亀裂が生じることを防止できる。このため、中間層3や第2電極2の剥離による部分的な欠損を抑制し、均一な電子放出性能をもつ電子放出素子を得ることができる。   According to the electron-emitting device 10 of the present invention, since the intermediate layer 3 is the resin 4 including the conductive fine particles 5, the intermediate layer 3 can be formed without obtaining a baking process at a high temperature, and the thermal expansion coefficient. Therefore, it is possible to prevent the first electrode 1 from being warped, and the intermediate layer 3 from being peeled off or cracked. For this reason, the partial defect | deletion by peeling of the intermediate | middle layer 3 or the 2nd electrode 2 can be suppressed, and the electron-emitting element which has uniform electron emission performance can be obtained.

また、本発明の電子放出装置20は、上記の電子放出素子10と、第1電極1と第2電極2との間に電圧を印可する第1電源8Aを備えている。電子放出装置20は、第1電源8Aにより、第1電極1と第2電極2との間に適度な電圧V1を印可することにより、該電極間で電子を加速させて第2電極2の表面から電子を放出するものである。
また、本発明の中間層3は絶縁性微粒子が含まれていない。絶縁性微粒子が含まれた場合、一般に絶縁性微粒子の粒子径が小さくなるほど絶縁性微粒子の凝集が発生しやすくなるため、絶縁性微粒子の分散状態により中間層の膜厚が不均一になる場合がある。電子放出量は印加電圧V1により形成される中間層3内部の電界強度が強いほど増加するため、中間層3の膜厚が均一なほど電界強度が均一にかかり、面方向での均一な電子放出を可能とする。本発明の電子放出素子10によれば、絶縁性微粒子による膜厚の不均一が発生しないため、面方向での均一な電子放出が可能となる。
In addition, the electron emission device 20 of the present invention includes the above-described electron emission element 10 and a first power source 8 </ b> A that applies a voltage between the first electrode 1 and the second electrode 2. The electron emission device 20 applies an appropriate voltage V1 between the first electrode 1 and the second electrode 2 by the first power supply 8A, thereby accelerating the electrons between the electrodes, thereby accelerating the surface of the second electrode 2. Emits electrons.
Further, the intermediate layer 3 of the present invention does not contain insulating fine particles. When insulating fine particles are included, the smaller the particle diameter of the insulating fine particles, the easier the aggregation of the insulating fine particles occurs. Therefore, the thickness of the intermediate layer may become non-uniform depending on the dispersion state of the insulating fine particles. is there. The amount of electron emission increases as the electric field strength inside the intermediate layer 3 formed by the applied voltage V1 increases. Therefore, the electric field strength is more uniform as the film thickness of the intermediate layer 3 is more uniform, and uniform electron emission in the plane direction. Is possible. According to the electron-emitting device 10 of the present invention, since the non-uniformity of the film thickness due to the insulating fine particles does not occur, uniform electron emission in the surface direction is possible.

本発明により作製した電子放出素子10は、真空中および大気圧中でも安定して駆動が可能であることが確認されている。電子放出素子10を大気中で駆動させることにより、第2電極2の表面から放出される電子で大気中の分子をイオン化できるため、イオン発生装置としてイオン風冷却装置や粒子の帯電装置などに用いることができる。   It has been confirmed that the electron-emitting device 10 manufactured according to the present invention can be driven stably in vacuum and at atmospheric pressure. By driving the electron-emitting device 10 in the atmosphere, molecules in the atmosphere can be ionized by electrons emitted from the surface of the second electrode 2, so that the ion-emitting device 10 is used as an ion wind cooling device or a particle charging device. be able to.

また、真空中では、大気圧中と異なり電子放出素子10より発生した電子を電子放出素子10と対向するように配置した第3対向電極70により加速させることが可能となる。これにより電子放出素子10の第3電極70側に蛍光体層を配置した場合、第2電極2から放出される電子を蛍光体層に照射することにより、蛍光体層を発光させることができるので、自発光装置として用いることもできる。その他にも電子線源として殺菌や滅菌、EB硬化、SEMなどの分析装置などに用いることができる。   Further, in vacuum, unlike in atmospheric pressure, electrons generated from the electron-emitting device 10 can be accelerated by the third counter electrode 70 disposed so as to face the electron-emitting device 10. Thereby, when the phosphor layer is arranged on the third electrode 70 side of the electron-emitting device 10, the phosphor layer can emit light by irradiating the phosphor layer with electrons emitted from the second electrode 2. It can also be used as a self-luminous device. In addition, it can be used as an electron beam source for sterilization, sterilization, EB curing, SEM and other analyzers.

<実施例1>
図2は、実施例1の電子放出素子11を示す断面図であり、図3は、電子放出素子11の平面図である。実施例1の電子放出素子11は、第1電極1と、第1電極1の上に形成された絶縁膜6と、中間層3と、第2電極2とを備えている。
<Example 1>
FIG. 2 is a cross-sectional view illustrating the electron-emitting device 11 according to the first embodiment, and FIG. 3 is a plan view of the electron-emitting device 11. The electron-emitting device 11 of Example 1 includes a first electrode 1, an insulating film 6 formed on the first electrode 1, an intermediate layer 3, and a second electrode 2.

第1電極1は、基板の機能を兼ねる電極基板であり、導電性を有する板状体で構成されている。例えば、第1電極1として、23mm角のSUS基板を用いることができる。また、第1電極1は、セラミックやガラスなどの絶縁性基板上に導電性薄膜を形成したものを用いることもできる。   The first electrode 1 is an electrode substrate that also functions as a substrate, and is composed of a conductive plate-like body. For example, a 23 mm square SUS substrate can be used as the first electrode 1. Further, the first electrode 1 may be formed by forming a conductive thin film on an insulating substrate such as ceramic or glass.

第1電極1の上に形成される絶縁膜6は、第1電極1が部分的に露出されるような開口部を有している。本発明の電子放出素子11において、絶縁膜6が必須とされるものではないが、このような絶縁膜6を設けることにより、中間層3を介して第1電極1と第2電極2が重なって形成される電子放出部7(電子が放出される領域)を規定することができる。実施例1の電子放出素子11では、5mm角の矩形状の開口部を有する絶縁膜6を用いている。   The insulating film 6 formed on the first electrode 1 has an opening so that the first electrode 1 is partially exposed. In the electron-emitting device 11 of the present invention, the insulating film 6 is not essential, but by providing such an insulating film 6, the first electrode 1 and the second electrode 2 overlap with each other through the intermediate layer 3. Thus, the electron emission portion 7 (region from which electrons are emitted) formed can be defined. In the electron-emitting device 11 of Example 1, the insulating film 6 having a rectangular opening of 5 mm square is used.

次に、電子放出素子11の特徴部となる中間層3について説明する。中間層3は、図1に示した実施形態と同様に、主体となる樹脂4と、樹脂4中に分散された導電性微粒子5を含んでいる。樹脂4は、絶縁性の樹脂材料であり、例えば、シラノール(R3Si-OH)を縮合重合したシリコーン樹脂を用いることができる。また、導電性微粒子5は、金属や半導電体など導電性材料を用いることが可能である。例えば、金、銀、白金、パラジウム等の導電性を有する金属微粒子を用いることができる。樹脂4に添加する導電性微粒子5の含有量を変えることにより、中間層3の抵抗値を調整することができる。   Next, the intermediate layer 3 that is a characteristic part of the electron-emitting device 11 will be described. As in the embodiment shown in FIG. 1, the intermediate layer 3 includes a main resin 4 and conductive fine particles 5 dispersed in the resin 4. The resin 4 is an insulating resin material, and for example, a silicone resin obtained by condensation polymerization of silanol (R3Si—OH) can be used. The conductive fine particles 5 can be made of a conductive material such as a metal or a semiconductor. For example, metal fine particles having conductivity such as gold, silver, platinum, and palladium can be used. The resistance value of the intermediate layer 3 can be adjusted by changing the content of the conductive fine particles 5 added to the resin 4.

中間層3は、樹脂4と導電性微粒子5を混合した分散液を用い、スピンコート法、ドクターブレード法、スプレー法、ディッピング法等により塗布することができる。上記の分散液は、試薬瓶へ樹脂4としてシリコーン樹脂(室温硬化性、東レ・ダウコーニング株式会社製)を入れ、これに導電性微粒子5としてAgナノ粒子(平均径10nm、絶縁被覆アルコラート1nm膜、株式会社応用ナノ粒子研究所製)を混合し、さらに上記混合液が入った試薬瓶を超音波振動器にかけて作製した。   The intermediate layer 3 can be applied by a spin coating method, a doctor blade method, a spray method, a dipping method, or the like, using a dispersion liquid in which the resin 4 and the conductive fine particles 5 are mixed. In the above dispersion, a silicone resin (room temperature curable, manufactured by Toray Dow Corning Co., Ltd.) is placed as a resin 4 in a reagent bottle, and Ag nanoparticles (average diameter 10 nm, insulating coating alcoholate 1 nm film) as conductive fine particles 5 , Manufactured by Applied Nanoparticles Laboratories Co., Ltd.), and a reagent bottle containing the above mixed solution was prepared using an ultrasonic vibrator.

なお、樹脂4と導電性微粒子5の分散液の割合は、シリコーン樹脂(80〜99%)、Agナノ粒子(1〜20%)の範囲が好ましい。上記分散液の割合とすることにより、中間層3の抵抗値が調整され、5〜40V程度の適度な印加電圧で電子放出させることができる。   In addition, the ratio of the dispersion liquid of the resin 4 and the conductive fine particles 5 is preferably in the range of silicone resin (80 to 99%) and Ag nanoparticles (1 to 20%). By setting it as the ratio of the said dispersion liquid, the resistance value of the intermediate | middle layer 3 is adjusted, and it can discharge | release an electron with the moderate applied voltage of about 5-40V.

シリコーン樹脂の種類として室温硬化性シリコーンを用いたが、シリコーン樹脂の硬化方法は限定されない。ただし、熱硬化性シリコーン樹脂は、硬化温度が一般的に100℃〜150℃であり、熱応力による撓みが発生するため、第1電極1の材料や膜厚により適さない場合がある。一方、UV硬化性シリコーン樹脂は、UV光の照射によって硬化できるため熱応力が発生することがなく、第1電極1の材料や膜厚に影響されずに用いることができる。   Although room temperature curable silicone was used as the type of silicone resin, the curing method of the silicone resin is not limited. However, the thermosetting silicone resin generally has a curing temperature of 100 ° C. to 150 ° C., and may bend due to thermal stress, and may not be suitable depending on the material and film thickness of the first electrode 1. On the other hand, the UV curable silicone resin can be used without being affected by the material and film thickness of the first electrode 1 because it can be cured by irradiation with UV light, so that no thermal stress is generated.

次に、第1電極1上に絶縁膜6が形成され、開口部から第1電極1の一部が露出した状態の表面に、上記で作製した樹脂4と導電性微粒子5の分散液をスピンコート法で塗布した。形成された塗布膜は、大気中の湿気によりシリコーン樹脂が縮合重合し、Agナノ粒子が分散された層状の樹脂4となり、中間層3が形成される。中間層3の膜厚は、電子放出素子に印加する電圧の大きさや中間層3の抵抗値によって異なるが、例えば、0.3〜2.0μmとすることができる。   Next, the insulating film 6 is formed on the first electrode 1, and the dispersion liquid of the resin 4 and the conductive fine particles 5 produced above is spun onto the surface in which a part of the first electrode 1 is exposed from the opening. The coating method was applied. In the formed coating film, the silicone resin is condensed and polymerized by moisture in the atmosphere to form a layered resin 4 in which Ag nanoparticles are dispersed, and the intermediate layer 3 is formed. The thickness of the intermediate layer 3 varies depending on the magnitude of the voltage applied to the electron-emitting device and the resistance value of the intermediate layer 3, but can be set to, for example, 0.3 to 2.0 μm.

次に、中間層3の表面に、マグネトロンスパッタ装置を用いて第2電極2を形成した。第2電極2は、第1電極1との間で中間層3に対して電圧を印加できるものであればよいため、導電性を有する材質および製法であれば特に制限されるものではない。また、第2電極2の膜厚は、厚すぎると電子が第2電極2にトラップされて外部へ放出される電子の量が減少し、電子の放出効率が減少するため、できるだけ薄い方が好ましい。例えば、Au−Pdを材料とした膜厚50nm、面積49mmの第2電極2を形成して、図2及び図3に示した電子放出素子11を得た。 Next, the second electrode 2 was formed on the surface of the intermediate layer 3 using a magnetron sputtering apparatus. Since the 2nd electrode 2 should just be a thing which can apply a voltage with respect to the intermediate | middle layer 3 between the 1st electrodes 1, if it is a material and manufacturing method which have electroconductivity, it will not restrict | limit in particular. Further, if the film thickness of the second electrode 2 is too thick, electrons are trapped by the second electrode 2 and the amount of electrons emitted to the outside is reduced, so that the electron emission efficiency is reduced. . For example, the second electrode 2 having a film thickness of 50 nm and an area of 49 mm 2 made of Au—Pd was formed, and the electron-emitting device 11 shown in FIGS. 2 and 3 was obtained.

図4は、実施例1の電子放出素子11の大気圧中での電子放出性能を測定するための実験系31を示す模式図である。実験系31は、電子放出素子11の第2電極2側に対向電極70を対向状に配置し、対向電極70に直流電源8Bを接続したものである。上記の実験系31を大気圧中で駆動し、電子放出素子11から放出される電子量を電子放出電流として測定した。対向電極70に印加する直流電圧V2は0.5kVであり、電子放出素子11に印加する交流電圧V1は0〜25Vとした。   FIG. 4 is a schematic diagram showing an experimental system 31 for measuring the electron emission performance of the electron-emitting device 11 of Example 1 at atmospheric pressure. In the experimental system 31, a counter electrode 70 is disposed on the second electrode 2 side of the electron-emitting device 11 so as to face each other, and a DC power source 8B is connected to the counter electrode 70. The experimental system 31 was driven at atmospheric pressure, and the amount of electrons emitted from the electron-emitting device 11 was measured as an electron emission current. The DC voltage V2 applied to the counter electrode 70 was 0.5 kV, and the AC voltage V1 applied to the electron-emitting device 11 was 0 to 25V.

図5は、上記実験系31により電子放出電流を測定した結果を示すグラフである。図5に示すように、実施例1の電子放出素子11は、大気中で最大で35μA/cmの電子放出電流が得られた。また、電子放出素子11に25Vまで印加しても絶縁破壊が生じることはなかった。 FIG. 5 is a graph showing the result of measuring the electron emission current by the experimental system 31. As shown in FIG. 5, the electron-emitting device 11 of Example 1 obtained an electron emission current of 35 μA / cm 2 at maximum in the atmosphere. Further, even when applying up to 25 V to the electron-emitting device 11, dielectric breakdown did not occur.

図6は、実施例1の電子放出素子11の真空中での電子放出性能を測定するための実験系32を示す模式図である。上記実験系32において、対向電極70の電子放出素子11と相対する側に蛍光体膜71が形成されている。上記実験系32を3.3×10−3Paの真空容器中に設置して、実施例1の電子放出素子11の電放出性能を測定した。その結果、対向電極70に印加する直流電圧V2は0.5kVであり、電子放出素子11に印加する交流電圧V1は15Vのとき最大で99μA/cmの電子放出電流が得られた。また、このとき電子放出素子11から電子が放出されたことを蛍光体の発光点より観察することができ、上記発光点は電子放出部7の内部で高い均一性をもって発光していた。 FIG. 6 is a schematic diagram showing an experimental system 32 for measuring the electron emission performance in vacuum of the electron-emitting device 11 of the first embodiment. In the experimental system 32, a phosphor film 71 is formed on the side of the counter electrode 70 facing the electron-emitting device 11. The experimental system 32 was installed in a vacuum vessel of 3.3 × 10 −3 Pa, and the electron emission performance of the electron-emitting device 11 of Example 1 was measured. As a result, when the DC voltage V2 applied to the counter electrode 70 was 0.5 kV and the AC voltage V1 applied to the electron emitter 11 was 15 V, an electron emission current of 99 μA / cm 2 at the maximum was obtained. At this time, it was possible to observe that electrons were emitted from the electron-emitting device 11 from the light emission point of the phosphor, and the light emission point emitted light with high uniformity inside the electron emission portion 7.

<実施例2>
図7は、実施例2の電子放出素子12の構成を示す断面図である。実施例2の電子放出素子12において、実施例1の電子放出素子11と異なるのは、第1電極1を可撓性基板9上に形成したことである。それ以外の構成は実施例1と同じであり、詳細な説明は省略する。
<Example 2>
FIG. 7 is a cross-sectional view illustrating a configuration of the electron-emitting device 12 according to the second embodiment. The electron-emitting device 12 of Example 2 differs from the electron-emitting device 11 of Example 1 in that the first electrode 1 is formed on the flexible substrate 9. The other configuration is the same as that of the first embodiment, and detailed description thereof is omitted.

特許文献1のように中間層に無機絶縁材料を用いた電子放出素子は、湾曲等が生じて力が加わると、中間層に亀裂が入り破壊されてしまうので、材料や膜厚の選定によりある程度の機械強度のある基板材料を用いる必要があった。   An electron-emitting device using an inorganic insulating material for the intermediate layer as in Patent Document 1 is cracked in the intermediate layer and is destroyed when a force is applied due to bending or the like. It was necessary to use a substrate material having a high mechanical strength.

本発明の電子放出素子12では、中間層3が柔軟性のある樹脂4を主体としているため可撓性基板9を使用することにより、可撓性を備えた電子放出素子12を得ることができる。また、実施例1のように室温硬化性の樹脂を使用した場合、高温での熱処理も不要であるため、耐熱性の低い樹脂や紙等を材料とする可撓性基板9を使用することができる。このため、各種可撓性基板9を用いて、可撓性基板9上に第1電極1となる導電性薄膜を形成することにより、可撓性を備えた電子放出素子12を様々な装置に適用することができる。   In the electron-emitting device 12 of the present invention, since the intermediate layer 3 is mainly composed of a flexible resin 4, the use of the flexible substrate 9 makes it possible to obtain the electron-emitting device 12 having flexibility. . In addition, when a room temperature curable resin is used as in Example 1, a heat treatment at a high temperature is not required, so that a flexible substrate 9 made of a resin or paper having low heat resistance may be used. it can. For this reason, by using various flexible substrates 9 and forming a conductive thin film to be the first electrode 1 on the flexible substrate 9, the electron-emitting device 12 having flexibility can be used in various apparatuses. Can be applied.

例えば、可撓性を備えた電子放出素子12は、外力による変形に対しても耐えることができ、湾曲した状態で使用することも可能である。   For example, the electron-emitting device 12 having flexibility can withstand deformation caused by an external force, and can be used in a curved state.

本発明に係る電子放出素子は、適度な電圧の印加により均一に電子放出させることが可能である。よって、例えば、電子写真方式の複写機、プリンタ、ファクシミリ等の画像形成装置の帯電装置や、電子線硬化装置、あるいは発光体と組み合わせることによる画像表示装置、または放出された電子が発生させるイオン風を利用することによるイオン風発生装置等に、好適に適用することができる。   The electron-emitting device according to the present invention can emit electrons uniformly by applying an appropriate voltage. Therefore, for example, a charging device of an image forming apparatus such as an electrophotographic copying machine, a printer, a facsimile, an image display device combined with an electron beam curing device or a light emitter, or an ion wind generated by emitted electrons. It can apply suitably to the ion wind generator etc. by utilizing this.

1 第1電極(電極基板)
2 第2電極
3 中間層(電子加速層)
4 樹脂
5 導電性微粒子
6 絶縁膜
7 電子放出部
8 電源部
9 可撓性基板
10、11、12 電子放出素子
1 First electrode (electrode substrate)
2 Second electrode 3 Intermediate layer (electron acceleration layer)
4 Resin 5 Conductive Fine Particle 6 Insulating Film 7 Electron Emission Part 8 Power Supply Part 9 Flexible Substrate 10, 11, 12 Electron Emission Element

Claims (3)

第1電極と、前記第1電極の層面と対向して配置された第2電極と、前記第1電極と前記第2電極の間の中間層とを有し、前記第1電極と前記第2電極の間に電圧を印可することにより、前記第2電極から電子を放出させる電子放出素子であって、
前記中間層は、導電性微粒子を含んだ樹脂であり、絶縁性微粒子を含まないことを特徴とする電子放出素子。
A first electrode; a second electrode disposed opposite to the layer surface of the first electrode; and an intermediate layer between the first electrode and the second electrode, wherein the first electrode and the second electrode by applying a voltage between the electrodes, an electron-emitting device to emit the second electrode or et electronic,
The electron-emitting device, wherein the intermediate layer is a resin containing conductive fine particles and does not contain insulating fine particles .
前記樹脂は、シリコーン樹脂であることを特徴とする請求項1に記載の電子放出素子。 The electron-emitting device according to claim 1 , wherein the resin is a silicone resin. 前記第1電極は、可撓性基板上に形成されていることを特徴とする請求項1または請求項2に記載の電子放出素子。 The first electrode, the electron-emitting device according to claim 1 or claim 2, characterized in that it is formed on a flexible substrate.
JP2012144085A 2012-06-27 2012-06-27 Electron emitter Active JP6016475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012144085A JP6016475B2 (en) 2012-06-27 2012-06-27 Electron emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012144085A JP6016475B2 (en) 2012-06-27 2012-06-27 Electron emitter

Publications (2)

Publication Number Publication Date
JP2014007128A JP2014007128A (en) 2014-01-16
JP6016475B2 true JP6016475B2 (en) 2016-10-26

Family

ID=50104655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012144085A Active JP6016475B2 (en) 2012-06-27 2012-06-27 Electron emitter

Country Status (1)

Country Link
JP (1) JP6016475B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768015B1 (en) * 2000-08-15 2007-10-17 어플라이드 머티어리얼스, 인코포레이티드 Run-to-run control over semiconductor processing tool based upon mirror image target
KR100792268B1 (en) * 2001-01-24 2008-01-07 가부시키가이샤 히다치 고쿠사이 덴키 System for providing training in semiconductor manufacturing system operation techniques

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6876044B2 (en) 2016-07-21 2021-05-26 シャープ株式会社 Electron emitting element, charging device, and image forming device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2715304B2 (en) * 1988-05-26 1998-02-18 キヤノン株式会社 MIM type electron-emitting device
JPH09161666A (en) * 1995-12-13 1997-06-20 Dainippon Printing Co Ltd Manufacture of electron emitting element
JP2009224192A (en) * 2008-03-17 2009-10-01 Nippon Hoso Kyokai <Nhk> Imaging apparatus
JP4768051B2 (en) * 2009-05-14 2011-09-07 シャープ株式会社 Manufacturing method of electron-emitting device, electron-emitting device, electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower device, cooling device
JP5133295B2 (en) * 2009-04-23 2013-01-30 シャープ株式会社 Electron emission apparatus, self-luminous device, image display apparatus, charging apparatus, image forming apparatus, electron beam curing apparatus, and driving method of electron emission element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768015B1 (en) * 2000-08-15 2007-10-17 어플라이드 머티어리얼스, 인코포레이티드 Run-to-run control over semiconductor processing tool based upon mirror image target
KR100792268B1 (en) * 2001-01-24 2008-01-07 가부시키가이샤 히다치 고쿠사이 덴키 System for providing training in semiconductor manufacturing system operation techniques

Also Published As

Publication number Publication date
JP2014007128A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP4990380B2 (en) Electron emitting device and manufacturing method thereof
JP6425558B2 (en) Electron emitter and electron emitter
JP5209911B2 (en) Electron field emitter manufacturing paste and use thereof
JP5073721B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and electron-emitting device manufacturing method
US7365482B2 (en) Field emission display including electron emission source formed in multi-layer structure
US8760056B2 (en) Electron emitting element, devices utilizing said element, and method for producing said element
JP4732534B2 (en) Electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device
JP4777448B2 (en) Electron emitting device, electron emitting device, self-luminous device, image display device, blower device, cooling device, charging device, image forming device, and electron beam curing device
JP2005183370A (en) Forming method of carbon nanotube emitter
JP6016475B2 (en) Electron emitter
KR101082440B1 (en) Electron emission device, electron emission display apparatus having the same, and method of manufacturing the same
JP2012099455A (en) Electron emission element and device provided with it
JP5133295B2 (en) Electron emission apparatus, self-luminous device, image display apparatus, charging apparatus, image forming apparatus, electron beam curing apparatus, and driving method of electron emission element
JP6231308B2 (en) Ionizer and mass spectrometer
JP6008594B2 (en) ELECTRON EMITTING ELEMENT AND DEVICE EQUIPPED WITH THE SAME
JP2014201456A (en) Method of manufacturing glass structure, and glass structure
JP2014241232A (en) Electron emitting element and method of manufacturing the same
JP6267504B2 (en) Electron emission device
JP2010198850A (en) Electron emission element, electron emission device, charging device, image forming device, electron beam curing device self light-emitting device, image device, blower, cooling device, manufacturing method for electron emission element
JP4997309B2 (en) Electron emitting device and manufacturing method thereof
KR20110060236A (en) Cathode structure of electron emitting device
KR20090027001A (en) Electron emission device and electron emission display apparatus having the same
JP5894769B2 (en) Ion flow type electrostatic drawing device
US20090134768A1 (en) Electron emission device, method of manufacturing the same, and electron emission display including the same
KR20070111813A (en) Electron emission device and electron emission display apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160323

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160927

R150 Certificate of patent or registration of utility model

Ref document number: 6016475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150