JP6016205B1 - Exhaust gas treatment apparatus and exhaust gas treatment method - Google Patents
Exhaust gas treatment apparatus and exhaust gas treatment method Download PDFInfo
- Publication number
- JP6016205B1 JP6016205B1 JP2016519397A JP2016519397A JP6016205B1 JP 6016205 B1 JP6016205 B1 JP 6016205B1 JP 2016519397 A JP2016519397 A JP 2016519397A JP 2016519397 A JP2016519397 A JP 2016519397A JP 6016205 B1 JP6016205 B1 JP 6016205B1
- Authority
- JP
- Japan
- Prior art keywords
- mercury concentration
- activated carbon
- exhaust gas
- supply amount
- predetermined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 800
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims abstract description 568
- 229910052753 mercury Inorganic materials 0.000 claims abstract description 568
- 239000000428 dust Substances 0.000 claims abstract description 110
- 238000005259 measurement Methods 0.000 claims abstract description 76
- 238000011144 upstream manufacturing Methods 0.000 claims description 84
- 238000012545 processing Methods 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 12
- 239000007789 gas Substances 0.000 description 222
- 238000001179 sorption measurement Methods 0.000 description 20
- 238000007664 blowing Methods 0.000 description 17
- 239000002699 waste material Substances 0.000 description 10
- 239000011812 mixed powder Substances 0.000 description 7
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 235000011116 calcium hydroxide Nutrition 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000001739 density measurement Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004056 waste incineration Methods 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/64—Heavy metals or compounds thereof, e.g. mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/81—Solid phase processes
- B01D53/83—Solid phase processes with moving reactants
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treating Waste Gases (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
炉からの排ガス中の水銀を確実に吸着除去し、排ガス中の水銀濃度が変動してもこれに適切な活性炭量で活性炭を供給する排ガス処理装置及び方法を提供することを課題とする。炉1からの水銀を含む排ガスを除塵処理する集塵装置4が該炉1に対する下流位置に設けられ、炉1から集塵装置4へ排ガスを導く排ガス流路へ活性炭を吹き込む活性炭供給装置3が設けられている排ガス処理装置において、集塵装置4の下流側に排ガス中の水銀濃度を測定する水銀濃度計5を設け、水銀濃度計5による測定値にもとづき、上記集塵装置4の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を所定の最小値を維持しつつ制御する制御装置7を備えている。It is an object of the present invention to provide an exhaust gas treatment apparatus and method for reliably adsorbing and removing mercury in exhaust gas from a furnace and supplying activated carbon with an appropriate amount of activated carbon even when the mercury concentration in the exhaust gas fluctuates. A dust collector 4 for removing dust from the exhaust gas containing mercury from the furnace 1 is provided at a downstream position with respect to the furnace 1, and an activated carbon supply device 3 that blows activated carbon into an exhaust gas passage that guides exhaust gas from the furnace 1 to the dust collector 4. In the exhaust gas treatment apparatus provided, a mercury concentration meter 5 for measuring the mercury concentration in the exhaust gas is provided on the downstream side of the dust collector 4, and the downstream side of the dust collector 4 based on the measurement value by the mercury concentration meter 5. Is provided with a control device 7 for controlling the supply amount of the activated carbon while maintaining a predetermined minimum value so that the mercury concentration in the exhaust gas at or below is kept below the set value.
Description
本発明は、廃棄物焼却施設、セメント製造工場、火力発電所、非鉄金属製錬工場等の各種工場から排出される水銀を含む排ガスの処理装置及び排ガス処理方法に関する。 The present invention relates to a treatment apparatus and a treatment method for exhaust gas containing mercury discharged from various factories such as a waste incineration facility, a cement manufacturing factory, a thermal power plant, and a non-ferrous metal smelting factory.
セメントキルン炉、非鉄金属製錬炉から排出される排ガスや、水銀を含んだ廃棄物が廃棄物焼却炉で焼却され排出される排ガス中に水銀が含まれることがあり、そのまま大気に放出されると、大気汚染を引き起こし問題となる。そこで、排ガス中の水銀を除去することが求められている。 Mercury may be contained in exhaust gas discharged from cement kiln furnaces and non-ferrous metal smelting furnaces, and wastes containing mercury incinerated in waste incinerators, and are released directly into the atmosphere. It causes air pollution and becomes a problem. Therefore, it is required to remove mercury in the exhaust gas.
さらに、「水銀に関する水俣条約」が2013年に採択され、世界的な水銀管理強化の動きが進行している。この条約発効後、水銀排出規制対象施設に対して水銀の排出を抑制する対策が検討されている。水銀排出規制対象施設としては、石炭火力発電所、石炭焚きボイラ、非鉄金属製錬施設、廃棄物焼却施設、セメント製造施設が挙げられる。かかる状況において、これらの施設から排出される排ガス中の水銀を効率的に除去する処理方法の要望が高まっている。 Furthermore, the Minamata Convention on Mercury was adopted in 2013, and global movements to strengthen mercury management are in progress. After the convention enters into force, measures to reduce mercury emissions are being considered for facilities subject to mercury emission control. Facilities subject to mercury emission regulations include coal-fired power plants, coal-fired boilers, non-ferrous metal smelting facilities, waste incineration facilities, and cement manufacturing facilities. Under such circumstances, there is an increasing demand for a treatment method for efficiently removing mercury in exhaust gas discharged from these facilities.
例えば、廃棄物焼却炉やボイラ火炉から排出される排ガス中の水銀の一般的な除去方法としては、排ガス中のダストを除塵するバグフィルタや電気集塵機へ排ガスを導くダクト内へ、バグフィルタ等に対して上流側位置で粉粒状の活性炭を吹き込み、該活性炭に水銀を吸着させ、この水銀を吸着した活性炭をダストとともにバグフィルタ等で集塵して排ガスから除去する方法が特許文献1、2で知られている。
For example, as a general method for removing mercury in exhaust gas discharged from waste incinerators and boiler furnaces, bag filters that remove dust in exhaust gas, ducts that lead exhaust gas to an electric dust collector, bag filters, etc. On the other hand,
また、排ガス中の酸性ガスを中和して除去するための消石灰に活性炭を予め混合した混合粉を用意し、この混合粉をバグフィルタの上流側でダクト内の排ガスを吹き込んで、酸性ガスと消石灰の反応生成物そして水銀を吸着した活性炭をダストとともにバグフィルタ等で集塵して処理する方法が用いられることもある。かくして、排ガス中の水銀は活性炭により吸着された後、バグフィルタ等で集塵除去される。 Also, prepare a mixed powder in which activated carbon is mixed in advance with slaked lime to neutralize and remove the acidic gas in the exhaust gas. The mixed powder is blown into the duct on the upstream side of the bag filter, and the acidic gas and There is a case where a reaction product of slaked lime and activated carbon adsorbed with mercury are collected together with dust by a bag filter or the like and processed. Thus, after mercury in the exhaust gas is adsorbed by the activated carbon, it is collected and removed by a bag filter or the like.
特許文献2には、水銀を含む排ガスが流通される煙道の途中に集塵器が設けられ、集塵器の上流側の煙道に活性炭を投入する活性炭投入装置が付設され、排ガス中の水銀濃度が所定濃度を超えたときに活性炭を瞬間的に大量投入する排ガス中の水銀除去システムが開示されている。
In
焼却炉で焼却処理される廃棄物の種類や、セメントキルン炉、非鉄金属製錬炉で製錬される原料の種類によっては、排ガス中の水銀濃度が一時的に高くなるような変動が生じる場合がある。この場合においても煙突から排出する排ガス中の水銀濃度を低く維持するためには、ダクトへ吹き込む活性炭の供給量を常時多量に吹き込む必要か、あるいは、消石灰と活性炭とが予め混合された混合粉をダクト内へ供給する際、混合粉の供給量を常時多量に吹き込む必要がある。 Depending on the type of waste incinerated in the incinerator and the type of raw material smelted in the cement kiln furnace or non-ferrous metal smelting furnace, fluctuations may occur that temporarily increase the mercury concentration in the exhaust gas. There is. In this case as well, in order to keep the mercury concentration in the exhaust gas discharged from the chimney low, it is necessary to constantly blow in a large amount of activated carbon to be blown into the duct, or mixed powder in which slaked lime and activated carbon are mixed in advance. When supplying into the duct, it is necessary to constantly blow a large amount of the mixed powder.
このように、一時的に高くなる水銀濃度を想定して活性炭又は混合粉を常時多量にダクト内へ供給すると、上記一時的な時間帯を除いた多くの時間帯で活性炭そして混合粉を過度に供給する結果となってしまい、活性炭や混合粉の使用量が多大となり、排ガス処理費用が嵩むという問題や、集塵したダスト等の量が多大となり、除塵処理費用が嵩むという問題が生じる。特許文献2に記載の排ガス中の水銀除去システムでは、排ガス中の水銀濃度が所定濃度を超えたときのみ活性炭を投入して、集塵器内のろ布上に堆積させ水銀を吸着除去するため、無駄な活性炭の使用を避けることができるとしているが、瞬間的に活性炭を投入しただけではろ布上に活性炭層を十分に形成できず水銀を吸着除去できない懸念がある。
Thus, if activated carbon or mixed powder is constantly supplied in a large amount into the duct assuming a temporarily high mercury concentration, the activated carbon and the mixed powder are excessively used in many time zones excluding the temporary time zone. As a result, the amount of activated carbon or mixed powder used is increased, and the exhaust gas treatment cost is increased, and the amount of collected dust is increased, resulting in an increase in the dust removal cost. In the mercury removal system in exhaust gas described in
本発明は、このような事情に鑑み、排ガス中の水銀を確実に吸着除去し、排ガス中の水銀濃度が変動してもこれに適切な活性炭量で活性炭を供給する排ガス処理装置及び排ガス処理方法を提供することを課題とする。 In view of such circumstances, the present invention reliably adsorbs and removes mercury in exhaust gas, and even if the mercury concentration in the exhaust gas fluctuates, the exhaust gas treatment apparatus and exhaust gas treatment method supply activated carbon with an appropriate amount of activated carbon. It is an issue to provide.
本発明によると、上述の課題は、次の排ガス処理装置さらにはその方法により解決される。 According to the present invention, the above-described problems are solved by the following exhaust gas treatment apparatus and the method thereof.
[排ガス処理装置]
本発明における排ガス処理装置は、次の第一発明、第二発明そして第三発明のごとく構成され、いずれによっても上記課題は解決される。[Exhaust gas treatment equipment]
The exhaust gas treatment apparatus of the present invention is configured as in the following first invention, second invention and third invention, and the above-mentioned problems can be solved by any of them.
<第一発明>
炉から排出され水銀を含む排ガスを除塵処理する集塵装置と、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭を吹き込む活性炭供給装置とを備える排ガス処理装置において、集塵装置の下流側で排ガス中の水銀濃度を測定する下流側水銀濃度計と、活性炭供給装置の活性炭供給量を制御する制御装置を備え、制御装置は、活性炭供給量を所定の最小値以上に維持するとともに、下流側水銀濃度計による水銀濃度測定値に基づき、上記集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理装置。<First invention>
An exhaust gas treatment apparatus comprising: a dust collector that removes exhaust gas containing mercury discharged from a furnace; and an activated carbon supply device that blows the activated carbon into an exhaust gas passage that guides the exhaust gas from the furnace to the dust collector, on the downstream side of the dust collector A downstream mercury concentration meter that measures the mercury concentration in the exhaust gas and a control device that controls the activated carbon supply amount of the activated carbon supply device, the control device maintains the activated carbon supply amount above a predetermined minimum value, An exhaust gas treatment apparatus, wherein the supply amount of activated carbon is controlled so that the mercury concentration in the exhaust gas on the downstream side of the dust collector is not more than a set value based on a measured value of mercury concentration by a side mercury concentration meter.
<第二発明>
炉から排出され水銀を含む排ガスを除塵処理する集塵装置と、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭を吹き込む活性炭供給装置とを備える排ガス処理装置において、炉の下流側でかつ集塵装置の上流側で排ガス中の水銀濃度を測定する上流側水銀濃度計と、活性炭供給装置の活性炭供給量を制御する制御装置を備え、制御装置は、活性炭供給量を所定の最小値以上に維持するとともに、上流側水銀濃度計による水銀濃度測定値に基づき、上記集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理装置。<Second invention>
An exhaust gas treatment apparatus comprising: a dust collector that removes exhaust gas containing mercury discharged from a furnace; and an activated carbon supply device that blows activated carbon into an exhaust gas passage that guides the exhaust gas from the furnace to the dust collector. Equipped with an upstream mercury concentration meter that measures the mercury concentration in the exhaust gas upstream of the dust collector, and a control device that controls the activated carbon supply amount of the activated carbon supply device. And the activated carbon supply amount is controlled so that the mercury concentration in the exhaust gas on the downstream side of the dust collector is not more than the set value based on the mercury concentration measured by the upstream mercury concentration meter. Exhaust gas treatment equipment.
<第三発明>
炉から排出され水銀を含む排ガスを除塵処理する集塵装置と、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭を吹き込む活性炭供給装置とを備える排ガス処理装置において、炉の下流側でかつ集塵装置の上流側で排ガス中の水銀濃度を測定する上流側水銀濃度計と、集塵装置の下流側で排ガス中の水銀濃度を測定する下流側水銀濃度計と、活性炭供給装置の活性炭供給量を制御する制御装置を備え、制御装置は、活性炭供給量を所定の最小値以上に維持するとともに、上流側水銀濃度計による水銀濃度測定値と下流側水銀濃度計による水銀濃度測定値とに基づき、上記集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理装置。<Third invention>
An exhaust gas treatment apparatus comprising: a dust collector that removes exhaust gas containing mercury discharged from a furnace; and an activated carbon supply device that blows activated carbon into an exhaust gas passage that guides the exhaust gas from the furnace to the dust collector. An upstream mercury concentration meter that measures the mercury concentration in the exhaust gas upstream of the dust collector, a downstream mercury concentration meter that measures the mercury concentration in the exhaust gas downstream of the dust collector, and the activated carbon supply of the activated carbon supply device A control device is provided to control the amount, and the control device maintains the activated carbon supply amount above a predetermined minimum value, and also converts the mercury concentration measurement value by the upstream mercury concentration meter and the mercury concentration measurement value by the downstream mercury concentration meter. Based on the above, the exhaust gas treatment apparatus, wherein the activated carbon supply amount is controlled so that the mercury concentration in the exhaust gas on the downstream side of the dust collector is not more than a set value.
第一ないし第三発明においては、制御装置は、上流側水銀濃度計又は下流側水銀濃度計による水銀濃度測定値が所定水銀濃度以上であるとき、活性炭供給量を所定の最大値に保つように制御することが好ましい。時間平均としてはさほど水銀濃度が高くないにも拘らず一時的に急激に水銀濃度が高くなったときに、この高い水銀濃度に合せて多量の活性炭を供給すると、その後の時間にわたり過剰に活性炭を供給してしまう結果になる。このような過剰な供給となることを、上記活性炭供給量を所定の最大値に保つように制御することにより防止できる。 In the first to third inventions, when the mercury concentration measurement value by the upstream mercury concentration meter or the downstream mercury concentration meter is equal to or higher than the predetermined mercury concentration, the control device maintains the activated carbon supply amount at a predetermined maximum value. It is preferable to control. Although the mercury concentration is not so high as a time average, when the mercury concentration suddenly increases temporarily, if a large amount of activated carbon is supplied in accordance with this high mercury concentration, the activated carbon will be excessively excessive over the subsequent time. The result will be to supply. Such excessive supply can be prevented by controlling the supply amount of the activated carbon so as to keep the predetermined maximum value.
また、第一発明においては、制御装置は、下流側水銀濃度計による集塵装置の下流側での排ガス中の水銀濃度測定値の、集塵装置の下流側における排ガス中の水銀濃度設定値に対する比率が予め定める比率以上であるとき、活性炭供給量を所定の最大値に保つように制御し、上記予め定める比率が0.4〜0.8の範囲内で定められるようにすることができる。こうすることで、上記予め定める比率が0.4〜0.8の範囲内で、活性炭供給量を所定の最大値に保持するタイミングが定められる。このように定める理由は、上記予め定める比率が0.4より小さいときには、必要以上に多量の活性炭を供給する結果となり、活性炭を過剰に使用するために処理コストが嵩むという問題を生じてしまうこと、また、上記予め定める比率が0.8より大きいときには、活性炭供給量が不足して十分に水銀を吸着除去できず、水銀濃度を水銀濃度設定値以下にまで低減できないという問題を生じてしまうからである。 In the first aspect of the invention, the control device may measure the mercury concentration measurement value in the exhaust gas downstream of the dust collector by the downstream mercury concentration meter, with respect to the mercury concentration set value in the exhaust gas downstream of the dust collector. When the ratio is equal to or higher than a predetermined ratio, the activated carbon supply amount is controlled to be kept at a predetermined maximum value, and the predetermined ratio can be determined within a range of 0.4 to 0.8. By doing so, the timing for holding the activated carbon supply amount at a predetermined maximum value is determined within the range of the predetermined ratio of 0.4 to 0.8. The reason for determining in this way is that when the predetermined ratio is smaller than 0.4, it results in supplying an excessive amount of activated carbon more than necessary, resulting in a problem of increased processing costs due to excessive use of activated carbon. In addition, when the predetermined ratio is larger than 0.8, the activated carbon supply amount is insufficient, and the mercury cannot be sufficiently removed by adsorption, which causes a problem that the mercury concentration cannot be reduced below the mercury concentration setting value. It is.
また、第二発明においては、制御装置は、上流側水銀濃度計による集塵装置の上流側での排ガス中の水銀濃度測定値の、集塵装置の下流側における排ガス中の水銀濃度設定値に対する比率が予め定める比率以上であるとき、活性炭供給量を所定の最大値に保つように制御し、上記予め定める比率が20〜200の範囲内で定められるようにすることができる。こうすることで、上記予め定める比率が20〜200の範囲内で、活性炭供給量を所定の最大値に保持するタイミングを定められる。このように定める理由は、上記予め定める比率が20より小さいときに、必要以上に多量の活性炭を供給する結果となり、活性炭を過剰に使用するために処理コストが嵩むという問題を生じてしまうこと、また、上記予め定める比率が200より大きいときには、活性炭供給量が不足して十分に水銀を吸着除去できず、水銀濃度を水銀濃度設定値以下にまで低減できないという問題を生じてしまうからである。 In the second aspect of the invention, the control device may measure the mercury concentration measurement value in the exhaust gas on the upstream side of the dust collector by the upstream mercury concentration meter with respect to the mercury concentration set value in the exhaust gas on the downstream side of the dust collector. When the ratio is equal to or higher than a predetermined ratio, the activated carbon supply amount is controlled to be kept at a predetermined maximum value, and the predetermined ratio can be determined within a range of 20 to 200. By doing so, the timing at which the activated carbon supply amount is held at a predetermined maximum value can be determined within the above-mentioned predetermined ratio range of 20 to 200. The reason for determining in this way is that when the predetermined ratio is smaller than 20, the result is that an excessive amount of activated carbon is supplied, and there is a problem that the processing cost increases due to excessive use of activated carbon. In addition, when the predetermined ratio is larger than 200, the activated carbon supply amount is insufficient, and the mercury cannot be sufficiently removed by adsorption, causing a problem that the mercury concentration cannot be reduced below the mercury concentration setting value.
また、第三発明において、制御装置は、下流側水銀濃度計による集塵装置の下流側での排ガス中の水銀濃度測定値の、集塵装置の下流側における排ガス中の水銀濃度設定値に対する下流側水銀濃度比率が予め定める比率以上であるとき、又は、上流側水銀濃度計による集塵装置の上流側での排ガス中の水銀濃度測定値の、集塵装置の下流側における排ガス中の水銀濃度設定値に対する上流側水銀濃度比率が予め定める比率以上であるとき、活性炭供給量を所定の最大値に保つように制御し、上記予め定める下流側水銀濃度比率が0.4〜0.8の範囲内で定められ、上記予め定める上流側水銀濃度比率が20〜200の範囲内で定められるようにすることができる。こうすることで、第一には、上記予め定める下流側水銀比率が0.4〜0.8の範囲内で、活性炭供給量を所定の最大値に保持するタイミングを定められる。このように定める理由は、上記予め定める下流側水銀濃度比率が0.4より小さいときには、必要以上に多量の活性炭を供給する結果となり、活性炭を過剰に使用するために処理コストが嵩むという問題を生じてしまうこと、また、上記予め定める下流側水銀濃度比率が0.8より大きいときには、活性炭供給量が不足して十分に水銀を吸着除去できず、水銀濃度を水銀濃度設定値以下にまで低減できないという問題を生じてしまうからである。また、第二には、上記予め定める上流側水銀濃度比率が20〜200の範囲内で活性炭供給量を所定の最大値に保持するタイミングを定められる。このように定める理由は、上記予め定められた上流側水銀濃度比率が20より小さいときには、必要以上に多量の活性炭を供給する結果となり、活性炭を過剰に使用するために処理コストが嵩むという問題を生じてしまうこと、また、上記予め定める上流側水銀濃度比率が200より大きいときには、活性炭供給量が不足して十分に水銀を吸着除去できず、水銀濃度を水銀濃度設定値以下にまで低減できないという問題を生じてしまうからである。 In the third aspect of the invention, the control device may be configured such that the mercury concentration measurement value in the exhaust gas on the downstream side of the dust collector by the downstream mercury concentration meter is downstream of the mercury concentration set value in the exhaust gas on the downstream side of the dust collector. Mercury concentration in the exhaust gas downstream of the dust collector when the mercury concentration ratio on the side is equal to or greater than a predetermined ratio, or the measured mercury concentration in the exhaust gas upstream of the dust collector by the upstream mercury concentration meter When the upstream mercury concentration ratio with respect to the set value is equal to or higher than a predetermined ratio, the activated carbon supply amount is controlled to be kept at a predetermined maximum value, and the predetermined downstream mercury concentration ratio is in the range of 0.4 to 0.8. The upstream upstream mercury concentration ratio can be determined within a range of 20 to 200. By doing so, firstly, the timing at which the activated carbon supply amount is maintained at a predetermined maximum value within the range of the predetermined downstream mercury ratio of 0.4 to 0.8 can be determined. The reason for determining in this way is that when the predetermined downstream mercury concentration ratio is smaller than 0.4, the result is that a larger amount of activated carbon is supplied than necessary, and the processing cost increases due to excessive use of activated carbon. In addition, when the predetermined downstream mercury concentration ratio is larger than 0.8, the activated carbon supply amount is insufficient and the mercury cannot be sufficiently removed by adsorption, and the mercury concentration is reduced below the mercury concentration setting value. This is because the problem that it is impossible is caused. Second, the timing for holding the activated carbon supply amount at a predetermined maximum value within a range of the upstream upstream mercury concentration ratio in the range of 20 to 200 can be determined. The reason for determining in this way is that when the predetermined upstream mercury concentration ratio is smaller than 20, the result is that an excessive amount of activated carbon is supplied, and the processing cost increases due to excessive use of activated carbon. In addition, when the predetermined upstream mercury concentration ratio is larger than 200, the activated carbon supply amount is insufficient and the mercury cannot be sufficiently adsorbed and removed, and the mercury concentration cannot be reduced below the mercury concentration setting value. It will cause problems.
さらには、第一ないし第三発明においては、制御装置は、処理排ガス流量に対する活性炭吹込み重量として定められる活性炭供給量の所定の最小値を、10〜200mg/Nm3に設定して制御することができる。このように活性炭供給量の所定の最小値を10〜200mg/Nm3の範囲で、排ガス中の水銀濃度が低い場合には該範囲のなかで低域の値とし、水銀濃度が高い場合には高域の値とすればよい。活性炭供給量を、排ガス中の水銀濃度が所定値より低い場合には、所定の最小値を保つようにすることで、集塵装置のバグフィルタには、活性炭の吸着層が常に形成されているようになるので、上記所定値よりも高濃度の水銀を含む排ガスが排出された際にも、予め形成された上記吸着層による吸着除去作用とその際に吹き込まれる活性炭による吸着除去作用とにより水銀を速やかにかつ確実に吸着除去でき、集塵後の排ガスの水銀濃度を十分に低濃度とする。上記所定の最小値を10mg/Nm3未満とすることは、集塵装置のバグフィルタに活性炭の吸着層を十分に形成することが困難であるため不適であり、上記所定の最小値を200mg/Nm3以上とすることは、活性炭供給量が過剰となりコストが嵩むので得策ではない。Furthermore, in the first to third inventions, the control device controls the predetermined minimum value of the activated carbon supply amount determined as the activated carbon blowing weight with respect to the treated exhaust gas flow rate to 10 to 200 mg / Nm 3. Can do. Thus, when the predetermined minimum value of the activated carbon supply amount is in the range of 10 to 200 mg / Nm 3 and the mercury concentration in the exhaust gas is low, it is set to a low value in the range, and when the mercury concentration is high A high frequency value may be used. When the mercury concentration in the exhaust gas is lower than the predetermined value, the activated carbon supply amount is maintained at the predetermined minimum value, so that the activated carbon adsorption layer is always formed on the bag filter of the dust collector. Therefore, even when exhaust gas containing mercury at a concentration higher than the predetermined value is discharged, mercury is absorbed by the adsorption removal action by the adsorption layer formed in advance and the adsorption removal action by activated carbon blown at that time. Can be adsorbed and removed quickly and reliably, and the mercury concentration in the exhaust gas after dust collection is made sufficiently low. Setting the predetermined minimum value to less than 10 mg / Nm 3 is inappropriate because it is difficult to sufficiently form an adsorption layer of activated carbon on the bag filter of the dust collector, and the predetermined minimum value is set to 200 mg / Nm. Setting Nm 3 or more is not a good idea because the amount of activated carbon supplied becomes excessive and the cost increases.
さらには、第一ないし第三発明において、制御装置は、処理排ガス流量に対する活性炭吹込み重量として定められる活性炭供給量の所定の最大値を、300〜1000mg/Nm3に設定して制御することができる。このように活性炭供給量の設定最大値を300〜1000mg/Nm3の範囲で、排ガス中の水銀濃度が低い場合には該範囲のなかで低域の値とし、水銀濃度が高い場合には高域の値とすればよい。上記設定最大値を300mg/Nm3未満とすることは、活性炭が排ガス中の水銀を吸着除去できない不具合が生じることがあるため不適であり、上記設定最大値を1000mg/Nm3以上とすることは、活性炭供給量が過剰となりコストが嵩むので得策ではない。Furthermore, in the first to third inventions, the control device can control by setting a predetermined maximum value of the activated carbon supply amount determined as the activated carbon blowing weight with respect to the treated exhaust gas flow rate to 300 to 1000 mg / Nm 3. it can. Thus, when the activated carbon supply amount is within the range of 300 to 1000 mg / Nm 3 and the mercury concentration in the exhaust gas is low, it is set to a low value within the range, and when the mercury concentration is high, it is high. A range value may be used. It is unsuitable for the set maximum value to be less than 300 mg / Nm 3 because there may be a problem that activated carbon cannot absorb and remove mercury in the exhaust gas, and it is inappropriate to set the set maximum value to 1000 mg / Nm 3 or more. This is not a good idea because the activated carbon supply becomes excessive and the cost increases.
また、第一ないし第三発明において、活性炭供給量の最小値から最大値へ向けた増大に関しては、制御装置は、排ガス中の水銀濃度測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量のもとに活性炭を供給し、水銀濃度測定値が上記第一の所定水銀濃度に達した後に、水銀濃度測定値の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の最大値の供給量とし、水銀濃度測定値が上記第二の所定水銀濃度に達した後には、水銀濃度測定値の増加に対してその所定の最大値で活性炭供給量を一定に保つようにすることができる。 In addition, in the first to third inventions, regarding the increase from the minimum value to the maximum value of the activated carbon supply amount, the control device determines that the measured mercury concentration value in the exhaust gas is zero or less than a measurable minimum value. In the range until the first predetermined mercury concentration is reached, activated carbon is supplied based on the predetermined minimum activated carbon supply amount, and after the mercury concentration measurement value reaches the first predetermined mercury concentration, the mercury As the concentration measurement value increases, the activated carbon supply amount is increased linearly from the predetermined minimum value, and when the mercury concentration measurement value reaches the second predetermined mercury concentration, the activated carbon supply amount is supplied to the predetermined maximum value. After the mercury concentration measurement value reaches the second predetermined mercury concentration, the activated carbon supply amount can be kept constant at the predetermined maximum value with respect to the increase in the mercury concentration measurement value.
さらに、第一ないし第三発明において、活性炭供給量の最小値から最大値に向けた増大に関しては、制御装置は、排ガス中の水銀濃度測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値で第一の供給量とする活性炭供給量のもとに活性炭を供給し、水銀濃度測定値が上記第一の所定水銀濃度に達したときに、階段状に活性炭供給量を所定の第二の供給量にまで増大させ、水銀濃度測定値が第二の所定水銀濃度に達するまでの範囲には、活性炭供給量を第二の供給量で一定に保ち、さらに、水銀濃度測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の第三の供給量にまで増大させるように、水銀濃度測定値の増加にしたがって、階段状に活性炭供給量を増大させることを繰り返し、活性炭供給量を所定の最大値にまで増大させた後は、水銀濃度測定値の増加に対してその所定の最大値で活性炭供給量を一定に保つようにすることもできる。 Furthermore, in the first to third inventions, regarding the increase from the minimum value to the maximum value of the activated carbon supply amount, the control device determines that the measured mercury concentration value in the exhaust gas is zero or less than a measurable minimum value. In the range until the first predetermined mercury concentration is reached, activated carbon is supplied based on the amount of activated carbon supplied as the first supply amount at a predetermined minimum value, and the measured mercury concentration is the above-mentioned first predetermined mercury concentration. When the concentration is reached, the activated carbon supply amount is increased stepwise to the predetermined second supply amount, and the activated carbon supply amount is increased within the range until the measured mercury concentration reaches the second predetermined mercury concentration. The mercury concentration measurement so that the activated carbon supply amount is increased to the predetermined third supply amount when the mercury concentration measurement value reaches the second predetermined mercury concentration. Increase activated carbon supply in a stepped manner Repeat and, after increasing the activated carbon supply amount to a predetermined maximum value may also be to keep the activated carbon supply amount constant at its predetermined maximum value with an increase in mercury density measurements.
上記のように、排ガス中の水銀濃度測定値に基づき、活性炭供給量を最小値から最大値へ向けて増大させることにより、活性炭供給装置の供給量調整機構にとって不具合が生じることもなく、活性炭供給量を円滑に制御することができる。 As described above, by increasing the activated carbon supply amount from the minimum value to the maximum value based on the measured value of mercury concentration in the exhaust gas, the activated carbon supply can be performed without causing any trouble in the supply amount adjustment mechanism of the activated carbon supply device. The amount can be controlled smoothly.
[排ガス処理方法]
本発明における排ガス処理方法は、次の第四発明、第五発明そして第六発明のごとく構成され、いずれによっても上記課題は解決される。[Exhaust gas treatment method]
The exhaust gas treatment method according to the present invention is configured as in the following fourth, fifth and sixth inventions, and the above-described problems can be solved by any of them.
<第四発明>
炉から排出され水銀を含む排ガスを集塵装置で除塵処理し、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭供給装置から活性炭を吹き込むこととする排ガス処理方法において、集塵装置の下流側で排ガス中の水銀濃度を下流側水銀濃度計で測定する測定工程と、制御装置で活性炭供給装置の活性炭供給量を制御する制御工程を備え、制御工程で、活性炭供給量を所定の最小値以上に維持するとともに、下流側水銀濃度計による水銀濃度測定値に基づき、上記集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理方法。<Fourth Invention>
In an exhaust gas treatment method in which exhaust gas exhausted from a furnace is dust-removed by a dust collector and activated carbon is blown from an activated carbon supply device into an exhaust gas passage that guides the exhaust gas from the furnace to the dust collector, downstream of the dust collector The measurement process includes measuring the mercury concentration in the exhaust gas with the downstream mercury concentration meter and the control process controlling the activated carbon supply amount of the activated carbon supply device with the control device. In addition to maintaining the above, based on the mercury concentration measurement value by the downstream mercury concentration meter, the activated carbon supply amount should be controlled so that the mercury concentration in the exhaust gas downstream of the dust collector is below the set value. A featured exhaust gas treatment method.
<第五発明>
炉から排出され水銀を含む排ガスを集塵装置で除塵処理し、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭供給装置から活性炭を吹き込むこととする排ガス処理方法において、炉の下流側でかつ集塵装置の上流側で排ガス中の水銀濃度を上流側水銀濃度計で測定する測定工程と、制御装置で活性炭供給装置の活性炭供給量を制御する制御工程を備え、 制御工程で、活性炭供給量を所定の最小値以上に維持するとともに、上流側水銀濃度計による水銀濃度測定値に基づき、上記集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理方法。<Fifth invention>
In an exhaust gas treatment method in which exhaust gas exhausted from a furnace is dust-removed by a dust collector and activated carbon is blown from an activated carbon supply device into an exhaust gas passage that guides the exhaust gas from the furnace to the dust collector. In addition, it has a measurement process that measures the mercury concentration in the exhaust gas with an upstream mercury concentration meter upstream of the dust collector and a control process that controls the activated carbon supply amount of the activated carbon supply apparatus with the control device. Supply the activated carbon so that the mercury concentration in the exhaust gas at the downstream side of the dust collector is below the set value based on the mercury concentration measured by the upstream mercury concentration meter while maintaining the amount above the specified minimum value. An exhaust gas treatment method characterized by controlling the amount.
<第六発明>
炉から排出され水銀を含む排ガスを集塵装置で除塵処理し、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭供給装置から活性炭供給装置から活性炭を吹き込むこととする排ガス処理方法において、炉の下流側でかつ集塵装置の上流側で排ガス中の水銀濃度を上流側水銀濃度計で測定するとともに集塵装置の下流側で排ガス中の水銀濃度を下流側水銀濃度計で測定する測定工程と、制御装置で活性炭供給装置の活性炭供給量を制御する制御工程を備え、制御工程で、活性炭供給量を所定の最小値以上に維持するとともに、上流側水銀濃度計による水銀濃度測定値と下流側水銀濃度計による水銀濃度測定値とに基づき、上記集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理方法。<Sixth Invention>
In an exhaust gas treatment method, exhaust gas containing mercury discharged from a furnace is dust-removed by a dust collector, and activated carbon is blown from the activated carbon supply device to the exhaust gas passage that guides the exhaust gas from the furnace to the dust collector. Process of measuring the mercury concentration in the exhaust gas with the upstream mercury concentration meter downstream of the dust collector and upstream of the dust collector and measuring the mercury concentration in the exhaust gas with the downstream mercury concentration meter downstream of the dust collector And a control process for controlling the activated carbon supply amount of the activated carbon supply device by the control device. In the control process, the activated carbon supply amount is maintained at a predetermined minimum value or more, and the measured mercury concentration value by the upstream mercury concentration meter and the downstream The activated carbon supply amount is controlled so that the mercury concentration in the exhaust gas on the downstream side of the dust collector is below the set value based on the measured mercury concentration value by the side mercury concentration meter. Processing method.
第四ないし第六発明においては、制御工程は、上流側水銀濃度計又は下流側水銀濃度計による水銀濃度測定値が所定水銀濃度以上であるとき、活性炭供給量を所定の最大値に保つように制御することが好ましい。時間平均としてはさほど水銀濃度が高くないにも拘らず一時的に急激に水銀濃度が高くなったときに、この高い水銀濃度に合せて多量の活性炭を供給すると、その後の時間にわたり過剰に活性炭を供給してしまう結果になる。このような過剰な供給となることを、上記活性炭供給量を所定の最大値に保つように制御することにより防止できる。 In the fourth to sixth inventions, the control step keeps the activated carbon supply amount at a predetermined maximum value when the measured mercury concentration value by the upstream mercury concentration meter or the downstream mercury concentration meter is equal to or higher than the predetermined mercury concentration. It is preferable to control. Although the mercury concentration is not so high as a time average, when the mercury concentration suddenly increases temporarily, if a large amount of activated carbon is supplied in accordance with this high mercury concentration, the activated carbon will be excessively excessive over the subsequent time. The result will be to supply. Such excessive supply can be prevented by controlling the supply amount of the activated carbon so as to keep the predetermined maximum value.
また、第四発明においては、制御工程は、下流側水銀濃度計による集塵装置の下流側での排ガス中の水銀濃度測定値の、集塵装置の下流側における排ガス中の水銀濃度設定値に対する比率が予め定める比率以上であるとき、活性炭供給量を所定の最大値に保つように制御し、上記予め定める比率が0.4〜0.8の範囲内で定められるようにすることができる。こうすることで、上記予め定める比率が0.4〜0.8の範囲内で、活性炭供給量を所定の最大値に保持するタイミングが定められる。このように定める理由は、上記予め定める比率が0.4より小さいときには、必要以上に多量の活性炭を供給する結果となり、活性炭を過剰に使用するために処理コストが嵩むという問題を生じてしまうこと、また、上記予め定める比率が0.8より大きいときには、活性炭供給量が不足して十分に水銀を吸着除去できず、水銀濃度を水銀濃度設定値以下にまで低減できないという問題を生じてしまうからである。 In the fourth aspect of the invention, the control step may be configured such that the mercury concentration measurement value in the exhaust gas downstream of the dust collector by the downstream mercury concentration meter is relative to the mercury concentration set value in the exhaust gas downstream of the dust collector. When the ratio is equal to or higher than a predetermined ratio, the activated carbon supply amount is controlled to be kept at a predetermined maximum value, and the predetermined ratio can be determined within a range of 0.4 to 0.8. By doing so, the timing for holding the activated carbon supply amount at a predetermined maximum value is determined within the range of the predetermined ratio of 0.4 to 0.8. The reason for determining in this way is that when the predetermined ratio is smaller than 0.4, it results in supplying an excessive amount of activated carbon more than necessary, resulting in a problem of increased processing costs due to excessive use of activated carbon. In addition, when the predetermined ratio is larger than 0.8, the activated carbon supply amount is insufficient, and the mercury cannot be sufficiently removed by adsorption, which causes a problem that the mercury concentration cannot be reduced below the mercury concentration setting value. It is.
また、第五発明においては、制御工程は、上流側水銀濃度計による集塵装置の上流側での排ガス中の水銀濃度測定値の、集塵装置の下流側における排ガス中の水銀濃度設定値に対する比率が予め定める比率以上であるとき、活性炭供給量を所定の最大値に保つように制御し、上記予め定める比率が20〜200の範囲内で定められるようにすることができる。こうすることで、上記予め定める比率が20〜200の範囲内で、活性炭供給量を所定の最大値に保持するタイミングを定められる。このように定める理由は、上記予め定める比率が20より小さいときに、必要以上に多量の活性炭を供給する結果となり、活性炭を過剰に使用するために処理コストが嵩むという問題を生じてしまうこと、また、上記予め定める比率が200より大きいときには、活性炭供給量が不足して十分に水銀を吸着除去できず、水銀濃度を水銀濃度設定値以下にまで低減できないという問題を生じてしまうからである。 In the fifth aspect of the invention, the control step is for the mercury concentration measurement value in the exhaust gas upstream of the dust collector by the upstream mercury concentration meter to the mercury concentration set value in the exhaust gas downstream of the dust collector. When the ratio is equal to or higher than a predetermined ratio, the activated carbon supply amount is controlled to be kept at a predetermined maximum value, and the predetermined ratio can be determined within a range of 20 to 200. By doing so, the timing at which the activated carbon supply amount is held at a predetermined maximum value can be determined within the above-mentioned predetermined ratio range of 20 to 200. The reason for determining in this way is that when the predetermined ratio is smaller than 20, the result is that an excessive amount of activated carbon is supplied, and there is a problem that the processing cost increases due to excessive use of activated carbon. In addition, when the predetermined ratio is larger than 200, the activated carbon supply amount is insufficient, and the mercury cannot be sufficiently removed by adsorption, causing a problem that the mercury concentration cannot be reduced below the mercury concentration setting value.
また、第六発明において、制御工程は、下流側水銀濃度計による集塵装置の下流側での排ガス中の水銀濃度測定値の、集塵装置の下流側における排ガス中の水銀濃度設定値に対する下流側水銀濃度比率が予め定める比率以上であるとき、又は、上流側水銀濃度計による集塵装置の上流側での排ガス中の水銀濃度測定値の、集塵装置の下流側における排ガス中の水銀濃度設定値に対する上流側水銀濃度比率が予め定める比率以上であるとき、活性炭供給量を所定の最大値に保つように制御し、上記予め定める下流側水銀濃度比率が0.4〜0.8の範囲内で定められ、上記予め定める上流側水銀濃度比率が20〜200の範囲内で定められるようにすることができる。こうすることで、第一には、上記予め定める下流側水銀比率が0.4〜0.8の範囲内で、活性炭供給量を所定の最大値に保持するタイミングを定められる。このように定める理由は、上記予め定める下流側水銀濃度比率が0.4より小さいときには、必要以上に多量の活性炭を供給する結果となり、活性炭を過剰に使用するために処理コストが嵩むという問題を生じてしまうこと、また、上記予め定める下流側水銀濃度比率が0.8より大きいときには、活性炭供給量が不足して十分に水銀を吸着除去できず、水銀濃度を水銀濃度設定値以下にまで低減できないという問題を生じてしまうからである。また、第二には、上記予め定める上流側水銀濃度比率が20〜200の範囲内で活性炭供給量を所定の最大値に保持するタイミングを定められる。このように定める理由は、上記予め定められた上流側水銀濃度比率が20より小さいときには、必要以上に多量の活性炭を供給する結果となり、活性炭を過剰に使用するために処理コストが嵩むという問題を生じてしまうこと、また、上記予め定める上流側水銀濃度比率が200より大きいときには、活性炭供給量が不足して十分に水銀を吸着できず、水銀濃度を水銀濃度設定値以下にまで低減できないという問題を生じてしまうからである。 In the sixth aspect of the invention, the control step includes a downstream of the measured mercury concentration value in the exhaust gas on the downstream side of the dust collector by the downstream mercury concentration meter with respect to the mercury concentration set value in the exhaust gas on the downstream side of the dust collector. Mercury concentration in the exhaust gas downstream of the dust collector when the mercury concentration ratio on the side is equal to or greater than a predetermined ratio, or the measured mercury concentration in the exhaust gas upstream of the dust collector by the upstream mercury concentration meter When the upstream mercury concentration ratio with respect to the set value is equal to or higher than a predetermined ratio, the activated carbon supply amount is controlled to be kept at a predetermined maximum value, and the predetermined downstream mercury concentration ratio is in the range of 0.4 to 0.8. The upstream upstream mercury concentration ratio can be determined within a range of 20 to 200. By doing so, firstly, the timing at which the activated carbon supply amount is maintained at a predetermined maximum value within the range of the predetermined downstream mercury ratio of 0.4 to 0.8 can be determined. The reason for determining in this way is that when the predetermined downstream mercury concentration ratio is smaller than 0.4, the result is that a larger amount of activated carbon is supplied than necessary, and the processing cost increases due to excessive use of activated carbon. In addition, when the predetermined downstream mercury concentration ratio is larger than 0.8, the activated carbon supply amount is insufficient and the mercury cannot be sufficiently removed by adsorption, and the mercury concentration is reduced below the mercury concentration setting value. This is because the problem that it is impossible is caused. Second, the timing for holding the activated carbon supply amount at a predetermined maximum value within a range of the upstream upstream mercury concentration ratio in the range of 20 to 200 can be determined. The reason for determining in this way is that when the predetermined upstream mercury concentration ratio is smaller than 20, the result is that an excessive amount of activated carbon is supplied, and the processing cost increases due to excessive use of activated carbon. When the predetermined upstream mercury concentration ratio is larger than 200, the activated carbon supply amount is insufficient and the mercury cannot be sufficiently adsorbed, and the mercury concentration cannot be reduced below the mercury concentration setting value. It is because it will produce.
さらには、第四ないし第六発明において、制御工程は、処理排ガス流量に対する活性炭吹込み重量として定められる活性炭供給量の所定の最小値を、10〜200mg/Nm3に設定して制御することができる。このように活性炭供給量の所定の最小値を10〜200mg/Nm3の範囲で、排ガス中の水銀濃度が低い場合には該範囲のなかで低域の値とし、水銀濃度が高い場合には高域の値とすればよい。かくして活性炭供給量を、排ガス中の水銀濃度が所定値より低い場合には、所定の最小値を保つようにすることで、集塵装置のバグフィルタには、活性炭の吸着層が常に形成されているようになるので、上記所定値よりも濃度の高い高濃度の水銀を含む排ガスが排出された際にも、予め形成された上記吸着層による吸着除去作用とその際に吹き込まれる活性炭による吸着除去作用とにより水銀を速やかにかつ確実に吸着除去でき、集塵後の排ガスの水銀濃度を十分に低濃度とする。上記所定の最小値を10mg/Nm3未満とすることは、集塵装置のバグフィルタに活性炭の吸着層を十分に形成することが困難であるため不適であり、上記所定の最小値を200mg/Nm3以上とすることは、活性炭供給量が過剰となりコストが嵩むので得策ではない。Furthermore, in the fourth to sixth inventions, the control step may control by setting a predetermined minimum value of the activated carbon supply amount determined as the activated carbon blowing weight with respect to the treated exhaust gas flow rate to 10 to 200 mg / Nm 3. it can. Thus, when the predetermined minimum value of the activated carbon supply amount is in the range of 10 to 200 mg / Nm 3 and the mercury concentration in the exhaust gas is low, it is set to a low value in the range, and when the mercury concentration is high A high frequency value may be used. Thus, when the mercury concentration in the exhaust gas is lower than a predetermined value, the activated carbon supply amount is kept at a predetermined minimum value, so that an activated carbon adsorption layer is always formed on the bag filter of the dust collector. Therefore, even when exhaust gas containing high-concentration mercury with a concentration higher than the predetermined value is discharged, the adsorption removal action by the previously formed adsorption layer and the adsorption removal by the activated carbon blown at that time As a result, mercury can be adsorbed and removed quickly and reliably, and the concentration of mercury in the exhaust gas after dust collection will be sufficiently low. Setting the predetermined minimum value to less than 10 mg / Nm 3 is inappropriate because it is difficult to sufficiently form an adsorption layer of activated carbon on the bag filter of the dust collector, and the predetermined minimum value is set to 200 mg / Nm. Setting Nm 3 or more is not a good idea because the amount of activated carbon supplied becomes excessive and the cost increases.
さらには、第四ないし第六の発明においては、制御工程は、処理排ガス流量に対する活性炭吹込み重量として定められる活性炭供給量の所定の最大値を、300〜1000mg/Nm3に設定して制御することができる。このように活性炭供給量の設定最大値を300〜1000mg/Nm3の範囲で、排ガス中の水銀濃度が低い場合には該範囲のなかで低域の値とし、水銀濃度が高い場合には高域の値とすればよい。上記設定最大値を300mg/Nm3未満とすることは、活性炭が排ガス中の水銀を吸着除去できない不具合が生じることがあるため不適であり、上記設定最大値を1000mg/Nm3以上とすることは、活性炭供給量が過剰となりコストが嵩むので得策ではない。Furthermore, in the fourth to sixth inventions, the control step controls the predetermined maximum value of the activated carbon supply amount determined as the activated carbon blowing weight with respect to the treated exhaust gas flow rate to 300 to 1000 mg / Nm 3. be able to. Thus, when the activated carbon supply amount is within the range of 300 to 1000 mg / Nm 3 and the mercury concentration in the exhaust gas is low, it is set to a low value within the range, and when the mercury concentration is high, it is high. A range value may be used. It is unsuitable for the set maximum value to be less than 300 mg / Nm 3 because there may be a problem that activated carbon cannot absorb and remove mercury in the exhaust gas, and it is inappropriate to set the set maximum value to 1000 mg / Nm 3 or more. This is not a good idea because the activated carbon supply becomes excessive and the cost increases.
また、第四ないし第六発明において、活性炭供給量の最小値から最大値へ向けた増大に関しては、制御工程は、排ガス中の水銀濃度測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量のもとに活性炭を供給し、水銀濃度測定値が上記第一の所定水銀濃度に達した後に、水銀濃度測定値の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の最大値の供給量とし、水銀濃度測定値が上記第二の所定水銀濃度に達した後には、水銀濃度測定値の増加に対してその所定の最大値で活性炭供給量を一定に保つようにすることができる。 In addition, in the fourth to sixth inventions, regarding the increase from the minimum value to the maximum value of the activated carbon supply amount, the control process starts from a value at which the measured mercury concentration in the exhaust gas is zero or less than a measurable minimum value. In the range until the first predetermined mercury concentration is reached, activated carbon is supplied based on the predetermined minimum activated carbon supply amount, and after the mercury concentration measurement value reaches the first predetermined mercury concentration, the mercury As the concentration measurement value increases, the activated carbon supply amount is increased linearly from the predetermined minimum value, and when the mercury concentration measurement value reaches the second predetermined mercury concentration, the activated carbon supply amount is supplied to the predetermined maximum value. After the mercury concentration measurement value reaches the second predetermined mercury concentration, the activated carbon supply amount can be kept constant at the predetermined maximum value with respect to the increase in the mercury concentration measurement value.
さらに、第四ないし第六発明において、活性炭供給量の最小値から最大値に向けた増大に関しては、制御工程は、排ガスの水銀濃度測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値で第一の供給量とする活性炭供給量のもとに活性炭を供給し、水銀濃度測定値が上記第一の所定水銀濃度に達したときに、階段状に活性炭供給量を所定の第二の供給量にまで増大させ、水銀濃度測定値が第二の所定水銀濃度に達するまでの範囲には、活性炭供給量を第二の供給量で一定に保ち、さらに、水銀濃度測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の第三の供給量にまで増大させるように、水銀濃度測定値の増加にしたがって、階段状に活性炭供給量を増大させることを繰り返し、活性炭供給量を所定の最大値にまで増大させた後は、水銀濃度測定値の増加に対してその所定の最大値で活性炭供給量を一定に保つようにすることもできる。 Further, in the fourth to sixth inventions, with respect to the increase from the minimum value to the maximum value of the activated carbon supply amount, the control step is performed from the value where the mercury concentration measurement value of the exhaust gas is zero or less than the measurable minimum value, In the range until the first predetermined mercury concentration is reached, activated carbon is supplied based on the activated carbon supply amount that is the first supply amount at a predetermined minimum value, and the measured mercury concentration value is the first predetermined mercury concentration. When the activated carbon supply amount is increased to the predetermined second supply amount in a stepwise manner, the activated carbon supply amount is increased within the range until the mercury concentration measurement value reaches the second predetermined mercury concentration. Of the mercury concentration measurement value so that the activated carbon supply amount is increased to the predetermined third supply amount when the mercury concentration measurement value reaches the second predetermined mercury concentration. As the increase increases, the activated carbon supply can be increased stepwise. Repeating, after increasing the activated carbon supply amount to a predetermined maximum value may also be to keep the activated carbon supply amount constant at its predetermined maximum value with an increase in mercury density measurements.
上記のように、排ガスの水銀濃度測定値に基づき、活性炭供給量の最小値から最大値へ向けて増大させることにより、活性炭供給装置の供給量調整機構にとって不具合が生じることもなく、活性炭供給量を円滑に制御することができる。 As described above, by increasing the activated carbon supply amount from the minimum value to the maximum value based on the mercury concentration measurement value of the exhaust gas, the activated carbon supply amount does not cause a problem for the supply amount adjustment mechanism of the activated carbon supply device. Can be controlled smoothly.
このような本発明によれば、第一発明そして第四発明では、集塵装置の下流側で、活性炭による水銀吸着除去後の排ガス中の実際の水銀濃度を水銀濃度計で測定して活性炭供給量を調整するので、活性炭供給量を過不足なく調整することで、この水銀濃度を許容される設定値以下とすることができる。 According to the present invention, in the first invention and the fourth invention, on the downstream side of the dust collector, the actual mercury concentration in the exhaust gas after the mercury adsorption removal by activated carbon is measured by the mercury concentration meter and activated carbon is supplied. Since the amount is adjusted, the mercury concentration can be reduced to a permissible set value or less by adjusting the activated carbon supply amount without excess or deficiency.
第二発明そして第五発明では、炉よりも下流側で集塵装置よりも上流側で、水銀濃度を水銀濃度計で測定し、その測定値に基づき活性炭供給量を調整して集塵装置の下流側での排ガス中の水銀濃度を許容される設定値以下とする。炉からの排ガス中の水銀濃度が変動した場合に、排ガスの集塵装置への流入前に水銀濃度を測定しその測定値に基づき、速やかに活性炭供給量を適正量に調整することができ、水銀濃度の変動に対して遅れが生じることなく確実に煙突から排出される排ガス中の水銀濃度を許容される設定値以下とすることができる。 In the second invention and the fifth invention, the mercury concentration is measured with a mercury concentration meter downstream of the furnace and upstream of the dust collector, and the activated carbon supply amount is adjusted based on the measured value to adjust the dust collector. The mercury concentration in the exhaust gas on the downstream side is set to an allowable value or less. When the mercury concentration in the exhaust gas from the furnace fluctuates, the mercury concentration can be measured before the exhaust gas flows into the dust collector and the activated carbon supply can be quickly adjusted to an appropriate amount based on the measured value. The mercury concentration in the exhaust gas discharged from the chimney can be surely made to be an allowable set value or less without causing a delay with respect to the fluctuation of the mercury concentration.
さらに第三発明そして第六発明では、炉よりも下流側で集塵装置より上流側で水銀濃度を水銀濃度計で測定するとともに、集塵装置の下流側でも水銀濃度を水銀濃度計で測定し、これらの二つの測定値に基づき活性炭供給量を調整して集塵装置の下流側での水銀濃度を許容される設定値以下とする。炉よりも下流側で集塵装置よりも上流側での水銀濃度測定値に基づき、活性炭供給量のベース値を定める制御を行い、さらに、集塵装置の下流側での水銀濃度測定値に基づき、活性炭供給量をベース値に対して増減して調整するように、活性炭供給量を補完して制御する。このようにすることにより、水銀濃度の変動に対して遅れが生じることなくより確実に煙突から排出される排ガス中の水銀濃度を許容される設定値以下にできる。 In the third and sixth inventions, the mercury concentration is measured with a mercury concentration meter downstream of the furnace and upstream of the dust collector, and the mercury concentration is also measured with a mercury concentration meter downstream of the dust collector. Based on these two measured values, the activated carbon supply amount is adjusted so that the mercury concentration on the downstream side of the dust collector is not more than the allowable set value. Based on the mercury concentration measurement value downstream of the furnace and upstream of the dust collector, control is performed to determine the base value of the activated carbon supply, and based on the mercury concentration measurement value downstream of the dust collector. The activated carbon supply amount is complemented and controlled so as to adjust the activated carbon supply amount to be increased or decreased with respect to the base value. By doing in this way, the mercury concentration in the exhaust gas discharged from the chimney can be more reliably reduced to an allowable setting value or less without causing a delay with respect to the fluctuation of the mercury concentration.
第一発明そして第四発明では、集塵装置の下流側での実際の水銀濃度を測定するので、確実に煙突から排出される排ガス中の水銀濃度が設定値以下になるが、炉からの排ガス中の水銀濃度が変動したときには、その変動に対して活性炭供給量の調整に遅れが伴う。一方、第二発明そして第五発明では、集塵装置よりも上流側で水銀濃度を測定するので、上記変動に対しても速やかに対応できる。さらに、第三発明および第六発明では、集塵装置よりも上流側で水銀濃度を測定し、さらに集塵装置の下流側で水銀濃度を測定し、これらの二つの測定値に基づき活性炭供給量を調整することで、水銀濃度の変動に対して遅れが生じることなく、より確実に煙突から排出される排ガス中の水銀濃度を許容される設定値以下にできる。 In the first invention and the fourth invention, since the actual mercury concentration at the downstream side of the dust collector is measured, the mercury concentration in the exhaust gas discharged from the chimney is surely below the set value, but the exhaust gas from the furnace When the mercury concentration in the tank fluctuates, the adjustment of the activated carbon supply amount is delayed with respect to the fluctuation. On the other hand, in the second invention and the fifth invention, since the mercury concentration is measured on the upstream side of the dust collector, it is possible to quickly cope with the above fluctuation. Further, in the third and sixth inventions, the mercury concentration is measured on the upstream side of the dust collector, the mercury concentration is further measured on the downstream side of the dust collector, and the activated carbon supply amount is based on these two measured values. By adjusting the, the mercury concentration in the exhaust gas discharged from the chimney can be more reliably reduced to an allowable setting value or less without causing a delay with respect to fluctuations in the mercury concentration.
このように本発明によれば、排ガス中の水銀濃度を集塵装置の下流側の位置で測定し、あるいは集塵装置の上流側で測定し、あるいは集塵装置の上流側そして下流側で測定して、活性炭量を所定の最小値以上に維持しつつ水銀濃度測定値にもとづき吹き込む活性炭の供給量を調整するので、煙突から排出される排ガス中水銀濃度は確実に所定値以下となり、しかも活性炭は過不足なく供給されることとなり、活性炭の使用量を抑制できるとともに、排ガス処理費用の低減化を図れる。 Thus, according to the present invention, the mercury concentration in the exhaust gas is measured at a position downstream of the dust collector, or is measured upstream of the dust collector, or is measured upstream and downstream of the dust collector. The amount of activated carbon to be blown in is adjusted based on the mercury concentration measurement value while maintaining the amount of activated carbon above the predetermined minimum value, so that the mercury concentration in the exhaust gas discharged from the chimney is surely below the predetermined value, and the activated carbon Is supplied without excess and deficiency, and the amount of activated carbon used can be suppressed, and the cost of exhaust gas treatment can be reduced.
以下、添付図面にもとづき、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
以下に示される本実施形態では、水銀を含む排ガスを排出する炉として、廃棄物を焼却する焼却炉について説明しているが、本発明は、これに限らず、セメントキルン炉、非鉄金属製錬炉等の各種炉から排出される水銀を含む排ガスの処理装置及び処理方法として用いることができる。 In the present embodiment shown below, an incinerator that incinerates waste is described as a furnace for discharging exhaust gas containing mercury. However, the present invention is not limited to this, and the present invention is not limited to this. It can be used as a treatment apparatus and treatment method for exhaust gas containing mercury discharged from various furnaces such as a furnace.
廃棄物を焼却する焼却炉からの排ガスに対して、集塵のために設置したバグフィルタの上流位置で排ガス流路へ活性炭を吹き込むことで、バグフィルタの下流側での水銀濃度を極低濃度レベルに抑制することが可能であるが、従来は廃棄物の種類や量の変動により、焼却炉からの排ガス中の水銀濃度が変動しバグフィルタの下流側において一時的に水銀濃度が上昇する場合に備え、活性炭を常時、多量に吹き込む必要があり、排ガス処理費用が嵩むことになっている。そこで、本実施形態では、水銀濃度計により水銀濃度を測定し、測定された水銀濃度にもとづき、過不足ない活性炭量を排ガス流路へ吹き込むこととしている。水銀濃度計は、連続的に測定する形式が好ましい。 For the exhaust gas from the incinerator that incinerates the waste, the activated carbon is blown into the exhaust gas flow path at the upstream position of the bag filter installed for dust collection, so that the mercury concentration downstream of the bag filter is extremely low. Conventionally, the mercury concentration in the exhaust gas from the incinerator fluctuates due to fluctuations in the type and amount of waste, and the mercury concentration temporarily increases downstream of the bag filter. Therefore, it is necessary to constantly blow a large amount of activated carbon, which increases the cost of exhaust gas treatment. Therefore, in the present embodiment, the mercury concentration is measured by a mercury concentration meter, and an activated carbon amount that is not excessive or insufficient is blown into the exhaust gas passage based on the measured mercury concentration. The mercury concentration meter is preferably in the form of continuous measurement.
<第一実施形態>
本実施形態装置の概要構成を示す図1において、焼却炉1からの排ガスを煙突6まで導く排ガス流路に、上流側からボイラ2、さらに集塵装置としてバグフィルタ4が配設されており、バグフィルタ4の上流位置で排ガス流路へ、排ガス中の水銀を吸着除去するための活性炭を吹き込む活性炭供給装置3とこれを制御する制御装置7が設けられており、バグフィルタ4の下流側であるバグフィルタ4の出口又は煙突6に排ガス中の水銀濃度を測定する水銀濃度計5が設けられ、該水銀濃度計5の測定値を出力信号として上記制御装置7へ送るように、上記水銀濃度計5が該制御装置7に接続されている。<First embodiment>
In FIG. 1 which shows a schematic configuration of the apparatus of the present embodiment, a
かかる本実施形態装置では水銀濃度計5によってバグフィルタ4の下流側における排ガス中の水銀濃度が測定される。
In the apparatus of this embodiment, the
水銀濃度計5の測定値は制御装置7に送られ、この測定値が予め定められた所定水銀濃度値と比較されて、活性炭供給装置3が制御される。
The measured value of the
測定された水銀濃度が上記所定水銀濃度値に対して高い場合は活性炭供給量が増大される。活性炭供給量が増大された後、水銀濃度が上記所定水銀濃度値以下となる状態が持続している場合には、活性炭供給量を低減するように制御する。 When the measured mercury concentration is higher than the predetermined mercury concentration value, the activated carbon supply amount is increased. After the activated carbon supply amount is increased, when the state where the mercury concentration is equal to or lower than the predetermined mercury concentration value is maintained, the activated carbon supply amount is controlled to be reduced.
上記活性炭供給装置3は、具体的には、活性炭を収容するホッパ3Aと、該ホッパ3Aの下部出口に設けられたロータリ形式の切出し部材3Bと、さらにその下方に設けられたバルブまたはダンパ3Cとを有している。かかる活性炭供給装置3では、制御装置7からの指令信号を受けて、切出し部材3Bのロータリの回転数、バルブの開度及びダンパ3Cが開度のうち少なくとも一つが調整され活性炭が供給量を調整されて上記排ガス流路へ供給される。
Specifically, the activated carbon supply device 3 includes a hopper 3A that accommodates activated carbon, a rotary-
<第二実施形態>
図2に示される本実施形態は、既述の第一実施形態に比し、水銀濃度計5の配設位置のみが異なり他は同じである。したがって、図2では、図1の第一実施形態における部位と共通な部位について同一符号を付すことで、その説明は省略する。<Second embodiment>
The present embodiment shown in FIG. 2 is the same as the first embodiment described above except for the arrangement position of the
本実施形態では、図2に見られるように、水銀濃度計5は焼却炉1の下流側かつバグフィルタ4よりも上流側であって、活性炭供給装置3による活性炭吹込み位置よりも上流側の位置で排ガス中の水銀濃度を測定するように配設されている。本実施形態では、制御装置7によりこの測定位置での水銀濃度および活性炭供給量と、バグフィルタ4よりも下流位置での水銀濃度との関係が蓄積されたデータにもとづき把握されている。したがって、活性炭吹込み位置よりも上流側での水銀濃度を測定しその水銀濃度測定値と活性炭供給量とから、バグフィルタ4の下流での水銀濃度を推定できる。すなわち、制御装置7によって上記活性炭吹込み位置よりも上流側での水銀濃度測定値に基づき、バグフィルタ4の下流での水銀濃度を推定し、その推定水銀濃度を予め定める所定水銀濃度値以下とするために必要な活性炭供給量を求めることができ、活性炭供給装置3の活性炭供給量を制御する。その結果としてバグフィルタ4の下流での水銀濃度を所定水銀濃度値以下としている。
In this embodiment, as shown in FIG. 2, the
かかる本実施形態では、焼却炉1からの排ガス中の水銀濃度に変動があった場合、この水銀濃度の変動を焼却炉1の下流側かつ活性炭供給装置3による活性炭吹込み位置よりも上流側の位置で水銀濃度計5が測定して検知するため、速やかに活性炭供給量を調整する対応ができるので、タイムラグがなく、煙突内の排ガス中の水銀濃度を確実に設定値以下に維持することができる。図2に図示された例では、水銀濃度計5による水銀濃度の測定位置は、活性炭吹込み位置よりも上流側であるが、これに限定されずに、バグフィルタ4の上流側であって、該活性炭吹込み位置よりも下流側であってもよい。
In this embodiment, when there is a change in the mercury concentration in the exhaust gas from the
<第三実施形態>
図3に示される本実施形態は、前第二実施形態に比し、活性炭供給装置3による活性炭吹込み位置よりも上流側に配された第一水銀濃度計5Aに加え、バグフィルタ4の下流側であるバグフィルタ4の出口又は煙突6に排ガス中の水銀濃度を測定する第二水銀濃度計5Bも設けられ、該第二水銀濃度計5Bの測定値を出力信号として制御装置7へ送られるようになっている。この点以外は第二実施形態と同じである。したがって、図3では、図2の第二実施形態における部位と共通な部位について同一符号を付すことで、その説明は省略する。<Third embodiment>
Compared with the previous second embodiment, the present embodiment shown in FIG. 3 is downstream of the bag filter 4 in addition to the first
本実施形態では、図3に見られるように、前記第二実施形態での活性炭供給装置3による活性炭吹込み位置よりも上流側に配された第一水銀濃度計5Aに加え、バグフィルタ4の出口に第二水銀濃度計5Bが設けられている。第二実施形態と同様に活性炭供給装置3による活性炭吹込み位置よりも上流側における第一水銀濃度計5Aによる測定値に基づいて活性炭供給量のベース値を制御し、さらにバグフィルタ4の出口における第二水銀濃度計5Bによる測定値に基づき、第一水銀濃度計5Aによる測定値に基づく制御を補完するようにして、活性炭供給量を増減するように制御する。
In this embodiment, as seen in FIG. 3, in addition to the first
活性炭供給装置3による活性炭吹込み位置よりも上流側での第一水銀濃度計5Aによる水銀濃度測定値が短時間で増加する現象(測定値ピークという)が検出されてから、バグフィルタ4の出口において、第二水銀濃度計5Bによる水銀濃度測定値ピークが検出されるまではタイムラグがあるので、活性炭供給装置3による活性炭吹込み位置よりも上流側の水銀濃度測定値ピークが十分に収まったときでもバグフィルタ4の出口において水銀濃度測定値ピークが検出される可能性がある。そこで、第二水銀濃度計5Bを設置しバグフィルタ4の出口の水銀濃度測定値に基づき活性炭供給量を制御することによって、第一水銀濃度計5Aの測定値に基づく制御を補完して、煙突内の排ガス中の水銀濃度をさらに確実に設定値以下にまで下げることができる。
The outlet of the bag filter 4 is detected after a phenomenon in which the mercury concentration measured value by the first
本発明の実施の形態では、制御装置は、水銀濃度計による水銀濃度測定値と活性炭供給量との予め定める対応関係に基づき、活性炭供給量を制御するようにしてもよい。予め定める水銀濃度測定値と活性炭供給量との対応関係としては、種々の形態を適用することができる。 In the embodiment of the present invention, the control device may control the activated carbon supply amount based on a predetermined correspondence between the mercury concentration measured value by the mercury concentration meter and the activated carbon supply amount. Various forms can be applied as the correspondence between the predetermined mercury concentration measurement value and the activated carbon supply amount.
予め定める水銀濃度測定値と活性炭供給量との対応関係としては、測定した排ガス中水銀濃度の増加にしたがって、活性炭供給量を、所定の最小値から始まり次第に増加して所定の最大値とする対応関係の形態にしてもよい。活性炭供給量の所定の最小値としては、焼却炉1から排ガスが排出されている運転中は排ガス中の水銀濃度が極めて低い場合にも、最低限としてこの最小値の供給量で常時活性炭を吹き込むことにより、煙突内の排ガス中の水銀濃度を設定値以下に確実に維持できるようにする活性炭供給量の値を定める。排ガス中水銀濃度測定値の増加にしたがって、活性炭供給量を所定の最小値から次第に増加させ、排ガス中水銀濃度に対して適正な量の活性炭を供給する。活性炭供給量を所定の最小値から次第に増大させる、対応関係の形態では、水銀濃度の増加にしたがって、活性炭供給量を、直線的に増大させてもよいし、複数段階に分けて階段状に増大させるようにしてもよく、種々の対応関係の形態を採用できる。活性炭の供給量を調整する手段として、活性炭供給装置のロータリ形式切出し部材のロータリの回転数、バルブの開度及びダンパの開度などを単独で又は組み合わせて調整することを行うが、これらの調整機構の調整範囲や調整の特性(例えば供給量の増減が連続的に可能、又は段階的に可能等)に適した対応関係の形態を採用することが好ましい。
The correspondence relationship between the measured mercury concentration value and the activated carbon supply amount is determined as the activated carbon supply amount starts from a predetermined minimum value and gradually increases to a predetermined maximum value as the measured mercury concentration in the exhaust gas increases. It may be in the form of a relationship. As the predetermined minimum value of the activated carbon supply amount, during the operation in which the exhaust gas is discharged from the
水銀濃度測定値と活性炭供給量との対応関係の各種形態の例を図4に示す。 FIG. 4 shows examples of various forms of correspondence between the measured mercury concentration value and the activated carbon supply amount.
図4(A)に示す形態は、排ガス中水銀濃度の測定値が零又は測定可能な限界最小値未満の値から、予め定める所定水銀濃度までの範囲には、所定の最小値の活性炭供給量のもとに活性炭を供給し、水銀濃度の測定値が上記所定水銀濃度に達したときに、ステップ状に活性炭供給量を所定の最大値にまで増大させ、さらに、排ガス中水銀濃度の増加に対して、活性炭供給量をその所定の最大値で一定に保つ形態である。水銀濃度の測定値が所定水銀濃度より低い場合には活性炭供給量を所定の最小値とし、所定水銀濃度より高い場合には活性炭供給量を所定の最大値とする対応関係の形態であり、簡単な制御機構で活性炭供給量を制御することができる。 In the form shown in FIG. 4 (A), the activated carbon supply amount of a predetermined minimum value is within a range from a measured value of the mercury concentration in exhaust gas that is zero or less than a measurable minimum minimum value to a predetermined predetermined mercury concentration. When activated carbon is supplied under the above conditions and the measured value of mercury concentration reaches the specified mercury concentration, the activated carbon supply amount is increased in steps to the specified maximum value, and further, the mercury concentration in the exhaust gas is increased. On the other hand, the activated carbon supply amount is kept constant at the predetermined maximum value. When the measured value of mercury concentration is lower than the predetermined mercury concentration, the activated carbon supply amount is set to the predetermined minimum value, and when it is higher than the predetermined mercury concentration, the activated carbon supply amount is set to the predetermined maximum value. The activated carbon supply amount can be controlled by a simple control mechanism.
図4(B)に示す形態は、排ガス中水銀濃度の測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量(第一の供給量)のもとに活性炭を供給し、水銀濃度の測定値が上記第一の所定水銀濃度に達したときに、ステップ状に活性炭供給量を所定の第二の供給量にまで増大させ、排ガス中水銀濃度の増加に対して活性炭供給量を第二の供給量で一定に保ち、さらに、水銀濃度の測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の第三の供給量にまで増大させるように、排ガス中水銀濃度の増加にしたがって、細かい階段状で活性炭供給量を増大させることを繰り返し、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。排ガス中水銀濃度の増加にしたがって、活性炭供給量を所定の最小値から所定の最大値にまで階段状で増大させることにより、排ガス中水銀濃度に対して活性炭の供給をより適正な量で供給するように制御することができる。 In the form shown in FIG. 4 (B), the measured value of the mercury concentration in the exhaust gas is zero or less than the measurable minimum value, and reaches the first predetermined mercury concentration. Activated carbon is supplied under the activated carbon supply amount (first supply amount), and when the measured value of the mercury concentration reaches the first predetermined mercury concentration, the activated carbon supply amount is changed in a stepped manner to the predetermined second supply amount. When the supply amount of activated carbon is kept constant at the second supply amount with respect to the increase in the mercury concentration in the exhaust gas, and when the measured value of the mercury concentration reaches the second predetermined mercury concentration, In order to increase the activated carbon supply amount to a predetermined third supply amount, the activated carbon supply amount is repeatedly increased in small steps as the mercury concentration in the exhaust gas increases, and the activated carbon supply amount is set to a predetermined maximum value. After the increase, the increase in mercury concentration in the exhaust gas As a form to maintain the activated carbon supply amount constant at a predetermined maximum value. As the mercury concentration in the exhaust gas increases, the supply amount of activated carbon is increased in a stepped manner from the predetermined minimum value to the predetermined maximum value, thereby supplying the activated carbon in a more appropriate amount with respect to the mercury concentration in the exhaust gas. Can be controlled.
図4(C)に示す形態は、排ガス中水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させる形態である。また、図4(D)に示す形態は、排ガス中水銀濃度の測定値が所定水銀濃度に達するまでの範囲には、排ガス中水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度の測定値が上記所定の排ガス中水銀濃度に達したときに、活性炭供給量を所定の最大値の供給量とし、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。図4(C)、(D)に示す形態では、排ガス中水銀濃度の増加にしたがって、所定の最小値から連続的に活性炭供給量を増大させることにより、排ガス中水銀濃度に対してきめ細かく適正量で活性炭を供給するように制御することができる。 The form shown in FIG. 4C is a form in which the activated carbon supply amount is linearly increased from a predetermined minimum value as the mercury concentration in the exhaust gas increases. Further, in the form shown in FIG. 4D, activated carbon is linearly supplied from a predetermined minimum value as the mercury concentration in the exhaust gas increases until the measured value of the mercury concentration in the exhaust gas reaches the predetermined mercury concentration. The amount of activated carbon was increased to a predetermined maximum value when the measured value of the mercury concentration reached the predetermined mercury concentration in the exhaust gas, and the activated carbon supply amount was increased to the predetermined maximum value. After that, the activated carbon supply amount is kept constant at the predetermined maximum value with respect to the increase in the mercury concentration in the exhaust gas. In the forms shown in FIGS. 4C and 4D, the amount of activated carbon supplied is continuously increased from a predetermined minimum value in accordance with the increase in the concentration of mercury in the exhaust gas. Can be controlled to supply activated carbon.
図4(E)に示す形態は、排ガス中水銀濃度の測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量のもとに活性炭を供給し、水銀濃度の測定値が上記第一の所定水銀濃度に達した後に、排ガス中水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度の測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の最大値の供給量とし、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。図4(E)に示す形態は、図4(A)と(C)に示す形態を組み合わせた形態であり、それぞれの形態の特徴、効果を併せもつ。 In the form shown in FIG. 4 (E), there is a predetermined minimum value in the range from the measured value of the mercury concentration in the exhaust gas being zero or less than the minimum measurable minimum value to the first predetermined mercury concentration. Activated carbon is supplied under the activated carbon supply amount, and after the measured mercury concentration reaches the first specified mercury concentration, the activated carbon supply amount is linearly increased from the predetermined minimum value as the mercury concentration in the exhaust gas increases. When the measured value of the mercury concentration reaches the second predetermined mercury concentration, the activated carbon supply amount is set to the predetermined maximum supply amount, and after the activated carbon supply amount is increased to the predetermined maximum value, The activated carbon supply amount is kept constant at the predetermined maximum value with respect to the increase in the mercury concentration in the exhaust gas. The form shown in FIG. 4E is a form in which the forms shown in FIGS. 4A and 4C are combined, and has the characteristics and effects of the respective forms.
図4(F)に示す形態は、排ガス中水銀濃度の測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量(第一の供給量)のもとに活性炭を供給し、水銀濃度の測定値が上記第一の所定水銀濃度に達した後に、排ガス中水銀濃度の増加にしたがって、第一の供給量から直線的に活性炭供給量を増大させ、第二の所定水銀濃度に対応する第二の供給量にまで増大させ、その後排ガス中水銀濃度の増加に対して活性炭供給量を第二の供給量で一定に保ち、さらに、第三の所定水銀濃度に達したときに、第二の供給量から直線的に活性炭供給量を増大させ、第四の所定水銀濃度に対応する第三の供給量にまで増大させ、その後排ガス中水銀濃度の増加に対して活性炭供給量を第三の供給量で一定に保ち、このような排ガス中水銀濃度の増加に対して活性炭供給量を一定に保つことと増大させることを繰り返し、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。図4(F)に示す形態は、図4(B)と(D)に示す形態を組み合わせた形態であり、それぞれの形態の特徴、効果を併せもつ。 In the form shown in FIG. 4 (F), there is a predetermined minimum value in a range from the measured value of the mercury concentration in the exhaust gas to zero or less than the measurable minimum value to the first predetermined mercury concentration. Activated carbon is supplied under the activated carbon supply amount (first supply amount), and after the measured mercury concentration reaches the first specified mercury concentration, the first supply is performed as the mercury concentration in the exhaust gas increases. The activated carbon supply amount is increased linearly from the amount to a second supply amount corresponding to the second predetermined mercury concentration, and then the activated carbon supply amount is increased with respect to the increase in the mercury concentration in the exhaust gas. And when the third predetermined mercury concentration is reached, the activated carbon supply amount is increased linearly from the second supply amount to the third supply amount corresponding to the fourth predetermined mercury concentration. After that, the activated carbon supply amount is increased with increasing mercury concentration in the exhaust gas. After the increase of the activated carbon supply amount to a predetermined maximum value, the activated carbon supply amount is kept constant and increased with respect to such an increase in the mercury concentration in the exhaust gas. The activated carbon supply amount is kept constant at the predetermined maximum value with respect to the increase in the mercury concentration in the exhaust gas. The form shown in FIG. 4F is a form obtained by combining the forms shown in FIGS. 4B and 4D, and has the characteristics and effects of the respective forms.
図4(G)に示す形態は、排ガス中水銀濃度の測定値が所定水銀濃度に達するまでの間、排ガス中水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度の測定値が上記所定水銀濃度に達したときに、ステップ状に活性炭供給量を所定の最大値にまで増大させ、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。排ガス中水銀濃度の測定値が比較的中程度の所定の値より低い場合には、排ガス中水銀濃度の増加にしたがって、所定の最小値から連続的に活性炭供給量を増大させることにより、排ガス中水銀濃度に対してきめ細かく適正量で活性炭を供給するように制御することができ、排ガス中水銀濃度の測定値が比較的中程度の所定水銀濃度より高い場合には、活性炭供給量を所定の最大値とすることとする対応関係であり、活性炭の供給量を調整する複数の手段を有効に利用して活性炭供給量を適切量で制御することができる。 In the form shown in FIG. 4 (G), the activated carbon supply amount is linearly increased from a predetermined minimum value as the mercury concentration in the exhaust gas increases until the measured value of the mercury concentration in the exhaust gas reaches the predetermined mercury concentration. When the measured value of the mercury concentration reaches the predetermined mercury concentration, the activated carbon supply amount is increased to the predetermined maximum value in a stepwise manner, and after the activated carbon supply amount is increased to the predetermined maximum value, the exhaust gas This is a form in which the activated carbon supply amount is kept constant at the predetermined maximum value with respect to the increase in the medium mercury concentration. When the measured value of the mercury concentration in the exhaust gas is lower than a relatively medium predetermined value, the activated carbon supply amount is continuously increased from the predetermined minimum value in accordance with the increase in the mercury concentration in the exhaust gas. The activated carbon can be controlled to be supplied in an appropriate amount finely with respect to the mercury concentration, and if the measured value of the mercury concentration in the exhaust gas is higher than the predetermined moderate mercury concentration, the activated carbon supply amount is set to the predetermined maximum value. It is a correspondence relationship to be a value, and the activated carbon supply amount can be controlled with an appropriate amount by effectively using a plurality of means for adjusting the supply amount of activated carbon.
図4(H)に示す形態は、排ガス中水銀濃度の測定値が第一の所定水銀濃度に達するまでの間、排ガス中水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度の測定値が上記第一の所定水銀濃度に達したときに、活性炭供給量を所定の第一の供給量とし、水銀濃度の測定値が第二の所定水銀濃度に達するまでの間、活性炭供給量を所定の第一の供給量で一定に保ち、水銀濃度の測定値が上記第二の所定水銀濃度に達したときに、ステップ状に活性炭供給量を所定の最大値にまで増大させ、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。図4(H)に示す形態は、図4(G)に示す形態に、排ガス中水銀濃度の測定値が比較的中程度の所定の範囲(第一の所定水銀濃度から第二の所定銀濃度までの範囲)では、活性炭供給量を第一の所定供給量で一定に保つことを組み合わせた形態であり、活性炭の供給をより適正な量で供給するように制御することができる。 In the form shown in FIG. 4 (H), the amount of activated carbon supplied linearly from a predetermined minimum value as the mercury concentration in the exhaust gas increases until the measured value of the mercury concentration in the exhaust gas reaches the first predetermined mercury concentration. When the measured value of mercury concentration reaches the first predetermined mercury concentration, the activated carbon supply amount is set to the predetermined first supply amount, and the measured value of mercury concentration reaches the second predetermined mercury concentration. Until the activated carbon supply amount is kept constant at the predetermined first supply amount, and when the measured value of the mercury concentration reaches the second predetermined mercury concentration, the activated carbon supply amount is set to the predetermined maximum value in steps. After the activated carbon supply amount is increased to a predetermined maximum value, the activated carbon supply amount is kept constant at the predetermined maximum value with respect to the increase in the mercury concentration in the exhaust gas. The form shown in FIG. 4 (H) is similar to the form shown in FIG. 4 (G) in a predetermined range where the measured value of the mercury concentration in the exhaust gas is relatively medium (from the first predetermined mercury concentration to the second predetermined silver concentration). Up to the above range) is a mode in which the activated carbon supply amount is kept constant at the first predetermined supply amount, and the supply of activated carbon can be controlled to be supplied in a more appropriate amount.
また、制御装置は、水銀濃度計による水銀濃度測定値と活性炭供給量とを予め定める対応関係に基づき、活性炭供給量を制御する場合に、予め定める水銀濃度測定値と活性炭供給量との対応関係の形態として、測定した排ガス中水銀濃度が零又は水銀濃度計の測定可能な限界最小値未満又は予め定める所定値より低い場合には、活性炭の供給を行わず、排ガス中水銀濃度が零又は測定可能な限界最小値又は予め定めた所定値より高い場合には、排ガス中水銀濃度の増加にしたがって、活性炭供給量を次第に増加させる対応関係の形態としてもよい。また、排ガス中水銀濃度の増加にしたがって、活性炭供給量を増加させる際に、直線的に増加させてもよいし、階段状に増加させてもよい。 In addition, when the control device controls the activated carbon supply amount based on the predetermined relationship between the mercury concentration measurement value by the mercury concentration meter and the activated carbon supply amount, the correspondence relationship between the predetermined mercury concentration measurement value and the activated carbon supply amount. If the measured mercury concentration in the exhaust gas is zero or less than the minimum limit value measurable by the mercury concentration meter or lower than a predetermined value, activated carbon is not supplied and the mercury concentration in the exhaust gas is zero or measured. When it is higher than the minimum possible limit value or a predetermined value, it may be in the form of a correspondence relationship in which the activated carbon supply amount is gradually increased as the mercury concentration in the exhaust gas increases. Moreover, when increasing the activated carbon supply amount according to the increase in the mercury concentration in the exhaust gas, it may be increased linearly or stepwise.
また、上記対応関係の他の形態としては、測定した排ガス中水銀濃度が零又は水銀濃度計の測定可能な限界最小値未満又は予め定める第一の所定水銀濃度より低い場合には、活性炭の供給を行わず、排ガス中水銀濃度が零又は測定可能な限界最小値又は予め定める第一の所定水銀濃度より高く、予め定める第二の所定水銀濃度より低い範囲で、排ガス中水銀濃度の増加にしたがって、活性炭供給量を次第に増加させ、排ガス中水銀濃度の測定値が上記第二の所定水銀濃度より高い範囲で、活性炭供給量を所定の供給量として一定に保つ対応関係の形態としてもよい。また、排ガス中水銀濃度の増加にしたがって、活性炭供給量を増加させる際に、直線的に増加させてもよいし、階段状に増加させてもよい。 Further, as another form of the above correspondence relationship, when the measured mercury concentration in the exhaust gas is zero or less than the minimum measurable limit value of the mercury concentration meter or lower than the predetermined first predetermined mercury concentration, supply of activated carbon In accordance with the increase in the mercury concentration in the exhaust gas within the range where the mercury concentration in the exhaust gas is zero or the measurable minimum limit value or higher than the predetermined first predetermined mercury concentration and lower than the predetermined second predetermined mercury concentration. The activated carbon supply amount may be gradually increased so that the activated carbon supply amount is kept constant as the predetermined supply amount in a range where the measured value of the mercury concentration in the exhaust gas is higher than the second predetermined mercury concentration. Moreover, when increasing the activated carbon supply amount according to the increase in the mercury concentration in the exhaust gas, it may be increased linearly or stepwise.
本発明において、排ガス中の水銀濃度と活性炭供給量とを予め定める対応関係にもとづいて、活性炭供給量を制御する場合、その最小値から最大値までの活性炭供給量の増大について種々の形態をとれることは図4にて説明したとおりであるが、所定の最小値そして所定の最大値をどのようにして定めるか、その一例として図4(E)の形態で活性炭供給量を増大する場合について次に説明する。すなわち、水銀濃度測定値と活性炭供給量との対応関係が次に示す形態である。排ガス中水銀濃度の測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量のもとに活性炭を供給し、水銀濃度の測定値が上記第一の所定水銀濃度に達した後に、排ガス中水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度の測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の最大値の供給量とし、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。 In the present invention, when the activated carbon supply amount is controlled based on a predetermined relationship between the mercury concentration in the exhaust gas and the activated carbon supply amount, various forms can be taken for increasing the activated carbon supply amount from the minimum value to the maximum value. This is as described with reference to FIG. 4. How to determine the predetermined minimum value and the predetermined maximum value, as an example, in the case of increasing the activated carbon supply amount in the form of FIG. Explained. That is, the correspondence relationship between the measured mercury concentration value and the activated carbon supply amount is as shown below. Activated carbon is supplied based on the specified minimum activated carbon supply amount in the range from the measured value of the mercury concentration in the exhaust gas to zero or less than the measurable minimum value to the first specified mercury concentration. Then, after the measured value of the mercury concentration reaches the first predetermined mercury concentration, the activated carbon supply amount is linearly increased from the predetermined minimum value according to the increase of the mercury concentration in the exhaust gas, and the measured value of the mercury concentration is When the second predetermined mercury concentration is reached, the activated carbon supply amount is set to the predetermined maximum value, and after increasing the activated carbon supply amount to the predetermined maximum value, the increase in the mercury concentration in the exhaust gas In this mode, the activated carbon supply amount is kept constant at the predetermined maximum value.
発明者等は図2に示す排ガス処理装置を用いて、水銀を含む排ガスの処理を行う際の上記所定の最小値と所定の最大値を定めるための諸条件を検討した。その検討に際しては、集塵装置入口(上流側)での排ガス中の水銀濃度を測定し、この水銀濃度測定値と集塵装置の下流側での排ガス中の水銀濃度の設定値との比率(上流側水銀濃度比率)を20倍〜200倍となる範囲で変えた場合について、活性炭による水銀吸着除去プロセスをシミュレーションして活性炭供給量の所定の最小値と所定の最大値の適切な範囲を求めた。上記上流側水銀濃度比率は20倍〜200倍の間を複数の段階に区分して、順次変え各区分範囲で、その都度、所定の最小値と所定の最大値についての適切な範囲を求めた。得られた結果は表1に示すとおりである。 The inventors examined various conditions for determining the predetermined minimum value and the predetermined maximum value when processing exhaust gas containing mercury using the exhaust gas treatment apparatus shown in FIG. During the examination, the mercury concentration in the exhaust gas at the dust collector inlet (upstream side) was measured, and the ratio of this measured mercury concentration to the set value of the mercury concentration in the exhaust gas downstream of the dust collector ( For the case where the upstream mercury concentration ratio is changed within a range of 20 to 200 times, the mercury adsorption / removal process by activated carbon is simulated to obtain an appropriate range between the predetermined minimum value and the predetermined maximum value of the activated carbon supply amount. It was. The upstream mercury concentration ratio is divided into a plurality of stages between 20 times and 200 times, and sequentially changed, and an appropriate range for a predetermined minimum value and a predetermined maximum value is obtained each time in each divided range. . The results obtained are as shown in Table 1.
表1において、例えば上記上流側水銀濃度比率が100倍以上120倍未満の範囲となる水銀を含む排ガスが炉から排出されると予測される場合には、処理排ガス流量に対する活性炭吹込み重量として定められる活性炭供給量の所定の最小値を60〜200mg/Nm3と設定し、活性炭供給量の所定の最大値を300〜1000mg/Nm3と設定する。In Table 1, for example, when it is predicted that the exhaust gas containing mercury with the upstream mercury concentration ratio in the range of 100 times or more and less than 120 times is discharged from the furnace, it is determined as the activated carbon blowing weight with respect to the treated exhaust gas flow rate. is a predetermined minimum value of the activated carbon supply amount is set to 60~200mg / Nm 3, to set a predetermined maximum value of the activated carbon supply amount and 300~1000mg / Nm 3.
この表1において、上記上流側水銀濃度比率の各区分範囲について、所定の最小値の下限は排ガス中の水銀濃度測定値が低い場合または集塵装置の下流側での水銀濃度設定値が高い場合に対応し、所定の最小値の上限は排ガス中の水銀濃度測定値が高い場合または集塵装置の下流側での水銀濃度設定値が低い場合に対応する。 In Table 1, for each of the above-mentioned upstream mercury concentration ratio division ranges, the lower limit of the predetermined minimum value is when the measured mercury concentration in the exhaust gas is low or when the mercury concentration set value on the downstream side of the dust collector is high The upper limit of the predetermined minimum value corresponds to the case where the mercury concentration measurement value in the exhaust gas is high or the mercury concentration set value downstream of the dust collector is low.
また、表1において、上記上流側水銀濃度比率の各区分範囲について、所定の最大値の下限は排ガス中の水銀濃度測定値が低い場合または集塵装置の下流側での水銀濃度設定値が高い場合に対応し、所定の最大値の上限は排ガス中の水銀濃度測定値が高い場合または集塵装置の下流側での水銀濃度設定値が低い場合に対応する。 Also, in Table 1, for each of the above-mentioned upstream mercury concentration ratio division ranges, the lower limit of the predetermined maximum value is when the measured mercury concentration value in the exhaust gas is low or the mercury concentration set value at the downstream side of the dust collector is high. The upper limit of the predetermined maximum value corresponds to the case where the mercury concentration measurement value in the exhaust gas is high or the mercury concentration set value downstream of the dust collector is low.
このようにして、活性炭供給量の所定の最小値を設定することにより、集塵装置のバグフィルタに活性炭を付着させ吸着層を予め十分に形成しておくことになり、高濃度の水銀を含む排ガスが排出された際に速やかに、既に形成されている活性炭吸着層とその際に吹き込まれる活性炭により水銀を吸着除去でき、水銀濃度を十分に低濃度にまで低下させることができる。 In this way, by setting the predetermined minimum value of the activated carbon supply amount, the activated carbon is adhered to the bag filter of the dust collector, and the adsorption layer is sufficiently formed in advance, which contains a high concentration of mercury. When exhaust gas is discharged, mercury can be adsorbed and removed quickly by the already formed activated carbon adsorption layer and activated carbon blown at that time, and the mercury concentration can be lowered to a sufficiently low concentration.
また、活性炭供給量の所定の最大値を定めることにより、活性炭の過剰供給を行わないようにして高濃度の水銀を十分に吸着除去できる。 Further, by setting a predetermined maximum value of the activated carbon supply amount, high concentration mercury can be sufficiently adsorbed and removed without excessive supply of activated carbon.
以下、本発明についての実施例を比較例とともに説明する。 Examples of the present invention will be described below together with comparative examples.
[実施例]
廃棄物焼却炉から排出される排ガスを図1〜図3に示す排ガス処理装置により水銀の除去処理を行い、効果を確認した。廃棄物焼却炉から排出される排ガスは、煙突からの排ガス量が10,000Nm3/hであり、煙突内の排ガス中水銀濃度を1時間平均値で50μg/Nm3以下になるようにしている。さらに、水銀濃度測定値が短時間で急激に増加する現象における最大水銀濃度瞬時値(ピーク測定値という)を低く抑えることが望まれている。活性炭供給量(mg/Nm3)は処理排ガス流量に対する活性炭吹込み重量として定められる。[Example]
The exhaust gas discharged from the waste incinerator was subjected to mercury removal processing by the exhaust gas processing apparatus shown in FIGS. The exhaust gas discharged from the waste incinerator has an exhaust gas amount of 10,000 Nm 3 / h from the chimney, and the mercury concentration in the exhaust gas in the chimney is set to 50 μg / Nm 3 or less on average for one hour. . Furthermore, it is desired to suppress the maximum mercury concentration instantaneous value (referred to as peak measurement value) in a phenomenon in which the mercury concentration measurement value rapidly increases in a short time. The activated carbon supply amount (mg / Nm 3 ) is determined as the activated carbon blowing weight with respect to the treated exhaust gas flow rate.
実施例、比較例でのバグフィルタ入口での水銀濃度のピーク測定値、煙突での水銀濃度のピーク測定値を表2に示す。 Table 2 shows the peak measurement value of mercury concentration at the bag filter inlet and the peak measurement value of mercury concentration at the chimney in Examples and Comparative Examples.
<比較例>
バグフィルタ上流側の排ガス流路に排ガス量(Nm3/h)に対し常時一定量である供給量50mg/Nm3で活性炭を吹込んでおり、通常時には煙突における排ガス中の水銀濃度は5μg/Nm3-dry以下となっている。焼却炉に供給されるごみ性状の変動によってバグフィルタ入口での水銀濃度が変動し煙突での水銀濃度が上昇してしまうことがあった。煙突において最大90μg/Nm3-dryの水銀濃度のピーク測定値が観測された。<Comparative example>
Activated carbon is blown into the exhaust gas flow path upstream of the bag filter at a constant supply amount of 50 mg / Nm 3 with respect to the exhaust gas amount (Nm 3 / h). Normally, the mercury concentration in the exhaust gas in the chimney is 5 μg / Nm. It is below 3 -dry. In some cases, the mercury concentration at the inlet of the bag filter fluctuates due to fluctuations in the waste properties supplied to the incinerator and the mercury concentration at the chimney increases. Peak measurements of mercury concentrations up to 90 μg / Nm 3 -dry were observed in the chimney.
<実施例1>
実施例1では図1に示す排ガス処理装置を用いて、水銀を含む排ガスの処理を行った。集塵装置の下流側として煙突での排ガス中の水銀濃度を測定し、図5に示されている煙突水銀濃度と活性炭供給量の対応関係を用いて活性炭供給量を求めて活性炭を供給した。図5に示すように、活性炭供給量を、煙突水銀濃度が10μg/Nm3-dryより低い場合には一定の最小値としての50mg/Nm3とし、煙突水銀濃度が10μg/Nm3-dryより高く40μg/Nm3-dryより低い場合には水銀濃度の増加にしたがって次第に増加させ、煙突水銀濃度が40μg/Nm3-dryより高い場合には一定の最大値としての500mg/Nm3とするようにしている。<Example 1>
In Example 1, the exhaust gas containing mercury was treated using the exhaust gas treatment apparatus shown in FIG. The mercury concentration in the exhaust gas at the chimney was measured as the downstream side of the dust collector, and the activated carbon was supplied by determining the activated carbon supply amount using the correspondence between the chimney mercury concentration and the activated carbon supply amount shown in FIG. As shown in FIG. 5, the activated carbon supply amount, when the chimney mercury concentration is less than 10 [mu] g / Nm 3 -dry is a 50 mg / Nm 3 of a constant minimum value, chimney mercury concentration than 10 [mu] g / Nm 3 -dry When it is high and lower than 40 μg / Nm 3 -dry, it is gradually increased as the mercury concentration increases, and when the chimney mercury concentration is higher than 40 μg / Nm 3 -dry, a constant maximum value of 500 mg / Nm 3 is set. I have to.
供給されるごみ性状の変動によってバグフィルタ入口での水銀濃度が変動するが、最も高い場合でも煙突における水銀濃度のピーク測定値を70μg/Nm3-dryに抑えることができた。Although the mercury concentration at the bag filter inlet fluctuates due to fluctuations in the supplied dust properties, the peak measured value of the mercury concentration at the chimney could be suppressed to 70 μg / Nm 3 -dry even in the highest case.
<実施例2>
実施例2では図2に示す排ガス処理装置を用いて、水銀を含む排ガスの処理を行った。バグフィルタ入口での排ガス中の水銀濃度を測定し、図6に示されているバグフィルタ入口水銀濃度と活性炭供給量の対応関係を用いて活性炭供給量を求めて活性炭を供給した。図6に示すように、活性炭供給量を、バグフィルタ入口水銀濃度が100μg/Nm3-dryより低い場合には一定の最小値としての50mg/Nm3とし、バグフィルタ入口水銀濃度が100μg/Nm3-dryより高く700μg/Nm3-dryより低い場合には水銀濃度の増加にしたがって次第に増加させ、バグフィルタ入口水銀濃度が700μg/Nm3-dryより高い場合には一定の最大値としての500mg/Nm3とするようにしている。<Example 2>
In Example 2, the exhaust gas treatment apparatus shown in FIG. 2 was used to treat the exhaust gas containing mercury. The mercury concentration in the exhaust gas at the bag filter inlet was measured, and the activated carbon was supplied by obtaining the activated carbon supply amount using the correspondence between the bag filter inlet mercury concentration and the activated carbon supply amount shown in FIG. As shown in FIG. 6, when the mercury concentration at the bag filter inlet is lower than 100 μg / Nm 3 -dry, the activated carbon supply amount is 50 mg / Nm 3 as a certain minimum value, and the mercury concentration at the bag filter is 100 μg / Nm. 3 If higher than 700 [mu] g / Nm 3 below -dry -dry gradually increase with increasing mercury concentration, 500 mg of the maximum value constant when the bag filter inlet mercury concentration greater than 700 [mu] g / Nm 3 -dry It is as in the / Nm 3.
供給されるごみ性状の変動によってバグフィルタ入口での水銀濃度が変動するが、最も高い場合でも煙突における水銀濃度のピーク測定値を25μg/Nm3-dryに抑えることができた。Although the mercury concentration at the bag filter inlet fluctuates due to fluctuations in the supplied dust properties, the peak measurement value of the mercury concentration in the chimney could be suppressed to 25 μg / Nm 3 -dry even in the highest case.
<実施例3>
実施例3では図3に示す排ガス処理装置を用いて、水銀を含む排ガスの処理を行った。バグフィルタ入口での排ガス中の水銀濃度を測定し活性炭供給量のベース量を制御し、煙突での排ガス中の水銀濃度を測定し、図6に示されるバグフィルタ入口水銀濃度と活性炭供給量の対応関係を用いて活性炭供給量のベース量を制御し、図5に示される煙突水銀濃度と活性炭供給量の対応関係を用いて活性炭供給量を補完して増減するように制御した。<Example 3>
In Example 3, the exhaust gas treatment apparatus shown in FIG. 3 was used to treat the exhaust gas containing mercury. The mercury concentration in the exhaust gas at the bag filter inlet is measured, the base amount of the activated carbon supply is controlled, the mercury concentration in the exhaust gas at the chimney is measured, and the bag filter inlet mercury concentration and the activated carbon supply amount shown in FIG. The base amount of the activated carbon supply amount was controlled using the correspondence relationship, and the activated carbon supply amount was complemented and increased or decreased using the correspondence relationship between the chimney mercury concentration and the activated carbon supply amount shown in FIG.
供給されるごみ性状の変動によってバグフィルタ入口での水銀濃度が変動するが、最も高い場合でも煙突における水銀濃度のピーク測定値を15μg/Nm3-dryに抑えることができた。Although the mercury concentration at the bag filter inlet fluctuates due to fluctuations in the supplied dust properties, the peak measurement value of the mercury concentration in the chimney could be suppressed to 15 μg / Nm 3 -dry even in the highest case.
1 炉(焼却炉)
2 ボイラ
3 活性炭供給装置
4 集塵装置(バグフィルタ)
5 水銀濃度計
5A 第一水銀濃度計
5B 第二水銀濃度計
6 煙突
7 制御装置1 furnace (incinerator)
2 Boiler 3 Activated carbon supply device 4 Dust collector (bug filter)
5
Claims (16)
炉の下流側でかつ集塵装置の上流側で排ガス中の水銀濃度を測定する上流側水銀濃度計と、集塵装置の下流側で排ガス中の水銀濃度を測定する下流側水銀濃度計と、活性炭供給装置の活性炭供給量を制御する制御装置を備え、
制御装置は、活性炭供給量を所定の最小値以上に維持するとともに、上流側水銀濃度計による水銀濃度測定値と下流側水銀濃度計による水銀濃度測定値とに基づき、上記集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理装置。 In an exhaust gas treatment apparatus comprising: a dust collector that removes exhaust gas containing mercury discharged from a furnace; and an activated carbon supply device that blows activated carbon into an exhaust gas passage that guides the exhaust gas from the furnace to the dust collector.
An upstream mercury concentration meter that measures the mercury concentration in the exhaust gas downstream of the furnace and upstream of the dust collector, and a downstream mercury concentration meter that measures the mercury concentration in exhaust gas downstream of the dust collector; A control device that controls the amount of activated carbon supplied by the activated carbon supply device is provided.
The control device maintains the activated carbon supply amount at a predetermined minimum value or more, and on the downstream side of the dust collector based on the mercury concentration measurement value by the upstream mercury concentration meter and the mercury concentration measurement value by the downstream mercury concentration meter. An exhaust gas treatment apparatus that controls the supply amount of activated carbon so that the mercury concentration in the exhaust gas at the plant is less than a set value.
炉の下流側でかつ集塵装置の上流側で排ガス中の水銀濃度を上流側水銀濃度計で測定するとともに集塵装置の下流側で排ガス中の水銀濃度を下流側水銀濃度計で測定する測定工程と、制御装置で活性炭供給装置の活性炭供給量を制御する制御工程を備え、
制御工程で、活性炭供給量を所定の最小値以上に維持するとともに、上流側水銀濃度計による水銀濃度測定値と下流側水銀濃度計による水銀濃度測定値とに基づき、上記集塵装置の下流側での排ガス中の水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理方法。 In the exhaust gas treatment method in which activated carbon is blown from the activated carbon supply device from the activated carbon supply device to the exhaust gas flow path that guides the exhaust gas from the furnace to the dust collection device by exhausting the exhaust gas containing mercury discharged from the furnace,
Measurement of the mercury concentration in the exhaust gas at the downstream side of the furnace and upstream of the dust collector with an upstream mercury concentration meter and the mercury concentration in the exhaust gas at the downstream side of the dust collector with a downstream mercury concentration meter And a control step for controlling the activated carbon supply amount of the activated carbon supply device by the control device,
In the control process, the activated carbon supply amount is maintained above the predetermined minimum value, and the downstream side of the dust collector is based on the measured mercury concentration value by the upstream mercury concentration meter and the measured mercury concentration value by the downstream mercury concentration meter. A method for treating exhaust gas, wherein the activated carbon supply amount is controlled so that the mercury concentration in the exhaust gas at or below is less than a set value.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015029417 | 2015-02-18 | ||
JP2015029417 | 2015-02-18 | ||
JP2015225556 | 2015-11-18 | ||
JP2015225556 | 2015-11-18 | ||
PCT/JP2016/053100 WO2016132894A1 (en) | 2015-02-18 | 2016-02-02 | Exhaust gas treatment device and exhaust gas treatment method |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016151491A Division JP6124097B1 (en) | 2015-02-18 | 2016-08-01 | Exhaust gas treatment apparatus and exhaust gas treatment method |
JP2016151440A Division JP6070971B1 (en) | 2015-02-18 | 2016-08-01 | Exhaust gas treatment apparatus and exhaust gas treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6016205B1 true JP6016205B1 (en) | 2016-10-26 |
JPWO2016132894A1 JPWO2016132894A1 (en) | 2017-04-27 |
Family
ID=56692211
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016519397A Active JP6016205B1 (en) | 2015-02-18 | 2016-02-02 | Exhaust gas treatment apparatus and exhaust gas treatment method |
JP2016151440A Active JP6070971B1 (en) | 2015-02-18 | 2016-08-01 | Exhaust gas treatment apparatus and exhaust gas treatment method |
JP2016151491A Active JP6124097B1 (en) | 2015-02-18 | 2016-08-01 | Exhaust gas treatment apparatus and exhaust gas treatment method |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016151440A Active JP6070971B1 (en) | 2015-02-18 | 2016-08-01 | Exhaust gas treatment apparatus and exhaust gas treatment method |
JP2016151491A Active JP6124097B1 (en) | 2015-02-18 | 2016-08-01 | Exhaust gas treatment apparatus and exhaust gas treatment method |
Country Status (5)
Country | Link |
---|---|
JP (3) | JP6016205B1 (en) |
CN (1) | CN107249716A (en) |
MY (1) | MY180066A (en) |
SG (3) | SG10201709322PA (en) |
WO (1) | WO2016132894A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200065288A (en) * | 2018-11-30 | 2020-06-09 | (주)에프테크 | Exhaust gas measuring system and apparatus based on monitoring of operating state about processing of exhaust gas |
JP2020176742A (en) * | 2019-04-16 | 2020-10-29 | 荏原環境プラント株式会社 | Incineration system comprising stoker type incinerator |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6703748B2 (en) * | 2016-09-12 | 2020-06-03 | Jfeエンジニアリング株式会社 | Exhaust gas treatment device and exhaust gas treatment method |
JP2018135248A (en) * | 2017-02-23 | 2018-08-30 | 太平洋セメント株式会社 | Method and system for removing mercury from exhaust gas of cement kiln |
JP6872169B2 (en) * | 2017-03-31 | 2021-05-19 | Jfeエンジニアリング株式会社 | Exhaust gas treatment equipment and exhaust gas treatment method |
JP6958158B2 (en) * | 2017-09-15 | 2021-11-02 | 宇部興産株式会社 | Exhaust gas treatment equipment and exhaust gas treatment method |
JP2019063765A (en) * | 2017-10-04 | 2019-04-25 | Jfeエンジニアリング株式会社 | Exhaust gas treatment apparatus and exhaust gas treatment method |
CN108554115B (en) * | 2018-01-29 | 2019-07-12 | 中冶长天国际工程有限责任公司 | A kind of flue gas purification system being related to multi-process and its control method |
JP7047487B2 (en) * | 2018-03-12 | 2022-04-05 | Jfeエンジニアリング株式会社 | Exhaust gas treatment equipment and exhaust gas treatment method |
JP7047488B2 (en) * | 2018-03-12 | 2022-04-05 | Jfeエンジニアリング株式会社 | Exhaust gas treatment equipment and exhaust gas treatment method |
JP6903028B2 (en) * | 2018-04-12 | 2021-07-14 | 日立造船株式会社 | Mercury concentration measuring device, exhaust gas treatment device and exhaust gas treatment method |
JP7106357B2 (en) * | 2018-06-06 | 2022-07-26 | 日立造船株式会社 | Exhaust gas treatment device |
JP6439207B1 (en) | 2018-06-29 | 2018-12-19 | 三菱重工環境・化学エンジニアリング株式会社 | Exhaust gas mercury removal system |
CN111185054A (en) * | 2018-11-14 | 2020-05-22 | 中国石油化工股份有限公司 | Recovery pretreatment device and method for polyolefin-containing organic gas |
JP7299721B2 (en) * | 2019-03-14 | 2023-06-28 | 荏原環境プラント株式会社 | Exhaust gas treatment system and exhaust gas treatment method |
JP7203674B2 (en) * | 2019-04-11 | 2023-01-13 | 日立造船株式会社 | Exhaust gas treatment device and exhaust gas treatment method |
JP6846778B2 (en) * | 2019-07-23 | 2021-03-24 | 株式会社プランテック | Mercury removal device and method in exhaust gas |
JP7214594B2 (en) * | 2019-08-22 | 2023-01-30 | 日立造船株式会社 | Exhaust gas treatment device and exhaust gas treatment method |
JP7203711B2 (en) * | 2019-10-04 | 2023-01-13 | 日立造船株式会社 | Exhaust gas treatment device and exhaust gas treatment method |
FR3117044B1 (en) * | 2020-12-04 | 2022-12-16 | Lab | Smoke demercurization process |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09308817A (en) * | 1996-05-22 | 1997-12-02 | Babcock Hitachi Kk | Method for treating exhaust gas and apparatus therefor |
JP2008259992A (en) * | 2007-04-13 | 2008-10-30 | Babcock Hitachi Kk | Method and device for cleaning exhaust gas |
JP2009291734A (en) * | 2008-06-06 | 2009-12-17 | Hitachi Plant Technologies Ltd | Apparatus and method for exhaust gas treatment |
JP2010158670A (en) * | 2008-12-08 | 2010-07-22 | Taiheiyo Cement Corp | Apparatus and method of treating cement kiln tail gas |
JP2013136059A (en) * | 2013-03-28 | 2013-07-11 | Mitsubishi Materials Corp | Method and apparatus for treatment of kiln exhaust gas |
JP2014213308A (en) * | 2013-04-30 | 2014-11-17 | 株式会社タクマ | Mercury adsorbent charging device and mercury removal system using the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5484689B2 (en) * | 2008-04-25 | 2014-05-07 | 三菱重工業株式会社 | Exhaust gas treatment system and method for removing mercury in exhaust gas |
JP5239813B2 (en) * | 2008-12-11 | 2013-07-17 | 三菱マテリアル株式会社 | Kiln exhaust gas treatment method and treatment equipment |
CN103068469B (en) * | 2010-10-15 | 2015-11-25 | 三菱日立电力系统株式会社 | The treatment system of the mercury in waste gas |
JP6020085B2 (en) * | 2012-11-20 | 2016-11-02 | 栗田工業株式会社 | Acid gas stabilization method and combustion exhaust gas treatment facility |
JP6194840B2 (en) * | 2014-03-31 | 2017-09-13 | Jfeエンジニアリング株式会社 | Exhaust gas treatment apparatus and method |
CN107249717A (en) * | 2015-02-24 | 2017-10-13 | 日立造船株式会社 | The processing unit of burning and gas-exhausting |
-
2016
- 2016-02-02 SG SG10201709322PA patent/SG10201709322PA/en unknown
- 2016-02-02 WO PCT/JP2016/053100 patent/WO2016132894A1/en active Application Filing
- 2016-02-02 SG SG11201706561SA patent/SG11201706561SA/en unknown
- 2016-02-02 MY MYPI2017703033A patent/MY180066A/en unknown
- 2016-02-02 SG SG10201709324XA patent/SG10201709324XA/en unknown
- 2016-02-02 JP JP2016519397A patent/JP6016205B1/en active Active
- 2016-02-02 CN CN201680011095.4A patent/CN107249716A/en active Pending
- 2016-08-01 JP JP2016151440A patent/JP6070971B1/en active Active
- 2016-08-01 JP JP2016151491A patent/JP6124097B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09308817A (en) * | 1996-05-22 | 1997-12-02 | Babcock Hitachi Kk | Method for treating exhaust gas and apparatus therefor |
JP2008259992A (en) * | 2007-04-13 | 2008-10-30 | Babcock Hitachi Kk | Method and device for cleaning exhaust gas |
JP2009291734A (en) * | 2008-06-06 | 2009-12-17 | Hitachi Plant Technologies Ltd | Apparatus and method for exhaust gas treatment |
JP2010158670A (en) * | 2008-12-08 | 2010-07-22 | Taiheiyo Cement Corp | Apparatus and method of treating cement kiln tail gas |
JP2013136059A (en) * | 2013-03-28 | 2013-07-11 | Mitsubishi Materials Corp | Method and apparatus for treatment of kiln exhaust gas |
JP2014213308A (en) * | 2013-04-30 | 2014-11-17 | 株式会社タクマ | Mercury adsorbent charging device and mercury removal system using the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200065288A (en) * | 2018-11-30 | 2020-06-09 | (주)에프테크 | Exhaust gas measuring system and apparatus based on monitoring of operating state about processing of exhaust gas |
KR102131116B1 (en) | 2018-11-30 | 2020-07-07 | (주)에프테크 | Exhaust gas measuring system and apparatus based on monitoring of operating state about processing of exhaust gas |
JP2020176742A (en) * | 2019-04-16 | 2020-10-29 | 荏原環境プラント株式会社 | Incineration system comprising stoker type incinerator |
JP7175835B2 (en) | 2019-04-16 | 2022-11-21 | 荏原環境プラント株式会社 | Incineration system with stoker type incinerator |
Also Published As
Publication number | Publication date |
---|---|
SG11201706561SA (en) | 2017-09-28 |
JPWO2016132894A1 (en) | 2017-04-27 |
JP6124097B1 (en) | 2017-05-10 |
SG10201709322PA (en) | 2018-01-30 |
CN107249716A (en) | 2017-10-13 |
SG10201709324XA (en) | 2018-01-30 |
JP2017094318A (en) | 2017-06-01 |
MY180066A (en) | 2020-11-20 |
WO2016132894A1 (en) | 2016-08-25 |
JP2017094319A (en) | 2017-06-01 |
JP6070971B1 (en) | 2017-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6016205B1 (en) | Exhaust gas treatment apparatus and exhaust gas treatment method | |
JP5953342B2 (en) | Sulphite control to reduce mercury re-emissions | |
JP6194840B2 (en) | Exhaust gas treatment apparatus and method | |
AU2011332222A1 (en) | System and method of managing energy utilized in a flue gas processing system | |
JP6315275B2 (en) | Exhaust gas treatment apparatus and exhaust gas treatment method | |
JP7047488B2 (en) | Exhaust gas treatment equipment and exhaust gas treatment method | |
JP3872682B2 (en) | Exhaust gas treatment method for sintering machine | |
JP5955622B2 (en) | Exhaust gas treatment apparatus and exhaust gas treatment method using the same | |
JP6958158B2 (en) | Exhaust gas treatment equipment and exhaust gas treatment method | |
CN112105442B (en) | Exhaust gas mercury removal system | |
JP6872169B2 (en) | Exhaust gas treatment equipment and exhaust gas treatment method | |
JP7047487B2 (en) | Exhaust gas treatment equipment and exhaust gas treatment method | |
JP6703748B2 (en) | Exhaust gas treatment device and exhaust gas treatment method | |
JP2019063765A (en) | Exhaust gas treatment apparatus and exhaust gas treatment method | |
JP7106834B2 (en) | Desulfurization equipment operating method, desulfurization control equipment | |
JP6413038B1 (en) | Exhaust gas treatment system and exhaust gas treatment method | |
JP7019562B2 (en) | Mercury control in seawater flue gas desulfurization system | |
JP2016036779A (en) | Denitration method of flue gas | |
JP7264372B2 (en) | Waste incineration system | |
JP2010227747A (en) | Exhaust gas treatment apparatus and exhaust gas treatment method | |
JP2005270722A (en) | Exhaust gas treatment method and equipment therefor | |
KR20140126418A (en) | Method for treating acidic gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160801 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160918 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6016205 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |