JP7264372B2 - Waste incineration system - Google Patents
Waste incineration system Download PDFInfo
- Publication number
- JP7264372B2 JP7264372B2 JP2019084470A JP2019084470A JP7264372B2 JP 7264372 B2 JP7264372 B2 JP 7264372B2 JP 2019084470 A JP2019084470 A JP 2019084470A JP 2019084470 A JP2019084470 A JP 2019084470A JP 7264372 B2 JP7264372 B2 JP 7264372B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen chloride
- concentration
- average value
- amount
- processing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004056 waste incineration Methods 0.000 title claims description 33
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 127
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 127
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 127
- 239000003795 chemical substances by application Substances 0.000 claims description 101
- 239000007789 gas Substances 0.000 claims description 95
- 150000002013 dioxins Chemical class 0.000 claims description 61
- 238000012545 processing Methods 0.000 claims description 56
- 239000000428 dust Substances 0.000 claims description 45
- KVGZZAHHUNAVKZ-UHFFFAOYSA-N 1,4-Dioxin Chemical compound O1C=COC=C1 KVGZZAHHUNAVKZ-UHFFFAOYSA-N 0.000 claims description 40
- 239000003463 adsorbent Substances 0.000 claims description 40
- 238000005259 measurement Methods 0.000 claims description 24
- 230000008859 change Effects 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 239000002699 waste material Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 description 20
- 230000003472 neutralizing effect Effects 0.000 description 20
- 239000000460 chlorine Substances 0.000 description 19
- 229910052801 chlorine Inorganic materials 0.000 description 19
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 16
- 238000002485 combustion reaction Methods 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 238000012935 Averaging Methods 0.000 description 9
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 8
- 239000000920 calcium hydroxide Substances 0.000 description 8
- 235000011116 calcium hydroxide Nutrition 0.000 description 8
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000004071 soot Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- 230000001629 suppression Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- 239000002918 waste heat Substances 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- ZXRCAYWYTOIRQS-UHFFFAOYSA-N hydron;phenol;chloride Chemical compound Cl.OC1=CC=CC=C1 ZXRCAYWYTOIRQS-UHFFFAOYSA-N 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000012946 outsourcing Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Landscapes
- Processing Of Solid Wastes (AREA)
- Chimneys And Flues (AREA)
- Treating Waste Gases (AREA)
Description
本発明は、廃棄物焼却システムに関する。 The present invention relates to waste incineration systems.
ダイオキシン類対策特別措置法に基づき、平成14年12月1日より全ての廃棄物焼却システムに施設規模に応じて排ガス中のダイオキシン類濃度の排出基準が課せられた。ダイオキシン類等の有害物質の発生を抑制するため、各廃棄物焼却システムでは高温燃焼状態を保ち、焼却後は速やかに減温処理することで、ダイオキシン類の合成を抑える等の措置が取られている。万一、減温処理過程において、ダイオキシン類が再合成された場合には、燃焼により発生する塩化水素などの酸性ガスを中和するための中和剤(消石灰等のアルカリ薬剤)と合わせて、ダイオキシン類等を吸着させる機能を有する吸着剤(活性炭等)が処理剤として集塵手段の上流側から供給される。これにより集塵手段において、塩化水素は中和剤により中和され、ダイオキシン類は吸着剤に吸着される。最終的には、塩化水素とダイオキシン類は、ばいじんとして回収されることにより、塩化水素とダイオキシン類の大気中への排出が抑えられる。 Based on the Law Concerning Special Measures against Dioxins, from December 1, 2002, all waste incineration systems were required to comply with emission standards for dioxin concentration in the exhaust gas according to the scale of the facility. In order to suppress the generation of harmful substances such as dioxins, each waste incineration system maintains a high-temperature combustion state, and after incineration, measures are taken to suppress the synthesis of dioxins by rapidly reducing the temperature. there is In the unlikely event that dioxins are resynthesized during the temperature reduction process, they should be combined with a neutralizing agent (alkali agent such as slaked lime) to neutralize acid gases such as hydrogen chloride generated by combustion. An adsorbent (activated carbon or the like) having a function of adsorbing dioxins or the like is supplied as a processing agent from the upstream side of the dust collecting means. As a result, the hydrogen chloride is neutralized by the neutralizing agent and the dioxins are adsorbed by the adsorbent in the dust collecting means. Ultimately, the hydrogen chloride and dioxins are recovered as soot and dust, thereby reducing the release of hydrogen chloride and dioxins into the atmosphere.
通常、各廃棄物焼却システムでは予め焼却物の搬入基準値が設けられており、その範囲内においては、一定量の処理剤が常時供給されることで有害物質の発生が制御されている。ところが、予期せず想定外の焼却物が混入した場合には、処理剤の供給量を増やす必要がある。 Normally, each waste incineration system has a standard value for the amount of waste to be incinerated in advance, and within that range, a constant amount of processing agent is constantly supplied to control the generation of hazardous substances. However, if unexpected incinerators are mixed in, it is necessary to increase the amount of treatment agent supplied.
この処理剤の供給量を調整するためには、排ガス中の有害物質を常時監視することが必要となる。例えば塩化水素については、レーザー式ガス分析計を用いて常時監視が可能であり、かつ精度よく検出できる。しかし、ダイオキシン類は微量物質であって常時直接的に検出することは困難である。
非特許文献1には、排ガス中のダイオキシン類の常時監視方法の例が記載されている。非特許文献1に示されているように、廃棄物焼却システムにおいて現在常時監視することが義務付けられている一酸化炭素及び塩化水素の濃度と、ダイオキシン類の濃度との間には高い相関は見られない。そのため、塩化ベンゼンや塩化フェノール等のダイオキシン類前駆物質の中で常時測定可能なものを分析機器を用いて測定するか、或いは、ダイオキシン類を2週間から1ヶ月間もの長期間サンプリングしてその試料を定量分析する方法などが開発され実用化されている。
In order to adjust the supply amount of this processing agent, it is necessary to constantly monitor harmful substances in the exhaust gas. For example, hydrogen chloride can be constantly monitored and accurately detected using a laser gas analyzer. However, dioxins are trace substances and are difficult to always detect directly.
Non-Patent
しかしながら、非特許文献1に示されている技術では、直接的に前駆物質の常時測定が可能であってもガスクロマトグラフィーといった高価な分析機器が必要である。また、排ガス中のダイオキシン類の長期間サンプリングを行う方法でもダイオキシン類の平均濃度を確定するのに3週間程度を要するため、その間のダイオキシン類を監視することはできない。
However, the technique disclosed in Non-Patent
本発明は、上記事情に鑑みなされたものであり、排ガス中のダイオキシン類の排出をより経済的且つ簡易に制御可能な廃棄物焼却システムを提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a waste incineration system capable of controlling the emission of dioxins in exhaust gas more economically and simply.
本発明者らの鋭意検討の結果、ダイオキシン類濃度は塩化水素濃度の測定値と相関を示さないが、塩化水素濃度の平均値と高い相関を示すとの知見が得られた。さらに、両者の間には、一定期間のタイムラグがあることが見出された。
かかる知見に基づいて提供される本発明の実施の形態に係る廃棄物焼却システムは、集塵手段と、該集塵手段の上流側に設けられた処理剤を供給する処理剤供給手段と、排ガス中の塩化水素濃度を連続的に測定する塩化水素濃度測定手段と、処理剤の供給を制御する処理剤供給制御手段と、を備える廃棄物焼却システムにおいて、処理剤は排ガス中のダイオキシン類を吸着させる機能を有する吸着剤を含み、処理剤供給制御手段は、塩化水素濃度の平均値に基づいて処理剤が増量される期間を制御することを特徴とするものである。
As a result of diligent studies by the present inventors, it was found that the dioxin concentration did not show a correlation with the measured value of the hydrogen chloride concentration, but showed a high correlation with the average value of the hydrogen chloride concentration. Furthermore, it was found that there is a certain period of time lag between the two.
A waste incineration system according to an embodiment of the present invention, which is provided based on such findings, includes dust collection means, treatment agent supply means provided upstream of the dust collection means for supplying a treatment agent, exhaust gas In a waste incineration system comprising hydrogen chloride concentration measuring means for continuously measuring the concentration of hydrogen chloride in waste gas and treatment agent supply control means for controlling the supply of the treatment agent, the treatment agent adsorbs dioxins in the exhaust gas. The processing agent supply control means is characterized by controlling the period during which the amount of the processing agent is increased based on the average value of the hydrogen chloride concentration.
また、処理剤供給制御手段は、平均値が塩化水素濃度の平均値上限を超えた場合に、処理剤を増量することを特徴とする。 Further, the processing agent supply control means is characterized by increasing the amount of the processing agent when the average value exceeds the upper limit of the average value of the hydrogen chloride concentration.
また、処理剤が増量される期間は、前記平均値とダイオキシン類濃度とに基づき予め定められることを特徴とする。 Also, the period during which the processing agent is increased is predetermined based on the average value and the dioxin concentration.
処理剤が増量される期間は、平均値とダイオキシン類濃度との相関に基づき予め定められることを特徴とする。 The period during which the amount of the treating agent is increased is predetermined based on the correlation between the average value and the dioxin concentration.
相関は、平均値と排ガス中またはばいじん中の少なくとも一方のダイオキシン類濃度との相関に基づくものであることを特徴する。 The correlation is characterized by being based on the correlation between the average value and at least one dioxin concentration in the exhaust gas or dust.
平均値は、30分以上3日以下の塩化水素濃度の測定データの平均値であることを特徴とする。 The average value is characterized by being the average value of hydrogen chloride concentration measurement data for 30 minutes or more and 3 days or less.
本発明によれば、排ガス中のダイオキシン類の排出をより簡易な手法で制御することが可能であり、ひいては排出される処理剤の量を削減可能な破棄物焼却システムを提供できる。 According to the present invention, it is possible to control the discharge of dioxins in the exhaust gas by a simpler method, and it is possible to provide a waste incineration system capable of reducing the amount of discharged treatment agent.
本発明の一実施形態に関わる排ガス中のダイオキシン類を制御可能な廃棄物焼却システムの概要について図面を用いて説明する。 An overview of a waste incineration system capable of controlling dioxins in exhaust gas according to one embodiment of the present invention will be described with reference to the drawings.
図1は、本発明の一実施形態に係る廃棄物焼却システム10の系統を示す概略図である。なお、点線の矢印(図1中の11-6間、および6-7間)は排ガス処理手段による処理剤の供給およびばいじんの排出経路を示す。また、太矢印(図1中の12-20-11間)は、排ガス中の塩化水素濃度のデータを測定、演算処理し、処理剤供給装置11を制御する信号経路を示している。
FIG. 1 is a schematic diagram showing a system of a
受入ホッパー1に投入される被焼却物については、通常、事前に高い塩素含有がないか確認されるが、実際の搬入時にも、サンプルを採取して高濃度の塩素含有がないか、確認することが求められる。もし、高塩素濃度が確認された場合には、当該被焼却物を受け入れない措置が取られる。但し、受入量が少なく全体の焼却処理量に対して影響が少ないと判断された場合はこの限りではない。
Regarding the incinerated materials put into the
受入ホッパー1に投入された被焼却物は1次燃焼炉2に送られる。そして、1次燃焼炉2内のガス温度が850℃以上に保たれるとともに、一酸化炭素濃度瞬間測定値(5秒毎)が測定され、当該濃度が100ppm以下となるように運転管理することにより、ダイオキシン類の分解促進が図られる。なお、該一酸化炭素濃度の測定は1次燃焼炉2以降のいずれの場所において行われてもよく、例えば後述する煙突9において、塩化水素ガス濃度の測定と併せて行われても良い。
1次燃焼炉2から2次燃焼炉3は配管で接続されており、2次燃焼炉3の出口燃焼ガス温度も850℃以上を維持しながら配管により2次燃焼炉内のガスは廃熱ボイラー4に送られる。廃熱ボイラー4では、排ガスから熱を回収し、急冷塔(減温処理)5で190℃以下に急冷され、ダイオキシン類の再合成を防止する。
Incinerated materials put into the
The
急冷塔5より排出されたガスは粉じんが含まれた状態で配管を通り、集塵機6の上流側に送られる。当該ガスには、塩化水素ガスの他、ダイオキシン類などの有害物質が再合成されるている可能性があるため、常時、集塵機6に取り付けられた処理剤供給装置11より、一定量処理剤が供給される。
処理剤としては、塩化水素ガス等の酸性ガス成分を中和させるためには、中和剤となるアルカリ薬剤(例えば、消石灰、重曹)が用いられるとともに、ダイオキシン類を吸着させるためには、吸着剤(例えば、活性炭、人工ゼオライト)を用いる。なお、本明細書では消石灰および活性炭を主に取り上げ記載するが、これらに限定されるものではない。
The gas discharged from the
As a treatment agent, an alkaline agent (e.g., slaked lime, baking soda) is used as a neutralizing agent to neutralize acid gas components such as hydrogen chloride gas, and an adsorption agent is used to adsorb dioxins. agents (eg activated carbon, artificial zeolites) are used. In addition, although slaked lime and activated carbon are mainly mentioned in this specification, they are not limited to these.
処理剤としては、予め中和剤と吸着剤を所定の割合で混合したものを用いることができる。この場合、処理剤供給装置を1つとすることが可能となり、システムの簡素化を図ることができる。また、別の態様としては、中和剤と吸着剤を混合せずに用いることもできる。この場合、供給装置はそれぞれに対し必要となり2つとなるが、各供給量、供給期間、増量始期等を独立して管理できるというメリットを有する。特に、本発明は、塩化水素ガス濃度は中和剤投入により比較的短時間で低減するのに対し、ダイオキシン類濃度は塩化水素ガスが低減した後でも時間差をおいて増加する傾向があるという新たな知得に基づくものであり、両処理剤をそれぞれ有効なタイミング及び/又は期間、増量するように独立に制御し得ることは大きな効果を奏するものである。 As the treating agent, a mixture of a neutralizing agent and an adsorbent in a predetermined ratio can be used. In this case, it is possible to use only one processing agent supply device, and the system can be simplified. Alternatively, the neutralizing agent and the adsorbent may be used without being mixed. In this case, two supply devices are required for each, but there is an advantage that the amount of each supply, the period of supply, the start of increase, etc. can be managed independently. In particular, the present invention is based on a new finding that the concentration of hydrogen chloride gas is reduced in a relatively short period of time by adding a neutralizing agent, whereas the concentration of dioxins tends to increase with a time lag even after the concentration of hydrogen chloride gas is reduced. It is very effective to be able to independently control the amount of both treatment agents to be increased at effective timings and/or periods.
集塵機6においては、上流側から入った粉じんを含むガスがバグフィルターにより集塵ろ過される。粉じんは下流側に設けられたばいじん回収容器7に充填回収され、外部委託先によって処理される。集塵機6に送入されるガスの中には、硫黄酸化物、窒素酸化物、塩化水素等の酸性ガスが含まているが、これらは中和剤により中和され、またダイオキシン類などは吸着剤により吸着され、ばいじん回収容器7に充填回収される。
In the
集塵機6で処理後のガスは、誘引送風機8により配管を通して煙突9に送られ系外に排出される。煙突9の中段には塩化水素ガス測定装置12が設置されており、塩化水素濃度の連続測定を行う。
なお、塩化水素ガス測定装置12の設置場所は煙突9に限られず、急冷塔(減温処理)5以降のいずれの場所に設置してもダイオキシン類発生量を予測する上で特段の支障はない。しかしながら、系外に排出される塩化水素ガスを測定するために設置される塩化水素ガス測定装置で取得されるデータを用いることがシステムの簡素化の面で好ましい。具体的には、処理剤による中和後の塩化水素ガス濃度を測定可能な集塵機以降(集塵機を含まない。)に塩化水素測定装置を設置することが好ましい。
After being processed by the
The installation location of the hydrogen chloride
塩化水素ガス測定装置12は、従来の吸引式ガス濃度モニターよりも応答速度が最短で約2秒程度と高速であるだけでなく、サンプリング装置が不要で測定ポイントに直付け出来るため、リアルタイムでの濃度測定が可能なレーザー式ガス分析計であることが好ましい。
塩化水素ガス測定装置12では、常時、塩化水素濃度が所定の間隔で測定される。塩化水素ガス濃度は、例えば瞬間値として2秒毎に測定されるが、これに限られない。ただし、あまり測定間隔が短いとデータ取扱い上負荷が大きくなるので、1秒毎以上が好ましい。なお、瞬間値と測定値は基本的に同じものであるが、主に平均値に対応する用語として瞬間値という用語を用いている。
The hydrogen chloride
The hydrogen chloride
処理剤供給制御装置20は、塩化水素ガス測定装置12と処理剤供給装置11とを連動させる、内部に演算手段が具備された装置である。
処理剤供給制御装置20は、ダイオキシン類を抑制するために処理剤供給装置11から集塵機6に供給される吸着剤の量および供給期間を制御する機能と、塩化水素ガス等を抑制するために処理剤供給装置11から集塵機6に供給される中和剤の量および供給期間を制御する機能を有する。なお、処理剤供給装置11は、各機能に応じ個別に設けてもよいが、処理剤として混合剤を用いる場合は、ダイオキシン類または塩化水素ガスのどちらか一方に対し処理剤を混合して供給制御する。また、吸着剤および中和剤の各量は、重量、質量、供給速度等のいずれの単位、概念で規定してもよい。
以下、処理剤供給制御装置20の備える2つの機能について詳細に説明する。
The processing agent
The processing agent
Two functions of the processing agent
<処理剤供給制御装置20のダイオキシン類抑制機能>
はじめに、本発明の実施形態によるダイオキシン類抑制方法の概要を説明する。
本発明は、予め塩化水素濃度とダイオキシン類濃度を測定し、両者の相関から求められる増量期間を用いることにより、実際に業務として焼却処理を行う実運転(以下、「実運転」という。)時は塩化水素濃度の測定のみからダイオキシン類濃度の抑制を可能とするものである。図11の概念フローを参照し説明すると、実運転前に、予め塩化水素濃度とダイオキシン類濃度を事前測定する。このうち塩化水素濃度については平均化処理(平均値算出)を行い、平滑化された塩化水素濃度の経時変化を求める。そして、平滑化された塩化水素濃度とダイオキシン類濃度との相関処理を介して求められる増量期間を実運転時のための規定値として設定する。なお、増量期間の詳細については後述する。実運転時には増量期間を含む規定値を利用し、処理剤供給制御装置20により吸着剤量の制御を行うことで、実運転時に測定される塩化水素濃度のみからダイオキシン類の発生を抑制させることが可能となる。
<Dioxin Suppression Function of Processing Agent
First, an outline of a method for suppressing dioxins according to an embodiment of the present invention will be described.
The present invention measures the concentration of hydrogen chloride and the concentration of dioxins in advance, and uses the increase period obtained from the correlation between the two, so that when incineration is actually performed as a business (hereinafter referred to as "actual operation") is capable of suppressing dioxin concentration only by measuring hydrogen chloride concentration. To explain with reference to the conceptual flow of FIG. 11, the hydrogen chloride concentration and the dioxin concentration are measured in advance before the actual operation. Of these, the hydrogen chloride concentration is averaged (average value calculation), and the smoothed change over time of the hydrogen chloride concentration is obtained. Then, the increase period obtained through correlation processing between the smoothed hydrogen chloride concentration and the dioxin concentration is set as a prescribed value for actual operation. Details of the increase period will be described later. During actual operation, the amount of adsorbent is controlled by the processing agent
続いて、実運転に際し処理剤供給制御装置20に予め格納しておく規定値ついて詳述する。
処理剤供給制御装置20には、吸着剤通常量、予め定めた塩化水素濃度測定値を平均化する期間(以下「平均化期間」という場合もある。)、吸着剤が増量される期間(以下「増量期間」という場合もある。)、予め設定した塩化水素濃度の平均値上限、増量される吸着剤の量の各情報が規定値として格納される。
Next, the prescribed values that are stored in advance in the processing agent
The processing agent
吸着剤通常量とは、定常的に集塵機6に供給する吸着剤の量である。どのような廃棄物焼却場においても、ある程度の塩化水素ガスやダイオキシン類が発生する可能性があるので、予め一定量の吸着剤を常時供給することで、不測の事態に対処する。この量が多ければダイオキシン類の系外への散逸の危険性は下げられるが、一方で処理すべきばいじんの量が増大するため、コストの面で適当でない。よって、最適と考えられる量を予め設定しておく。吸着剤通常量は各焼却システムに依存する固有の値であるので、システムに応じ設定される。
なお、一定量の吸着剤を常時供給しない廃棄物焼却システムにおいては、吸着剤通常量は不要またはゼロに設定すれば良い。
The normal amount of adsorbent is the amount of adsorbent that is constantly supplied to the
In a waste incineration system that does not always supply a constant amount of adsorbent, the normal amount of adsorbent may be set to unnecessary or zero.
塩化水素濃度測定値を平均化する期間とは、測定された塩化水素濃度瞬間値の平均値を算出する際の平均化期間である。発明者らは、ダイオキシン類濃度と塩化水素濃度瞬間値との相関は低いが、平均値とは相関を示すことを見出した。これは、塩化水素濃度測定値は短時間での変動が激しいため、長周期変動を示すダイオキシン類濃度測定値とそのまま比較するには適していないことによると考えられる。
平均値を求めるための平均化期間は、短いと塩化水素濃度の短周期の影響が強く出てしまうため、少なくとも30分以上が好ましく、さらに好適には1時間以上が適している。また、あまり長いと良好な相関を得にくくなるため、少なくとも3日以下、好適には2日以下が適している。特に、実際の焼却作業のルーチン周期に合わせることが好ましく、例えば24時間ルーチンで焼却作業を行う場合においては、24時間平均が最適となる。例えば作業員が8時に交替する場合、前日の8時から当日の8時までの24時間平均値を使用する。あるいは、作業員の交替時間とは関係なく、前日の0から24時までの24時間平均値を使用しても良い。
なお、ダイオキシン類抑制対策のためだけであれば、塩化水素濃度の測定間隔を数秒とする必要はなく、例えば平均化期間に応じ10分程度とすることも可能である。
The period for averaging the hydrogen chloride concentration measurement values is the averaging period for calculating the average value of the measured instantaneous hydrogen chloride concentration values. The inventors found that the correlation between the dioxin concentration and the instantaneous hydrogen chloride concentration is low, but the correlation with the average value is shown. This is probably because the measured hydrogen chloride concentration fluctuates sharply in a short period of time, so it is not suitable for direct comparison with the measured dioxin concentrations, which show long-term fluctuations.
The averaging period for obtaining the average value is preferably at least 30 minutes or more, more preferably 1 hour or more, because if the period is short, the effect of the hydrogen chloride concentration in a short period will be strong. Also, if it is too long, it becomes difficult to obtain a good correlation, so at least 3 days or less, preferably 2 days or less is suitable. In particular, it is preferable to match the cycle of the actual incineration work. For example, when the incineration work is performed in a 24-hour routine, the 24-hour average is optimal. For example, when a worker shifts at 8:00, a 24-hour average value from 8:00 of the previous day to 8:00 of the current day is used. Alternatively, a 24-hour average value from 0:00 to 24:00 of the previous day may be used regardless of the shift time of the worker.
It should be noted that if it is only for dioxins suppression measures, it is not necessary to set the hydrogen chloride concentration measurement interval to several seconds, and for example, it is possible to set it to about 10 minutes depending on the averaging period.
次に吸着剤の増量期間について説明する。
本発明者の鋭意努力により、両パラメータ(ダイオキシン濃度と塩化水素濃度の平均値)の相関には数日間のタイムラグがあり、塩化水素濃度の平均値が高まった後にダイオキシン類濃度が上昇するとの知見が得られた。この理由は明らかではないが、一つの要因としてダイオキシンの再合成に数日間を要するものがあることが挙げられる。また、他の要因としては、配管や集塵機などに付着したダイオキシン類等が、数日後に剥離されている可能性も否定できない。いずれにしろ、このタイムラグを利用すれば、塩化水素濃度測定値(平均値)に基づき効果的にダイオキシン類の抑制を図ることが可能となる。よって、少なくともこのライムラグを上回る期間を吸着剤の増量期間として設定し、当該期間に亘、処理剤供給装置11から集塵機6に吸着剤を供給する。なお、このタイムラグは各廃棄物焼却システム固有の特性である可能性があるため、各廃棄物焼却システムにおいて予め求めておく。
具体的には、吸着剤の増量期間に関する情報を得るために、塩化水素ガス濃度とともに、煙突9から排出されるガスに含まれるダイオキシン類濃度または集塵機6の下流側のばいじん回収容器7により回収されるばいじんに含まれるダイオキシン類濃度の少なくとも一つを予め測定する(図11における「事前測定」)。なお、塩化水素濃度については、ダイオキシン類濃度の測定日より充分先行する形で測定することが肝要である。少なくとも5日前、好適には1週間以上前から塩化水素濃度を測定しておくことが望ましい。
次いで、設定した平均化期間ごとの塩化水素濃度の平均値を算出し、当該平均値の経時変化を求める(同図における「塩化水素濃度平均値算出」。続いて、時間関数としての平均値とダイオキシン類濃度測定値との相関を計算し(同図における「相関処理」)、両者間のタイムラグを求める。最後に、算出されたタイムラグに適宜安全率となる期間を加算し、吸着剤の増量期間とする。
Next, the adsorbent increase period will be described.
As a result of the diligent efforts of the present inventors, it was found that there is a time lag of several days in the correlation between the two parameters (average value of dioxin concentration and hydrogen chloride concentration), and that the concentration of dioxins rises after the average value of hydrogen chloride concentration increases. was gotten. Although the reason for this is not clear, one factor is that it takes several days to resynthesize dioxin. As another factor, it cannot be denied that dioxins and the like adhering to pipes and dust collectors are peeled off after several days. In any case, if this time lag is used, it becomes possible to effectively suppress dioxins based on the hydrogen chloride concentration measured value (average value). Therefore, a period exceeding at least this lime lag is set as an amount increase period of the adsorbent, and the adsorbent is supplied from the processing
Specifically, in order to obtain information on the amount of adsorbent increasing period, together with the concentration of hydrogen chloride gas, the concentration of dioxins contained in the gas discharged from the
Next, calculate the average value of the hydrogen chloride concentration for each set averaging period, and obtain the change over time of the average value (“Calculate the average hydrogen chloride concentration value” in the same figure. Subsequently, the average value as a function of time and Calculate the correlation with the dioxin concentration measurement value ("correlation processing" in the figure) and determine the time lag between the two.Finally, add an appropriate safety margin period to the calculated time lag to increase the amount of adsorbent. period.
続いて、処理剤供給制御装置20によるダイオキシン類抑制機能の制御の流れを説明する。図2は制御の流れを示す一例であり、同図を参照しながら説明する。
処理剤供給制御装置20は、塩化水素ガス測定装置12で測定される塩化水素ガス濃度の平均値が上昇し、予め設定した塩化水素濃度の平均値上限を上回った場合に、自動的に処理剤供給装置11から集塵機6に投入される吸着剤が、予め設定した増量される吸着剤の量に応じ増量されるように処理剤供給装置11を制御する。なお、吸着剤を増量する方法としては、1回の投入量を増量する方法、投入頻度を増やす方法、あるいはそれらを組合わせた方法等、各種の運転条件の変更による方法がある。
吸着剤は、予め設定した吸着剤の増量期間が経過するまで増量状態を維持する(図2における「吸着剤増量処理」)。そして、増量期間経過後、測定された塩化水素濃度の平均値が平均値上限を下回ることが確認できた場合、吸着剤を減量する(図2における「吸着剤減量処理」)。例えば、減量量を増量量と同量とすることで、予め設定した吸着剤の通常量に戻るが、減量量を増量量より小さくすることで段階的に通常量に戻すことも可能である。
Next, the control flow of the dioxin suppression function by the processing agent
When the average value of the hydrogen chloride gas concentration measured by the hydrogen chloride
The adsorbent maintains the increased state until a preset adsorbent increase period elapses (“adsorbent increase process” in FIG. 2). After the increase period, if it is confirmed that the average value of the measured hydrogen chloride concentration is below the upper limit of the average value, the amount of adsorbent is reduced ("adsorbent amount reduction process" in FIG. 2). For example, by making the amount of decrease equal to the amount of increase, it returns to the preset normal amount of adsorbent, but it is also possible to gradually return to the normal amount by making the amount of decrease smaller than the amount of increase.
なお、吸着剤の増量期間中に再度、塩化水素ガス濃度の所定期間平均値が当該上限値を上回った場合に、その時点からさらに増量期間と同等の期間、処理剤の増量期間を延長させること、当該場合にさらに追加的増量を行うこと、これらを組み合わせること等は、安全サイドからみた場合に有効な一つの実施態様である。
これら平均値上限および増量される吸着剤の量は、任意の値とすることができ、例えば120ppmとすることが挙げられる。また、実際に高塩素濃度の焼却物を人為的に投入し、平均値上限や吸着剤の投入量を複数パターン変更する実験を試みることで、より適した値とするすることができる。
なお、処理剤供給制御装置20は、塩化水素ガス測定装置12または処理剤供給装置11と一体化した装置としてもよい。
If the average value of the hydrogen chloride gas concentration for a predetermined period exceeds the upper limit value again during the period of increasing the amount of the adsorbent, the period of increasing the amount of the treating agent is further extended from that time point for a period equivalent to the period of increasing the amount of the adsorbent. , further increasing the dosage in such cases, combining these, etc. are one embodiment effective from the safety side.
The upper limit of these average values and the amount of adsorbent to be increased can be any value, for example, 120 ppm. In addition, more suitable values can be obtained by actually artificially throwing incinerators with a high chlorine concentration and trying experiments in which the upper limit of the average value and the amount of adsorbent charged are changed in multiple patterns.
The processing agent
<処理剤供給制御装置20の塩化水素濃度抑制機能>
処理剤供給制御装置20には、中和剤通常量、予め設けた塩化水素ガス濃度の瞬間値上限、中和剤増量量の各情報が格納される。
中和剤通常量は、定常的に集塵機6に供給する中和剤の量である。
予め設けた塩化水素ガス濃度の瞬間値上限は、各処理施設ごとに自主設定している塩化水素ガス濃度である。
中和剤増量量は、測定された塩化水素ガス濃度が塩化水素ガス濃度瞬間値上限を上回った際に増量される中和剤の量である。
ダイオキシン類抑制対策時と異なり、塩化水素ガスは中和剤との反応が速いため、塩化水素ガス濃度測定値が塩化水素ガス濃度瞬間値上限を上回ったことが確認され次第、中和剤を増量すれば、速やかに塩化水素ガスの低減を図ることができる。
また、中和剤増量状態の終期は、塩化水素ガス濃度の測定値が瞬間値上限を下回った時点と設定することに十分効果を奏することができる。図10に中和剤供給の制御方法の一態様をPAD図にて示す。
<Hydrogen chloride concentration suppression function of processing agent
The processing
The normal amount of neutralizing agent is the amount of neutralizing agent that is constantly supplied to the
The preset instantaneous upper limit of hydrogen chloride gas concentration is the hydrogen chloride gas concentration voluntarily set for each treatment facility.
The neutralizing agent increase amount is the amount of the neutralizing agent that is increased when the measured hydrogen chloride gas concentration exceeds the hydrogen chloride gas concentration instantaneous upper limit.
Unlike dioxin suppression measures, hydrogen chloride gas reacts quickly with the neutralizer, so as soon as it is confirmed that the measured hydrogen chloride gas concentration exceeds the instantaneous hydrogen chloride gas concentration upper limit, the amount of neutralizer is increased. If so, the hydrogen chloride gas can be rapidly reduced.
Further, it is sufficiently effective to set the end of the neutralizing agent amount increase state to the time when the measured value of the hydrogen chloride gas concentration falls below the upper limit of the instantaneous value. FIG. 10 shows a PAD diagram of one aspect of the method of controlling the supply of the neutralizing agent.
また、当該瞬間値上限としては、ダイオキシン類抑制対策を目的とした塩化水素濃度の平均値上限と異なる値とすることも可能である。一般に平均値は、瞬間値のバラツキが平滑化されるため、瞬間値上限は平均値上限より高い値となる。 Further, the upper limit of the instantaneous value may be set to a value different from the upper limit of the average hydrogen chloride concentration for the purpose of suppressing dioxins. In general, the average value is smoothed for variations in the instantaneous value, so the upper limit of the instantaneous value is higher than the upper limit of the average value.
以上を整理すると、塩化水素ガス抑制対策のためには、短周期の影響が残る塩化水素ガス濃度測定データ(瞬間値)に基づき、中和剤の増量始期、終期を定める。一方、ダイオキシン類抑制対策のためには、短周期の影響が除去されているデータ(平均値)に基づき、吸着剤剤の増量始期、終期を定める。特に、終期は塩化水素濃度平均値とダイオキシン類濃度との相関に基づき定めることを特徴とする。
なお、中和剤と吸着剤の混合された処理剤を用い、塩化水素ガス濃度およびダイオキシン類の両成分を抑制することを目的とする場合には、図2および図10に示した両制御方法を適宜組合わせれば良い。
Summarizing the above, in order to suppress hydrogen chloride gas, the start and end of increasing the amount of the neutralizing agent are determined based on the hydrogen chloride gas concentration measurement data (instantaneous value), which has short-term effects. On the other hand, for dioxin control measures, the start and end times of increasing the amount of adsorbent are determined based on the data (average value) from which short-period effects have been removed. In particular, the final stage is characterized by being determined based on the correlation between the average hydrogen chloride concentration and the dioxin concentration.
If the purpose is to suppress both the concentration of hydrogen chloride gas and dioxins by using a treatment agent in which a neutralizing agent and an adsorbent are mixed, both control methods shown in FIGS. should be combined appropriately.
以下、ダイオキシン類が再合成された場合でも、ダイオキシン類濃度が規定値を上回らないよう制御することが可能となる本発明の実施の形態に関わる廃棄物焼却システムついてさらに実施例に基づき説明する。 Hereinafter, a waste incineration system according to an embodiment of the present invention, which can control the concentration of dioxins so that it does not exceed a specified value even when dioxins are resynthesized, will be further described based on examples.
はじめに本実施例で使用された廃棄物焼却システムで行われているダイオキシン類が発生する原因となる高塩素濃度焼却物の受け入れ制限について説明する。本実施例で使用した廃棄物焼却システムでは、高い塩素含有量の焼却物処理物を受け入れないよう被焼却物の全案件につき、受け入れ前の塩素含有量測定を可能な限り実施した。 First, the restriction on acceptance of high-chlorine-concentration incinerators, which causes the generation of dioxins, performed in the waste incineration system used in this embodiment will be described. In the waste incineration system used in this example, the chlorine content was measured as much as possible before acceptance for all items to be incinerated so as not to accept incinerated materials with a high chlorine content.
本廃棄物焼却システムでは、受け入れ前と受け入れ時の2回、塩素濃度を調査した。受け入れ前は、排出事業者から情報提供してもらうか、事前に試料を提供してもらい塩素濃度を測定した。測定作業については、液状物と固形物により異なる。液状物については、pH試験紙で測定するが、油分などの影響でpH試験紙では測定不可能な場合は、油分を燃焼させて残った水分のpHを測定した。測定紙がpH3以下を示した場合は廃棄物焼却システムで処理する廃棄物としては塩素濃度が高すぎると判定し、原則受け入れ不可とした。固形物の場合、焼却物発生事業所等からの情報により塩素が含まれているか事前に情報提供をお願いした。塩素1wt%の場合には原則として受け入れ不可とした。但し、受入量が少なく全体の焼却処理量に対して影響が少ないと判断された場合は除いた。 In this waste incineration system, the chlorine concentration was investigated twice before and after acceptance. Before acceptance, the chlorine concentration was measured by obtaining information from the waste discharger or obtaining a sample in advance. The measurement work differs depending on the liquid and solid substances. Liquid substances are measured with pH test paper, but when the pH test paper cannot be measured due to the influence of oil, etc., the oil is burned and the pH of the remaining water is measured. If the measurement paper showed a pH of 3 or less, it was determined that the chlorine concentration was too high for the waste to be processed by the waste incineration system, and was basically unacceptable. In the case of solids, we asked in advance to provide information on whether chlorine is contained based on information from the incinerator generating business. In the case of 1 wt% chlorine, it was determined as unacceptable in principle. However, cases where the received amount was small and it was judged that the impact on the overall amount of incineration processing was small was excluded.
本実施例では、図1に記載された廃棄物焼却システムを用いた。ただし、本実施例における処理剤供給量は一定とし、実験途中で処理剤の増量、減量は行わなかった。また、焼却処理物の焼却は、焼却処理工程の1次燃焼炉2では炉内燃焼ガス温度を850℃以上に保ち、2次燃焼炉3までの出入口温度も850℃以上に維持するように行うとともに、滞留時間を2秒以上確保させた。
各燃焼炉の燃焼ガス温度を確認した結果、2次燃焼炉3出口まではダイオキシン類は生成されないと考えられ、さらに過熱残渣を分析した結果、全て検出限界以下であり無害化されていることを確認できた。また二次燃焼炉内のライニング及び付着物についても調査したが、ダイオキシン類及び塩素は検出限界以下であった。
In this example, the waste incineration system described in FIG. 1 was used. However, the amount of processing agent supplied in this example was constant, and the amount of processing agent was not increased or decreased during the experiment. In addition, the incineration of the incinerated material is carried out by maintaining the combustion gas temperature in the
As a result of checking the combustion gas temperature of each combustion furnace, it is thought that no dioxins are generated up to the exit of the
調査結果からダイオキシン類は、廃熱ボイラー4から急冷塔5までの減温処理工程付近にて再合成されると推定された。
From the investigation results, it was presumed that dioxins are resynthesized in the vicinity of the temperature reduction treatment process from the
廃棄物焼却システムに投入された高塩素焼却物由来の塩化水素ガスは、集塵機6の誘因送風機8を通して排出されるガスを煙突9中段の塩化水素ガス測定装置12により常時監視した。ここでは京都電子製レーザー式ガス分析計(型式名KLA)を使用し、瞬間値の測定間隔は2秒に設定した。
The hydrogen chloride gas derived from the high-chlorine incinerator introduced into the waste incineration system was constantly monitored by the hydrogen chloride
処理剤には、秩父石灰工業株式会社の高反応性消石灰(活性炭15%配合)、平均粒径8μm、BET45m2/g、細孔容積0.2cm2/g、CaO≧72.5%を用いた。当該処理剤は塩化水素及びダイオキシン類を抑制する性能を有する。
As a treating agent, high-reactivity slaked lime (15% activated carbon) manufactured by Chichibu Lime Industry Co., Ltd.,
供給される処理剤の量は、2.4kg/hとした。この内、消石灰供給量は2.0kg/h、活性炭は0.4kg/hであった。この時の排ガス中の塩化水素は100ppm程度、二酸化硫黄は15ppm程度で推移した。投入された消石灰がすべて反応していたものと仮定すると、投入された汚泥に起因する塩化水素は177ppmと推定された。 The amount of treatment agent supplied was 2.4 kg/h. Among them, the supplied amount of slaked lime was 2.0 kg/h and the amount of activated carbon was 0.4 kg/h. At this time, hydrogen chloride in the exhaust gas remained at about 100 ppm and sulfur dioxide at about 15 ppm. Assuming that all the charged slaked lime had reacted, the amount of hydrogen chloride resulting from the charged sludge was estimated to be 177 ppm.
本実施例では、高塩素焼却物として、塩素を4~5%程度含むと考えられる汚泥を午前8:00~11:00、午後01:00~4:00の2回投入し、意図的に排ガスの塩化水素濃度を高め、処理剤供給制御装置20および処理剤供給装置11が、自主設定した塩化水素濃度瞬間値上限200ppmを超えた場合に的確に作動するか検証した。
In this embodiment, as the high-chlorine incinerator, sludge that is considered to contain about 4 to 5% chlorine is injected twice from 8:00 to 11:00 in the morning and from 01:00 to 4:00 in the afternoon. By increasing the concentration of hydrogen chloride in the exhaust gas, it was verified whether the processing agent
処理剤供給装置11はゲートバルブ及び電動ロータリーバルブにより供給量制御を行っている。本実施例では、予め検証されていた通常運転時の4秒運転-60秒停止の間欠運転を基本としとしていたが、処理剤供給制御装置20が塩化水素濃度が塩化水素濃度瞬間値上限の超過を検知すると運転条件が切り替えられ、16秒運転-30秒停止の間欠運転に変更される設定とした。
The processing
図3に塩化水素濃度の経時変化を示す。図3の通り、午前中の塩素を含む汚泥投入開始後、30分後には排ガス中の塩化水素濃度が上昇を始め200ppmを超えると、処理剤供給制御装置20が処理剤供給装置11を制御し処理剤が増加供給され、数秒後には200ppm以下となった。この動作は3回発生した。午後は午前中とは異なり、塩素を含む汚泥投入開始後1時間30分を過ぎてから塩化水素濃度が上昇し、計19回200ppm以上を検知したが、処理剤増量供給効果により、いずれも45秒以内には200ppm以下となる挙動を繰り返した。したがって、塩化水素濃度の上昇に対して、当該処理剤供給制御装置20および処理剤供給装置11で対応可能であることが確認できた。
FIG. 3 shows the change in hydrogen chloride concentration over time. As shown in FIG. 3, after 30 minutes from the start of charging sludge containing chlorine in the morning, when the concentration of hydrogen chloride in the exhaust gas begins to rise and exceeds 200 ppm, the processing agent
図3の2秒ごとの瞬間値データを図4のように1時間ごとの平均値とすると当該処理剤の効果を容易に確認できる。したがって、1時間平均値を監視することで排ガス中の塩化水素濃度を監視制御することも可能である。但し、瞬間値を平滑化した値であるため、上限値は瞬間値よりも低く、例えば120ppmとすることが望ましい。 If the instantaneous value data for every two seconds in FIG. 3 is replaced with the average value for every hour as shown in FIG. 4, the effect of the treatment agent can be easily confirmed. Therefore, it is possible to monitor and control the hydrogen chloride concentration in the exhaust gas by monitoring the hourly average value. However, since it is a value obtained by smoothing the instantaneous value, it is desirable that the upper limit is lower than the instantaneous value, for example 120 ppm.
また本実施例では、排ガス中のダイオキシン類濃度とばいじん中のダイオキシン類濃度の測定を計7回行った。測定は外部分析機関により、排ガス中のダイオキシン類濃度の測定はJISK0311「排ガス中のダイオキシン類の測定方法」に従い、ばいじん中のダイオキシン類濃度の測定は、ダイオキシン類対策特別措置施行規則第二条二項第一号の規定に基づき環境大臣が定める方法を用いて行われた。
Further, in this example, the dioxin concentration in exhaust gas and the dioxin concentration in dust were measured seven times in total. The dioxins concentration in the exhaust gas is measured by an external analysis organization according to JISK0311 "Method for measuring dioxins in the exhaust gas", and the dioxin concentration in the soot and dust is measured according to Article 2-2 of the Ordinance for Enforcement of Special Measures against Dioxins. It was carried out using the method specified by the Minister of the Environment based on the provisions of
次いで、排ガス及びばいじん中のダイオキシン類測定値と、塩化水素濃度の24時間平均値との相関係数Rを求めた。なお、塩化水素濃度の24時間平均値は前日の平均値から5日前の平均値までの5種類の平均値を求め、各平均値に対し、ダイオキシン類測定値との相関係数Rを求めた。この結果を表1に纏めるとともに、排ガス中のダイオキシン類測定値と前日および4日前の塩化水素濃度平均値との相関係数の関係を示すグラフを図5に、ばいじん中のダイオキシン類測定値と前日および4日前の塩化水素濃度平均値との相関係数の関係を示すグラフを図6に示した。 Next, the correlation coefficient R between the measured values of dioxins in exhaust gas and dust and the 24-hour average hydrogen chloride concentration was obtained. For the 24-hour average value of hydrogen chloride concentration, 5 types of average values from the average value of the previous day to the average value of 5 days ago were obtained, and the correlation coefficient R between each average value and the measured value of dioxins was obtained. . The results are summarized in Table 1, and a graph showing the relationship of the correlation coefficient between the measured values of dioxins in exhaust gas and the average values of hydrogen chloride concentration on the previous day and four days ago is shown in FIG. FIG. 6 shows a graph showing the relationship of the correlation coefficient with the hydrogen chloride concentration average values on the previous day and 4 days ago.
また、表1のデータを用い、横軸を日にち、縦軸を相関係数Rとしてダイオキシン類濃度と塩化水素濃度平均値との関係をグラフにすると、図7のように4日前をピークに高い相関が見られるが、5日前には測定日前日程度の相関係数Rになることが分かった。すわなち、排ガス中のダイオキシン類濃度と24時間平均化後の塩化水素濃度の相関には4日間のタイムラグあることを確認した。そこで、処理剤の増量期間は少なくとも4日以上、安全率を考慮し、5日以上とした。なお、このタイムラグは各廃棄物焼却システムに依存する値であるので、各システムごとに予め求めておく必要がある。
また、ダイオキシン類濃度と塩化水素濃度との相関関係は、排ガス中およびばいじん中のいずれのダイオキシン類濃度においても同様に認められた。排ガス中とばいじん中の両者のダイオキシン類濃度の相関は、図8に示すように高いものであった(相関係数R=0.8911)。
Using the data in Table 1, plotting the relationship between the dioxin concentration and the average hydrogen chloride concentration by plotting the horizontal axis as the date and the vertical axis as the correlation coefficient R, as shown in FIG. Although there is a correlation, it was found that five days before the measurement, the correlation coefficient R was about the same as the day before the measurement. That is, it was confirmed that there is a four-day time lag in the correlation between the concentration of dioxins in exhaust gas and the concentration of hydrogen chloride after averaging for 24 hours. Therefore, the period for increasing the amount of the treatment agent was set to at least 4 days, and considering the safety factor, it was set to 5 days or more. Since this time lag is a value that depends on each waste incineration system, it must be obtained in advance for each system.
In addition, the correlation between the dioxin concentration and the hydrogen chloride concentration was similarly recognized for both the dioxin concentration in exhaust gas and dust. The correlation between the concentrations of dioxins in both exhaust gas and dust was high as shown in FIG. 8 (correlation coefficient R=0.8911).
これらの結果より、塩化水素濃度に基づきダイオキシン濃度の抑制対策を行うための情報(相関に基づく情報)を得るためには、排ガス中のダイオキシン類濃度測定値でも、ばいじん中のダイオキシン類濃度測定値でも用いることができるとの知見が得られた。 From these results, in order to obtain information (information based on correlation) for taking measures to control dioxin concentration based on hydrogen chloride concentration, it is necessary to measure dioxin concentration in exhaust gas and dust. However, the knowledge that it can be used was obtained.
今回の実験に使用した廃棄物焼却システムにおいては、通常操業時、処理剤2.4kg/h(消石灰に活性炭を15%配合した中和剤と吸着剤の混合剤)を供給して塩化水素濃度を常時監視したが、前述の予め行った相関関係に基づくタイムラグ情報の結果に基づき、前日0時から24時までの塩化水素濃度24時間平均値が事前に設定した平均値上限(例えば120ppm)を超過したことを確認した日から、タイムラグを考慮して相関関係がなくなると予測される5日後まで処理剤の増量を維持した。尚、瞬間値として2秒毎の塩化水素濃度の測定データが瞬間値上限200ppmを超えた場合については別途自動的に処理剤を増量するシステムとすることで、塩化水素濃度の上昇にも対応することができた。 In the waste incineration system used in this experiment, during normal operation, 2.4 kg/h of processing agent (a mixture of neutralizing agent and adsorbent containing slaked lime with 15% activated carbon) was supplied to reduce the concentration of hydrogen chloride. was constantly monitored, but based on the results of the time lag information based on the previously described correlation, the 24-hour average hydrogen chloride concentration from 0:00 to 24:00 on the previous day exceeded the preset average upper limit (for example, 120 ppm) From the day when the excess was confirmed, the amount of the treating agent was increased until 5 days later when the correlation was expected to disappear in consideration of the time lag. In addition, when the hydrogen chloride concentration measured data every 2 seconds as an instantaneous value exceeds the upper limit of 200 ppm of the instantaneous value, a separate system that automatically increases the amount of processing agent can be used to cope with the increase in hydrogen chloride concentration. I was able to
排ガス中の塩化水素濃度の平均値が平均値上限を超えた後、上昇すると予測されるダイオキシン類濃度のタイムラグをイメージ化すると図9のようになる。塩化水素濃度の瞬間値が上限値を超えた時点であって、まだ塩化水素濃度平均値が平均値上限を超えていない時点Aでは、消石灰など酸性ガス成分を中和させる中和剤が直ちに増量される。また塩化水素濃度の平均値が平均値上限を超えた時点Bで、ダイオキシン類等を吸着させるための吸着剤を増量する。そして、イメージではあるがダイオキシン類濃度と塩化水素濃度平均値の相関関係がなくなる時点C(本実施例では5日後)まで供給を継続する。 Fig. 9 shows an image of the time lag of the dioxin concentration that is expected to increase after the average hydrogen chloride concentration in the exhaust gas exceeds the upper limit of the average value. At time A when the instantaneous hydrogen chloride concentration exceeds the upper limit and the average hydrogen chloride concentration has not yet exceeded the upper limit of the average value, the amount of neutralizing agent that neutralizes acidic gas components such as slaked lime immediately increases. be done. At time B when the average hydrogen chloride concentration exceeds the upper limit of the average value, the amount of adsorbent for adsorbing dioxins and the like is increased. Then, the supply is continued until the time point C (after 5 days in this embodiment) when the correlation between the dioxin concentration and the average hydrogen chloride concentration disappears.
我が国においてはダイオキシン類の排出規制に伴い、基準を満たせない既設炉には高度処理技術を備えた焼却設備および排ガスの処理設備が設置され、排出基準値が達成されているが、その投資額は廃棄物焼却システムを有する廃棄物処分事業者にとって大きな負担となっている。本廃棄物焼却システムによれば、導入費用および維持費用を安く抑えれるとともに、排出される処理剤の量を削減できるので、専用の廃棄物焼却施設のみならず、ダイオキシン類の発生が予想される生産システムの一部としても利用可能である。 In Japan, in line with dioxin emission regulations, existing furnaces that do not meet the standards are equipped with incineration equipment equipped with advanced treatment technology and exhaust gas treatment equipment, and the emission standard values are achieved. It is a heavy burden for waste disposal operators who have a waste incineration system. According to this waste incineration system, the installation and maintenance costs can be kept low, and the amount of treatment agent discharged can be reduced. It can also be used as part of a production system.
1・・・受入ホッパー、2・・・1次燃焼炉、3・・・2次燃焼炉、4・・・廃熱ボイラー、5・・・急冷塔(減温処理)、6・・・集塵機、7・・・ばいじん回収容器 8・・・誘引送風機、9・・・煙突、10・・・廃棄物焼却システム全体、11・・・処理剤供給装置、12・・・塩化水素ガス測定装置、20・・・処理剤供給制御装置
DESCRIPTION OF
Claims (4)
排ガス中の塩化水素濃度を連続的に測定する塩化水素濃度測定手段と、
前記処理剤の供給を制御する処理剤供給制御手段と、
を備える廃棄物焼却システムにおいて、
前記処理剤は前記排ガス中のダイオキシン類を吸着させる機能を有する吸着剤を含み、
前記処理剤供給制御手段は、塩化水素濃度の平均値が塩化水素濃度の平均値上限を超えた場合に、予め求めた、前記平均値の経時変化とダイオキシン類濃度の経時変化とが相関を示すタイムラグ期間を上回る期間、前記処理剤を増量することを特徴とする廃棄物焼却システム。 a dust collecting means; and a processing agent supply means provided upstream of the dust collecting means for supplying a processing agent;
Hydrogen chloride concentration measuring means for continuously measuring the hydrogen chloride concentration in the exhaust gas;
a processing agent supply control means for controlling supply of the processing agent;
In a waste incineration system comprising
The treatment agent contains an adsorbent having a function of adsorbing dioxins in the exhaust gas ,
When the average value of the hydrogen chloride concentration exceeds the upper limit of the average value of the hydrogen chloride concentration, the processing agent supply control means exhibits a correlation between the change in the average value over time and the change in the dioxin concentration over time determined in advance. A waste incineration system characterized by increasing the amount of the processing agent for a period exceeding the time lag period .
3. The waste incineration system according to claim 1 , wherein the average value is an average value of hydrogen chloride concentration measurement data for 30 minutes to 3 days .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019084470A JP7264372B2 (en) | 2019-04-25 | 2019-04-25 | Waste incineration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019084470A JP7264372B2 (en) | 2019-04-25 | 2019-04-25 | Waste incineration system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020179353A JP2020179353A (en) | 2020-11-05 |
JP7264372B2 true JP7264372B2 (en) | 2023-04-25 |
Family
ID=73023014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019084470A Active JP7264372B2 (en) | 2019-04-25 | 2019-04-25 | Waste incineration system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7264372B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000317264A (en) | 1999-05-17 | 2000-11-21 | Nkk Corp | Method for removing harmful component in waste gas and device for treating waste gas |
JP2001208744A (en) | 2000-01-28 | 2001-08-03 | Hitachi Ltd | Dioxin concentration evaluating method |
JP2005199198A (en) | 2004-01-16 | 2005-07-28 | Takuma Co Ltd | Method for controlling exhaust gas treatment facility |
JP2007237019A (en) | 2006-03-06 | 2007-09-20 | Mitsui Eng & Shipbuild Co Ltd | Feed amount control method for exhaust gas treatment chemical and exhaust gas treatment apparatus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09308817A (en) * | 1996-05-22 | 1997-12-02 | Babcock Hitachi Kk | Method for treating exhaust gas and apparatus therefor |
-
2019
- 2019-04-25 JP JP2019084470A patent/JP7264372B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000317264A (en) | 1999-05-17 | 2000-11-21 | Nkk Corp | Method for removing harmful component in waste gas and device for treating waste gas |
JP2001208744A (en) | 2000-01-28 | 2001-08-03 | Hitachi Ltd | Dioxin concentration evaluating method |
JP2005199198A (en) | 2004-01-16 | 2005-07-28 | Takuma Co Ltd | Method for controlling exhaust gas treatment facility |
JP2007237019A (en) | 2006-03-06 | 2007-09-20 | Mitsui Eng & Shipbuild Co Ltd | Feed amount control method for exhaust gas treatment chemical and exhaust gas treatment apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2020179353A (en) | 2020-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6124097B1 (en) | Exhaust gas treatment apparatus and exhaust gas treatment method | |
EP0930091A1 (en) | Method of treating exhaust gas | |
JP5991677B2 (en) | Exhaust gas treatment equipment | |
JP2018065063A (en) | Fly ash treatment equipment and fly ash treatment method | |
JP2010075897A (en) | Apparatus for fly ash treatment, method for fly ash treatment, waste disposal system, and operation method for waste disposal system | |
JP5976820B2 (en) | Smoke exhaust processing method and smoke exhaust processing apparatus | |
JP7264372B2 (en) | Waste incineration system | |
JP6722458B2 (en) | Fly ash treatment facility and method of supplying heavy metal fixing agent for fly ash treatment | |
JP2013017956A (en) | Method for controlling additive rate of chelating agent to fly ash | |
JP2000317264A (en) | Method for removing harmful component in waste gas and device for treating waste gas | |
JP2010127598A (en) | Treated object combustion system and method of controlling concentration of nitrogen oxide in exhaust gas | |
Grosso et al. | Environmental release and mass flux partitioning of PCDD/Fs during normal and transient operation of full scale waste to energy plants | |
JPH10296046A (en) | Removing process for acidic component in exhaust gas | |
WO2021124592A1 (en) | Flue gas treatment device | |
JP3235513B2 (en) | Exhaust gas treatment method | |
JP6909667B2 (en) | Combustion exhaust gas treatment device | |
JP4958573B2 (en) | Method for suppressing acidic exhaust gas in refuse incinerators | |
JP2021065827A (en) | Exhaust gas treatment apparatus and exhaust gas treatment method | |
CN110966611A (en) | Grate furnace waste incineration discharges full flow supervisory systems | |
JP2003190915A (en) | Method of melting treatment and apparatus therefor | |
Filius et al. | Emissions characterization and off-gas system development for processing simulated mixed waste in a plasma centrifugal furnace | |
JP2004316954A (en) | Concentration control method of dioxins in exhaust gas | |
JPH06218229A (en) | Method and device for controlling supply of flue gas purifying agent | |
FI4008425T3 (en) | Method for removing mercury from fumes | |
JP3517177B2 (en) | Method and apparatus for estimating dioxin concentration in flue gas and waste combustion furnace control device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20190426 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A681 Effective date: 20190509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190614 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220315 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221108 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20221223 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230313 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230404 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7264372 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |