JP6015684B2 - 還元剤添加装置 - Google Patents

還元剤添加装置 Download PDF

Info

Publication number
JP6015684B2
JP6015684B2 JP2014015933A JP2014015933A JP6015684B2 JP 6015684 B2 JP6015684 B2 JP 6015684B2 JP 2014015933 A JP2014015933 A JP 2014015933A JP 2014015933 A JP2014015933 A JP 2014015933A JP 6015684 B2 JP6015684 B2 JP 6015684B2
Authority
JP
Japan
Prior art keywords
fuel
temperature
reducing agent
flow rate
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014015933A
Other languages
English (en)
Other versions
JP2015140792A (ja
Inventor
衣川 真澄
真澄 衣川
矢羽田 茂人
茂人 矢羽田
祐季 樽澤
祐季 樽澤
恵司 野田
恵司 野田
真央 細田
真央 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014015933A priority Critical patent/JP6015684B2/ja
Priority to DE102015100203.5A priority patent/DE102015100203A1/de
Priority to FR1550642A priority patent/FR3016920B1/fr
Priority to US14/608,694 priority patent/US9528410B2/en
Priority to CN201510047981.XA priority patent/CN104819038B/zh
Publication of JP2015140792A publication Critical patent/JP2015140792A/ja
Application granted granted Critical
Publication of JP6015684B2 publication Critical patent/JP6015684B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0892Electric or magnetic treatment, e.g. dissociation of noxious components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/38Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an ozone (O3) generator, e.g. for adding ozone after generation of ozone from air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • F01N2610/105Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1811Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、NOxの還元に用いる還元剤として炭化水素化合物(燃料)を添加する、還元剤添加装置に関する。
従来より、内燃機関の排気に含まれるNOx(窒素酸化物)を、還元触媒上で還元剤と反応させて浄化する技術が知られている。そして、特許文献1に記載の浄化システムでは、内燃機関の燃焼に用いる燃料(炭化水素化合物)を還元剤として用いており、排気通路のうち還元触媒の上流側へ上記燃料を添加している。但し、内燃機関を始動させた直後等、還元触媒が活性化温度に達していない場合には、還元触媒の温度が活性化温度にまで上昇するのを待って、燃料を添加している。
特開2009−162173号公報
しかしながら、還元触媒が活性化温度に達している場合であっても、還元触媒が十分に温度上昇していない低温の状態であると、燃料によるNOxの還元作用が弱く、NOx浄化率を十分に得ることができない。
本発明は、上記問題を鑑みてなされたもので、その目的は、NOx浄化率の向上を図った還元剤添加装置を提供することにある。
ここに開示される発明は上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。
開示される発明のひとつは、内燃機関(10)の排気に含まれるNOxを還元触媒上で浄化するNOx浄化装置(15)が排気通路(10ex)に備えられた燃焼システムに設けられ、排気通路のうち還元触媒の上流側へ還元剤を添加する還元剤添加装置であることを前提とする。
そして、炭化水素化合物である燃料と空気を混合させ、空気中の酸素により燃料を酸化反応させる反応室(30a、30b)を内部に形成する反応容器(30)と、反応室へ供給される燃料と空気の比率である当量比を、所定の当量比範囲に調整する当量比調整手段(S40)と、反応室の温度を所定の温度範囲に調整する温度調整手段(S30)と、を備える。そして、当量比範囲および温度範囲は、反応室の燃料が空気中の酸素により部分的に酸化される冷炎反応が生じるように設定されており、冷炎反応により部分的に酸化された燃料を還元剤として用いており、当量比調整手段は、反応室の温度に応じて、当量比の目標値である目標当量比(φtrg)を変更することを特徴とする。
さて、高温環境下の燃料は、大気圧であっても、周囲の空気に含まれる酸素と酸化反応して自着火燃焼する。このような自着火燃焼による酸化反応は、発熱しながら二酸化炭素と水が生成される熱炎反応とも呼ばれている。但し、燃料と空気の比率(当量比)および雰囲気温度が所定範囲にある場合には、以下に説明する冷炎反応で留まる期間が長くなり、その後に熱炎反応が生じる。つまり、冷炎反応と熱炎反応の2段階で酸化反応が生じる(図5参照)。
この冷炎反応は、雰囲気温度が低く当量比が小さい場合に生じやすい反応であり、周囲の空気に含まれる酸素により燃料が部分的に酸化される反応である。そして、冷炎反応による発熱で雰囲気温度が上昇し、その後一定の時間が経過すると、部分酸化された燃料(例えばアルデヒド)が酸化されて先述の熱炎反応が生じる。そして、冷炎反応により生成されたアルデヒド等の部分酸化燃料をNOx浄化用の還元剤として用いると、部分酸化されていない燃料を用いた場合に比べてNOx浄化率が向上する。
そこで本発明者らは、冷炎反応により燃料をアルデヒド等に改質し、その改質燃料をNOx浄化用の還元剤として用いることで、NOx浄化率の向上を図ることを検討した。そして、雰囲気温度および当量比を所定範囲に調整すれば、熱炎反応の前に冷炎反応が生じるとの知見を得た。
この知見に基づき為された上記発明では、空気中の酸素により燃料を酸化反応させる反応室を内部に形成する反応容器を備える。そして、冷炎反応が生じるように反応室の温度および当量比が調整され、冷炎反応により部分的に酸化された燃料が、NOx浄化用の還元剤として用いられる。そのため、部分酸化されていない燃料を還元剤としてそのまま用いる場合に比べて、NOx浄化率を向上させることができる。
本発明の第1実施形態に係る還元剤添加装置、およびその装置が適用される燃焼システムを示す模式図。 第1実施形態に係る還元剤添加装置を模式的に示す断面図。 第1実施形態に係る噴射弁の断面図であって、噴孔の断面形状を示す図。 第1実施形態において、ヒータ加熱面における燃料噴霧の投影範囲を模式的に示す図。 冷炎反応と熱炎反応の2段階で酸化反応が生じることを説明するグラフ。 図5の冷炎反応の部分について横軸を拡大したグラフ。 冷炎反応の反応経路を説明する図。 初期温度の条件を異ならせて、2段階酸化反応による温度変化をシミュレーションした結果を示すグラフ。 当量比の条件を異ならせて、2段階酸化反応による温度変化をシミュレーションした結果を示すグラフ。 オゾン濃度の条件を異ならせて、2段階酸化反応による温度変化をシミュレーションした結果を示すグラフ。 初期温度および当量比の、2段階酸化反応が生じる範囲を示す図。 図1に示す還元剤添加装置において、オゾン生成と改質燃料生成とを切り替える制御の手順を示すフローチャート。 図12に示すオゾン生成制御に係る、サブルーチン処理の手順を示すフローチャート。 図12に示す改質燃料生成制御に係る、サブルーチン処理の手順を示すフローチャート。 本発明の第2実施形態に係る還元剤添加装置、およびその装置が適用される燃焼システムを示す模式図。 本発明の第3実施形態に係る還元剤添加装置、およびその装置が適用される燃焼システムを示す模式図。
以下、図面を参照しながら発明を実施するための複数の形態を説明する。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において、構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を参照し適用することができる。
(第1実施形態)
図1に示す燃焼システムは、以下に詳述する内燃機関10、過給機11、微粒子捕集装置(DPF14)、DPF再生装置(再生用DOC14a)、NOx浄化装置15、還元剤浄化装置(浄化用DOC16)および還元剤添加装置を備える。燃焼システムは車両に搭載されたものであり、当該車両は、内燃機関10の出力を駆動源として走行する。内燃機関10は、圧縮自着火式のディーゼルエンジンであり、燃焼に用いる燃料には軽油を用いている。
過給機11は、タービン11a、回転軸11bおよびコンプレッサ11cを備える。タービン11aは、内燃機関10の排気通路10exに配置され、排気の運動エネルギにより回転する。回転軸11bは、タービン11aおよびコンプレッサ11cの各インペラを結合することで、タービン11aの回転力をコンプレッサ11cに伝達する。コンプレッサ11cは、内燃機関10の吸気通路10inに配置され、吸気を圧縮して内燃機関10へ過給する。
吸気通路10inのうちコンプレッサ11cの下流側には、コンプレッサ11cで圧縮された吸気を冷却する冷却器12が配置されている。冷却器12により冷却された圧縮吸気は、スロットルバルブ13により流量調整された後、吸気マニホールドにより内燃機関10の複数の燃焼室へ分配される。
排気通路10exのうちタービン11aの下流側には、再生用DOC14a(Diesel Oxidation Catalyst)、DPF14(Diesel Particulate Filter)、NOx浄化装置15、浄化用DOC16が順に配置されている。DPF14は、排気に含まれている微粒子を捕集する。再生用DOC14aは、排気中の未燃燃料を酸化させて燃焼させる触媒を有する。この燃焼により、DPF14で捕集された微粒子を燃焼させて、DPF14を再生させて捕集能力を維持させる。なお、再生用DOC14aへの未燃燃料供給による燃焼は、常時実施されるものではなく、再生が必要な時期に一時的に実施される。
排気通路10exのうちDPF14の下流側かつNOx浄化装置15の上流側には、還元剤添加装置の供給管32が接続されている。この供給管32から排気通路10exへ、還元剤添加装置により生成された改質燃料が還元剤として添加される。改質燃料とは、還元剤として用いる炭化水素(燃料)を部分的に酸化して、アルデヒド等の部分酸化炭化水素に改質したものであり、図7を用いて後に詳述する。
NOx浄化装置15は、還元触媒を担持するハニカム状の担体15bと、担体15bを内部に収容するハウジング15aとを備える。NOx浄化装置15は、排気中のNOxを還元触媒上で改質燃料と反応させてNに還元することで、排気に含まれているNOxを浄化する。なお、排気中にはNOxの他にOも含まれているが、改質燃料はO存在下においてNOxと選択的に反応する。
還元触媒には、NOxを吸着する機能を有したものが用いられている。詳細には、還元反応が可能となる活性化温度よりも触媒温度が低い場合には、還元触媒は排気中のNOxを吸着する機能を発揮する。そして、触媒温度が活性化温度以上の場合には、吸着されていたNOxは改質燃料により還元されて、還元触媒から放出される。例えば、担体15bに担持された銀アルミナによる還元触媒により、NOx吸着機能を有したNOx浄化装置15が提供される。
浄化用DOC16は、酸化触媒を担持する担体をハウジング内に収容して構成されている。浄化用DOC16は、還元触媒上にてNOx還元に用いられずにNOx浄化装置15から流出した還元剤を、酸化触媒上で酸化する。これにより、排気通路10exの出口から還元剤が大気に放出されることを防止する。なお、酸化触媒の活性化温度(例えば200℃)は、還元触媒の活性化温度(例えば250℃)よりも低い。
次に、改質燃料を生成して供給管32から排気通路10exへ添加する還元剤添加装置について説明する。還元剤添加装置は、以下に詳述する放電リアクタ20(オゾン生成装置)、エアポンプ20p、反応容器30、燃料噴射弁40およびヒータ50を備える。
図2に示すように、放電リアクタ20は、内部に流通路22aを形成するハウジング22を備え、流通路22aには複数の電極21が配置されている。具体的には、電気絶縁部材23を介してハウジング22内に電極21が保持されている。これらの電極21は、互いに平行に対向するように配置された平板形状であり、高電圧が印加される電極と接地電圧の電極とが交互に配置されている。電極21への電圧印加は、電子制御装置(ECU80)が備えるマイクロコンピュータ(マイコン81)により制御される。
放電リアクタ20のハウジング22には、エアポンプ20pにより送風された空気が流入する。エアポンプ20pは電動モータにより駆動し、その電動モータはマイコン81により制御される。エアポンプ20pにより送風された空気は、ハウジング22内の流通路22aに流入し、電極21間の通路である電極間通路21aを流通する。
放電リアクタ20の下流側には、燃料噴射室30aおよび気化室30bを内部に形成する反応容器30が取り付けられている。これらの燃料噴射室30aおよび気化室30bは、空気中の酸素により燃料を酸化反応させる「反応室」に相当する。反応容器30には、電極間通路21aを流通した空気が流入する空気流入口30cが形成されている。空気流入口30cは燃料噴射室30aと連通し、燃料噴射室30aは開口部30dを通じて気化室30bと連通する。電極間通路21aを流通して空気流入口30cから流入した空気は、燃料噴射室30aおよび気化室30bを順に通過して、反応容器30に形成された噴出口30eから噴出する。噴出口30eは供給管32と連通する。
反応容器30には、燃料噴射弁40が取り付けられている。図1に示す燃料タンク40t内の液体燃料は、ポンプ40pにより燃料噴射弁40に供給され、燃料噴射弁40の噴孔D1、D2、D3、D4(図3参照)から燃料噴射室30aへ噴射される。燃料タンク40t内の燃料は、先述した燃焼用の燃料としても用いられており、内燃機関10の燃焼に用いる燃料と、還元剤として用いる燃料は共用される。燃料噴射弁40は、電磁ソレノイドによる電磁力により開弁作動させる構造であり、その電磁ソレノイドへの通電はマイコン81により制御される。
反応容器30には、ヒータ50が取り付けられている。ヒータ50は、通電により発熱する発熱体(図示せず)、および発熱体を内部に収容する伝熱カバー51を備える。発熱体への通電状態はマイコン81により制御される。伝熱カバー51の外周面が加熱面51aに相当し、伝熱カバー51が発熱体により加熱されることで、加熱面51aは温度上昇する。伝熱カバー51は、水平方向に延びる有底円筒形状である。詳細には、還元剤添加装置を車両に搭載した状態において、伝熱カバー51は水平方向に延びる形状である。つまり、伝熱カバー51の中心線Ch(図4参照)は水平方向に延びる。
加熱面51aは、気化室30bに配置され、燃料噴射弁40から噴射された液体燃料を加熱する。ヒータ50により加熱された液体燃料は気化室30b内で気化する。さらに、気化した燃料は、ヒータ50により所定温度以上にまで加熱される。これにより、炭素数の少ない炭化水素に燃料が分解されるといったクラッキングが生じる。
燃料噴射弁40が備える噴孔プレート41に形成された複数の噴孔D1、D2、D3、D4(図3参照)は、伝熱カバー51の長手方向つまり中心線Chの方向に、並べて配置されている。燃料噴射弁40の中心線Ciが延びる方向は、還元剤添加装置を車両に搭載した状態において鉛直の方向に対して傾いている。つまり、ヒータ50の中心線Chと燃料噴射弁40の中心線Ciとは斜めに交差する。
図3に示すように、噴孔D1〜D4はストレートに延びる形状である。噴孔D1〜D4の通路断面形状は円形であり、その通路断面積は一定である。噴孔D1〜D4の中心線C1、C2、C3、C4は、燃料噴射弁40の中心線Ciに対して傾いている。各々の噴孔D1〜D4から噴射された霧状の液体燃料である噴霧は、下流側に進むほど拡がる円錐形状である。この噴霧の中心線は噴孔D1〜D4の中心線C1、C2、C3、C4と略一致する。
噴孔D1〜D4から噴射された噴霧は、開口部30dを通じて気化室30bへ流入し、加熱面51aに噴き付けられる。噴霧中心線C1、C2、C3、C4と加熱面51aとの交差角度θ(図2参照)は90度未満の鋭角である。交差角度θは、厳密には、加熱面51aの最上端部における水平面と噴霧中心線C1〜C4との角度である。複数の噴孔D1〜D4のうち空気流れの上流側に位置する噴孔ほど、噴霧の交差角度θが大きい。なお、上下方向においては、噴孔D1〜D4は加熱面51aよりも上方に位置する。
交差角度θが鋭角であるため、円錐形状の噴霧が加熱面51aに斜めに噴き付けられる。よって、図4に示すように、加熱面51aのうち噴霧が噴き付けられる領域A1、A2、A3、A4は、中心線Chの方向を長手方向とする楕円形状となる。交差角度θの小さい噴霧ほど、噴き付け領域A1〜A4の楕円長手方向が長くなる。また、噴孔D1〜D4の直径を大きくしたり、噴孔D1〜D4と加熱面51aとの距離を長くしたりすると、領域A1、A2、A3、A4の面積が大きくなり、領域A1〜A4が加熱面51aからはみ出ることとなる。このようにはみ出ることのないよう、上記直径および距離は設定されている。
反応容器30には、気化室30bの温度を検出する温度センサ31が取り付けられている。具体的には、気化室30bのうち加熱面51aの上方部分に温度センサ31は配置されている。また、噴孔D1〜D4から噴射された噴霧が温度センサ31に直接かからないよう、噴霧よりも空気流れ下流側に温度センサ31は配置されている。温度センサ31により検出される温度は、気化した燃料と空気との反応後の温度である。温度センサ31は、検出した温度の情報(検出温度)をECU80へ出力する。
さて、放電リアクタ20への通電を実施すると、電極21から放出された電子が、電極間通路21aの空気中に含まれる酸素分子に衝突する。すると、酸素分子からオゾンが生成される。つまり、放電リアクタ20は、放電により酸素分子をプラズマ状態にして、活性酸素としてのオゾンを生成する。したがって、空気流入口30cから反応容器30内部へ流入する空気には、放電リアクタ20で生成されたオゾンが含まれている。
気化室30bでは、空気中の酸素またはオゾンにより気体燃料が部分的に酸化される冷炎反応が生じている。このように部分的に酸化された燃料を改質燃料と呼び、改質燃料の具体例として、燃料(炭化水素化合物)の一部がアルデヒド基(CHO)に酸化された状態の部分酸化物(例えばアルデヒド)が挙げられる。
ここで、冷炎反応について図5〜図7を用いて詳述する。
図5および図6は、燃料(ヘキサデカン)をヒータ50に噴き付け、ヒータ50を430℃にした場合における、噴き付け開始からの経過時間に対する、各種物理量の変化を示すシミュレーション結果を示す。すなわち、図中の(a)は雰囲気温度の変化を示す。(b)は、ヒータ50へ向けて噴射された燃料(ヘキサデカン)のモル濃度の変化を示す。(c)は、酸化で消費された酸素分子、酸化で生成された水分子および二酸化炭素分子について、各々のモル濃度の変化を示す。(d)は、冷炎反応により生成された改質燃料であるアセトアルデヒドおよびプロピオンアルデヒドのモル濃度の変化を示す。燃料噴射開始時点での初期条件は、1気圧、ヘキサデカン濃度2200ppm、酸素濃度20%、二酸化炭素濃度9%、水濃度2%である。
図5および図6に示されるように、燃料を噴射すると直ぐ、雰囲気温度が上昇するとともに燃料のモル濃度が減少し、かつ、改質燃料のモル濃度が増加している。この現象は、燃料が酸素に酸化されて発熱していることと、燃料から改質燃料が生成されていることを意味する。つまり、冷炎反応が生じていることを意味する。但し、このような温度上昇や各種モル濃度の変化は一時的なものであり、燃料噴射開始から4秒ほどの期間は、温度上昇やモル濃度の変化は現れない。
そして、図5に示すように、約4秒経過した時点で、雰囲気温度が上昇するとともに改質燃料のモル濃度が減少し、かつ、二酸化炭素および水の生成量と、酸素の消費量が増加している。この現象は、改質燃料が酸素に酸化されて発熱していることと、改質燃料が完全燃焼して二酸化炭素および水が生成されていることを意味する。つまり、熱炎反応が生じていることを意味する。なお、冷炎反応による温度上昇量は、熱炎反応による温度上昇量よりも小さい。また、冷炎反応による酸素消費量は、熱炎反応による酸素消費量よりも少ない。
図5に示すように2段階で酸化反応が生じる場合には、冷炎反応が為されてから熱炎反応が開始されるまでの期間に、改質燃料が中間生成物として現れる。中間生成物には、アルデヒドやケトン等、様々な炭化水素化合物が具体例として挙げられる。図7では、アルデヒドが生成される主要な反応経路の一例を示す。
先ず、図中の(1)に示すように、炭化水素(軽油)が酸素分子と反応して炭化水素ペルオキシラジカルが生成される。この炭化水素ペルオキシラジカルは、アルデヒドと炭化水素ラジカルに分解される((2)参照)。この炭化水素ラジカルと酸素分子とが反応して別の炭化水素ペルオキシラジカルが生成される((3)参照)。この炭化水素ペルオキシラジカルは、アルデヒドと炭化水素ラジカルに分解される((4)参照)。この炭化水素ラジカルと酸素分子とが反応して別の炭化水素ペルオキシラジカルが生成される((5)参照)。このように、炭素数を減らしながら繰り返し炭化水素ペルオキシラジカルが生成され、その生成の都度、アルデヒドが生成されていく。なお、熱炎反応では、燃料が完全燃焼して二酸化炭素と水が生成され、中間生成物は現れない。すなわち、冷炎反応により生成された中間生成物は、酸化されて二酸化炭素と水になる。
さらに本発明者らは、図5および図6に示すシミュレーション結果の蓋然性を確認するために次の試験を行った。すなわち、燃料噴射弁40から軽油を噴射させ、噴霧状に噴射された軽油を500℃の熱板(図示せず)に衝突させた。そして、熱板から気化したガスの成分を分析した。この分析により、2000ppmの軽油を衝突させた場合に約30ppmのアセトアルデヒドが生成されていることが確認された。この分析結果は、冷炎反応によるアセトアルデヒドの生成が可能であることを示す。
図5および図6に示すシミュレーションでは、ヒータ50の温度を430℃としていた。これに対し、さらに本発明者らは、ヒータ温度を異ならせてシミュレーションし、図8に示す解析結果を得た。図中の符号L1は530℃、符号L2は430℃、符号L3は330℃、符号L4は230℃、符号L5は130℃、符号L6は30℃にヒータ温度を設定した場合の解析結果を各々示す。
符号L1に示すように、ヒータ温度が530℃の場合には冷炎反応で留まる期間が殆ど無く、1段で酸化反応が完了する。また、符号L2、L3に示すように、ヒータ温度を330℃にすると、430℃にした場合に比べて冷炎反応の開始時期が遅くなる。また、符号L4〜L6に示すように、ヒータ温度を230℃以下にすると、冷炎反応および熱炎反応のいずれもが生じなくなり、酸化反応が生じない。
図8に示すシミュレーションでは、噴射した燃料と供給される空気の比率である当量比を0.23としていた。これに対し、さらに本発明者らは、当量比を異ならせてシミュレーションし、図9に示す解析結果を得た。なお、当量比を厳密に定義すると、「実際の混合気が含む燃料の重量」を、「完全燃焼できる燃料の重量」で除算した値である。図9に示すように、当量比を1.0にすると、冷炎反応で留まる期間が殆ど無く、1段で酸化反応が完了する。また、当量比を0.37にすると、当量比を0.23にした場合に比べて、冷炎反応の開始時期が早くなる。また、冷炎反応速度が速くなり、冷炎反応期間が短くなる。また、冷炎反応が終了した時点での雰囲気温度が高くなる。
図10は、図8および図9による解析結果をまとめて表したものであり、横軸は図8に係るヒータ温度(雰囲気温度)を示し、縦軸は図9に係る当量比を示す。図中のドットを付した領域は、2段酸化反応が生じる領域を表す。図示されるように、雰囲気温度が下限値よりも低い領域では、酸化反応が生じない無反応領域となる。雰囲気温度が下限値よりも高い場合であっても、当量比が1.0以上の領域であれば、1段で酸化反応が完了する1段酸化反応領域となる。
また、2段酸化反応領域と1段酸化反応領域との境界線は、雰囲気温度および当量比に応じて変化する。つまり、雰囲気温度が所定の温度範囲であり、かつ、当量比が所定の当量比範囲である場合に、2段酸化反応が生じる。これらの温度範囲および当量比範囲は、図10中のドットを付した領域の範囲に相当する。所定の温度範囲のうち最適温度(例えば370℃)に雰囲気温度を調整すると、上記境界線における当量比が最大値(例えば1.0)となる。したがって、冷炎反応を早期に生じさせるには、ヒータ温度を最適温度に調整し、当量比を1.0にすればよい。但し、当量比が1.0を超えると冷炎反応が生じなくなるので、1.0よりも余裕分だけ小さい値に当量比を調整することが望ましい。
図8および図9に示すシミュレーションでは、空気中のオゾン濃度をゼロにしている。これに対し、さらに本発明者らは、空気中のオゾン濃度を異ならせてシミュレーションし、図11に示す解析結果を得た。このシミュレーションでの初期条件は、1気圧、ヘキサデカン濃度2200ppm、雰囲気温度330℃である。図11に示すように、オゾン濃度が大きいほど、冷炎反応の開始時期が早くなる。このようなオゾンによる現象は以下の理由により生じる。すなわち、図7中の(1)(3)(5)では、炭化水素ラジカルと酸素分子とが反応しているが、空気中にオゾンが含まれている場合にはこの反応が促進され、アルデヒドが短時間で生成されることとなる。
ECU80が備えるマイコン81は、プログラムを記憶する記憶装置と、記憶されたプログラムにしたがって演算処理を実行する中央演算処理装置と、を備える。ECU80は、各種センサの検出値に基づき内燃機関10の作動を制御する。上記各種センサの具体例として、アクセルペダルセンサ91、機関回転速度センサ92、スロットル開度センサ93、吸気圧センサ94、吸気量センサ95、排気温度センサ96等が挙げられる。
アクセルペダルセンサ91は、ユーザのアクセルペダル踏込量を検出する。機関回転速度センサ92は、内燃機関10の出力軸10aの回転速度(エンジン回転数)を検出する。スロットル開度センサ93はスロットルバルブ13の開度を検出する。吸気圧センサ94は、吸気通路10inのうちスロットルバルブ13の下流側の圧力を検出する。吸気量センサ95は吸気の質量流量を検出する。
概略、ECU80は、出力軸10aの回転速度および内燃機関10の負荷に応じて、図示しない燃料噴射弁から噴射される燃焼用燃料の噴射量および噴射時期を制御する。さらにECU80は、排気温度センサ96により検出された排気温度に基づき、還元剤添加装置の作動を制御する。すなわち、マイコン81は、図12に示す手順のプログラムを所定周期で繰り返し実行することで、改質燃料の生成とオゾンの生成を切り替えるように制御する。上記プログラムは、イグニッションスイッチがオン操作されたことをトリガとして始動し、内燃機関10の運転期間中は常時実行される。
先ず、図12のステップS10において、内燃機関10が運転中であるか否かを判定する。運転中でないと判定されれば、ステップS15において還元剤添加装置の作動を停止させる。具体的には、放電リアクタ20、エアポンプ20p、燃料噴射弁40、およびヒータ50への通電が為されていた場合、それらの通電を停止させる。一方、内燃機関10が運転中であると判定されれば、NOx浄化装置15が有する還元触媒の温度(NOx触媒温度)に応じて還元剤添加装置を作動させる。
具体的には、先ずステップS11において、予め設定されている電力量でエアポンプ20pを作動させる。続くステップS12では、NOx触媒温度が還元触媒の活性化温度T1(例えば250℃)未満であるか否かを判定する。NOx触媒温度は、排気温度センサ96により検出された排気温度から推定される。ここで、還元触媒の活性化温度とは、改質燃料によりNOxを還元浄化できる温度を示す。
NOx触媒温度が活性化温度T1未満であると判定された場合には、次のステップS13において、図13に示すオゾン生成制御のサブルーチン処理を実施する。すなわち、先ず図13のステップS20において、予め設定されている電力量で放電リアクタ20の電極21へ通電して放電を生じさせる。続くステップS21では、ヒータ50への通電を停止させ、続くステップS22では、燃料噴射弁40への通電を停止させて燃料噴射を停止させる。
以上に説明したオゾン生成制御によれば、放電リアクタ20でオゾンが生成され、生成されたオゾンは、燃料噴射室30a、気化室30bおよび供給管32を通じて排気通路10exへ添加される。ここで、ヒータ50への通電を実施していると、オゾンは加熱されて崩壊する。また、燃料噴射を実施していると、オゾンは燃料と反応してしまう。これらの点を鑑み、図13の制御ではヒータ50による加熱を停止させ、かつ、燃料噴射を停止させているので、オゾンが燃料と反応することや加熱崩壊を回避できるので、生成したオゾンがそのまま排気通路10exへ添加されることとなる。
図12の説明に戻り、NOx触媒温度が活性化温度T1以上であると判定された場合には、次のステップS14において、図14に示す改質燃料生成制御のサブルーチン処理を実施する。
この処理の概略を図中の一点鎖線にしたがって説明すると、先ずステップS30において、反応容器30内の温度を所定の温度範囲に調整する。次に、ステップS40において、反応容器30内へ供給される燃料と空気の比率である当量比を所定の当量比範囲に調整する。これらの温度範囲および当量比範囲は、図10中のドットに示される2段酸化反応領域の範囲である。これにより、冷炎反応を生じさせて先述した改質燃料を生成する。
温度範囲の下限は、1段酸化領域および2段酸化領域と無反応領域との境界線となる260℃に設定されている。温度範囲の上限は、1段酸化領域と2段酸化領域の境界線のうちの最大温度に設定されている。当量比範囲の上限は、1段酸化領域と2段酸化領域の境界線のうちの最大値であって、370℃に対応する当量比に設定されている。
さらに、ステップS50において、反応容器30内での燃料の濃度に応じて、放電リアクタ20への供給電力を制御する。これにより、オゾンが生成され、そのオゾンが反応容器30内に供給されるので、図11を用いて先述したように、冷炎反応の開始時期の早期化と冷炎反応時間の短縮化が図られる。よって、反応容器30内での燃料の滞留時間が短くなるように反応容器30を小型化しても、上記滞留時間内に冷炎反応が完了するようにできる。よって、反応容器30の小型化を図ることができる。
なお、ステップS30の処理を実行している時のマイコン81は「温度調整手段」に相当する。ステップS40の処理を実行している時のマイコン81は「当量比調整手段」に相当する。ステップS50の処理を実行している時のマイコン81は「放電電力制御手段」に相当する。以下、これらのステップS30、S40、S50の詳細について、図14を用いて説明する。
先ず、温度調整手段に係るステップS30の処理について説明する。先ずステップS31において、還元剤添加装置内の温度、つまり反応容器30内の温度を取得する。具体的には、温度センサ31による検出温度Tactを取得する。続くステップS32では、予め設定しておいた目標温度Ttrgよりも検出温度Tactが高い値であるか否かを判定する。具体的には、検出温度Tactから目標温度Ttrgを減算して得られた差分値ΔTが、ゼロより大きいか否かを判定する。
ΔT>0でないと否定判定されれば、ステップS33に進み、ヒータ50による加熱量を増加させる。具体的には、ヒータ50への通電デューティ比を、差分値ΔTの絶対値が大きいほど増大させる。一方、ΔT>0であると肯定判定されれば、続くステップS34にて差分値ΔTが上限値(例えば50℃)を超えているか否かを判定する。上限値を超えていないと否定判定されれば、ステップS35に進み、ヒータ50による加熱量を低減させる。具体的には、ヒータ50への通電デューティ比を、差分値ΔTの絶対値が大きいほど減少させる。但し、上限値を超えていると肯定判定された場合には、ステップS36に進み、ヒータ50への通電を停止させる。これにより、雰囲気温度を迅速に低下させることを図る。
ステップS32で用いる目標温度Ttrgは、図10に示す2段酸化反応領域のうち、当量比が最大となる雰囲気温度(例えば370℃)に設定されている。なお、気化室30bの温度は冷炎反応により上昇するので、ヒータ50自体の温度は、冷炎反応による温度上昇分だけ目標温度Ttrgよりも低い値に制御されることとなる。
次に、当量比調整手段に係るステップS40の処理について説明する。ステップS40の処理では、差分値ΔTが50℃以下であればステップS41に進み、検出温度Tactに対応する、冷炎反応を生じさせる当量比の最大値φmaxを算出する。具体的には、2段酸化反応領域における当量比の最大値φmaxであって、雰囲気温度に対応する当量比の最大値φmax、またはその最大値φmaxから所定の余裕分だけ減算した値を、目標当量比φtrgとしてマイコン81に記憶させておく。例えば、図10に示す2段酸化反応領域における当量比の最大値φmaxであって、雰囲気温度に対応する当量比の最大値φmaxを、マップ化してマイコン81に記憶させておく。そして、検出温度Tactに対応する当量比の最大値φmaxを、マップを参照して算出する。
続くステップS42では、ステップS41で算出した当量比の最大値φmaxに基づき、目標当量比φtrgを設定する。具体的には、所定の余裕分だけ最大値φmaxから減算した値を目標当量比φtrgとして設定する。これにより、実際の当量比が目標当量比φtrgより大きくなったとしても、最大値φmaxを超えるおそれを低減でき、冷炎反応が生じなくなるおそれを低減できる。
一方、差分値ΔTが50℃より大きく、上記ステップS36にてヒータ50を停止させている場合には、ステップS43に進み、予め設定しておいた空冷用の値に目標当量比φtrgを設定する。この空冷用の値は、目標温度Ttrgに対応する当量比の最大値φmaxよりも大きい値に設定されている。つまり、ステップS42の場合に比べて空気の流量を増大させることで、雰囲気温度の迅速な低下を促進させることを図る。
続くステップS44では、NOx浄化装置15へ流入したNOxの全てを還元するのに必要な燃料を、過不足なくNOx浄化装置15へ供給するための値を、目標燃料流量Ftrgとして設定する。上記目標燃料流量Ftrgとは、単位時間当たりにNOx浄化装置15へ供給する燃料の質量である。
具体的には、以下に説明するNOx流入流量およびNOx触媒温度に基づき、目標燃料流量Ftrgを設定する。上記NOx流入流量とは、単位時間当たりにNOx浄化装置15へ流入するNOxの質量である。例えば、内燃機関10の運転状態に基づき、NOx流入流量を推定できる。上記NOx触媒温度とは、NOx浄化装置15が有する還元触媒の温度のことである。例えば、排気温度センサ96により検出された温度に基づき、NOx触媒温度を推定できる。
そして、NOx流入流量が多いほど、目標燃料流量Ftrgを増大させる。また、NOx触媒温度に応じて還元触媒上でNOxが還元される量(還元力)が異なってくるので、NOx触媒温度による還元力の違いに応じて目標燃料流量Ftrgを設定する。
続くステップS45では、ステップS42またはステップS43で設定した目標当量比φtrg、およびステップS44で設定した目標燃料流量Ftrgに基づき、目標空気流量Atrgを算出する。具体的には、φtrg=Ftrg/Atrgとなるように目標空気流量Atrgを算出する。
続くステップS46では、ステップS45で算出した目標空気流量Atrgに基づき、エアポンプ20pの作動を制御する。具体的には、目標空気流量Atrgが大きいほど、エアポンプ20pへの通電デューティ比を増大させる。続くステップS47では、ステップS44で設定した目標燃料流量Ftrgに基づき、燃料噴射弁40の作動を制御して燃料噴射を実施する。具体的には、目標燃料流量Ftrgが大きいほど燃料噴射弁40の開弁時間を長くする。
なお、ステップS44、S47を実行している時のマイコン81は、気化室30bへ供給される燃料の流量を制御する「燃料流量制御手段」に相当する。ステップS41、S42、S43、S45、S46を実行している時のマイコン81は、気化室30bへ供給される空気の流量を制御する「空気流量制御手段」に相当する。
次に、放電電力制御手段に係るステップS50の処理について説明する。先ずステップS51において、ステップS44で設定した目標燃料流量Ftrgに基づき、目標オゾン流量Otrgを算出する。具体的には、気化室30bにおけるオゾン濃度の燃料濃度に対する比率が所定値(例えば0.2)となるように、目標オゾン流量Otrgを算出する。例えば、所定時間(例えば0.02秒)内に冷炎反応を完了させるよう、上記比率を設定する。例えば、図11の如く燃料濃度が2200ppmの場合には、0.02秒内に冷炎反応を完了させるにはオゾン濃度が400ppmであればよい。この場合、オゾン濃度が400ppmとなるように目標オゾン流量Otrgを設定する。
続くステップS52では、ステップS45で算出した目標空気流量Atrg、およびステップS51で算出した目標オゾン流量Otrgに基づき、放電リアクタ20への目標通電量Ptrgを算出する。具体的には、目標空気流量Atrgが多いほど、電極間通路21aでの空気の滞留時間が短くなるので、目標通電量Ptrgを大きくする。また、目標オゾン流量Otrgが多いほど、目標通電量Ptrgを大きくする。続くステップS53では、ステップS52で算出した目標通電量Ptrgに基づき、放電リアクタ20への通電量を制御する。具体的には、目標通電量Ptrgが大きいほど、放電リアクタ20への通電デューティ比を増大させる。
以上に説明した通り、本実施形態に係る還元剤添加装置は、空気中の酸素により燃料を酸化反応させる反応容器30を備える。そして、冷炎反応が生じるように反応容器30内の温度および当量比が調整され、冷炎反応により部分的に酸化された燃料(改質燃料)を、NOx浄化用の還元剤として排気通路10exに添加する。そのため、部分酸化されていない燃料を還元剤としてそのまま用いる場合に比べて、NOx浄化率を向上させることができる。
さらに本実施形態では、放電リアクタ20を備え、冷炎反応を生じさせる時には、放電リアクタ20により生成されたオゾンを反応容器30へ供給する。そのため、図11に示すように冷炎反応の開始時期の早期化と、冷炎反応時間の短縮化を図ることができる。よって、反応容器30内での燃料の滞留時間が短くなるように反応容器30を小型化しても、上記滞留時間内に冷炎反応が完了するようにできる。よって、反応容器30の小型化を図ることができる。
さらに本実施形態では、図14のステップS50の処理により、気化室30bでの燃料の濃度に応じて、放電に用いる電力を制御する。例えば、オゾン濃度の燃料濃度に対する比率が所定値(例えば0.2)となるように目標オゾン流量Otrgを算出して、放電電力を制御する。そのため、燃料濃度に対するオゾン濃度の過不足量を少なくして、オゾンによる冷炎反応開始の早期化と、放電リアクタ20に対する省電力化を図るようにできる。
さらに本実施形態では、還元触媒が活性化温度T1未満である場合には、燃料噴射弁40による燃料噴射を停止させつつ、放電リアクタ20により生成されたオゾンを気化室30bへ供給させることで、排気通路10exへオゾンを添加する。これによれば、NOx浄化装置15の還元触媒が活性化していないにも拘わらず、還元剤としての改質燃料を添加することを防止できる。そして、オゾンの添加により、排気中のNOをNOに酸化させてNOx浄化触媒に吸着させるので、NOx浄化装置15へのNOx吸着量を増大できる。
さらに本実施形態では、燃料を加熱するヒータ50と、気化室30bの温度(雰囲気温度)を検出する温度センサ31とを備える。そして、図14のステップS30による温度調整手段は、温度センサ31により検出された温度に応じてヒータ50の作動を制御することで、気化室30bの温度を所定の温度範囲に調整する。これによれば、気化室30bの温度が温度センサ31により直接検出される。また、気化室30bの燃料がヒータ50により直接加熱される。そのため、気化室30bの温度を所定の温度範囲に調整することを精度良く実現できる。
ここで、図10に示すように、冷炎反応が生じる当量比範囲は雰囲気温度に応じて異なる。この点を鑑みた本実施形態では、図14のステップS40による当量比調整手段は、検出温度Tactに応じて目標当量比φtrgを変更する。そのため、検出温度Tactが目標温度Ttrgからずれている場合であっても、実際の気化室30bの温度に応じた当量比に調整されるので、冷炎反応を確実に生じさせるようにできる。
さらに本実施形態では、図14のステップS44、S47(燃料流量制御手段)において、NOx浄化装置15にて要求される還元剤の流量に基づき目標燃料流量Ftrgを設定する。そして、ステップS41、S42、S43、S45、S46(空気流量制御手段)において、当量比が所定の当量比範囲となるよう、目標燃料流量Ftrgに基づき目標空気流量Atrgを設定する。そのため、NOx浄化装置15にて要求される還元剤の流量を満たしつつ、当量比を所定の当量比範囲に調整できる。
さらに本実施形態では、ヒータ50により炭素数の少ない炭化水素化合物に燃料を分解させるクラッキングを実施している。クラッキングにより炭素数が少なくなった炭化水素は沸点が低くなるので、気化した燃料が液体に戻ることが抑制される。
(第2実施形態)
図1に示す実施形態では、エアポンプ20pにより放電リアクタ20へ空気を供給している。これに対し、図15に示す本実施形態では、内燃機関10の吸気の一部を分岐させて放電リアクタ20へ流入させる。
具体的には、吸気通路10inのうちコンプレッサ11cの下流かつ冷却器12の上流部分と放電リアクタ20の流通路22aとは、分岐配管36hにより接続されている。また、吸気通路10inのうち冷却器12の下流部分と流通路22aとは、分岐配管36cにより接続されている。分岐配管36hは、冷却器12により冷却される前の高温吸気を放電リアクタ20へ供給する。分岐配管36cは、冷却器12により冷却された後の低温吸気を放電リアクタ20へ供給する。
これらの分岐配管36h、36cには、内部通路を開閉する電磁バルブ36が取り付けられている。電磁バルブ36の作動はマイコン81により制御される。分岐配管36hを開けて分岐配管36cを閉じるように電磁バルブ36が作動すると、高温吸気が放電リアクタ20へ流入する。分岐配管36cを開けて分岐配管36hを閉じるように電磁バルブ36が作動すると、低温吸気が放電リアクタ20へ流入する。
電磁バルブ36の作動により、冷却器12の上流部分から冷却器12により冷却される前の高温吸気を分岐させるモードと、冷却器12の下流部分から冷却器12により冷却された後の低温吸気を分岐させるモードとが切り替えられる。この場合、オゾン生成時には低温吸気を分岐させるモードにして、生成したオゾンが吸気の熱で破壊されることの抑制を図る。また、オゾン非生成時には高温吸気を分岐させるモードにして、ヒータ50により加熱された燃料が、反応室内で吸気により冷却されることの抑制を図る。
なお、電磁バルブ36を開弁させている期間中は、分岐配管36h、36cにより吸気の一部が分岐して流れる分だけ、内燃機関10の燃焼室に流入する吸気量が少なくなる。そのため、マイコン81は、電磁バルブ36の開弁期間中には分岐して流れる分だけ吸気量を増大させるように、スロットルバルブ13の開度、もしくはコンプレッサ11cによる過給量を補正する。
以上により、本実施形態によれば、過給機11により過給された吸気の一部を放電リアクタ20へ供給する。そのため、図1に示すエアポンプ20pを用いることなく、酸素を含んだ空気を放電リアクタ20へ供給することが可能になる。
(第3実施形態)
図1および図15に示す実施形態では、放電リアクタ20を備えることにより、反応容器30へオゾンを供給している。これに対し、図16に示す本実施形態では、放電リアクタ20を廃止している。これによれば、オゾンの供給により反応容器30での反応速度の向上を図ることができないものの、放電リアクタ20を廃止して、装置の小型化を図ることができる。
(他の実施形態)
以上、発明の好ましい実施形態について説明したが、発明は上述した実施形態に何ら制限されることなく、以下に例示するように種々変形して実施することが可能である。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
図1に示す実施形態では、反応容器30の内部にヒータ50を配置しているが、反応容器30の上流側で燃料または空気を加熱するよう、反応容器30の外部にヒータ50を配置してもよい。また、図1に示す実施形態では、反応容器30の内部に温度センサ31を配置しているが、反応容器30の下流に温度センサ31を配置してもよい。
図1に示す実施形態では、液体燃料を微粒化して加熱手段へ供給する微粒化手段として、燃料噴射弁40を採用している。これに対し、超音波等の高周波数で振動する振動板に液体燃料を接触させることで、液体燃料を振動させて微粒化させる振動装置を、微粒化手段として採用してもよい。
図15に示す実施形態では、吸気通路10inのうち、冷却器12の上流部分および下流部分の2箇所から分岐配管36h、36cにより吸気を分岐させている。これに対し、2本の分岐配管36h、36cのいずれか一方を廃止し、電磁バルブ36による先述したモードの切り替えを廃止してもよい。
オゾンの生成および改質燃料の生成をともに停止させている完全停止の場合には、放電リアクタ20による放電を停止させて、無駄な電力消費の抑制を図るようにしてもよい。上記完全停止させるケースの具体例としては、NOx触媒温度が活性化温度未満であり、かつ、NOx吸着量が飽和状態になっているケースや、NOx触媒温度が還元可能範囲を超えて高温になっているケースが挙げられる。また、上記完全停止の場合には、エアポンプ20pの作動を停止して空気の供給を停止させることで、電力消費の低減を図ってもよい。
図1に示す上記実施形態では、NOxを物理的に捕捉(つまり吸着)する還元触媒が採用されているが、NOxを化学的結合により捕捉(つまり吸蔵)する還元触媒が採用された燃焼システムに、還元剤添加装置を適用させてもよい。
内燃機関10が理論空燃比よりもリーンな状態で燃焼させている時に、NOx浄化装置15がNOxを吸着し、リーン燃焼以外の時にNOxを還元させる燃焼システムに、還元剤添加装置を適用させてもよい。この場合、リーン燃焼時にはオゾンを生成し、リーン燃焼以外の時に改質燃料を生成させればよい。このようにリーン燃焼時にNOxを捕捉する触媒の具体例としては、担体に担持された白金とバリウムによる吸蔵還元触媒が挙げられる。
吸着または吸蔵の機能を有しないNOx浄化装置15が採用された燃焼システムに、還元剤添加装置を適用させてもよい。この場合、NOx浄化装置15には、リーン燃焼時に所定温度範囲でNOx還元性能を有する触媒として、鉄系、銅系等の触媒が考えられ、これらの触媒に還元剤として改質燃料を供給すれば良い。
上記第1実施形態では、図12のステップS12で用いるNOx触媒温度を、排気温度センサ96により検出された排気温度から推定している。これに対し、NOx浄化装置15に温度センサを取り付けて、NOx触媒温度を直接計測してもよい。或いは、出力軸10aの回転速度および内燃機関10の負荷等に基づき、NOx触媒温度を推定してもよい。
図1に示す実施形態では、放電リアクタ20は、平板形状の電極21を互いに平行に対向するように配置して構成されている。これに対し、放電リアクタは、針状に突出した形状の針状電極と、針状電極を環状に取り囲む環状電極とから構成されていてもよい。
図1に示す実施形態では、車両に搭載された燃焼システムに還元剤添加装置を適用させている。これに対し、定置式の燃焼システムに還元剤添加装置を適用させてもよい。図1に示す実施形態では、圧縮自着火式のディーゼルエンジンに還元剤添加装置を適用させており、燃焼用の燃料として用いる軽油を還元剤として用いている。これに対し、点火着火式のガソリンエンジンに還元剤添加装置を適用させて、燃焼用の燃料として用いるガソリンを還元剤として用いてもよい。
10…内燃機関、10ex…排気通路、15…NOx浄化装置、30…反応容器、30a…燃料噴射室(反応室)、30b…気化室(反応室)、S30…温度調整手段、S40…当量比調整手段。

Claims (6)

  1. 内燃機関(10)の排気に含まれるNOxを還元触媒上で浄化するNOx浄化装置(15)が排気通路(10ex)に備えられた燃焼システムに設けられ、前記排気通路のうち前記還元触媒の上流側へ還元剤を添加する還元剤添加装置において、
    炭化水素化合物である燃料と空気を混合させ、空気中の酸素により燃料を酸化反応させる反応室(30a、30b)を内部に形成する反応容器(30)と、
    前記反応室へ供給される燃料と空気の比率である当量比を、所定の当量比範囲に調整する当量比調整手段(S40)と、
    前記反応室の温度を所定の温度範囲に調整する温度調整手段(S30)と、を備え、
    前記当量比範囲および前記温度範囲は、前記反応室の燃料が空気中の酸素により部分的に酸化される冷炎反応が生じるように設定されており、
    前記冷炎反応により部分的に酸化された燃料を前記還元剤として用いており、
    前記当量比調整手段は、前記反応室の温度に応じて、前記当量比の目標値である目標当量比(φtrg)を変更することを特徴とする還元剤添加装置。
  2. オゾンを生成するオゾン生成装置(20)を備え、
    前記冷炎反応を生じさせる時には、前記オゾン生成装置により生成されたオゾンを前記反応室へ供給することを特徴とする請求項1に記載の還元剤添加装置。
  3. 前記オゾン生成装置は、空気への放電によりオゾンを生成するものであり、
    前記反応室での燃料の濃度に応じて、前記放電に用いる電力を制御する放電電力制御手段(S50)を備えることを特徴とする請求項2に記載の還元剤添加装置。
  4. 前記還元触媒が活性化温度未満である場合には、前記反応室への燃料供給を停止させつつ、前記オゾン生成装置により生成されたオゾンを前記反応室へ供給させることで、前記排気通路のうち前記還元触媒の上流側へオゾンを添加することを特徴とする請求項2または3に記載の還元剤添加装置。
  5. 前記反応室へ供給された燃料を加熱するヒータ(50)と、
    前記反応室の温度を検出する温度センサ(31)と、を備え、
    前記温度調整手段は、前記温度センサにより検出された温度に応じて前記ヒータの作動を制御することで、前記反応室の温度を所定の温度範囲に調整することを特徴とする請求項1〜4のいずれか1つに記載の還元剤添加装置。
  6. 前記当量比調整手段は、前記反応室へ供給される燃料の流量を制御する燃料流量制御手段(S44、S47)、および前記反応室へ供給される空気の流量を制御する空気流量制御手段(S41、S42、S43、S45、S46)を有し、
    前記燃料流量制御手段は、前記反応室へ供給される燃料流量の目標値である目標燃料流量(Ftrg)を、前記NOx浄化装置にて要求される還元剤の流量に基づき設定し、
    前記空気流量制御手段は、前記反応室へ供給される空気流量の目標値である目標空気流量(Atrg)を、前記当量比が前記所定の当量比範囲となるよう、前記目標燃料流量に基づき設定することを特徴とする請求項1〜のいずれか1つに記載の還元剤添加装置。
JP2014015933A 2014-01-30 2014-01-30 還元剤添加装置 Expired - Fee Related JP6015684B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014015933A JP6015684B2 (ja) 2014-01-30 2014-01-30 還元剤添加装置
DE102015100203.5A DE102015100203A1 (de) 2014-01-30 2015-01-09 Reduktionsmittel-Zuführvorrichtung
FR1550642A FR3016920B1 (fr) 2014-01-30 2015-01-28 Dispositif de fourniture d'un agent reducteur
US14/608,694 US9528410B2 (en) 2014-01-30 2015-01-29 Reducing agent supplying device
CN201510047981.XA CN104819038B (zh) 2014-01-30 2015-01-30 还原剂供应设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014015933A JP6015684B2 (ja) 2014-01-30 2014-01-30 還元剤添加装置

Publications (2)

Publication Number Publication Date
JP2015140792A JP2015140792A (ja) 2015-08-03
JP6015684B2 true JP6015684B2 (ja) 2016-10-26

Family

ID=53523050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015933A Expired - Fee Related JP6015684B2 (ja) 2014-01-30 2014-01-30 還元剤添加装置

Country Status (5)

Country Link
US (1) US9528410B2 (ja)
JP (1) JP6015684B2 (ja)
CN (1) CN104819038B (ja)
DE (1) DE102015100203A1 (ja)
FR (1) FR3016920B1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6107748B2 (ja) * 2014-06-20 2017-04-05 株式会社デンソー 還元剤添加装置
JP6376088B2 (ja) * 2015-09-08 2018-08-22 株式会社デンソー オゾン供給装置
US10288017B1 (en) * 2017-10-25 2019-05-14 GM Global Technology Operations LLC Model based control to manage eDOC temperature

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565035B2 (ja) * 1998-07-10 2004-09-15 三菱ふそうトラック・バス株式会社 燃焼排ガス用NOx還元システム
JP3531489B2 (ja) * 1998-08-05 2004-05-31 三菱ふそうトラック・バス株式会社 燃焼排ガス用NO▲x▼還元システム
JP3948255B2 (ja) * 2001-11-12 2007-07-25 株式会社デンソー 内燃機関の排気浄化装置
US20040098976A1 (en) * 2002-11-21 2004-05-27 Van Nieuwstadt Michiel J. Diesel aftertreatment systems
US7093429B1 (en) * 2005-06-01 2006-08-22 Gm Global Technology Operations Inc. Reforming diesel fuel for NOx reduction
JP2007100578A (ja) * 2005-10-04 2007-04-19 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008069663A (ja) * 2006-09-12 2008-03-27 Toyota Motor Corp 内燃機関の排気浄化装置
SI2198132T1 (sl) * 2007-08-30 2011-06-30 Energy Conversion Technology As Naprava za izpušne pline in postopek regeneracije pasti za NOx in filtra delcev
JP4803186B2 (ja) 2008-01-09 2011-10-26 トヨタ自動車株式会社 燃料改質装置
JP2009264320A (ja) * 2008-04-28 2009-11-12 Toyota Motor Corp 内燃機関の排気ガス浄化装置
US8099951B2 (en) * 2008-11-24 2012-01-24 GM Global Technology Operations LLC Dual bed catalyst system for NOx reduction in lean-burn engine exhaust
JP2010249100A (ja) * 2009-04-20 2010-11-04 Toyota Motor Corp 内燃機関の排気浄化装置
WO2012124531A1 (ja) * 2011-03-15 2012-09-20 日野自動車株式会社 排ガス浄化装置
JP5770585B2 (ja) * 2011-09-28 2015-08-26 本田技研工業株式会社 内燃機関の空燃比制御装置

Also Published As

Publication number Publication date
US20150211400A1 (en) 2015-07-30
US9528410B2 (en) 2016-12-27
CN104819038A (zh) 2015-08-05
DE102015100203A1 (de) 2015-07-30
FR3016920B1 (fr) 2019-01-25
CN104819038B (zh) 2018-12-11
FR3016920A1 (ja) 2015-07-31
JP2015140792A (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
JP6052247B2 (ja) 還元剤添加装置
JP6015685B2 (ja) 還元剤添加装置
JP6107748B2 (ja) 還元剤添加装置
JP6451200B2 (ja) オゾン添加制御装置
JP6015684B2 (ja) 還元剤添加装置
JP6131895B2 (ja) 放電制御装置および還元剤添加装置
JP6052257B2 (ja) 還元剤添加装置
JP6083374B2 (ja) 還元剤添加装置
JP6090136B2 (ja) 還元剤添加装置
JP6156238B2 (ja) 還元剤添加装置
JP6515481B2 (ja) オゾン供給装置
JP6323239B2 (ja) 還元剤添加装置
JP6083373B2 (ja) 高活性物質添加装置
JP6090134B2 (ja) 高活性物質添加装置
JP2016065512A (ja) オゾン供給装置
JP6156108B2 (ja) 高活性物質添加装置
JP6028782B2 (ja) 高活性物質添加装置
JP6090135B2 (ja) 高活性物質添加装置
JP6094556B2 (ja) 高活性物質添加装置
JP2012012985A (ja) 内燃機関の排気装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R151 Written notification of patent or utility model registration

Ref document number: 6015684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees