JP6011971B2 - Power transmission device for vehicle - Google Patents

Power transmission device for vehicle Download PDF

Info

Publication number
JP6011971B2
JP6011971B2 JP2013020814A JP2013020814A JP6011971B2 JP 6011971 B2 JP6011971 B2 JP 6011971B2 JP 2013020814 A JP2013020814 A JP 2013020814A JP 2013020814 A JP2013020814 A JP 2013020814A JP 6011971 B2 JP6011971 B2 JP 6011971B2
Authority
JP
Japan
Prior art keywords
large end
peripheral surface
end portion
outer peripheral
input shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013020814A
Other languages
Japanese (ja)
Other versions
JP2014152808A (en
Inventor
優史 西村
優史 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013020814A priority Critical patent/JP6011971B2/en
Priority to CN201310693672.0A priority patent/CN103968026B/en
Publication of JP2014152808A publication Critical patent/JP2014152808A/en
Application granted granted Critical
Publication of JP6011971B2 publication Critical patent/JP6011971B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H29/00Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action
    • F16H29/02Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts
    • F16H29/04Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts in which the transmission ratio is changed by adjustment of a crank, an eccentric, a wobble-plate, or a cam, on one of the shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • F16H21/16Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and reciprocating motion
    • F16H21/18Crank gearings; Eccentric gearings
    • F16H21/20Crank gearings; Eccentric gearings with adjustment of throw
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • F16H21/44Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for conveying or interconverting oscillating or reciprocating motions

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Description

本発明は、往復運動するコネクティングロッドおよびワンウェイクラッチを介して入力軸から出力軸に駆動力を伝達するクランク式の無段変速機を備える車両用動力伝達装置に関する。   The present invention relates to a vehicle power transmission device including a crank type continuously variable transmission that transmits a driving force from an input shaft to an output shaft via a connecting rod that reciprocates and a one-way clutch.

エンジンに接続された入力軸と一体に回転する偏心ディスクにコネクティングロッドの大端部を接続するとともに、コネクティングロッドの小端部をワンウェイクラッチを介して出力軸に接続し、偏心ディスクの偏心回転により発生するコネクティングロッドの往復運動をワンウェイクラッチによって出力軸の一方向の回転運動に変換する車両用動力伝達装置が、下記特許文献1により公知である。   The large end of the connecting rod is connected to an eccentric disk that rotates integrally with the input shaft connected to the engine, and the small end of the connecting rod is connected to the output shaft via a one-way clutch. A power transmission device for a vehicle that converts a reciprocating motion of a connecting rod generated into a rotational motion in one direction of an output shaft by a one-way clutch is known from Patent Document 1 below.

特表2005−502543号公報JP-T-2005-502543

ところで、上記従来の車両用動力伝達装置は、入力軸に設けた偏心ディスクの外周面にボールベアリングのインナーレースを圧入し、このボールベアリングのアウターレースにコネクティングロッドの大端部の内周面を圧入している。コネクティングロッドは大端部および小端部を連結する連結部を有するため、コネクティングロッドの大端部の剛性は円周方向に一定にはならず、連結部に接続する部分の剛性が局部的に高くなる。そのため、ボールベアリングのアウターレースにコネクティングロッドの大端部を圧入したとき、大端部の剛性が高い部分に接するアウターレースは大きい圧入反力を受け、大端部の剛性が低い部分に接するアウターレースは小さい圧入反力を受けることになり、この圧入反力の差によりボールベアリングが歪んで真円度が低下してしまい、ボールベアリングのフリクションが増加したり耐久性が低下したりする問題がある。   By the way, in the conventional vehicle power transmission device, the inner race of the ball bearing is press-fitted into the outer peripheral surface of the eccentric disk provided on the input shaft, and the inner peripheral surface of the large end portion of the connecting rod is inserted into the outer race of the ball bearing. Press fit. Since the connecting rod has a connecting part that connects the large end part and the small end part, the rigidity of the large end part of the connecting rod is not constant in the circumferential direction, and the rigidity of the part connected to the connecting part is locally Get higher. Therefore, when the large end of the connecting rod is press-fitted into the outer race of the ball bearing, the outer race that comes into contact with the portion with high rigidity at the large end receives a large press-fitting reaction force, and the outer race that comes into contact with the portion with low rigidity at the large end. The race will receive a small press-fitting reaction force, and the difference in the press-fitting reaction force distorts the ball bearing and lowers the roundness, resulting in increased ball bearing friction and reduced durability. is there.

これを回避するには、コネクティングロッドの大端部の肉厚を全体的に増加させて剛性を高めれば良いが、このようにするとコネクティングロッドの重量や寸法が増加する問題がある。   In order to avoid this, it is sufficient to increase the rigidity by increasing the thickness of the large end of the connecting rod as a whole. However, if this is done, there is a problem that the weight and dimensions of the connecting rod increase.

本発明は前述の事情に鑑みてなされたもので、車両用動力伝達装置のコネクティングロッドの重量増加を最小限に抑えながら、そのコネクティングロッドの大端部に圧入されるベアリングの真円度を確保することを目的とする。   The present invention has been made in view of the above-described circumstances, and ensures the roundness of a bearing that is press-fitted into the large end of the connecting rod while minimizing the increase in the weight of the connecting rod of the vehicle power transmission device. The purpose is to do.

上記目的を達成するために、請求項1に記載された発明によれば、駆動源に接続された入力軸と、前記入力軸と平行に配置された出力軸と、前記出力軸に揺動可能に支持された揺動リンクと、前記出力軸および前記揺動リンク間に配置され、該揺動リンクが一方向に揺動したときに係合して他方向に揺動したときに係合解除するワンウェイクラッチと、前記入力軸と一体に偏心回転する偏心ディスクと、前記偏心ディスクの偏心量を変更する変速アクチュエータと、前記偏心ディスクおよび前記揺動リンクを接続するコネクティングロッドとを備える車両用動力伝達装置であって、前記コネクティングロッドは、前記偏心ディスクの外周面に設けたベアリングに圧入される環状の大端部と、前記揺動リンクに接続される小端部と、前記大端部および前記小端部を連結する連結部とを備え、前記連結部には軸方向両表面に貫通する貫通孔が形成され、前記大端部の外周面の中心は内周面の中心に対して前記小端部側に偏心し、前記大端部に臨む前記貫通孔の内縁部は前記外周面と中心を共有する円弧であることを特徴とする車両用動力伝達装置が提案される。   To achieve the above object, according to the first aspect of the present invention, an input shaft connected to a drive source, an output shaft arranged in parallel to the input shaft, and swingable to the output shaft Is disposed between the swinging link supported by the shaft, the output shaft and the swinging link, and engages when the swinging link swings in one direction and disengages when swinging in the other direction. 1-way clutch, an eccentric disk that rotates eccentrically with the input shaft, a speed change actuator that changes the amount of eccentricity of the eccentric disk, and a connecting rod that connects the eccentric disk and the swing link In the transmission device, the connecting rod includes an annular large end that is press-fitted into a bearing provided on an outer peripheral surface of the eccentric disk, a small end connected to the swing link, and the large end. And a connecting portion for connecting the small end portion, the connecting portion is formed with a through-hole penetrating both surfaces in the axial direction, and the center of the outer peripheral surface of the large end portion is relative to the center of the inner peripheral surface. A vehicular power transmission device is proposed in which an inner edge portion of the through hole that is eccentric to the small end portion and faces the large end portion is an arc that shares the center with the outer peripheral surface.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記貫通孔の内縁部の半径は前記大端部の外周面の半径よりも小さいことを特徴とする車両用動力伝達装置が提案される。   According to the invention described in claim 2, in addition to the structure of claim 1, the radius of the inner edge portion of the through hole is smaller than the radius of the outer peripheral surface of the large end portion. A power transmission device is proposed.

また請求項3に記載された発明によれば、請求項1または請求項2の構成に加えて、前記貫通孔の外縁部は前記大端部の外周面に接線状に連なることを特徴とする車両用動力伝達装置が提案される。   According to the invention described in claim 3, in addition to the configuration of claim 1 or claim 2, the outer edge portion of the through hole is connected tangentially to the outer peripheral surface of the large end portion. A vehicle power transmission device is proposed.

尚、実施の形態のボールベアリング20は本発明のベアリングに対応し、実施の形態のエンジンEは本発明の駆動源に対応する。   The ball bearing 20 of the embodiment corresponds to the bearing of the present invention, and the engine E of the embodiment corresponds to the drive source of the present invention.

請求項1の構成によれば、駆動源に接続された入力軸が回転すると、入力軸と一体に偏心回転する偏心ディスクに大端部を接続されたコネクティングロッドが往復運動し、コネクティングロッドの小端部に接続された揺動リンクが往復揺動する。揺動リンクが一方向に揺動するとワンウェイクラッチが係合し、揺動リンクが他方向に揺動するとワンウェイクラッチが係合解除するため、コネクティングロッドの往復運動が出力軸の一方向に回転運動に変換される。変速アクチュエータで偏心ディスクの偏心量を変更すると、コネクティングロッドの往復運動のストロークが変化して揺動リンクの揺動角が変化するため、入力軸の回転が変速されて出力軸に伝達される。   According to the configuration of the first aspect, when the input shaft connected to the drive source rotates, the connecting rod having the large end connected to the eccentric disk that rotates eccentrically integrally with the input shaft reciprocates, and the small size of the connecting rod is reduced. The swing link connected to the end swings back and forth. When the swing link swings in one direction, the one-way clutch is engaged, and when the swing link swings in the other direction, the one-way clutch is disengaged, so that the reciprocating motion of the connecting rod rotates in one direction of the output shaft. Is converted to When the eccentric amount of the eccentric disk is changed by the speed change actuator, the stroke of the reciprocating motion of the connecting rod changes and the swing angle of the swing link changes, so that the rotation of the input shaft is shifted and transmitted to the output shaft.

コネクティングロッドは、偏心ディスクの外周面に設けたベアリングに圧入される環状の大端部と、揺動リンクに接続される小端部と、大端部および小端部を連結する連結部とを備えるので、コネクティングロッドの大端部の剛性が連結部に接続する部分で局部的に高くなり、コネクティングロッドの大端部をベアリングに圧入したときに、圧入反力の不均衡によりベアリングが撓んで真円度が低下する可能性がある。   The connecting rod includes an annular large end portion that is press-fitted into a bearing provided on the outer peripheral surface of the eccentric disk, a small end portion that is connected to the swing link, and a connecting portion that connects the large end portion and the small end portion. As a result, the rigidity of the connecting rod's large end is locally increased at the portion connected to the connecting part.When the connecting rod's large end is press-fitted into the bearing, the bearing is bent due to imbalance of the press-fitting reaction force. Roundness may be reduced.

しかしながら、コネクティングロッドの連結部には軸方向両表面に貫通する貫通孔が形成され、大端部の外周面の中心は内周面の中心に対して小端部側に偏心し、大端部に臨む貫通孔の内縁部は外周面と中心を共有する円弧であるので、大端部の剛性が円周方向に急変するのを防止することで、圧入反力を円周方向に緩やかに変化させてベアリングの真円度を高めることができる。しかも大端部の全体を肉厚にしてベアリングの真円度を高める場合に比べて、コネクティングロッドの重量や寸法の増加を最小限に抑えることができる。   However, the connecting portion of the connecting rod is formed with a through-hole penetrating both surfaces in the axial direction, and the center of the outer peripheral surface of the large end is eccentric to the small end side with respect to the center of the inner peripheral surface. Because the inner edge of the through hole facing the center is an arc that shares the center with the outer peripheral surface, the press-fitting reaction force changes gently in the circumferential direction by preventing the rigidity of the large end from suddenly changing in the circumferential direction. This can increase the roundness of the bearing. In addition, the increase in the weight and dimensions of the connecting rod can be minimized as compared with the case where the entire large end is thickened to increase the roundness of the bearing.

また請求項2の構成によれば、貫通孔の内縁部の半径は大端部の外周面の半径よりも小さいので、連結部に接続する部分で過大になった大端部の剛性を、貫通孔の内縁部の半径を縮小することで低減し、大端部の剛性を円周方向に均一化してベアリングの真円度を一層高めることができる。   According to the second aspect of the present invention, since the radius of the inner edge portion of the through hole is smaller than the radius of the outer peripheral surface of the large end portion, the rigidity of the large end portion that is excessive at the portion connected to the connecting portion is reduced. By reducing the radius of the inner edge portion of the hole, the roundness of the bearing can be further increased by making the rigidity of the large end portion uniform in the circumferential direction.

また請求項3の構成によれば、貫通孔の外縁部は大端部の外周面に接線状に連なるので、大端部および連結部が接続する部分におけるコネクティングロッドの肉厚の変化を最小限に抑え、ベアリングが大端部から受ける圧入反力を円周方向に更に均一化してベアリングの真円度を一層高めることができる。   According to the third aspect of the present invention, the outer edge portion of the through hole is tangentially connected to the outer peripheral surface of the large end portion, so that the change in the thickness of the connecting rod at the portion where the large end portion and the connecting portion are connected is minimized. It is possible to further increase the roundness of the bearing by further uniforming the press-fitting reaction force received by the bearing from the large end in the circumferential direction.

車両用動力伝達装置のスケルトン図。The skeleton figure of the power transmission device for vehicles. 図1の2部詳細図。FIG. 2 is a detailed view of part 2 of FIG. 1. 図2の3−3線断面図(TOP状態)。FIG. 3 is a sectional view taken along line 3-3 in FIG. 2 (TOP state). 図2の3−3線断面図(LOW状態)。FIG. 3 is a sectional view taken along line 3-3 in FIG. 2 (LOW state). TOP状態での作用説明図。The action explanatory view in the TOP state. LOW状態での作用説明図。The action explanatory view in the LOW state. コネクティングロッドの形状を示す図。The figure which shows the shape of a connecting rod. 実施の形態および比較例1〜3の大端部の真円度を比較する図。The figure which compares roundness of the large end part of embodiment and Comparative Examples 1-3. 実施の形態および比較例4の大端部の真円度を比較する図。The figure which compares roundness of the large end part of embodiment and the comparative example 4. 実施の形態および比較例5を比較する図。The figure which compares embodiment and the comparative example 5. FIG.

以下、図1〜図10に基づいて本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1に示すように、エンジンEの駆動力を左右の車軸10,10を介して駆動輪W,Wに伝達する車両用動力伝達装置は、クランク式の無段変速機TおよびディファレンシャルギヤDを備える。   As shown in FIG. 1, the vehicle power transmission device for transmitting the driving force of the engine E to the drive wheels W, W via the left and right axles 10, 10 includes a crank type continuously variable transmission T and a differential gear D. Prepare.

次に、図2〜図6に基づいて無段変速機Tの構造を説明する。   Next, the structure of the continuously variable transmission T will be described with reference to FIGS.

図2および図3に示すように、本実施の形態の無段変速機Tは同一構造を有する複数個(実施の形態では4個)の動力伝達ユニットU…を軸方向に重ね合わせたもので、それらの動力伝達ユニットU…は平行に配置された共通の入力軸11および共通の出力軸12を備えており、入力軸11の回転が減速または増速されて出力軸12に伝達される。   As shown in FIGS. 2 and 3, the continuously variable transmission T of the present embodiment is obtained by superimposing a plurality (four in the embodiment) of power transmission units U... Having the same structure in the axial direction. These power transmission units U are provided with a common input shaft 11 and a common output shaft 12 arranged in parallel, and the rotation of the input shaft 11 is decelerated or increased and transmitted to the output shaft 12.

以下、代表として一つの動力伝達ユニットUの構造を説明する。エンジンEに接続されて回転する入力軸11は、電動モータのような変速アクチュエータ14の中空の回転軸14aの内部を相対回転自在に貫通する。変速アクチュエータ14のロータ14bは回転軸14aに固定されており、ステータ14cはケーシングに固定される。変速アクチュエータ14の回転軸14aは、入力軸11と同速度で回転可能であり、かつ入力軸11に対して異なる速度で相対回転可能である。   Hereinafter, the structure of one power transmission unit U will be described as a representative. The input shaft 11 connected to the engine E and rotates passes through the hollow rotating shaft 14a of the speed change actuator 14 such as an electric motor so as to be relatively rotatable. The rotor 14b of the speed change actuator 14 is fixed to the rotating shaft 14a, and the stator 14c is fixed to the casing. The rotation shaft 14 a of the speed change actuator 14 can rotate at the same speed as the input shaft 11 and can rotate relative to the input shaft 11 at a different speed.

変速アクチュエータ14の回転軸14aを貫通した入力軸11には第1ピニオン15が固定されており、この第1ピニオン15を跨ぐように変速アクチュエータ14の回転軸14aにクランク状のキャリヤ16が接続される。第1ピニオン15と同径の2個の第2ピニオン17,17が、第1ピニオン15と協働して正三角形を構成する位置にそれぞれピニオンピン16a,16aを介して支持されており、これら第1ピニオン15および第2ピニオン17,17に、円板形の偏心ディスク18の内部に偏心して形成されたリングギヤ18aが噛合する。   A first pinion 15 is fixed to the input shaft 11 passing through the rotation shaft 14 a of the speed change actuator 14, and a crank-shaped carrier 16 is connected to the rotation shaft 14 a of the speed change actuator 14 so as to straddle the first pinion 15. The Two second pinions 17, 17 having the same diameter as the first pinion 15 are supported via pinion pins 16 a, 16 a at positions forming an equilateral triangle in cooperation with the first pinion 15, respectively. The first pinion 15 and the second pinions 17, 17 mesh with a ring gear 18 a formed eccentrically inside a disc-shaped eccentric disk 18.

コネクティングロッド19は、大端部19aと、小端部19bと、大端部19aおよび小端部19bを連結する連結部19cとを備える。大端部19aは偏心ディスク18の外周にボールベアリング20を介して相対回転自在に嵌合し、小端部19bは出力軸12の外周に揺動可能支持された揺動リンク13にピン26を介して枢支される。   The connecting rod 19 includes a large end portion 19a, a small end portion 19b, and a connecting portion 19c that connects the large end portion 19a and the small end portion 19b. The large end portion 19a is fitted to the outer periphery of the eccentric disk 18 through a ball bearing 20 so as to be relatively rotatable, and the small end portion 19b has a pin 26 attached to the swing link 13 supported to be swingable on the outer periphery of the output shaft 12. It is pivoted through.

出力軸12および揺動リンク13間に配置されたワンウェイクラッチ21は、揺動リンク13の内周面に圧入された環状のアウター部材22と、アウター部材22の内部に配置されて出力軸12に固定されたインナー部材23と、アウター部材22とインナー部材23との間に形成された楔状の空間に配置されてエンゲージスプリング24…で付勢されたローラ25…とを備える。   The one-way clutch 21 disposed between the output shaft 12 and the swing link 13 is an annular outer member 22 press-fitted into the inner peripheral surface of the swing link 13, and is disposed inside the outer member 22 so as to be connected to the output shaft 12. The inner member 23 is fixed, and the rollers 25 are arranged in a wedge-shaped space formed between the outer member 22 and the inner member 23 and are urged by the engagement springs 24.

図2から明らかなように、4個の動力伝達ユニットU…はクランク状のキャリヤ16を共有しているが、キャリヤ16に第2ピニオン17,17を介して支持される偏心ディスク18の位相は各々の動力伝達ユニットUで90°ずつ異なっている。例えば、図2において、左端の動力伝達ユニットUの偏心ディスク18は入力軸11に対して図中上方に変位し、左から3番目の動力伝達ユニットUの偏心ディスク18は入力軸11に対して図中下方に変位し、左から2番目および4番目の動力伝達ユニットU,Uの偏心ディスク18,18は上下方向中間に位置している。   As is clear from FIG. 2, the four power transmission units U... Share the crank-shaped carrier 16, but the phase of the eccentric disk 18 supported by the carrier 16 via the second pinions 17 and 17 is the same. Each power transmission unit U differs by 90 °. For example, in FIG. 2, the eccentric disk 18 of the leftmost power transmission unit U is displaced upward in the figure with respect to the input shaft 11, and the eccentric disk 18 of the third power transmission unit U from the left is relative to the input shaft 11. The eccentric discs 18 and 18 of the second and fourth power transmission units U and U from the left are located in the middle in the vertical direction.

図1〜図6ではコネクティングロッド19の形状が模式的に示されているが、コネクティングロッド19の実際の形状を図7に基づいて詳細に説明する。   1 to 6 schematically show the shape of the connecting rod 19, the actual shape of the connecting rod 19 will be described in detail with reference to FIG.

コネクティングロッド19の大端部19aは、半径Raの内周面Paと、Raよりも大きい半径Rbの外周面Pbとを備えており、内周面Paの中心Oaに対して外周面Pbの中心Obは距離aだけ小端部19b側に偏倚している。従って、大端部19aの径方向の肉厚は円周方向に不均一であり、小端部19bから遠い側で肉厚が小さくなり、小端部19bに近い側で肉厚が大きくなる。   The large end 19a of the connecting rod 19 includes an inner peripheral surface Pa having a radius Ra and an outer peripheral surface Pb having a radius Rb larger than Ra, and the center of the outer peripheral surface Pb with respect to the center Oa of the inner peripheral surface Pa. Ob is biased toward the small end 19b by a distance a. Accordingly, the radial thickness of the large end portion 19a is not uniform in the circumferential direction, the thickness is reduced on the side far from the small end portion 19b, and the thickness is increased on the side close to the small end portion 19b.

三角形状の連結部19cの中央には、コネクティングロッド19の軸方向両両面に貫通する三角形状の貫通孔19dが形成されており、貫通孔19dが大端部19aに臨む内縁部Eaは、大端部19aの外周面Pbと中心Obを共有する半径Rcの円弧で構成される。貫通孔19dの内縁部Eaの半径Rcは、大端部19aの外周面Pbの半径Rbよりも距離bだけ小さく設定されている。   A triangular through hole 19d is formed in the center of the triangular connecting portion 19c so as to penetrate both axial surfaces of the connecting rod 19, and the inner edge Ea where the through hole 19d faces the large end 19a is large. It is comprised by the circular arc of radius Rc which shares the outer peripheral surface Pb and the center Ob of the edge part 19a. The radius Rc of the inner edge Ea of the through hole 19d is set to be smaller than the radius Rb of the outer peripheral surface Pb of the large end 19a by a distance b.

連結部19cは、小端部19b側から大端部19a側に向けて相互に拡開しながら延びる2つの外縁部Eb,Ebを備えており、外縁部Eb,Ebは大端部19aの外周面Pbに接線状に接続している。   The connecting portion 19c includes two outer edge portions Eb and Eb that extend while expanding from the small end portion 19b toward the large end portion 19a, and the outer edge portions Eb and Eb are the outer circumferences of the large end portion 19a. It is connected tangentially to the surface Pb.

次に、上記構成を備えた本発明の実施の形態の作用を説明する。   Next, the operation of the embodiment of the present invention having the above configuration will be described.

先ず、無段変速機Tの一つの動力伝達ユニットUの作用を説明する。変速アクチュエータ14の回転軸14aを入力軸11に対して相対回転させると、入力軸11の軸線L1まわりにキャリヤ16が回転する。このとき、キャリヤ16の中心O、つまり第1ピニオン15および2個の第2ピニオン17,17が成す正三角形の中心は入力軸11の軸線L1まわりに回転する。   First, the operation of one power transmission unit U of the continuously variable transmission T will be described. When the rotation shaft 14 a of the speed change actuator 14 is rotated relative to the input shaft 11, the carrier 16 rotates about the axis L <b> 1 of the input shaft 11. At this time, the center O of the carrier 16, that is, the center of the equilateral triangle formed by the first pinion 15 and the two second pinions 17, 17 rotates around the axis L 1 of the input shaft 11.

図3および図5は、キャリヤ16の中心Oが第1ピニオン15(つまり入力軸11)に対して出力軸12と反対側にある状態を示しており、このとき入力軸11に対する偏心ディスク18の偏心量が最大になって無段変速機TのレシオはTOP状態になる。図4および図6は、キャリヤ16の中心Oが第1ピニオン15(つまり入力軸11)に対して出力軸12と同じ側にある状態を示しており、このとき入力軸11に対する偏心ディスク18の偏心量が最小になって無段変速機TのレシオはLOW状態になる。   3 and 5 show a state in which the center O of the carrier 16 is on the opposite side of the output shaft 12 with respect to the first pinion 15 (that is, the input shaft 11). The eccentricity is maximized and the ratio of the continuously variable transmission T is in the TOP state. 4 and 6 show a state in which the center O of the carrier 16 is on the same side as the output shaft 12 with respect to the first pinion 15 (that is, the input shaft 11). At this time, the eccentric disk 18 with respect to the input shaft 11 The amount of eccentricity is minimized and the ratio of the continuously variable transmission T is in the LOW state.

図5に示すTOP状態で、エンジンEで入力軸11を回転させるとともに、入力軸11と同速度で変速アクチュエータ14の回転軸14aを回転させると、入力軸11、回転軸14a、キャリヤ16、第1ピニオン15、2個の第2ピニオン17,17および偏心ディスク18が一体になった状態で、入力軸11を中心に反時計方向(矢印A参照)に偏心回転する。図5(A)から図5(B)を経て図5(C)の状態へと回転する間に、偏心ディスク18の外周に大端部19aをボールベアリング20を介して相対回転自在に支持されたコネクティングロッド19は、その小端部19bにピン26で枢支された揺動リンク13を反時計方向(矢印B参照)に揺動させる。図5(A)および図5(C)は、揺動リンク13の前記矢印B方向の揺動の両端を示している。   In the TOP state shown in FIG. 5, when the input shaft 11 is rotated by the engine E and the rotation shaft 14 a of the speed change actuator 14 is rotated at the same speed as the input shaft 11, the input shaft 11, the rotation shaft 14 a, the carrier 16, With the one pinion 15, the two second pinions 17 and 17, and the eccentric disk 18 being integrated, the pinion 15 rotates eccentrically around the input shaft 11 (see arrow A). While rotating from the state shown in FIG. 5A through the state shown in FIG. 5B to the state shown in FIG. 5C, the large end 19a is supported on the outer periphery of the eccentric disk 18 via the ball bearing 20 so as to be relatively rotatable. The connecting rod 19 swings the swing link 13 pivotally supported by the pin 26 at the small end portion 19b in the counterclockwise direction (see arrow B). 5A and 5C show both ends of the swing of the swing link 13 in the arrow B direction.

このようにして揺動リンク13が矢印B方向に揺動すると、ワンウェイクラッチ21のアウター部材22およびインナー部材23間の楔状の空間にローラ25…が噛み込み、アウター部材22の回転がインナー部材23を介して出力軸12に伝達されるため、出力軸12は反時計方向(矢印C参照)に回転する。   When the swing link 13 swings in the direction of arrow B in this way, the rollers 25... Engage with the wedge-shaped space between the outer member 22 and the inner member 23 of the one-way clutch 21, and the rotation of the outer member 22 causes the inner member 23 to rotate. , The output shaft 12 rotates counterclockwise (see arrow C).

入力軸11および第1ピニオン15が更に回転すると、第1ピニオン15および第2ピニオン17,17にリングギヤ18aを噛合させた偏心ディスク18が反時計方向(矢印A参照)に偏心回転する。図5(C)から図5(D)を経て図5(A)の状態へと回転する間に、偏心ディスク18の外周に大端部19aをボールベアリング20を介して相対回転自在に支持されたコネクティングロッド19は、その小端部19bにピン26で枢支された揺動リンク13を時計方向(矢印B′参照)に揺動させる。図5(C)および図5(A)は、揺動リンク13の前記矢印B′方向の揺動の両端を示している。   When the input shaft 11 and the first pinion 15 further rotate, the eccentric disk 18 in which the ring gear 18a is engaged with the first pinion 15 and the second pinion 17, 17 rotates eccentrically in the counterclockwise direction (see arrow A). While rotating from the state shown in FIG. 5C to the state shown in FIG. 5A, the large end 19a is supported on the outer periphery of the eccentric disk 18 via the ball bearing 20 so as to be relatively rotatable. The connecting rod 19 swings the swing link 13 pivotally supported by the pin 26 at the small end portion 19b in the clockwise direction (see arrow B '). FIGS. 5C and 5A show both ends of the swing of the swing link 13 in the direction of the arrow B ′.

このようにして揺動リンク13が矢印B′方向に揺動すると、アウター部材22とインナー部材23との間の楔状の空間からローラ25…がエンゲージスプリング24…を圧縮しながら押し出されることで、アウター部材22がインナー部材23に対してスリップして出力軸12は回転しない。   When the swing link 13 swings in the direction of the arrow B ′ in this way, the rollers 25 are pushed out from the wedge-shaped space between the outer member 22 and the inner member 23 while compressing the engagement springs 24. The outer member 22 slips with respect to the inner member 23 and the output shaft 12 does not rotate.

以上のように、揺動リンク13が往復揺動したとき、揺動リンク13の揺動方向が反時計方向(矢印B参照)のときだけ出力軸12が反時計方向(矢印C参照)に回転するため、出力軸12は間欠回転することになる。   As described above, when the swing link 13 reciprocally swings, the output shaft 12 rotates counterclockwise (see arrow C) only when the swing direction of the swing link 13 is counterclockwise (see arrow B). Therefore, the output shaft 12 rotates intermittently.

図6は、LOW状態で無段変速機Tを運転するときの作用を示すものである。このとき、入力軸11の位置は偏心ディスク18の中心に一致しているので、入力軸11に対する偏心ディスク18の偏心量はゼロになる。この状態でエンジンEで入力軸11を回転させるとともに、入力軸11と同速度で変速アクチュエータ14の回転軸14aを回転させると、入力軸11、回転軸14a、キャリヤ16、第1ピニオン15、2個の第2ピニオン17,17および偏心ディスク18が一体になった状態で、入力軸11を中心に反時計方向(矢印A参照)に偏心回転する。しかしながら、偏心ディスク18の偏心量がゼロであるため、コネクティングロッド19の往復運動のストロークもゼロになり、出力軸12は回転しない。   FIG. 6 shows the operation when the continuously variable transmission T is operated in the LOW state. At this time, since the position of the input shaft 11 coincides with the center of the eccentric disk 18, the eccentric amount of the eccentric disk 18 with respect to the input shaft 11 becomes zero. In this state, when the input shaft 11 is rotated by the engine E and the rotating shaft 14a of the speed change actuator 14 is rotated at the same speed as the input shaft 11, the input shaft 11, the rotating shaft 14a, the carrier 16, the first pinion 15, 2 In a state where the second pinions 17 and 17 and the eccentric disk 18 are integrated, the input pin 11 is rotated eccentrically in the counterclockwise direction (see arrow A). However, since the eccentric amount of the eccentric disk 18 is zero, the stroke of the reciprocating motion of the connecting rod 19 is also zero, and the output shaft 12 does not rotate.

従って、変速アクチュエータ14を駆動してキャリヤ16の位置を図3のTOP状態と図4のLOW状態との間に設定すれば、ゼロレシオおよび所定レシオ間の任意のレシオでの運転が可能になる。   Therefore, if the speed change actuator 14 is driven and the position of the carrier 16 is set between the TOP state of FIG. 3 and the LOW state of FIG. 4, operation at an arbitrary ratio between the zero ratio and the predetermined ratio becomes possible.

無段変速機Tは、並置された4個の動力伝達ユニットU…の偏心ディスク18…の位相が相互に90°ずつずれているため、4個の動力伝達ユニットU…が交互に駆動力を伝達することで、つまり4個のワンウェイクラッチ21…の何れかが必ず係合状態にあることで、出力軸12を連続回転させることができる。   In the continuously variable transmission T, the phases of the eccentric disks 18 of the four power transmission units U arranged in parallel are shifted by 90 ° from each other, so that the four power transmission units U are alternately driven. By transmitting, that is, any one of the four one-way clutches 21 is always in an engaged state, the output shaft 12 can be continuously rotated.

ところで、コネクティングロッド19の大端部19aの内周面Paにボールベアリング20の外周面を圧入するとき、ボールベアリング20は大端部19aの内周面Paから径方向内向きの圧入反力を受けて変形する。このとき、径方向内向きの圧入反力が円周方向に均一であれば、圧入後のボールベアリング20の真円度が確保されるが、実際には大端部19aの剛性は円周方向に不均一であり、大端部19aおよび連結部19cが接続する部分の近傍で剛性が局部的に高まるため、圧入荷重でボールベアリング20が歪んで真円度が低下する問題がある。   By the way, when the outer peripheral surface of the ball bearing 20 is press-fitted into the inner peripheral surface Pa of the large end portion 19a of the connecting rod 19, the ball bearing 20 generates a press-fitting reaction force radially inward from the inner peripheral surface Pa of the large end portion 19a. Receive and transform. At this time, if the radially inward press-fitting reaction force is uniform in the circumferential direction, the roundness of the ball bearing 20 after press-fitting is ensured, but actually the rigidity of the large end 19a is circumferential. Since the rigidity is locally increased in the vicinity of the portion where the large end portion 19a and the connecting portion 19c are connected, the ball bearing 20 is distorted by the press-fitting load and the roundness is lowered.

図8の比較例1は、内周面Paの中心Oaおよび外周面Pbの中心Obを一致させ、かつ外周面Pbの半径Rbおよび内縁部Eaの半径Rcを同じにしたもので、大端部19aの肉厚は小型化および軽量化を図るために小さく設定されており、その重量は422gである。   In Comparative Example 1 of FIG. 8, the center Oa of the inner peripheral surface Pa and the center Ob of the outer peripheral surface Pb are made to coincide, and the radius Rb of the outer peripheral surface Pb and the radius Rc of the inner edge Ea are made the same. The thickness of 19a is set small in order to reduce the size and weight, and its weight is 422g.

比較例1は、大端部19aの肉厚が薄く、しかも大端部19aおよび連結部19cが接続する部分の剛性が局部的に高まるため、その部分の圧入反力が局部的に増加してボールベアリング20が径方向内向きに変形することで、真円度が52.5μmに悪化している。真円度とは、ボールベアリング20のボールの転動軌跡の最大径および最小径の差分であて、真円の場合は真円度が0μmであり、数値が大きいほど真円度が悪いことを示している。   In Comparative Example 1, the thickness of the large end portion 19a is thin, and the rigidity of the portion where the large end portion 19a and the connecting portion 19c are connected is locally increased, so that the press-fitting reaction force at that portion is locally increased. As the ball bearing 20 is deformed inward in the radial direction, the roundness is deteriorated to 52.5 μm. The roundness is a difference between the maximum diameter and the minimum diameter of the ball rolling trajectory of the ball bearing 20. In the case of a perfect circle, the roundness is 0 μm, and the larger the value, the worse the roundness. Show.

比較例2は、比較例1の大端部19aの肉厚を増加させたもので、その他は比較例1と同じである。比較例2は大端部19aの肉厚を増加させたことで、重量が918gに増加しており、かつ大端部19aの外周面Pbの半径R2も増加している。しかしながら、肉厚の増加により大端部19aの剛性が全体的に高まり、大端部19aおよび連結部19cが接続する部分で剛性が急変するのが緩和されるため、真円度は大幅に減少して12.5μmとなる。   Comparative Example 2 is the same as Comparative Example 1 except that the thickness of the large end portion 19a of Comparative Example 1 is increased. In Comparative Example 2, since the thickness of the large end portion 19a is increased, the weight is increased to 918 g, and the radius R2 of the outer peripheral surface Pb of the large end portion 19a is also increased. However, since the rigidity of the large end portion 19a is increased as a whole due to the increase in the wall thickness, and the sudden change in rigidity at the portion where the large end portion 19a and the connecting portion 19c are connected is mitigated, the roundness is greatly reduced. To 12.5 μm.

比較例3は、比較例2の大端部19aの内周面Paの中心Oaに対して外周面Pbの中心Obを小端部19b側にずらしたもので、重量は比較例1および比較例2の中間の640gとなる。大端部19aおよび連結部19cが接続する部分の肉厚が増加して剛性の急変が一層緩和されるため、真円度は更に減少して9.5μmとなる。しかしながら、比較例3でも大端部19aおよび連結部19cが接続する部分で依然として剛性の不均衡が残存するため、真円度が損なわれている。   In Comparative Example 3, the center Ob of the outer peripheral surface Pb is shifted to the small end portion 19b side with respect to the center Oa of the inner peripheral surface Pa of the large end portion 19a of Comparative Example 2, and the weight is Comparative Example 1 and Comparative Example. It becomes 640g in the middle of 2. Since the thickness of the portion where the large end portion 19a and the connecting portion 19c are connected is increased and the sudden change in rigidity is further alleviated, the roundness is further reduced to 9.5 μm. However, since the rigidity imbalance still remains in the portion where the large end portion 19a and the connecting portion 19c are connected in Comparative Example 3, the roundness is impaired.

実施の形態は、比較例3の貫通孔19dの内縁部Eaの半径Rcを外周面Pbの半径Rbよりも小さくし、大端部19aが内縁部Eaに臨む部分の剛性を局部的に低下させている。これにより、実施の形態のコネクティングロッド19の重量は625gに抑えられ、かつ真円度は比較例1〜比較例3の何れよりの良好な3.8に向上する。   In the embodiment, the radius Rc of the inner edge portion Ea of the through hole 19d of Comparative Example 3 is made smaller than the radius Rb of the outer peripheral surface Pb, and the rigidity of the portion where the large end portion 19a faces the inner edge portion Ea is locally reduced. ing. Thereby, the weight of the connecting rod 19 of the embodiment is suppressed to 625 g, and the roundness is improved to 3.8 which is better than any of Comparative Examples 1 to 3.

図9は貫通孔19dの効果を説明するもので、図9(B)に示す比較例4は実施の形態の貫通孔19dに相当する部分が貫通しておらず、薄肉のウエブ19eで塞がれている。このウエブ19eにより貫通孔19dの内縁部Eaに臨む大端部19aの剛性が著しく高まり、真円度が大幅に悪化していることが分かる。一方、図9(A)に示す実施の形態は、貫通孔19dを形成したことで貫通孔19dの内縁部Eaに臨む大端部19aの剛性が低下し、真円度が大幅に改善していることが分かる。   FIG. 9 illustrates the effect of the through hole 19d. In Comparative Example 4 shown in FIG. 9B, the portion corresponding to the through hole 19d of the embodiment is not penetrated, and the thin web 19e is closed. It is. It can be seen that the web 19e significantly increases the rigidity of the large end 19a facing the inner edge Ea of the through hole 19d, and the roundness is greatly deteriorated. On the other hand, in the embodiment shown in FIG. 9A, by forming the through hole 19d, the rigidity of the large end portion 19a facing the inner edge portion Ea of the through hole 19d is lowered, and the roundness is greatly improved. I understand that.

図10は連結部19cの外縁部Eb,Ebの効果を説明するもので、図10(B)に示す比較例5は、連結部19cの外縁部Eb,Ebが大端部19aの外周面Pbに接線状に接続せず、交差するように接続している。その結果、交差部の近傍で大端部19aの肉厚が急変し、それによる剛性の急変で真円度が悪化する問題がある。一方、図10(A)に示す実施の形態は、連結部19cの外縁部Eb,Ebが大端部19aの外周面Pbに接線状に接続するため、交差部の近傍で大端部19aの肉厚の急変が防止されて真円度が改善される。   FIG. 10 illustrates the effect of the outer edge portions Eb and Eb of the connecting portion 19c. In Comparative Example 5 shown in FIG. 10B, the outer edge portions Eb and Eb of the connecting portion 19c are the outer peripheral surface Pb of the large end portion 19a. They are not connected tangentially, but are connected so as to intersect. As a result, there is a problem that the wall thickness of the large end portion 19a changes suddenly in the vicinity of the intersection, and the roundness deteriorates due to the sudden change in rigidity. On the other hand, in the embodiment shown in FIG. 10A, the outer edge portions Eb and Eb of the connecting portion 19c are tangentially connected to the outer peripheral surface Pb of the large end portion 19a. A sudden change in wall thickness is prevented and roundness is improved.

以上のように、本実施の形態によれば、コネクティングロッド19の重量増加を最小限に抑えながら大端部19aの剛性を円周方向に均一化し、大端部19aに圧入されるボールベアリング20の真円度を確保してフリクションの低下および耐久性の向上を図ることができる。   As described above, according to the present embodiment, the ball bearing 20 is press-fitted into the large end portion 19a by making the rigidity of the large end portion 19a uniform in the circumferential direction while minimizing an increase in the weight of the connecting rod 19. Thus, it is possible to secure a roundness and to reduce friction and improve durability.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、本発明のベアリングは実施の形態のボールベアリング20に限定されず、ニードルベアリング、ローラベアリング、プレーンベアリング等の任意のベアリングであっても良い。   For example, the bearing of the present invention is not limited to the ball bearing 20 of the embodiment, and may be an arbitrary bearing such as a needle bearing, a roller bearing, or a plain bearing.

また本発明の駆動源は実施の形態のエンジンEに限定されず、モータ・ジェネレータ等の任意の駆動源であっても良い。   The drive source of the present invention is not limited to the engine E of the embodiment, and may be any drive source such as a motor / generator.

11 入力軸
12 出力軸
13 揺動リンク
14 変速アクチュエータ
18 偏心ディスク
19 コネクティングロッド
19a 大端部
19b 小端部
19c 連結部
19d 貫通孔
20 ボールベアリング(ベアリング)
21 ワンウェイクラッチ
E エンジン(駆動源)
Ea 貫通孔の内縁部
Eb 連結部の外縁部
Oa 大端部の内周面の中心
Ob 大端部の外周面の中心
Pa 大端部の内周面
Pb 大端部の外周面
Rb 大端部の外周面の半径
Rc 貫通孔の内縁部の半径
DESCRIPTION OF SYMBOLS 11 Input shaft 12 Output shaft 13 Swing link 14 Shifting actuator 18 Eccentric disk 19 Connecting rod 19a Large end 19b Small end 19c Connecting portion 19d Through hole 20 Ball bearing (bearing)
21 One-way clutch E Engine (drive source)
Ea Inner edge Eb of the through hole Outer edge Oa of the connecting portion Center Ob of the inner peripheral surface of the large end portion Center Pa of the outer peripheral surface of the large end portion Pa Inner peripheral surface Pb of the large end portion Large outer peripheral surface Rb of the large end portion Radius Rc of the outer peripheral surface of the inner radius of the through hole

Claims (3)

駆動源(E)に接続された入力軸(11)と、
前記入力軸(11)と平行に配置された出力軸(12)と、
前記出力軸(12)に揺動可能に支持された揺動リンク(13)と、
前記出力軸(12)および前記揺動リンク(13)間に配置され、該揺動リンク(13)が一方向に揺動したときに係合して他方向に揺動したときに係合解除するワンウェイクラッチ(21)と、
前記入力軸(11)と一体に偏心回転する偏心ディスク(18)と、
前記偏心ディスク(18)の偏心量を変更する変速アクチュエータ(14)と、
前記偏心ディスク(18)および前記揺動リンク(13)を接続するコネクティングロッド(19)とを備える車両用動力伝達装置であって、
前記コネクティングロッド(19)は、前記偏心ディスク(18)の外周面に設けたベアリング(20)に圧入される環状の大端部(19a)と、前記揺動リンク(13)に接続される小端部(19b)と、前記大端部(19a)および前記小端部(19b)を連結する連結部(19c)とを備え、
前記連結部(19c)には軸方向両表面に貫通する貫通孔(19d)が形成され、前記大端部(19a)の外周面(Pb)の中心(Ob)は内周面(Pa)の中心(Oa)に対して前記小端部(19b)側に偏心し、前記大端部(19a)に臨む前記貫通孔(19d)の内縁部(Ea)は前記外周面(Pb)と中心(Ob)を共有する円弧であることを特徴とする車両用動力伝達装置。
An input shaft (11) connected to the drive source (E);
An output shaft (12) arranged parallel to the input shaft (11);
A swing link (13) supported swingably on the output shaft (12);
Arranged between the output shaft (12) and the swing link (13) and engaged when the swing link (13) swings in one direction and disengaged when swings in the other direction. A one-way clutch (21) to perform,
An eccentric disk (18) that rotates eccentrically integrally with the input shaft (11);
A speed change actuator (14) for changing the amount of eccentricity of the eccentric disk (18);
A vehicle power transmission device comprising a connecting rod (19) connecting the eccentric disk (18) and the swing link (13),
The connecting rod (19) includes an annular large end (19a) that is press-fitted into a bearing (20) provided on the outer peripheral surface of the eccentric disc (18), and a small link that is connected to the swing link (13). An end (19b) and a connecting portion (19c) for connecting the large end (19a) and the small end (19b);
The connecting portion (19c) is formed with a through hole (19d) penetrating both axial surfaces, and the center (Ob) of the outer peripheral surface (Pb) of the large end portion (19a) is the inner peripheral surface (Pa). The inner edge (Ea) of the through hole (19d) that is eccentric to the small end (19b) side with respect to the center (Oa) and faces the large end (19a) is centered on the outer peripheral surface (Pb) ( The vehicle power transmission device is a circular arc that shares Ob).
前記貫通孔(19d)の内縁部(Ea)の半径(Rc)は前記大端部(19a)の外周面(Pb)の半径(Rb)よりも小さいことを特徴とする、請求項1に記載の車両用動力伝達装置。   The radius (Rc) of the inner edge (Ea) of the through hole (19d) is smaller than the radius (Rb) of the outer peripheral surface (Pb) of the large end (19a). Vehicle power transmission device. 前記貫通孔(19d)の外縁部(Eb)は前記大端部(19a)の外周面(Pb)に接線状に連なることを特徴とする、請求項1または請求項2に記載の車両用動力伝達装置。   3. The vehicle power according to claim 1, wherein an outer edge portion (Eb) of the through hole (19 d) is tangentially connected to an outer peripheral surface (Pb) of the large end portion (19 a). Transmission device.
JP2013020814A 2013-02-05 2013-02-05 Power transmission device for vehicle Expired - Fee Related JP6011971B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013020814A JP6011971B2 (en) 2013-02-05 2013-02-05 Power transmission device for vehicle
CN201310693672.0A CN103968026B (en) 2013-02-05 2013-12-17 Vehicle power transmission apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013020814A JP6011971B2 (en) 2013-02-05 2013-02-05 Power transmission device for vehicle

Publications (2)

Publication Number Publication Date
JP2014152808A JP2014152808A (en) 2014-08-25
JP6011971B2 true JP6011971B2 (en) 2016-10-25

Family

ID=51237890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013020814A Expired - Fee Related JP6011971B2 (en) 2013-02-05 2013-02-05 Power transmission device for vehicle

Country Status (2)

Country Link
JP (1) JP6011971B2 (en)
CN (1) CN103968026B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6168523B2 (en) * 2014-02-05 2017-07-26 本田技研工業株式会社 Power transmission device for vehicle
JP6602623B2 (en) * 2015-09-25 2019-11-06 Ntn株式会社 Connecting rod module and manufacturing method thereof
CN109236975A (en) * 2018-10-31 2019-01-18 江苏牛牌纺织机械有限公司 A kind of eccentric wheel and connecting rod engaging member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502543A (en) * 2001-09-26 2005-01-27 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト Drive device
JP2003322138A (en) * 2002-04-30 2003-11-14 Ntn Corp Connecting rod and connecting rod with bearing
JP5363426B2 (en) * 2010-06-15 2013-12-11 本田技研工業株式会社 Power transmission device for vehicle
US9347416B2 (en) * 2010-08-27 2016-05-24 Honda Motor Co., Ltd. Engine starting device for vehicle
WO2013001859A1 (en) * 2011-06-30 2013-01-03 本田技研工業株式会社 Four-joint link type continuously variable transmission
JP5703379B2 (en) * 2011-07-13 2015-04-15 本田技研工業株式会社 Continuously variable transmission
CN202500976U (en) * 2012-03-12 2012-10-24 周有强 Connecting-rod tooth-engaging type speed reducing and changing device

Also Published As

Publication number Publication date
CN103968026B (en) 2017-01-11
CN103968026A (en) 2014-08-06
JP2014152808A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
JP6011971B2 (en) Power transmission device for vehicle
JP6168523B2 (en) Power transmission device for vehicle
JP5875091B2 (en) Power transmission device for vehicle
JP6817900B2 (en) Vehicle power transmission device
JP6016241B2 (en) Power transmission device for vehicle
JP6011972B2 (en) Power transmission device for vehicle
JP2010038184A (en) Transmission
JP6112661B2 (en) Power transmission device for vehicle
JP6029212B2 (en) Power transmission device for vehicle
JP6143178B2 (en) One-way clutch structure in vehicle power transmission device
JP2014114906A (en) Power transmission device for vehicle
JP6130196B2 (en) One-way clutch and continuously variable transmission
JP2014228109A (en) One-way clutch
JP6180993B2 (en) Continuously variable transmission
JP6133116B2 (en) One-way clutch and continuously variable transmission
JP6062381B2 (en) Bearing and continuously variable transmission equipped with bearing
JP6081953B2 (en) Power transmission device for vehicle
JP6117672B2 (en) Power transmission device for vehicle
JP6163119B2 (en) Driving force transmission device for vehicle
JP6229950B2 (en) Power transmission device for vehicle
JP6026350B2 (en) Continuously variable transmission
JP2016109144A (en) Power transmission device for vehicle
JP5932621B2 (en) One-way clutch and continuously variable transmission
JP2014196791A (en) Vehicular power transmission device
JP2015203490A (en) One way clutch and continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160909

R150 Certificate of patent or registration of utility model

Ref document number: 6011971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees