JP6130196B2 - One-way clutch and continuously variable transmission - Google Patents

One-way clutch and continuously variable transmission Download PDF

Info

Publication number
JP6130196B2
JP6130196B2 JP2013086032A JP2013086032A JP6130196B2 JP 6130196 B2 JP6130196 B2 JP 6130196B2 JP 2013086032 A JP2013086032 A JP 2013086032A JP 2013086032 A JP2013086032 A JP 2013086032A JP 6130196 B2 JP6130196 B2 JP 6130196B2
Authority
JP
Japan
Prior art keywords
roller
peripheral surface
way clutch
outer member
input shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013086032A
Other languages
Japanese (ja)
Other versions
JP2014209013A (en
Inventor
彰彦 佐々木
彰彦 佐々木
美里 牧
美里 牧
佐藤 哲
哲 佐藤
文康 菅
文康 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013086032A priority Critical patent/JP6130196B2/en
Publication of JP2014209013A publication Critical patent/JP2014209013A/en
Application granted granted Critical
Publication of JP6130196B2 publication Critical patent/JP6130196B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Description

本発明は、クランク式無段変速機やそれに用いられるワンウェイクラッチに関する。   The present invention relates to a crank type continuously variable transmission and a one-way clutch used therein.

例えば、特許文献1には、エンジンに接続された入力軸の回転をコネクティングロッドの往復運動に変換し、コネクティングロッドの往復運動をワンウェイクラッチによって出力軸の回転運動に変換するクランク式無段変速機が記載されている。   For example, Patent Document 1 discloses a crank type continuously variable transmission that converts the rotation of an input shaft connected to an engine into a reciprocating motion of a connecting rod, and converts the reciprocating motion of the connecting rod into a rotational motion of an output shaft by a one-way clutch. Is described.

特開2012−1048号公報JP 2012-1048 A

ところで、上記特許文献1のワンウェイクラッチでは、ダンピング状態でのローラの移動がアキシャルスプリングによりローラ端面を押圧して生じる摩擦力により減衰されるが、アキシャルスプリングはローラの中心軸線から離間したローラ端面のインナー部材側の下縁部分に当接するように構成されている。このため、ローラに対する軸方向の押圧力はローラ端面の下縁部分に作用することになるが、図9に示すようにローラが何らかの原因で傾いた場合などに上記のような軸方向の押圧力が印加されるとローラをさらに傾かせるようなモーメントが作用する。その結果、ローラが想定外の部位でワンウェイクラッチのアウター部材やインナー部材と係合するなどの原因で片当たりによる局部応力などが発生し、ワンウェイクラッチの耐久性を低下させる可能性がある。   By the way, in the one-way clutch of Patent Document 1, the movement of the roller in the damping state is attenuated by the frictional force generated by pressing the roller end surface by the axial spring. The axial spring is a roller end surface separated from the central axis of the roller. It is comprised so that it may contact | abut to the lower edge part of the inner member side. For this reason, the axial pressing force against the roller acts on the lower edge portion of the roller end surface. However, when the roller is inclined for some reason as shown in FIG. When is applied, a moment that further tilts the roller acts. As a result, local stress or the like due to one-side contact may occur due to the roller engaging with the outer member or inner member of the one-way clutch at an unexpected part, and the durability of the one-way clutch may be reduced.

また、ローラが傾いていると、アウター部材とインナー部材の間に噛み込むときにスムーズに噛み込むことができず、エンゲージスプリングの弾発力に抗して弾き返される現象(ポップアウト現象)が発生してしまい、ワンウェイクラッチの安定した係合および係合解除が妨げられる恐れもある。   Also, if the roller is tilted, when it is bitten between the outer member and the inner member, it cannot be smoothly bitten, and a phenomenon (pop-out phenomenon) that is repelled against the spring force of the engagement spring occurs. It may occur, and stable engagement and disengagement of the one-way clutch may be hindered.

本発明は、上記課題に鑑みてなされ、その目的は、ダンピング時(非係合時)にローラの姿勢を安定化させつつ減衰効果を増加することができるワンウェイクラッチおよび無段変速機を実現することである。   The present invention has been made in view of the above problems, and an object of the present invention is to realize a one-way clutch and a continuously variable transmission that can increase the damping effect while stabilizing the posture of the roller during damping (when not engaged). That is.

上記課題を解決し、目的を達成するために、本発明に係る第1の形態は、アウター部材(22)と、前記アウター部材(22)の内周に同軸に配置されたインナー部材(23)と、前記アウター部材(22)の内周面(22a)および前記インナー部材(23)の外周面(23a)の間に配置された複数のローラ(25)と、前記複数のローラ(25)にそれぞれ当接して円周方向に付勢する複数の弾性部材(24)とを備え、前記アウター部材(22)と前記インナー部材(23)の所定方向への相対回転により、前記ローラ(25)を前記アウター部材(22)の内周面(22a)と前記インナー部材(23)の外周面(23a)の間に係合させて駆動力を伝達するワンウェイクラッチ(21)であって、前記アウター部材(22)の内周面(22a)および前記インナー部材(23)の外周面(23a)には当接しない、前記ローラ(25)における軸方向の一端面(25b)に隣接する隣接部材(32)と、前記アウター部材(22)の内周面(22a)および前記インナー部材(23)の外周面(23a)には当接しない、前記ローラ(25)における軸方向の他端面(25c)を押圧し前記ローラ(25)の回転を減衰する減衰部材(38)と、を更に備え、前記減衰部材(38)は、前記ローラ(25)の他端面(25c)の中心を含む領域を押圧し、前記減衰部材(38)における前記ローラ(25)の他端面(25c)を押圧する押圧部(38a)は、前記ローラ(25)が前記アウター部材(22)の内周面(22a)および前記インナー部材(23)の外周面(23a)の間に係合しない方向に最も変位した第1の位置(D1)から当該内周面(22a)および当該外周面(23a)の間に係合する直前の第2の位置(D2)までの範囲を移動している間、常に前記ローラ(25)の他端面(25c)に押圧力が作用するように、前記ローラ(25)の他端面(25c)における軸線(25a)を含む直径方向の全領域に当接し押圧する幅(D)を有するIn order to solve the above-mentioned problems and achieve the object, a first embodiment according to the present invention includes an outer member (22) and an inner member (23) arranged coaxially on the inner periphery of the outer member (22). A plurality of rollers (25) disposed between an inner peripheral surface (22a) of the outer member (22) and an outer peripheral surface (23a) of the inner member (23), and the plurality of rollers (25). A plurality of elastic members (24) that contact each other and urge in the circumferential direction, and the roller (25) is moved by relative rotation of the outer member (22) and the inner member (23) in a predetermined direction. A one-way clutch (21) that engages between an inner peripheral surface (22a) of the outer member (22) and an outer peripheral surface (23a) of the inner member (23) to transmit a driving force, the outer member Of (22) An adjacent member (32) adjacent to one end surface (25b) in the axial direction of the roller (25) that does not contact the surface (22a) and the outer peripheral surface (23a) of the inner member (23); and the outer member The roller (25) is pressed against the other end surface (25c) in the axial direction of the roller (25) that does not contact the inner peripheral surface (22a) of (22) and the outer peripheral surface (23a) of the inner member (23). And a damping member (38) for damping the rotation of the damping member (38). The damping member (38) presses a region including the center of the other end surface (25c) of the roller (25), and the damping member (38) ), The pressing portion (38a) that presses the other end surface (25c) of the roller (25) is formed by the roller (25) of the inner peripheral surface (22a) of the outer member (22) and the inner member (23). Perimeter The second position (D2) immediately before the engagement between the inner peripheral surface (22a) and the outer peripheral surface (23a) from the first position (D1) most displaced in the direction not engaged during (23a). ) Includes an axis (25a) on the other end surface (25c) of the roller (25) so that a pressing force always acts on the other end surface (25c) of the roller (25). It has a width (D) that makes contact with and presses the entire area in the diameter direction .

また、本発明に係る第2の形態は、上記第1の形態のワンウェイクラッチ(21)を備え、入力軸(11)の回転を変速して出力軸(12)に伝達する無段変速機であって、前記入力軸(11)の軸線(L1)からの偏心量が可変であって当該入力軸(11)と共に回転する入力側支点(18)と、前記ワンウェイクラッチ(21)の前記アウター部材(22)に設けた出力側支点(19c)とをコネクティングロッド(19)で接続し、前記ワンウェイクラッチ(21)の前記インナー部材(23)を前記出力軸(12)に接続したことを特徴とする無段変速機である。 The second aspect of the present invention is a continuously variable transmission that includes the one-way clutch (21) of the first aspect and that shifts the rotation of the input shaft (11) and transmits it to the output shaft (12). An input side fulcrum (18) whose eccentric amount from the axis (L1) of the input shaft (11) is variable and rotates together with the input shaft (11), and the outer member of the one-way clutch (21) The output side fulcrum (19c) provided in (22) is connected by a connecting rod (19), and the inner member (23) of the one-way clutch (21) is connected to the output shaft (12). It is a continuously variable transmission.

また、本発明に係る第3の形態は、上記第1または第2の形態のワンウェイクラッチ(21)を備え、入力軸(11)の回転を変速して出力軸(12)に伝達する無段変速機であって、前記入力軸(11)の軸線からの偏心量が可変であって当該入力軸(11)と共に回転する入力側支点(18)と、前記ワンウェイクラッチ(21)の前記アウター部材(22)に設けた出力側支点(19c)とをコネクティングロッド(19)で接続し、前記ワンウェイクラッチ(21)の前記インナー部材(23)を前記出力軸(12)に接続したことを特徴とする無段変速機である。   According to a third aspect of the present invention, the one-way clutch (21) according to the first or second aspect is provided, and the rotation of the input shaft (11) is shifted and transmitted to the output shaft (12). An input side fulcrum (18) that is a transmission and has a variable amount of eccentricity from the axis of the input shaft (11) and rotates together with the input shaft (11), and the outer member of the one-way clutch (21) The output side fulcrum (19c) provided in (22) is connected by a connecting rod (19), and the inner member (23) of the one-way clutch (21) is connected to the output shaft (12). It is a continuously variable transmission.

本発明によれば、ダンピング時(非係合時)にローラの姿勢を安定化させつつ減衰効果を増加することができるワンウェイクラッチおよび無段変速機を実現を実現できる。   According to the present invention, it is possible to realize a one-way clutch and a continuously variable transmission that can increase the damping effect while stabilizing the posture of the roller during damping (when not engaged).

詳しくは、本発明に係る第1の形態によれば、ローラ(25)の軸線(25a)が隣接部材(32)に対して垂直となるようにローラ(25)の姿勢が保持されるため、環状部材(32)とローラ25の一端面(25b)が平行に対面し当接するようになり、ローラの片当たりによる局部応力などの発生や耐久性の低下を抑制することができる。   Specifically, according to the first embodiment of the present invention, the posture of the roller (25) is maintained so that the axis (25a) of the roller (25) is perpendicular to the adjacent member (32). The annular member (32) and the one end surface (25b) of the roller 25 face each other in parallel and come into contact with each other, and it is possible to suppress the occurrence of local stress or the like and the deterioration of durability due to the contact of the roller.

また、ローラ(25)のダンピング中は常にローラ(25の軸線(25a)と同軸にローラ(25)の他端面(25b)の中心を含む領域に押圧力を作用させることができるので、ローラ(25)の姿勢を安定化しつつ回転を減衰し、次回の係合に備えるための係合待機状態に素早く復帰させることができる。 Further, it is possible to exert a pressing force in a region including the center of the other end surface of the roller (25) axis and (25a) coaxial always during dumping Russia over La (25) rollers (25) (25b) The rotation of the roller (25) can be attenuated while the posture of the roller (25) is stabilized, and the state can be quickly returned to the standby state for preparing for the next engagement.

また、本発明に係る第の形態によれば、本発明のワンウェイクラッチをクランク式無段変速機に適用することによって、高周波でローラをダンピング状態から係合待機状態へ復帰させる応答性を実現することができる。 Further, according to the second aspect of the present invention, the one-way clutch of the present invention is applied to the crank type continuously variable transmission, thereby realizing the responsiveness of returning the roller from the damping state to the engagement standby state at a high frequency. can do.

本実施形態の無段変速機が搭載される自動車のパワートレインの構成図。The block diagram of the powertrain of the motor vehicle by which the continuously variable transmission of this embodiment is mounted. 本実施形態の無段変速機の構造を示す図。The figure which shows the structure of the continuously variable transmission of this embodiment. 本実施形態の無段変速機のTOP状態の動作を示す図。The figure which shows operation | movement of the TOP state of the continuously variable transmission of this embodiment. 本実施形態の無段変速機のLOW状態の動作を示す図。The figure which shows the operation | movement of the LOW state of the continuously variable transmission of this embodiment. 本実施形態の無段変速機に搭載されるワンウェイクラッチの分解斜視図。The disassembled perspective view of the one-way clutch mounted in the continuously variable transmission of this embodiment. 本実施形態のワンウェイクラッチの状態変化を示す図。The figure which shows the state change of the one-way clutch of this embodiment. 図2のI部の詳細断面図。FIG. 3 is a detailed sectional view of a portion I in FIG. 2. 本実施形態のアキシャルスプリングによるローラの傾き防止構造を説明する模式図。The schematic diagram explaining the inclination prevention structure of the roller by the axial spring of this embodiment. 従来のアキシャルスプリングによるローラを押圧する構造を説明する模式図。The schematic diagram explaining the structure which presses the roller by the conventional axial spring.

以下に、本発明の実施の形態について添付図面を参照して詳細に説明する。尚、以下に説明する実施の形態は、本発明の実現手段としての一例であり、本発明は、その趣旨を逸脱しない範囲で下記実施形態を修正又は変形したものに適用可能である。また、以下では、本発明のワンウェイクラッチやクランク式無段変速機を、自動車のパワートレインに適用した例について説明するが、自動車以外の他の用途にも適用できることは言うまでもない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiment described below is an example as means for realizing the present invention, and the present invention can be applied to a modified or modified embodiment described below without departing from the spirit of the present invention. In the following, an example in which the one-way clutch and the crank type continuously variable transmission according to the present invention is applied to a power train of an automobile will be described, but it is needless to say that it can be applied to other uses other than the automobile.

<パワートレイン構成>まず、図1を参照して、本実施形態の無段変速機が搭載される自動車のパワートレインの構成について説明する。   <Powertrain Configuration> First, the configuration of the powertrain of an automobile on which the continuously variable transmission of this embodiment is mounted will be described with reference to FIG.

図1に示すように、エンジン1の駆動力が出力軸2からクランク式無段変速機(以下、無段変速機と略称する)3へ入力され、無段変速機3からデファレンシャルギヤ4を介して左右の車軸5に伝達され、駆動輪6を駆動する。   As shown in FIG. 1, the driving force of the engine 1 is input from an output shaft 2 to a crank type continuously variable transmission (hereinafter abbreviated as a continuously variable transmission) 3, and the continuously variable transmission 3 passes through a differential gear 4. Are transmitted to the left and right axles 5 to drive the drive wheels 6.

<無段変速機の構造>次に、図2ないし図6を参照して、本実施形態の無段変速機の構造について説明する。   <Structure of continuously variable transmission> Next, the structure of the continuously variable transmission according to this embodiment will be described with reference to FIGS.

図2に示すように、本実施形態の無段変速機3は同一構造を有する複数個(実施の形態では4個)の動力伝達機構Uをエンジン1の出力軸2と同軸の入力軸11に対して軸方向に配列して構成されている。各動力伝達機構Uは平行に配置された共通の入力軸11および共通の出力軸12を備えており、入力軸11の回転が減速または増速されて出力軸12に伝達される。   As shown in FIG. 2, the continuously variable transmission 3 of the present embodiment has a plurality of (four in the embodiment) power transmission mechanisms U having the same structure as an input shaft 11 coaxial with the output shaft 2 of the engine 1. On the other hand, they are arranged in the axial direction. Each power transmission mechanism U includes a common input shaft 11 and a common output shaft 12 arranged in parallel, and the rotation of the input shaft 11 is decelerated or increased and transmitted to the output shaft 12.

以下では、図3および図4を参照して、複数個の動力伝達機構Uのうち1つの構造について説明する。   Hereinafter, one structure of the plurality of power transmission mechanisms U will be described with reference to FIGS. 3 and 4.

エンジン1に接続されて回転する入力軸11は、電動モータのような変速アクチュエータ14の中空の回転軸14aの内部を相対回転自在に貫通する。変速アクチュエータ14のロータ14bは回転軸14aに固定されており、ステータ14cはケーシングに固定される。変速アクチュエータ14の回転軸14aは、入力軸11と同速度で回転可能であり、かつ入力軸11に対して異なる速度で相対回転可能である。   An input shaft 11 that is connected to the engine 1 and rotates passes through a hollow rotary shaft 14a of a speed change actuator 14 such as an electric motor so as to be relatively rotatable. The rotor 14b of the speed change actuator 14 is fixed to the rotating shaft 14a, and the stator 14c is fixed to the casing. The rotation shaft 14 a of the speed change actuator 14 can rotate at the same speed as the input shaft 11 and can rotate relative to the input shaft 11 at a different speed.

変速アクチュエータ14の回転軸14aを貫通した入力軸11には第1ピニオン15が固定されており、この第1ピニオン15を跨ぐように変速アクチュエータ14の回転軸14aにクランク状のキャリヤ16が接続される。第1ピニオン15と同径の2個の第2ピニオン17が、第1ピニオン15と協働して正三角形を構成する位置にそれぞれピニオンピン16aを介して支持されており、これら第1ピニオン15および第2ピニオン17に、円板形の偏心ディスク18の内部に偏心して形成されたリングギヤ18aが噛合する。偏心ディスク18の外周面に、コネクティングロッド19のロッド部19aの一端に設けたリング部19bがボールベアリング20を介して相対回転自在に嵌合する。   A first pinion 15 is fixed to the input shaft 11 passing through the rotation shaft 14 a of the speed change actuator 14, and a crank-shaped carrier 16 is connected to the rotation shaft 14 a of the speed change actuator 14 so as to straddle the first pinion 15. The Two second pinions 17 having the same diameter as the first pinion 15 are supported via pinion pins 16a at positions forming an equilateral triangle in cooperation with the first pinion 15, and these first pinions 15 The ring gear 18 a formed eccentrically inside the disc-shaped eccentric disk 18 meshes with the second pinion 17. A ring portion 19 b provided at one end of the rod portion 19 a of the connecting rod 19 is fitted to the outer peripheral surface of the eccentric disk 18 via a ball bearing 20 so as to be relatively rotatable.

出力軸12の外周に設けられたワンウェイクラッチ21は、コネクティングロッド19のロッド部19aに連結ピン19cを介して枢支されたリング状のアウター部材22と、アウター部材22の内部に配置されて出力軸12に固定されたインナー部材23と、アウター部材22とインナー部材23との間に形成された楔状の空間に配置されてエンゲージスプリング24で付勢されたローラ25とを備える。なお、ワンウェイクラッチ21の具体的な構造については後述する。   The one-way clutch 21 provided on the outer periphery of the output shaft 12 is disposed inside the outer member 22 and is provided with a ring-shaped outer member 22 pivotally supported by a rod portion 19a of a connecting rod 19 via a connecting pin 19c. An inner member 23 fixed to the shaft 12 and a roller 25 arranged in a wedge-shaped space formed between the outer member 22 and the inner member 23 and biased by an engagement spring 24 are provided. The specific structure of the one-way clutch 21 will be described later.

動力伝達機構Uはクランク状のキャリヤ16を共有しているが、キャリヤ16に第2ピニオン17を介して支持される偏心ディスク18の位相は各々の動力伝達機構Uで90°ずつ異なっている。例えば、図2において、左端の動力伝達機構Uの偏心ディスク18は入力軸11に対して図中上方に変位し、左から3番目の動力伝達機構Uの偏心ディスク18は入力軸11に対して図中下方に変位し、左から2番目および4番目の動力伝達機構Uの偏心ディスク18は上下方向中間に位置している。   The power transmission mechanism U shares the crank-shaped carrier 16, but the phase of the eccentric disk 18 supported by the carrier 16 via the second pinion 17 differs by 90 ° in each power transmission mechanism U. For example, in FIG. 2, the eccentric disk 18 of the leftmost power transmission mechanism U is displaced upward in the figure with respect to the input shaft 11, and the eccentric disk 18 of the third power transmission mechanism U from the left is relative to the input shaft 11. The eccentric disk 18 of the second and fourth power transmission mechanisms U from the left is located in the middle in the vertical direction.

<ワンウェイクラッチの構造>次に、図5を参照して、ワンウェイクラッチの構造について説明する。   <Structure of the one-way clutch> Next, the structure of the one-way clutch will be described with reference to FIG.

ワンウェイクラッチ21は、環状のアウター部材22の円形の内周面22aと、筒状のインナー部材23の波状に屈曲する外周面23aとの間に12個のローラ25を配置したものであり、アウター部材22の外周に設けられた突出する連結部22bに連結ピン19cおよびクリップ40を介してコネクティングロッド19が接続され、インナー部材23の内周部には出力軸12が相対回転不能に結合される。   The one-way clutch 21 includes twelve rollers 25 disposed between a circular inner peripheral surface 22a of an annular outer member 22 and an outer peripheral surface 23a bent in a wave shape of a cylindrical inner member 23. The connecting rod 19 is connected to the protruding connecting portion 22b provided on the outer periphery of the member 22 via the connecting pin 19c and the clip 40, and the output shaft 12 is coupled to the inner peripheral portion of the inner member 23 so as not to be relatively rotatable. .

ワンウェイクラッチ21は、ローラ25を付勢するエンゲージスプリング24を支持するためのケージ31を備える。ケージ31は円環状の板材からなる一対の環状部材32と、周方向に等間隔で配置されて一対の環状部材32を相互に接続する12本のスプリング支持ロッドとで構成され、一対の環状部材32が12個のローラ25の軸方向両側に配置され、12本のスプリング支持ロッド33が12個のローラ25間に配置される。環状部材32の内周部は波状に形成されており、それがインナー部材23の波状の外周面23aに凹凸係合することで、ケージ31はインナー部材23に相対回転不能に結合される。 エンゲージスプリング24は1枚の弾性板材を断面S字状に屈曲させたもので、その一端側がケージ31のスプリング支持ロッド33に溶接等で固定される。   The one-way clutch 21 includes a cage 31 for supporting an engagement spring 24 that biases the roller 25. The cage 31 includes a pair of annular members 32 made of an annular plate member and twelve spring support rods that are arranged at equal intervals in the circumferential direction and connect the pair of annular members 32 to each other. 32 is disposed on both axial sides of the twelve rollers 25, and twelve spring support rods 33 are disposed between the twelve rollers 25. The inner peripheral portion of the annular member 32 is formed in a corrugated shape, and the cage 31 is coupled to the inner member 23 so as not to be relatively rotatable by engaging with the corrugated outer peripheral surface 23 a of the inner member 23. The engagement spring 24 is formed by bending a single elastic plate member into an S-shaped cross section, and one end thereof is fixed to the spring support rod 33 of the cage 31 by welding or the like.

アウター部材22およびインナー部材23の間には、ローラ25の軸方向両側に位置する一対のボールベアリング34が配置されており、このボールベアリング34によってアウター部材22およびインナー部材23が同芯状態を維持しながら相対回転可能に接続される。ボールベアリング34は外輪35および内輪36間に複数のボール37を配置したものであり、外輪35はアウター部材22の軸方向端部に一体に形成され、内輪36は別部材で構成されてインナー部材23の外周に固定される。なお、ボールベアリング34には複列ものと単列のものとがあり、4個のワンウェイクラッチ21の軸方向両端に位置する2個のボールベアリング34は単列であり、それ以外の3個ボールベアリング34は隣接する2個のワンウェイクラッチ21に共有されるために複列となる。   Between the outer member 22 and the inner member 23, a pair of ball bearings 34 located on both sides in the axial direction of the roller 25 are disposed, and the outer member 22 and the inner member 23 maintain a concentric state by the ball bearings 34. It is connected so that relative rotation is possible. The ball bearing 34 has a plurality of balls 37 disposed between an outer ring 35 and an inner ring 36, the outer ring 35 is formed integrally with the axial end of the outer member 22, and the inner ring 36 is configured as a separate member to form an inner member. 23 is fixed to the outer periphery. There are two types of ball bearings 34, one is a single row, and the other two ball bearings 34 located at both axial ends of the four one-way clutch 21 are a single row, and the other three balls Since the bearings 34 are shared by the two adjacent one-way clutches 21, they become double rows.

一方のボールベアリング34と、ケージ31の一方の環状部材32との間にアキシャルスプリング38が配置されており、アキシャルスプリング38の内周から突出する複数の押圧部38aが、環状部材32の内周の凹部32a間を通過してローラ25の端面に当接し、その弾性により押圧する。また、アウター部材22の内周面に形成した環状溝22cに環状のリングスプリング39が配置されており、このリングスプリング39はローラ25の周面に当接してインナー部材23の外周面23aに向けて付勢する。   An axial spring 38 is disposed between one ball bearing 34 and one annular member 32 of the cage 31, and a plurality of pressing portions 38 a protruding from the inner periphery of the axial spring 38 are provided on the inner periphery of the annular member 32. Passing between the recesses 32a of the roller 25, abuts against the end face of the roller 25 and is pressed by its elasticity. An annular ring spring 39 is disposed in an annular groove 22 c formed on the inner peripheral surface of the outer member 22. The ring spring 39 abuts on the peripheral surface of the roller 25 and faces the outer peripheral surface 23 a of the inner member 23. Energize.

<動作説明>次に、図2ないし図4を参照して、本実施形態の無段変速機の動力伝達作用について説明する。   <Description of Operation> Next, the power transmission action of the continuously variable transmission according to this embodiment will be described with reference to FIGS.

先ず、無段変速機3の1つの動力伝達機構Uの作用を説明する。変速アクチュエータ14の回転軸14aを入力軸11に対して相対回転させると、入力軸11の軸線L1まわりにキャリヤ16が回転する。このとき、キャリヤ16の中心O、つまり第1ピニオン15および2個の第2ピニオン17がなす正三角形の中心は入力軸11の軸線L1まわりに回転する。   First, the operation of one power transmission mechanism U of the continuously variable transmission 3 will be described. When the rotation shaft 14 a of the speed change actuator 14 is rotated relative to the input shaft 11, the carrier 16 rotates about the axis L <b> 1 of the input shaft 11. At this time, the center O of the carrier 16, that is, the center of an equilateral triangle formed by the first pinion 15 and the two second pinions 17 rotates around the axis L 1 of the input shaft 11.

図3は、キャリヤ16の中心Oが第1ピニオン15(つまり入力軸11)に対して出力軸12と反対側にある状態を示しており、このとき入力軸11に対する偏心ディスク18の偏心量が最大になって無段変速機3のレシオはTOP状態になる。図4は、キャリヤ16の中心Oが第1ピニオン15(つまり入力軸11)に対して出力軸12と同じ側にある状態を示しており、このとき入力軸11に対する偏心ディスク18の偏心量が最小になって無段変速機3のレシオはLOW状態になる。   FIG. 3 shows a state in which the center O of the carrier 16 is opposite to the output shaft 12 with respect to the first pinion 15 (that is, the input shaft 11). At this time, the eccentric amount of the eccentric disk 18 with respect to the input shaft 11 is At the maximum, the ratio of the continuously variable transmission 3 is in the TOP state. FIG. 4 shows a state where the center O of the carrier 16 is on the same side as the output shaft 12 with respect to the first pinion 15 (that is, the input shaft 11). At this time, the eccentric amount of the eccentric disk 18 with respect to the input shaft 11 is As a result, the ratio of the continuously variable transmission 3 becomes LOW.

図3に示すTOP状態で、エンジン1で入力軸11を回転させるとともに、入力軸11と同速度で変速アクチュエータ14の回転軸14aを回転させると、入力軸11、回転軸14a、キャリヤ16、第1ピニオン15、2個の第2ピニオン17および偏心ディスク18が一体になった状態で、入力軸11を中心に反時計方向(矢印A参照)に偏心回転する。図3(A)から図3(B)を経て図3(C)の状態へと回転する間に、偏心ディスク18の外周にリング部19bをボールベアリング20を介して相対回転自在に支持されたコネクティングロッド19は、その小径環状のロッド部19aに連結ピン19cで枢支されたアウター部材22を反時計方向(矢印B1参照)に回転させる。図3(A)および図3(C)は、アウター部材22の矢印B1方向の回転の両端を示している。   In the TOP state shown in FIG. 3, when the input shaft 11 is rotated by the engine 1 and the rotating shaft 14a of the speed change actuator 14 is rotated at the same speed as the input shaft 11, the input shaft 11, the rotating shaft 14a, the carrier 16, In a state where the one pinion 15, the two second pinions 17 and the eccentric disk 18 are integrated, the pinion 15 rotates eccentrically around the input shaft 11 (see arrow A). While rotating from the state shown in FIG. 3 (A) to the state shown in FIG. 3 (C), the ring portion 19b is supported on the outer periphery of the eccentric disk 18 via the ball bearing 20 so as to be relatively rotatable. The connecting rod 19 rotates the outer member 22 pivotally supported by the connecting pin 19c on the small-diameter annular rod portion 19a in the counterclockwise direction (see arrow B1). 3A and 3C show both ends of the rotation of the outer member 22 in the arrow B1 direction.

このようにしてアウター部材22が矢印B1方向に回転すると、ワンウェイクラッチ21のアウター部材22およびインナー部材23間の楔状の空間にローラ25が噛み込み、アウター部材22の回転がインナー部材23を介して出力軸12に伝達されるため、出力軸12は反時計方向(矢印C参照)に回転する。   When the outer member 22 rotates in the direction of the arrow B1 in this way, the roller 25 is caught in the wedge-shaped space between the outer member 22 and the inner member 23 of the one-way clutch 21, and the rotation of the outer member 22 is performed via the inner member 23. Since it is transmitted to the output shaft 12, the output shaft 12 rotates counterclockwise (see arrow C).

入力軸11および第1ピニオン15が更に回転すると、第1ピニオン15および第2ピニオン17にリングギヤ18aを噛合させた偏心ディスク18が反時計方向(矢印A参照)に偏心回転する。図3(C)から図3(D)を経て図3(A)の状態へと回転する間に、偏心ディスク18の外周にリング部19bをボールベアリング20を介して相対回転自在に支持されたコネクティングロッド19は、そのロッド部19aに連結ピン19cで枢支されたアウター部材22を時計方向(矢印B2参照)に回転させる。図3(C)および図3(A)は、アウター部材22の矢印B2方向の回転の両端を示している。   When the input shaft 11 and the first pinion 15 further rotate, the eccentric disk 18 in which the ring gear 18a is engaged with the first pinion 15 and the second pinion 17 rotates eccentrically in the counterclockwise direction (see arrow A). While rotating from the state shown in FIG. 3C through the state shown in FIG. 3D to the state shown in FIG. 3A, the ring portion 19b is supported on the outer periphery of the eccentric disk 18 via the ball bearing 20 so as to be relatively rotatable. The connecting rod 19 rotates the outer member 22 pivotally supported by the connecting pin 19c on the rod portion 19a in the clockwise direction (see arrow B2). 3C and 3A show both ends of rotation of the outer member 22 in the direction of arrow B2.

このようにしてアウター部材22が矢印B2方向に回転すると、アウター部材22とインナー部材23との間の楔状の空間からローラ25がエンゲージスプリング24を圧縮しながら押し出されることで、アウター部材22がインナー部材23に対してスリップして出力軸12は回転しない。   When the outer member 22 rotates in the direction of the arrow B2 in this way, the roller 25 is pushed out from the wedge-shaped space between the outer member 22 and the inner member 23 while compressing the engagement spring 24, so that the outer member 22 becomes the inner member. The output shaft 12 does not rotate by slipping with respect to the member 23.

以上のように、アウター部材22が往復回転したとき、アウター部材22の回転方向が反時計方向(矢印B1参照)のときだけ出力軸12が反時計方向(矢印C参照)に回転するため、出力軸12は間欠回転することになる。   As described above, when the outer member 22 reciprocates, the output shaft 12 rotates counterclockwise (see arrow C) only when the outer member 22 rotates counterclockwise (see arrow B1). The shaft 12 rotates intermittently.

図4は、LOW状態で無段変速機3を運転するときの作用を示すものである。このとき、入力軸11の位置は偏心ディスク18の中心に一致しているので、入力軸11に対する偏心ディスク18の偏心量はゼロになる(このように偏心量がゼロになる状態をギヤードニュートラル(GN)という)。このGN状態でエンジン1で入力軸11を回転させるとともに、入力軸11と同速度で変速アクチュエータ14の回転軸14aを回転させると、入力軸11、回転軸14a、キャリヤ16、第1ピニオン15、2個の第2ピニオン17および偏心ディスク18が一体になった状態で、入力軸11を中心に反時計方向(矢印A参照)に偏心回転する。しかしながら、偏心ディスク18の偏心量がゼロであるため、コネクティングロッド19の往復運動のストロークもゼロになり、出力軸12は回転しない。   FIG. 4 shows the operation when the continuously variable transmission 3 is operated in the LOW state. At this time, since the position of the input shaft 11 coincides with the center of the eccentric disk 18, the amount of eccentricity of the eccentric disk 18 with respect to the input shaft 11 becomes zero. GN)). When the input shaft 11 is rotated by the engine 1 in this GN state and the rotating shaft 14a of the speed change actuator 14 is rotated at the same speed as the input shaft 11, the input shaft 11, the rotating shaft 14a, the carrier 16, the first pinion 15, In a state where the two second pinions 17 and the eccentric disk 18 are integrated, the input pin 11 rotates eccentrically in the counterclockwise direction (see arrow A). However, since the eccentric amount of the eccentric disk 18 is zero, the stroke of the reciprocating motion of the connecting rod 19 is also zero, and the output shaft 12 does not rotate.

従って、変速アクチュエータ14を駆動してキャリヤ16の位置を図3のTOP状態と図4のLOW状態との間に設定すれば、ゼロレシオおよび所定レシオ間の任意のレシオでの運転が可能になる。   Therefore, if the speed change actuator 14 is driven and the position of the carrier 16 is set between the TOP state of FIG. 3 and the LOW state of FIG. 4, operation at an arbitrary ratio between the zero ratio and the predetermined ratio becomes possible.

無段変速機3は、並置された4個の動力伝達機構Uの偏心ディスク18の位相が相互に90°ずつずれているため、4個の動力伝達機構Uが交互に駆動力を伝達することで、つまり4個のワンウェイクラッチ21のいずれかが必ず係合状態にあることで、出力軸12を連続回転させることができる。   In the continuously variable transmission 3, the phases of the eccentric disks 18 of the four power transmission mechanisms U juxtaposed are shifted by 90 ° from each other, so that the four power transmission mechanisms U alternately transmit the driving force. In other words, any one of the four one-way clutches 21 is always in an engaged state, so that the output shaft 12 can be continuously rotated.

<ワンウェイクラッチの作用>次に、図6を参照して、ワンウェイクラッチ21の状態変化について説明する。   <Operation of One-Way Clutch> Next, referring to FIG. 6, the state change of the one-way clutch 21 will be described.

図6(A)はワンウェイクラッチ21のDP(Datum Point)状態、つまりワンウェイクラッチ21が係合する直前の状態を示すものである。DP状態ではエンゲージスプリング24の付勢部24aがローラ25の外周面に当接し、ローラ25をアウター部材22の内周面22aおよびインナー部材23の外周面23a間に噛み込む方向に付勢する。このとき、ワンウェイクラッチ21は未だ係合しておらず、ローラ25はアウター部材22の内周面22aおよびインナー部材23の外周面23aに噛み込まずに接触している。   FIG. 6A shows a DP (Datum Point) state of the one-way clutch 21, that is, a state immediately before the one-way clutch 21 is engaged. In the DP state, the urging portion 24 a of the engagement spring 24 abuts on the outer peripheral surface of the roller 25, and the roller 25 is urged in a direction to be engaged between the inner peripheral surface 22 a of the outer member 22 and the outer peripheral surface 23 a of the inner member 23. At this time, the one-way clutch 21 is not yet engaged, and the roller 25 is in contact with the inner peripheral surface 22a of the outer member 22 and the outer peripheral surface 23a of the inner member 23 without being engaged.

このDP状態からインナー部材23に対してアウター部材22が矢印A方向に相対回転すると、ローラ25はエンゲージスプリング24から受ける付勢力と、アウター部材22およびインナー部材23から受ける摩擦力とにより、矢印A方向に移動してアウター部材22の内周面22aおよびインナー部材23の外周面23a間の楔状の空間に噛み込むことで、図6(B)に示すようにワンウェイクラッチ21が係合する。   When the outer member 22 rotates relative to the inner member 23 in the direction of arrow A from this DP state, the roller 25 is subjected to the arrow A by the biasing force received from the engagement spring 24 and the frictional force received from the outer member 22 and the inner member 23. The one-way clutch 21 is engaged as shown in FIG. 6B by moving in the direction and engaging in a wedge-shaped space between the inner peripheral surface 22a of the outer member 22 and the outer peripheral surface 23a of the inner member 23.

図6(B)に示すワンウェイクラッチ21の係合状態から、インナー部材23に対してアウター部材22が矢印B方向に相対回転すると、アウター部材22およびインナー部材23から受ける摩擦力により、ローラ25はエンゲージスプリング24から受ける付勢力に抗して矢印B方向に移動し、アウター部材22の内周面22aおよびインナー部材23の外周面23a間の楔状の空間から離脱することで、図6(C)に示すようにワンウェイクラッチ21が係合解除する。この状態をダンピング状態と呼び、ローラ25はエンゲージスプリング24の付勢部24aを圧縮しながら矢印B方向に回転し、ローラ25はアウター部材22の内周面22aあるいはインナー部材23の外周面23aから離反する。その後、ローラ25はエンゲージスプリング24により付勢されて図6(A)に示すDP状態に速やかに復帰する。   When the outer member 22 rotates relative to the inner member 23 in the arrow B direction from the engaged state of the one-way clutch 21 shown in FIG. 6B, the roller 25 is caused by the frictional force received from the outer member 22 and the inner member 23. By moving in the direction of the arrow B against the biasing force received from the engagement spring 24 and detaching from the wedge-shaped space between the inner peripheral surface 22a of the outer member 22 and the outer peripheral surface 23a of the inner member 23, FIG. As shown, the one-way clutch 21 is disengaged. This state is called a damping state, and the roller 25 rotates in the direction of arrow B while compressing the urging portion 24a of the engagement spring 24. The roller 25 moves from the inner peripheral surface 22a of the outer member 22 or the outer peripheral surface 23a of the inner member 23. Get away. Thereafter, the roller 25 is urged by the engagement spring 24 and quickly returns to the DP state shown in FIG.

なお、係合状態からダンピング状態に移行する過程でローラ25がアウター部材22の内周面22aおよびインナー部材23の外周面23a間の楔状の空間から押し出されるとき、アキシャルスプリング38で軸方向に付勢されたローラ25の端面がケージ31の環状部材32に押し付けられるため、その摩擦力でローラ25の挙動を安定させることができる。またローラ25がアウター部材22の内周面22aおよびインナー部材23の外周面23a間の楔状の空間から押し出されるとき、ローラ25は遠心力で径方向外側に位置するアウター部材22の内周面に押し付けられるが、それをリングスプリング39の径方向内向きの弾性力で抑制することができる。   When the roller 25 is pushed out of the wedge-shaped space between the inner peripheral surface 22a of the outer member 22 and the outer peripheral surface 23a of the inner member 23 in the process of shifting from the engaged state to the damping state, the roller 25 is attached in the axial direction by the axial spring 38. Since the end face of the urged roller 25 is pressed against the annular member 32 of the cage 31, the behavior of the roller 25 can be stabilized by the frictional force. Further, when the roller 25 is pushed out from the wedge-shaped space between the inner peripheral surface 22a of the outer member 22 and the outer peripheral surface 23a of the inner member 23, the roller 25 is applied to the inner peripheral surface of the outer member 22 positioned radially outward by centrifugal force. Although it is pressed, it can be suppressed by the elastic force of the ring spring 39 inward in the radial direction.

<アキシャルスプリングによるローラの傾き防止構造>次に、本実施形態のワンウェイクラッチのアキシャルスプリングによるローラの傾き防止構造について説明する。   <Roller Inclination Preventing Structure by Axial Spring> Next, a roller inclination preventing structure by the axial spring of the one-way clutch of this embodiment will be described.

図8は、本実施形態のワンウェイクラッチのアキシャルスプリングによるローラの傾き防止構造を示している。   FIG. 8 shows a roller tilt prevention structure using an axial spring of the one-way clutch of this embodiment.

本実施形態では、図8(A)に示すように、アキシャルスプリング38の複数の押圧部38aによる軸方向の押圧力がローラ25の軸線25aと同軸にローラ端面に作用するように構成している。これにより、ローラ25の軸線25aが環状部材32に対して垂直となるようにローラ25の姿勢が保持されるため、環状部材32とローラ25の一端面25bが平行に対面し当接するようになる。よって、図9に示すようなローラの片当たりによる局部応力などの発生や耐久性の低下を抑制することができる。   In this embodiment, as shown in FIG. 8A, the axial pressing force by the plurality of pressing portions 38 a of the axial spring 38 is configured to act on the roller end surface coaxially with the axis 25 a of the roller 25. . As a result, the posture of the roller 25 is maintained so that the axis 25a of the roller 25 is perpendicular to the annular member 32, so that the annular member 32 and one end surface 25b of the roller 25 face each other in parallel and come into contact with each other. . Therefore, it is possible to suppress the occurrence of local stress or the like from the contact of the roller as shown in FIG.

また、本実施形態では、ダンピング中は常にローラ25の他端面25cに押圧力が作用するように、図8(B)に示すように、ローラ25が最も反係合側に移動する最大ダンピング位置D1からDP位置D2の範囲において、ローラ25の他端面25における軸線25aを含む直径方向の全領域がアキシャルスプリング38に当接し押圧されるようにスプリング38の押圧部38aの幅Dを設定する。このように構成したことにより、ローラ25のダンピング中は常にローラ25の軸線25aと同軸にローラ25の他端面25に押圧力を作用させることができるので、ローラ25の姿勢を安定化しつつ回転を減衰し、次回の係合に備えるための係合待機状態(DP状態)に素早く復帰させることができる。 In the present embodiment, as shown in FIG. 8B, the maximum damping position at which the roller 25 moves to the most anti-engagement side so that a pressing force always acts on the other end surface 25c of the roller 25 during damping. in the range of DP position D2 from D1, setting the width D of the pressing portion 38a of the spring 38 so that the entire region in the diameter direction containing the axis 25a at the other end face 25 c of the roller 25 is in contact pressed against the axial spring 38 . By thus configured, since during damping of the roller 25 can be caused to act a pressing force to the other end face 25 c of the axis 25a coaxial with the roller 25 always is roller 25, while stabilizing the posture of the roller 25 rotating Can be quickly returned to the engagement standby state (DP state) to prepare for the next engagement.

以上のように、本実施形態のワンウェイクラッチをクランク式無段変速機に適用することによって、高周波でローラをダンピング状態から係合待機状態(DP状態)へ復帰させる応答性を実現することができる。   As described above, by applying the one-way clutch of the present embodiment to the crank type continuously variable transmission, it is possible to realize the responsiveness of returning the roller from the damping state to the engagement standby state (DP state) at a high frequency. .

なお、本実施形態のワンウェイクラッチ21は無段変速機3以外の任意の用途に適用することができる。   Note that the one-way clutch 21 of the present embodiment can be applied to any application other than the continuously variable transmission 3.

また、本実施形態の無段変速機3は4組の動力伝達機構Uを備えているが、それ以上またはそれ以下の数であってもよい。   Further, the continuously variable transmission 3 of the present embodiment includes four sets of power transmission mechanisms U, but the number may be more or less.

また、本実施形態ではワンウェイクラッチ21のインナー部材23が出力軸12と別部材で構成されているが、インナー部材23をそのまま出力軸12として用いても良い。   In the present embodiment, the inner member 23 of the one-way clutch 21 is configured as a separate member from the output shaft 12, but the inner member 23 may be used as it is as the output shaft 12.

また、本実施形態ではケージ31をインナー部材23に固定しているが、アウター部材22に固定しても良い。   In the present embodiment, the cage 31 is fixed to the inner member 23, but may be fixed to the outer member 22.

また、ワンウェイクラッチ21のローラ25やエンゲージスプリング24の本数は上述した実施形態に限定されるものではない。   Further, the number of the rollers 25 and the engagement springs 24 of the one-way clutch 21 is not limited to the above-described embodiment.

11 入力軸
12 出力軸
18 偏心ディスク(入力側支点)
19 コネクティングロッド
19c 連結ピン(出力側支点)
21 ワンウェイクラッチ
22 アウター部材
22a 内周面
23 インナー部材
23a 外周面
24 エンゲージスプリング(弾性部材)
25 ローラ
31 ケージ
32 環状部材(隣接部材)
38 アキシャルスプリング(減衰部材)
11 Input shaft 12 Output shaft 18 Eccentric disc (input side fulcrum)
19 Connecting rod 19c Connecting pin (Output side fulcrum)
21 One-way clutch 22 Outer member 22a Inner peripheral surface 23 Inner member 23a Outer peripheral surface 24 Engage spring (elastic member)
25 Roller 31 Cage 32 Annular member (adjacent member)
38 Axial spring (damping member)

Claims (2)

アウター部材(22)と、前記アウター部材(22)の内周に同軸に配置されたインナー部材(23)と、前記アウター部材(22)の内周面(22a)および前記インナー部材(23)の外周面(23a)の間に配置された複数のローラ(25)と、前記複数のローラ(25)にそれぞれ当接して円周方向に付勢する複数の弾性部材(24)とを備え、前記アウター部材(22)と前記インナー部材(23)の所定方向への相対回転により、前記ローラ(25)を前記アウター部材(22)の内周面(22a)と前記インナー部材(23)の外周面(23a)の間に係合させて駆動力を伝達するワンウェイクラッチ(21)であって、
前記アウター部材(22)の内周面(22a)および前記インナー部材(23)の外周面(23a)には当接しない、前記ローラ(25)における軸方向の一端面(25b)に隣接する隣接部材(32)と、
前記アウター部材(22)の内周面(22a)および前記インナー部材(23)の外周面(23a)には当接しない、前記ローラ(25)における軸方向の他端面(25c)を押圧し前記ローラ(25)の回転を減衰する減衰部材(38)と、を更に備え、
前記減衰部材(38)は、前記ローラ(25)の他端面(25c)の中心を含む領域を押圧し、
前記減衰部材(38)における前記ローラ(25)の他端面(25c)を押圧する押圧部(38a)は、
前記ローラ(25)が前記アウター部材(22)の内周面(22a)および前記インナー部材(23)の外周面(23a)の間に係合しない方向に最も変位した第1の位置(D1)から当該内周面(22a)および当該外周面(23a)の間に係合する直前の第2の位置(D2)までの範囲を移動している間、
常に前記ローラ(25)の他端面(25c)に押圧力が作用するように、
前記ローラ(25)の他端面(25c)における軸線(25a)を含む直径方向の全領域に当接し押圧する幅(D)を有することを特徴とするワンウェイクラッチ。
An outer member (22), an inner member (23) coaxially disposed on the inner periphery of the outer member (22), an inner peripheral surface (22a) of the outer member (22), and the inner member (23). A plurality of rollers (25) disposed between the outer peripheral surfaces (23a), and a plurality of elastic members (24) that respectively abut against the plurality of rollers (25) and bias in the circumferential direction, By the relative rotation of the outer member (22) and the inner member (23) in a predetermined direction, the roller (25) is moved to the inner peripheral surface (22a) of the outer member (22) and the outer peripheral surface of the inner member (23). A one-way clutch (21) engaged between (23a) and transmitting a driving force,
Adjacent to the inner peripheral surface (22a) of the outer member (22) and the outer peripheral surface (23a) of the inner member (23) adjacent to one end surface (25b) in the axial direction of the roller (25). A member (32);
The other end surface (25c) in the axial direction of the roller (25) that does not contact the inner peripheral surface (22a) of the outer member (22) and the outer peripheral surface (23a) of the inner member (23) is pressed to A damping member (38) for damping the rotation of the roller (25),
The damping member (38) presses a region including the center of the other end surface (25c) of the roller (25) ,
A pressing portion (38a) for pressing the other end surface (25c) of the roller (25) in the damping member (38)
A first position (D1) in which the roller (25) is most displaced in a direction not engaging between the inner peripheral surface (22a) of the outer member (22) and the outer peripheral surface (23a) of the inner member (23). While moving from the inner peripheral surface (22a) to the second position (D2) immediately before engaging between the outer peripheral surface (23a),
The pressing force always acts on the other end surface (25c) of the roller (25).
The one-way clutch characterized by having a width (D) that abuts against and presses the entire diametrical region including the axis (25a) on the other end surface (25c) of the roller (25) .
請求項1に記載のワンウェイクラッチ(21)を備え、入力軸(11)の回転を変速して出力軸(12)に伝達する無段変速機であって、
前記入力軸(11)の軸線(L1)からの偏心量が可変であって当該入力軸(11)と共に回転する入力側支点(18)と、前記ワンウェイクラッチ(21)の前記アウター部材(22)に設けた出力側支点(19c)とをコネクティングロッド(19)で接続し、前記ワンウェイクラッチ(21)の前記インナー部材(23)を前記出力軸(12)に接続したことを特徴とする無段変速機。
A continuously variable transmission including the one-way clutch (21) according to claim 1, wherein the rotation of the input shaft (11) is shifted and transmitted to the output shaft (12),
An input side fulcrum (18) that is variable in eccentricity from the axis (L1) of the input shaft (11) and rotates together with the input shaft (11), and the outer member (22) of the one-way clutch (21) An output side fulcrum (19c) provided on the connecting member (19) is connected by a connecting rod (19), and the inner member (23) of the one-way clutch (21) is connected to the output shaft (12). transmission.
JP2013086032A 2013-04-16 2013-04-16 One-way clutch and continuously variable transmission Expired - Fee Related JP6130196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013086032A JP6130196B2 (en) 2013-04-16 2013-04-16 One-way clutch and continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013086032A JP6130196B2 (en) 2013-04-16 2013-04-16 One-way clutch and continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2014209013A JP2014209013A (en) 2014-11-06
JP6130196B2 true JP6130196B2 (en) 2017-05-17

Family

ID=51903351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013086032A Expired - Fee Related JP6130196B2 (en) 2013-04-16 2013-04-16 One-way clutch and continuously variable transmission

Country Status (1)

Country Link
JP (1) JP6130196B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6137697B2 (en) * 2014-12-03 2017-05-31 本田技研工業株式会社 Power transmission device for vehicle
JP2021162130A (en) * 2020-04-02 2021-10-11 北日本エンジニアリング株式会社 Linear motion/rotation conversion device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544955U (en) * 1977-06-13 1979-01-13
DE112012002887A5 (en) * 2011-07-08 2014-04-10 Schaeffler Technologies Gmbh & Co. Kg Freewheel, especially for a crank-CVT transmission

Also Published As

Publication number Publication date
JP2014209013A (en) 2014-11-06

Similar Documents

Publication Publication Date Title
JP6130196B2 (en) One-way clutch and continuously variable transmission
JP6168523B2 (en) Power transmission device for vehicle
JP6011972B2 (en) Power transmission device for vehicle
JP6133116B2 (en) One-way clutch and continuously variable transmission
JP6068402B2 (en) One-way clutch and continuously variable transmission
JP2014228109A (en) One-way clutch
JP6112661B2 (en) Power transmission device for vehicle
JP5932621B2 (en) One-way clutch and continuously variable transmission
JP2014114906A (en) Power transmission device for vehicle
JP6176452B2 (en) One-way clutch and crank type continuously variable transmission
JP6143178B2 (en) One-way clutch structure in vehicle power transmission device
JP2014105822A (en) One-way clutch and continuously variable transmission
JP6144665B2 (en) One-way clutch and vehicle power transmission device
JP6095599B2 (en) Continuously variable transmission
JP6125376B2 (en) One way clutch
JP6130197B2 (en) One-way clutch and continuously variable transmission
JP6035655B2 (en) Power transmission device for vehicle
JP6029214B2 (en) Power transmission device for vehicle
JP2014114905A (en) One-way clutch and continuous variable transmission
JP6026350B2 (en) Continuously variable transmission
JP6176454B2 (en) One way clutch
JP2014202339A (en) Vehicle power transmission device
JP2015137761A (en) Power transmission device for vehicle
JP2017002946A (en) Friction roller type reduction gear
JP2015158245A (en) Bearing and continuously variable transmission equipped with bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170413

R150 Certificate of patent or registration of utility model

Ref document number: 6130196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees