JP6011716B2 - Vehicle power generation control device and power generation control method - Google Patents

Vehicle power generation control device and power generation control method Download PDF

Info

Publication number
JP6011716B2
JP6011716B2 JP2015511158A JP2015511158A JP6011716B2 JP 6011716 B2 JP6011716 B2 JP 6011716B2 JP 2015511158 A JP2015511158 A JP 2015511158A JP 2015511158 A JP2015511158 A JP 2015511158A JP 6011716 B2 JP6011716 B2 JP 6011716B2
Authority
JP
Japan
Prior art keywords
battery
charging
power generation
generation control
charge amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015511158A
Other languages
Japanese (ja)
Other versions
JPWO2014167924A1 (en
Inventor
麻巳 穂積
麻巳 穂積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Application granted granted Critical
Publication of JP6011716B2 publication Critical patent/JP6011716B2/en
Publication of JPWO2014167924A1 publication Critical patent/JPWO2014167924A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、車両の発電制御装置および発電制御方法に関する。   The present invention relates to a vehicle power generation control device and a power generation control method.

JP2005−80396Aには、発電電圧を変更可能な発電機を備えた車両において、充電時にバッテリに流入する電流に基づいてバッテリの充電量を推定し、エンジン始動後にバッテリの充電量が目標充電量になるまでは高電圧で充電を行う発電制御装置が開示されている。   In JP2005-80396A, in a vehicle equipped with a generator capable of changing the power generation voltage, the charge amount of the battery is estimated based on the current flowing into the battery at the time of charging, and the charge amount of the battery becomes the target charge amount after the engine is started. Until now, a power generation control device that performs charging at a high voltage is disclosed.

バッテリの充電量と充電電流との関係は、バッテリの状態により変動するので、上記装置では、バッテリの電圧及び温度に基づいて、目標充電量に到達したと判定する電流値を補正し、バッテリ充電量の推定精度の向上を図っている。   Since the relationship between the charge amount of the battery and the charge current varies depending on the state of the battery, the above device corrects the current value for determining that the target charge amount has been reached based on the battery voltage and temperature, and charges the battery. The estimation accuracy of quantity is improved.

バッテリの充電量と充電電流との関係は、充電開始前のバッテリの放電状態によっても変動する。例えば、放電電流が小さい状態が長時間続くと、バッテリの充電性能が低下し、充電電流が同じでも充電量が少なくなる。   The relationship between the charge amount of the battery and the charge current also varies depending on the discharge state of the battery before the start of charging. For example, if the state where the discharge current is small continues for a long time, the charging performance of the battery is lowered, and the amount of charge is reduced even if the charging current is the same.

このような場合には、充電開始前のバッテリの放電状態に基づいて目標充電量に到達したと判定する電流値を補正しなければ、バッテリ充電量が少ないにもかかわらず目標充電量に到達したと誤判定し、バッテリが充電不足になるという問題がある。   In such a case, if the current value determined to have reached the target charge amount based on the discharge state of the battery before the start of charging is not corrected, the target charge amount has been reached even though the battery charge amount is small. There is a problem that the battery is insufficiently charged.

本発明は、このような技術的課題に鑑みてなされたもので、バッテリ充電量の推定精度を向上し、バッテリが充電不足になることを防止することを目的とする。   The present invention has been made in view of such technical problems, and an object thereof is to improve the estimation accuracy of the battery charge amount and prevent the battery from becoming insufficiently charged.

本発明のある態様によれば、エンジンにより駆動される発電機と、前記発電機の発電電力により充電されるバッテリと、前記バッテリの充放電電流を検出する電流検出手段と、を備えた車両の発電制御装置が提供される。   According to an aspect of the present invention, there is provided a vehicle including: a generator driven by an engine; a battery charged by power generated by the generator; and a current detection unit that detects a charge / discharge current of the battery. A power generation control device is provided.

発電制御装置は、前記電流検出手段により検出した前記バッテリの充電電流が充電完了判定値以下になると、前記バッテリの充電量が目標充電量に到達したと判定する。   The power generation control device determines that the amount of charge of the battery has reached the target amount of charge when the charge current of the battery detected by the current detection unit becomes equal to or less than a charge completion determination value.

また、充電開始前における前記バッテリの放電電流が小さい時間が長いほど、前記充電完了判定値を小さく設定する。   In addition, the charging completion determination value is set to be smaller as the discharge current of the battery is smaller before the charging starts.

図1は、第1実施形態に係る発電制御装置を適用する車両の、エンジン及び補機を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an engine and an auxiliary machine of a vehicle to which the power generation control device according to the first embodiment is applied. 図2は、第1実施形態に係る発電制御装置の、バッテリ充電完了までの処理手順を示すフローチャートである。FIG. 2 is a flowchart illustrating a processing procedure until the battery charging is completed in the power generation control device according to the first embodiment. 図3は、第1実施形態に係る発電制御装置の、可変発電制御の処理手順を示すフローチャートである。FIG. 3 is a flowchart illustrating a processing procedure of variable power generation control of the power generation control device according to the first embodiment. 図4aは、充電性能が低下していないバッテリにおける、充電量90%のときの充電電流を示す特性マップである。FIG. 4A is a characteristic map showing a charging current when the charging amount is 90% in a battery in which charging performance is not deteriorated. 図4bは、充電性能が低下したバッテリにおける、充電量90%のときの充電電流を示す特性マップである。FIG. 4B is a characteristic map showing a charging current when the charging amount is 90% in a battery having a deteriorated charging performance. 図5は、第1実施形態に係る発電制御装置を適用する車両の、バッテリの状態を示すタイムチャートである。FIG. 5 is a time chart showing the state of the battery of the vehicle to which the power generation control device according to the first embodiment is applied. 図6は、第2実施形態に係る発電制御装置の、バッテリ充電完了までの処理手順を示すフローチャートである。FIG. 6 is a flowchart illustrating a processing procedure until the battery charging is completed in the power generation control device according to the second embodiment.

<第1実施形態>
以下、添付図面を参照しながら本発明の第1実施形態について説明する。
<First Embodiment>
Hereinafter, a first embodiment of the present invention will be described with reference to the accompanying drawings.

図1は、第1実施形態に係る発電制御装置を適用する車両の、エンジン及び補機を示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing an engine and an auxiliary machine of a vehicle to which the power generation control device according to the first embodiment is applied.

車両1は、エンジン2と、オルタネータ3と、バッテリ4と、車両コントローラ5と、を備える。   The vehicle 1 includes an engine 2, an alternator 3, a battery 4, and a vehicle controller 5.

エンジン2は、ガソリン、ディーゼル等を燃料とする内燃機関であり、車両コントローラ5からのエンジン制御指令に基づいて、回転速度、トルク等が制御される。   The engine 2 is an internal combustion engine that uses gasoline, diesel, or the like as fuel, and the rotational speed, torque, and the like are controlled based on an engine control command from the vehicle controller 5.

オルタネータ3は、発電電圧を変更可能な発電機であり、エンジン2により駆動される。
バッテリ4は、オルタネータ3の発電電力により充電される。また、バッテリ4には、電流センサ6、温度センサ7が取り付けられる。
The alternator 3 is a generator that can change the generated voltage, and is driven by the engine 2.
The battery 4 is charged with the power generated by the alternator 3. In addition, a current sensor 6 and a temperature sensor 7 are attached to the battery 4.

車両コントローラ5には、電流センサ6、温度センサ7等からの検出信号、バッテリ4の電圧等が入力される。車両コントローラ5は、エンジン2を制御するための各種演算や、オルタネータ3の目標発電電圧の設定、バッテリ4の充電量の推定等を行う。   A detection signal from the current sensor 6, the temperature sensor 7, the voltage of the battery 4, and the like are input to the vehicle controller 5. The vehicle controller 5 performs various calculations for controlling the engine 2, setting of a target power generation voltage of the alternator 3, estimation of a charge amount of the battery 4, and the like.

ところで、車両コントローラ5は、上記のように、オルタネータ3の目標発電電圧を変更することで、車両1の走行中の発電量をコントロールし、燃費や動力性能の向上を図っている。   By the way, the vehicle controller 5 changes the target power generation voltage of the alternator 3 as described above, thereby controlling the power generation amount during travel of the vehicle 1 and improving the fuel consumption and power performance.

具体的には、車両1の減速中でエンジン2の燃料をカットしている間は、オルタネータ3の発電電圧を高電圧にしてバッテリ4を効率よく充電し、燃料をカットしていない加速時等には、オルタネータ3の発電を停止してエンジン2の負荷を低減する可変発電制御を行う。高電圧は、例えば14Vである。   Specifically, while the fuel of the engine 2 is being cut while the vehicle 1 is decelerating, the power generation voltage of the alternator 3 is set to a high voltage to efficiently charge the battery 4, and during acceleration when the fuel is not cut. The variable power generation control for stopping the power generation of the alternator 3 and reducing the load on the engine 2 is performed. The high voltage is, for example, 14V.

ただし、バッテリ4の充電量によっては、発電を停止した場合に充電不足になり、バッテリ4が劣化することが考えられる。そこで、車両コントローラ5は、エンジン2を始動すると、まず、オルタネータ3の発電電圧を高電圧にして目標充電量になるまでバッテリ4を充電し、その後に低電圧で充電を行いつつ、可変発電制御を行う。低電圧は、バッテリ4の充電量を減少させることなく各種電装品に電力を供給できる電圧とされ、例えば13Vである。   However, depending on the amount of charge of the battery 4, it is conceivable that when power generation is stopped, the battery 4 becomes insufficiently charged and the battery 4 deteriorates. Accordingly, when the engine 2 is started, the vehicle controller 5 first sets the power generation voltage of the alternator 3 to a high voltage to charge the battery 4 until the target charge amount is reached, and then performs variable power generation control while charging at a low voltage. I do. The low voltage is a voltage that can supply power to various electrical components without reducing the amount of charge of the battery 4, and is, for example, 13V.

ここで、車両コントローラ5は、バッテリ4の充電電流に基づいて充電量を推定するが、バッテリ4の充電量と充電電流との関係は、バッテリ4の状態により変動する。   Here, the vehicle controller 5 estimates the charge amount based on the charge current of the battery 4, but the relationship between the charge amount of the battery 4 and the charge current varies depending on the state of the battery 4.

したがって、実際には充電不足の状態で可変発電制御が行われることがないように、バッテリ4の充電量と充電電流との関係を、バッテリ4の状態に基づいて補正する必要がある。   Therefore, it is necessary to correct the relationship between the charge amount and the charge current of the battery 4 based on the state of the battery 4 so that the variable power generation control is not actually performed in a state of insufficient charge.

そこで、車両コントローラ5は、バッテリ4が充電不足になることを防止しつつ、可変発電制御を行うべく、図2、図3のフローチャートに示す処理手順に従って制御を行う。   Therefore, the vehicle controller 5 performs control according to the processing procedure shown in the flowcharts of FIGS. 2 and 3 in order to perform variable power generation control while preventing the battery 4 from being insufficiently charged.

以下、図2、図3のフローチャートにしたがって、車両コントローラ5が行う制御を詳しく説明する。   Hereinafter, the control performed by the vehicle controller 5 will be described in detail according to the flowcharts of FIGS. 2 and 3.

図2は、第1実施形態に係る発電制御装置の、バッテリ充電完了までの処理手順を示すフローチャートである。   FIG. 2 is a flowchart illustrating a processing procedure until the battery charging is completed in the power generation control device according to the first embodiment.

まず、車両コントローラ5は、エンジン2始動時のバッテリ4の最低電圧を検出し、最低電圧が、状態判定値以上か否かを判定する(S101)。状態判定値は、バッテリ4の充電性能が低下しているか否かを判定できる電圧値であり、例えば7Vである。バッテリ4の充電性能については後で詳しく述べる。   First, the vehicle controller 5 detects the minimum voltage of the battery 4 when the engine 2 is started, and determines whether or not the minimum voltage is greater than or equal to the state determination value (S101). The state determination value is a voltage value by which it can be determined whether or not the charging performance of the battery 4 is degraded, and is, for example, 7V. The charging performance of the battery 4 will be described in detail later.

車両コントローラ5は、エンジン2始動時のバッテリ4の最低電圧が状態判定値以上と判定すると、図4aの特性マップを参照する。そして、バッテリ4の電圧と温度センサ7により検出したバッテリ4の温度とに基づいて、バッテリ4の充電量が目標充電量に到達したと判定する充電完了判定値を設定し(S102)、S104に処理を移行する。目標充電量は、充電不足によりバッテリ4の劣化が促進されることがない充電量であり、例えば、充電量90%の状態である。   When the vehicle controller 5 determines that the minimum voltage of the battery 4 at the time of starting the engine 2 is equal to or higher than the state determination value, the vehicle controller 5 refers to the characteristic map of FIG. Then, based on the voltage of the battery 4 and the temperature of the battery 4 detected by the temperature sensor 7, a charge completion determination value for determining that the charge amount of the battery 4 has reached the target charge amount is set (S102). Migrate processing. The target charge amount is a charge amount that does not promote deterioration of the battery 4 due to insufficient charge, and is, for example, a state where the charge amount is 90%.

車両コントローラ5は、エンジン2始動時のバッテリ4の最低電圧が状態判定値より小さいと判定すると、図4bの特性マップを参照する。そして、バッテリ4の電圧と温度センサ7により検出したバッテリ4の温度とに基づいて、充電完了判定値を設定し(S103)、S104に処理を移行する。   If the vehicle controller 5 determines that the minimum voltage of the battery 4 at the time of starting the engine 2 is smaller than the state determination value, the vehicle controller 5 refers to the characteristic map of FIG. Then, based on the voltage of the battery 4 and the temperature of the battery 4 detected by the temperature sensor 7, a charge completion determination value is set (S103), and the process proceeds to S104.

図4aは、充電性能が低下していないバッテリ4における、充電量90%のときの充電電流を示す特性マップである。また、図4bは、充電性能が低下したバッテリ4における、充電量90%のときの充電電流を示す特性マップである。   FIG. 4a is a characteristic map showing the charging current when the charging amount is 90% in the battery 4 whose charging performance has not deteriorated. FIG. 4B is a characteristic map showing the charging current when the charging amount is 90% in the battery 4 whose charging performance is lowered.

バッテリ4の充電量と充電電流との関係は、バッテリ4の電圧及び温度によって変動し、また、上記のように、バッテリ4の充電性能によっても変動する。   The relationship between the charging amount of the battery 4 and the charging current varies depending on the voltage and temperature of the battery 4 and also varies depending on the charging performance of the battery 4 as described above.

バッテリ4の充電性能は、バッテリ4の充電開始前の放電状態により変動する。例えば、暗電流による放電が長時間続くほどバッテリ4の充電性能は低下する。暗電流は、イグニッションスイッチがOFFの状態で流れる微小電流である。   The charging performance of the battery 4 varies depending on the discharge state before the charging of the battery 4 is started. For example, the charging performance of the battery 4 decreases as the discharge due to the dark current continues for a long time. The dark current is a minute current that flows when the ignition switch is OFF.

充電性能が低下したバッテリ4においては、電圧及び温度が同じ場合でも、充電性能が低下していないバッテリよりも充電量90%のときの充電電流が小さくなる。例えば、バッテリ4の電圧が14V、温度が25℃の場合では、図4aの特性マップによれば充電完了判定値は10Aとなるが、図4bの特性マップによれば充電完了判定値は3Aとなる。   In the battery 4 in which the charging performance is lowered, even when the voltage and temperature are the same, the charging current when the charging amount is 90% is smaller than that in the battery in which the charging performance is not lowered. For example, when the voltage of the battery 4 is 14V and the temperature is 25 ° C., the charging completion determination value is 10A according to the characteristic map of FIG. 4A, but the charging completion determination value is 3A according to the characteristic map of FIG. 4B. Become.

ここで、エンジン2の始動前は、バッテリ4は暗電流による放電をしており、この状態が長時間続くと、バッテリ4の充電量も相当に低下する。バッテリの起電圧は、バッテリの比重によって変化するので、バッテリ4の充電量が低下すると、バッテリ4の電圧も低下することになる。   Here, before the engine 2 is started, the battery 4 is discharged by a dark current. If this state continues for a long time, the amount of charge of the battery 4 also decreases considerably. Since the electromotive voltage of the battery changes depending on the specific gravity of the battery, when the charge amount of the battery 4 decreases, the voltage of the battery 4 also decreases.

したがって、エンジン2始動時のバッテリ4の最低電圧が状態判定値以上の場合は、放電電流が小さい時間が短く、バッテリ4の状態が、充電性能が低下していない状態と判定でき、車両コントローラ5は、図4aの特性マップを参照して充電完了判定値を設定する。   Therefore, when the minimum voltage of the battery 4 at the time of starting the engine 2 is equal to or higher than the state determination value, the time during which the discharge current is small is short, and it can be determined that the state of the battery 4 has not deteriorated the charging performance. Sets the charge completion determination value with reference to the characteristic map of FIG.

バッテリ4の最低電圧が状態判定値より小さい場合は、放電電流が小さい時間が長く、バッテリ4の状態が、充電性能が低下している状態と判定でき、車両コントローラ5は、図4bの特性マップを参照して充電完了判定値を設定する。   When the minimum voltage of the battery 4 is smaller than the state determination value, it can be determined that the time during which the discharge current is small is long and the state of the battery 4 is in a state where the charging performance is degraded. To set the charge completion judgment value.

このように、バッテリ4の充電性能に基づいて参照する特性マップ(図4a、図4b)を選択し、充電完了判定値を設定することで、バッテリ4の充電量の推定精度を向上できる。   Thus, the estimation accuracy of the charge amount of the battery 4 can be improved by selecting the characteristic maps (FIGS. 4a and 4b) to be referred to based on the charge performance of the battery 4 and setting the charge completion determination value.

S104では、車両コントローラ5は、オルタネータ3の発電電圧を高電圧(14V)にしてバッテリ4の充電を開始し、S105に処理を移行する。   In S104, the vehicle controller 5 sets the power generation voltage of the alternator 3 to a high voltage (14V), starts charging the battery 4, and proceeds to S105.

S105では、車両コントローラ5は、電流センサ6により検出したバッテリ4の充電電流が、S102またはS103で設定した充電完了判定値以下か否かを判定する。   In S105, the vehicle controller 5 determines whether or not the charging current of the battery 4 detected by the current sensor 6 is equal to or less than the charging completion determination value set in S102 or S103.

車両コントローラ5は、充電電流が充電完了判定値以下と判定すると、高電圧での充電を終了し、可変発電制御に処理を移行する(END)。   When the vehicle controller 5 determines that the charging current is equal to or less than the charging completion determination value, the vehicle controller 5 ends the charging at the high voltage and shifts the process to variable power generation control (END).

車両コントローラ5は、充電電流が充電完了判定値より大きいと判定すると、S105の判定処理を繰り返し行う。   When the vehicle controller 5 determines that the charging current is larger than the charging completion determination value, the vehicle controller 5 repeatedly performs the determination process of S105.

続いて、車両コントローラ5が行う可変発電制御について説明する。   Next, variable power generation control performed by the vehicle controller 5 will be described.

図3は、第1実施形態に係る発電制御装置の、可変発電制御の処理手順を示すフローチャートである。   FIG. 3 is a flowchart illustrating a processing procedure of variable power generation control of the power generation control device according to the first embodiment.

車両コントローラ5は、まず、オルタネータ3の発電電圧を低電圧(13V)にしてバッテリ4の充電を開始する(S201)。   First, the vehicle controller 5 sets the power generation voltage of the alternator 3 to a low voltage (13 V) and starts charging the battery 4 (S201).

また、車両コントローラ5は、電流センサ6により検出したバッテリ4の電流に基づいて、S201で充電を開始してからのバッテリ4の充放電電流の積算を開始する(S202)。   Moreover, the vehicle controller 5 starts integration of the charging / discharging current of the battery 4 after starting charging in S201 based on the current of the battery 4 detected by the current sensor 6 (S202).

次に、車両コントローラ5は、エンジン2始動時の最低電圧が、状態判定値以上か否かを判定する(S203)。   Next, the vehicle controller 5 determines whether or not the minimum voltage at the start of the engine 2 is equal to or greater than the state determination value (S203).

車両コントローラ5は、エンジン2始動時のバッテリ4の最低電圧が状態判定値以上と判定すると、その後にバッテリ4の放電を許容する下限値となる放電許容充電量を、目標充電量(充電量90%)より少なく、例えば88%に設定し(S204)、S206に処理を移行する。   When the vehicle controller 5 determines that the minimum voltage of the battery 4 at the time of starting the engine 2 is equal to or higher than the state determination value, the vehicle controller 5 then sets a discharge allowable charge amount that becomes a lower limit value that allows discharge of the battery 4 to a target charge amount (charge amount 90 %), For example, 88% (S204), and the process proceeds to S206.

車両コントローラ5は、バッテリ4の最低電圧が状態判定値より小さいと判定すると、放電許容充電量を、目標充電量と同じ充電量90%に設定し(S205)、S206に処理を移行する。   When determining that the minimum voltage of the battery 4 is smaller than the state determination value, the vehicle controller 5 sets the discharge allowable charge amount to 90%, which is the same as the target charge amount (S205), and shifts the process to S206.

エンジン2始動時のバッテリ4の最低電圧が状態判定値より小さい場合は、放電電流が小さい時間が長く、バッテリ4の充電性能が低下している状態である。したがって、このような場合は、高電圧での充電が完了した後も、放電を許容する充電量の下限値を大きく設定し、バッテリ4の充電量を多めに維持することで、バッテリ4が充電不足になることを防止できる。   When the minimum voltage of the battery 4 at the time of starting the engine 2 is smaller than the state determination value, the time during which the discharge current is small is long and the charging performance of the battery 4 is deteriorated. Therefore, in such a case, even after the charging with the high voltage is completed, the battery 4 is charged by setting a large lower limit value of the charge amount that allows discharge and maintaining a large charge amount of the battery 4. It can be prevented from becoming insufficient.

S206では、車両コントローラ5は、エンジン2の燃料がカットされているか否かを判定する。   In S206, the vehicle controller 5 determines whether or not the fuel of the engine 2 is cut.

車両コントローラ5は、エンジン2の燃料がカットされていると判定すると、オルタネータ3の発電電圧を高電圧にしてバッテリ4の充電を開始し(S207)、S208に処理を移行する。   When the vehicle controller 5 determines that the fuel of the engine 2 is cut, the vehicle controller 5 starts charging the battery 4 with the power generation voltage of the alternator 3 set to a high voltage (S207), and the process proceeds to S208.

車両コントローラ5は、エンジン2の燃料がカットされていないと判定すると、S206の判定処理を繰り返し行う。   When the vehicle controller 5 determines that the fuel of the engine 2 has not been cut, the vehicle controller 5 repeatedly performs the determination process of S206.

エンジン2の燃料がカットされている間に高電圧でバッテリ4を充電することで、車両1の燃費や動力性能に影響を与えることなく、バッテリ4の充電を効率よく行うことができる。   By charging the battery 4 with a high voltage while the fuel of the engine 2 is cut, the battery 4 can be efficiently charged without affecting the fuel consumption and power performance of the vehicle 1.

S208では、車両コントローラ5は、エンジン2の燃料カットが終了したか否かを判定する。   In S208, the vehicle controller 5 determines whether the fuel cut of the engine 2 has been completed.

車両コントローラ5は、エンジン2の燃料カットが終了したと判定すると、オルタネータ3の発電を停止し(S209)、S210に処理を移行する。   When the vehicle controller 5 determines that the fuel cut of the engine 2 has been completed, the vehicle controller 5 stops the power generation of the alternator 3 (S209), and the process proceeds to S210.

車両コントローラ5は、エンジン2の燃料カットが終了していないと判定すると、S208の判定処理を繰り返し行う。   If the vehicle controller 5 determines that the fuel cut of the engine 2 has not been completed, the vehicle controller 5 repeats the determination process of S208.

S210では、車両コントローラ5は、バッテリ4の充放電電流の積算値に基づいて演算したバッテリ4の充電量と、S204またはS205で設定した放電許容充電量とを比較し、バッテリ4の充電量が放電許容充電量以下か否かを判定する。   In S210, the vehicle controller 5 compares the charge amount of the battery 4 calculated based on the integrated value of the charge / discharge current of the battery 4 with the discharge allowable charge amount set in S204 or S205, and the charge amount of the battery 4 is determined. It is determined whether or not the discharge allowable charge amount is equal to or less.

車両コントローラ5は、バッテリ4の充電量が放電許容充電量以下と判定した場合は、オルタネータ3の発電電圧を低電圧にしてバッテリ4の充電を開始し(S211)、S206に処理を移行する。   If the vehicle controller 5 determines that the charge amount of the battery 4 is equal to or less than the discharge allowable charge amount, the vehicle controller 5 sets the power generation voltage of the alternator 3 to a low voltage and starts charging the battery 4 (S211), and proceeds to S206.

車両コントローラ5は、バッテリ4の充電量が放電許容充電量より大きいと判定した場合は、S210の判定処理を繰り返し行う。   If the vehicle controller 5 determines that the charge amount of the battery 4 is greater than the discharge allowable charge amount, the vehicle controller 5 repeatedly performs the determination process of S210.

燃料カット中に高電圧でバッテリ4を充電した後は、バッテリ4の充電量が放電許容充電量以下になるまでは、バッテリ4から各種電装品に電力を供給し、その間はオルタネータ3の発電を停止することで、車両1の燃費を向上させることができる。また、バッテリ4の充電量が放電許容充電量以下になると、低電圧での充電を再開するので、バッテリ4が充電不足になることを防止できる。   After the battery 4 is charged at a high voltage during fuel cut, the battery 4 supplies power to various electrical components until the charge amount of the battery 4 becomes equal to or less than the discharge allowable charge amount, and during that time, the alternator 3 generates power. By stopping, the fuel consumption of the vehicle 1 can be improved. In addition, when the charge amount of the battery 4 becomes equal to or less than the discharge allowable charge amount, the charging at the low voltage is resumed, so that the battery 4 can be prevented from being insufficiently charged.

続いて、図5を参照して、本実施形態の動作について説明する。   Next, the operation of the present embodiment will be described with reference to FIG.

図5は、第1実施形態に係る発電制御装置を適用する車両の、バッテリの状態を示すタイムチャートである。   FIG. 5 is a time chart showing the state of the battery of the vehicle to which the power generation control device according to the first embodiment is applied.

まず、エンジン2を始動すると、バッテリ電圧が低下する(t1)。   First, when the engine 2 is started, the battery voltage decreases (t1).

そして、オルタネータ3が14Vで発電を開始すると、バッテリ電圧が14Vに上昇する(t1→t2)。   When the alternator 3 starts generating power at 14V, the battery voltage rises to 14V (t1 → t2).

その後、バッテリ4の充電量が増加するのにしたがって、バッテリ電流が徐々に小さくなる(t2→t3)。   Thereafter, as the charge amount of the battery 4 increases, the battery current gradually decreases (t2 → t3).

ここで、エンジン2始動時のバッテリ4の最低電圧が、状態判定値(7V)より高い場合は、充電完了判定値は図4aの特性マップに基づいて設定され、例えば10Aとなる。状態判定値より低い場合は、充電完了判定値は図4bの特性マップに基づいて設定され、例えば3Aとなる。図5のタイムチャートは、エンジン2始動時のバッテリ4の最低電圧が7Vより低い状態であり、充電完了判定値は、3Aとなる。   Here, when the minimum voltage of the battery 4 at the time of starting the engine 2 is higher than the state determination value (7 V), the charging completion determination value is set based on the characteristic map of FIG. When it is lower than the state determination value, the charge completion determination value is set based on the characteristic map of FIG. The time chart of FIG. 5 shows a state in which the minimum voltage of the battery 4 at the time of starting the engine 2 is lower than 7V, and the charge completion determination value is 3A.

バッテリ電流が3Aになると、14Vでの充電が完了して、オルタネータ3の発電電圧が徐々に13Vになり、バッテリ電圧が13Vに低下する(t3→t4)。   When the battery current reaches 3A, charging at 14V is completed, the generated voltage of the alternator 3 gradually becomes 13V, and the battery voltage decreases to 13V (t3 → t4).

オルタネータ3の発電電圧が13Vである間は、バッテリ4が徐々に充電されるので、オルタネータ3の発電電圧が13Vに切り換わり始めてからは、バッテリ電流積算値が緩やかに増加する(t3→t5)。なお、バッテリ電流積算値は、バッテリ4の目標充電量が基準値となるので、充電量90%が0Asとなる。   Since the battery 4 is gradually charged while the power generation voltage of the alternator 3 is 13 V, the battery current integrated value gradually increases after the power generation voltage of the alternator 3 starts switching to 13 V (t3 → t5). . In addition, since the target charge amount of the battery 4 becomes the reference value, the charge amount 90% is 0 As for the battery current integrated value.

エンジン2の燃料がカットされると、オルタネータ3の発電電圧が14Vになり、バッテリ電圧が14Vに上昇する(t5)。   When the fuel of the engine 2 is cut, the power generation voltage of the alternator 3 becomes 14V, and the battery voltage rises to 14V (t5).

燃料がカットされている間は、バッテリ4が14Vで充電されるので、バッテリ電流積算値が急速に増加する(t5→t6)。   While the fuel is cut, the battery 4 is charged at 14V, so the battery current integrated value increases rapidly (t5 → t6).

エンジン2の燃料カットが終了すると(t6)、オルタネータ3が徐々に発電を停止し、バッテリ電圧が低下する(t6→t7)。   When the fuel cut of the engine 2 is completed (t6), the alternator 3 gradually stops power generation, and the battery voltage decreases (t6 → t7).

オルタネータ3の発電が停止している間は、バッテリ4が各種電装品に電力を供給するので、バッテリ電流積算値が放電許容充電量まで減少する(t7→t8)。   While the power generation of the alternator 3 is stopped, the battery 4 supplies power to various electrical components, so the battery current integrated value decreases to the discharge allowable charge amount (t7 → t8).

エンジン2始動時のバッテリ4の最低電圧が、状態判定値(7V)より高い場合は、放電許容充電量は、例えば充電量88%となる。7Vより低い場合は、放電許容充電量は、例えば充電量90%となる。図5のタイムチャートは、エンジン2始動時のバッテリ4の最低電圧が7Vより低い状態であり、放電許容充電量は、充電量90%となる。   When the minimum voltage of the battery 4 at the time of starting the engine 2 is higher than the state determination value (7 V), the allowable discharge charge amount is, for example, 88% charge amount. When the voltage is lower than 7 V, the allowable discharge charge amount is, for example, 90% charge amount. The time chart of FIG. 5 shows a state in which the minimum voltage of the battery 4 at the time of starting the engine 2 is lower than 7V, and the allowable discharge charge amount is 90% charge amount.

バッテリ電流積算値が放電許容充電量まで減少すると、オルタネータ3の発電電圧が13Vになり、バッテリ電圧が13Vまで上昇する(t8)。   When the battery current integrated value decreases to the discharge allowable charge amount, the power generation voltage of the alternator 3 becomes 13V, and the battery voltage rises to 13V (t8).

本実施形態によれば、エンジン2始動時のバッテリ4の最低電圧が状態判定値より小さい場合は、充電開始前におけるバッテリ4の放電電流が小さい時間が長く、バッテリ4の充電性能が低下している状態と判定できる。したがって、バッテリ4の充電性能が低下していない状態よりも、充電量が目標充電量に到達したと判定する充電完了判定値を小さく設定することで、バッテリ充電量の推定精度を向上でき、バッテリ4が充電不足になることを防止できる。   According to this embodiment, when the minimum voltage of the battery 4 at the time of starting the engine 2 is smaller than the state determination value, the time during which the discharge current of the battery 4 is small before the start of charging is long, and the charging performance of the battery 4 is reduced. Can be determined. Therefore, the estimation accuracy of the battery charge amount can be improved by setting the charge completion determination value that determines that the charge amount has reached the target charge amount as compared with the state in which the charge performance of the battery 4 is not deteriorated. 4 can be prevented from becoming insufficiently charged.

また、エンジン2始動時のバッテリ4の最低電圧が状態判定値より小さい場合は、高電圧での充電が完了した後も、バッテリ4の放電を許容する下限値となる放電許容充電量を大きく設定し、バッテリ4の充電量を多めに維持することで、バッテリ4が充電不足になることを防止できる。   In addition, when the minimum voltage of the battery 4 at the time of starting the engine 2 is smaller than the state determination value, the discharge allowable charge amount that becomes the lower limit value that allows the battery 4 to be discharged is set large even after the high-voltage charging is completed. And it can prevent that the battery 4 becomes insufficiently charged by maintaining the charging amount of the battery 4 large.

<第2実施形態>
続いて本発明の第2実施形態について説明する。
Second Embodiment
Next, a second embodiment of the present invention will be described.

図6は、第2実施形態に係る発電制御装置の、バッテリ充電完了までの処理手順を示すフローチャートである。   FIG. 6 is a flowchart illustrating a processing procedure until the battery charging is completed in the power generation control device according to the second embodiment.

第2実施形態は、イグニッションスイッチOFFの時間に基づいて充電完了判定値を設定する点が、第1施形態と相違する。以下、第1実施形態との相違点を中心に説明する。   The second embodiment is different from the first embodiment in that the charge completion determination value is set based on the ignition switch OFF time. Hereinafter, the difference from the first embodiment will be mainly described.

車両1のイグニッションスイッチがONになると、まず、車両コントローラ5は、イグニッションスイッチがOFFになってからONになるまでの時間を検出し、イグニッションスイッチOFFの時間が、状態判定時間より短いか否かを判定する(S301)。   When the ignition switch of the vehicle 1 is turned ON, first, the vehicle controller 5 detects the time from when the ignition switch is turned OFF until it is turned ON, and whether or not the ignition switch OFF time is shorter than the state determination time. Is determined (S301).

上記のように、暗電流による放電が長時間続くほどバッテリ4の充電性能は低下する。したがって、状態判定時間は、図4bの特性マップに基づいて充電完了判定値を設定した場合に、図4aの特性マップに基づいて充電完了判定値を設定するよりも充電量の推定精度が高くなる時間とされる。   As described above, the charging performance of the battery 4 decreases as the discharge due to the dark current continues for a long time. Therefore, in the state determination time, when the charge completion determination value is set based on the characteristic map of FIG. 4B, the estimation accuracy of the charge amount is higher than when the charge completion determination value is set based on the characteristic map of FIG. 4A. It is time.

車両コントローラ5は、イグニッションスイッチOFFの時間が状態判定時間より短いと判定すると、図4aの特性マップを参照して充電完了判定値を設定し(S302)、S304に処理を移行する。   If the vehicle controller 5 determines that the ignition switch OFF time is shorter than the state determination time, the vehicle controller 5 sets a charge completion determination value with reference to the characteristic map of FIG. 4A (S302), and proceeds to S304.

車両コントローラ5は、イグニッションスイッチOFFの時間が状態判定時間以上と判定すると、図4bのマップを参照して充電完了判定値を設定し(S303)、S304に処理を移行する。   If the vehicle controller 5 determines that the ignition switch OFF time is equal to or longer than the state determination time, the vehicle controller 5 sets a charge completion determination value with reference to the map of FIG. 4B (S303), and proceeds to S304.

S304及びS305では、第1実施形態のS104及びS105と同様の処理が行われる。   In S304 and S305, the same processing as S104 and S105 of the first embodiment is performed.

本実施形態によれば、イグニッションスイッチOFFの時間が状態判定時間以上の場合は、充電開始前におけるバッテリ4の放電電流が小さい時間が長く、バッテリ4の充電性能が低下している状態と判定できる。したがって、バッテリ4の充電性能が低下していない状態よりも、充電量が目標充電量に到達したと判定する充電完了判定値を小さく設定することで、バッテリ充電量の推定精度を向上でき、バッテリ4が充電不足になることを防止できる。   According to this embodiment, when the ignition switch OFF time is equal to or longer than the state determination time, it can be determined that the time during which the discharge current of the battery 4 is small before the start of charging is long and the charging performance of the battery 4 is degraded. . Therefore, the estimation accuracy of the battery charge amount can be improved by setting the charge completion determination value that determines that the charge amount has reached the target charge amount as compared with the state in which the charge performance of the battery 4 is not deteriorated. 4 can be prevented from becoming insufficiently charged.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体例に限定する趣旨ではない。   As mentioned above, although embodiment of this invention was described, the said embodiment showed only a part of application example of this invention, and is not the meaning which limits the technical scope of this invention to the specific example of said embodiment. .

上記実施形態では、充電完了判定値を2つの特性マップ(図4a、図4b)に基づいて設定しているが、例えば、3つ以上の特性マップに基づいて充電完了判定値を設定してもよい。   In the above embodiment, the charging completion determination value is set based on two characteristic maps (FIGS. 4a and 4b). For example, even if the charging completion determination value is set based on three or more characteristic maps, Good.

また、例えば、1つの特性マップを基準として、バッテリ4の充電性能に対応した補正係数(≦1)を乗算することで、充電完了判定値を補正してもよい。   Further, for example, the charge completion determination value may be corrected by multiplying a correction coefficient (≦ 1) corresponding to the charging performance of the battery 4 with one characteristic map as a reference.

また、図3のS203〜S205では、エンジン2始動時のバッテリ4の最低電圧に基づいて放電許容充電量を設定しているが、イグニッションスイッチOFFの時間に基づいて放電許容充電量を設定してもよい。この場合は、イグニッションスイッチOFFの時間が状態判定時間以上の場合は、充電開始前におけるバッテリ4の放電電流が小さい時間が長く、バッテリ4の充電性能が低下している状態と判定できる。したがって、バッテリ4の充電性能が低下していない状態よりも、放電許容充電量を大きく設定する。   Further, in S203 to S205 of FIG. 3, the allowable discharge charge amount is set based on the minimum voltage of the battery 4 when the engine 2 is started, but the allowable discharge charge amount is set based on the ignition switch OFF time. Also good. In this case, when the ignition switch OFF time is equal to or longer than the state determination time, it can be determined that the time during which the discharge current of the battery 4 is small before the start of charging is long and the charging performance of the battery 4 is degraded. Therefore, the discharge allowable charge amount is set larger than the state in which the charging performance of the battery 4 is not deteriorated.

本願は2013年4月12日に日本国特許庁に出願された特願2013−084167に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。   This application claims the priority based on Japanese Patent Application No. 2013-084167 for which it applied to Japan Patent Office on April 12, 2013, and all the content of this application is integrated in this specification by reference.

Claims (5)

エンジンにより駆動される発電機と、前記発電機の発電電力により充電されるバッテリと、前記バッテリの充放電電流を検出する電流検出手段と、を備えた車両の発電制御装置であって、
前記電流検出手段により検出した前記バッテリの充電電流が充電完了判定値以下になると、前記バッテリの充電量が目標充電量に到達したと判定する充電完了判定手段と、
充電開始前における前記バッテリの放電電流が小さい時間が長いほど、前記充電完了判定値を小さく設定する判定値設定手段と、
を備えた車両の発電制御装置。
A power generation control device for a vehicle, comprising: a generator driven by an engine; a battery charged by power generated by the generator; and current detection means for detecting a charge / discharge current of the battery,
When the charging current of the battery detected by the current detection unit becomes equal to or lower than a charging completion determination value, a charging completion determination unit that determines that the charging amount of the battery has reached a target charging amount;
Determination value setting means for setting the charging completion determination value to be smaller as the time during which the battery discharge current before charging starts is smaller,
A vehicle power generation control device.
請求項1に記載の発電制御装置であって、
前記バッテリの電圧を検出する電圧検出手段を備え、
前記判定値設定手段は、前記電圧検出手段により検出したエンジン始動時の前記バッテリの最低電圧が低いほど、前記放電電流が小さい時間が長いと判定する車両の発電制御装置。
The power generation control device according to claim 1,
Voltage detecting means for detecting the voltage of the battery;
The determination value setting means is a vehicle power generation control device that determines that the time during which the discharge current is small is longer as the minimum voltage of the battery at the time of engine start detected by the voltage detection means is lower.
請求項1に記載の発電制御装置であって、
イグニッションスイッチをOFFにしてからONにするまでの時間を計測する時間計測手段を備え、
前記判定値設定手段は、前記時間計測手段により計測した前記イグニッションスイッチがOFFの時間が長いほど、前記放電電流が小さい時間が長いと判定する車両の発電制御装置。
The power generation control device according to claim 1,
It is equipped with a time measurement means that measures the time from turning off the ignition switch to turning it on,
The power generation control device for a vehicle, wherein the determination value setting means determines that the longer the ignition switch measured by the time measurement means is longer, the longer the time during which the discharge current is smaller.
請求項1から3のいずれかに記載の発電制御装置であって、
前記充電完了判定手段が前記バッテリの充電量が前記目標充電量に到達したと判定した後の前記バッテリの充電量を演算する充電量演算手段と、
演算した前記充電量が放電許容充電量より大きい場合に、前記バッテリの放電を許容する放電許容手段と、
充電開始前における前記バッテリの放電電流が小さい時間が長いほど、前記放電許容充電量を大きく設定する許容量設定手段と、
を備えた車両の発電制御装置。
The power generation control device according to any one of claims 1 to 3,
A charge amount calculating means for calculating a charge amount of the battery after the charge completion determining means determines that the charge amount of the battery has reached the target charge amount;
When the calculated charge amount is larger than the discharge allowable charge amount, discharge permitting means for allowing the battery to discharge,
The allowable amount setting means for setting the discharge allowable charge amount larger as the time during which the discharge current of the battery is small before the start of charging is longer,
A vehicle power generation control device.
エンジンにより駆動される発電機と、前記発電機の発電電力により充電されるバッテリと、前記バッテリの充放電電流を検出する電流検出手段と、を備えた車両の発電制御方法であって、
前記電流検出手段により検出した前記バッテリの充電電流が充電完了判定値以下になると、前記バッテリの充電量が目標充電量に到達したと判定し、
充電開始前における前記バッテリの放電電流が小さい時間が長いほど、前記充電完了判定値を小さく設定する車両の発電制御方法。
A vehicle power generation control method comprising: a generator driven by an engine; a battery charged by power generated by the generator; and current detection means for detecting a charge / discharge current of the battery,
When the charging current of the battery detected by the current detection unit is equal to or lower than a charging completion determination value, it is determined that the charging amount of the battery has reached a target charging amount,
The power generation control method for a vehicle, wherein the charging completion determination value is set to be smaller as the time during which the battery discharge current is smaller before the start of charging is longer.
JP2015511158A 2013-04-12 2014-03-06 Vehicle power generation control device and power generation control method Active JP6011716B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013084167 2013-04-12
JP2013084167 2013-04-12
PCT/JP2014/055780 WO2014167924A1 (en) 2013-04-12 2014-03-06 Apparatus and method for controlling power generation of vehicle

Publications (2)

Publication Number Publication Date
JP6011716B2 true JP6011716B2 (en) 2016-10-19
JPWO2014167924A1 JPWO2014167924A1 (en) 2017-02-16

Family

ID=51689338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015511158A Active JP6011716B2 (en) 2013-04-12 2014-03-06 Vehicle power generation control device and power generation control method

Country Status (2)

Country Link
JP (1) JP6011716B2 (en)
WO (1) WO2014167924A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6201968B2 (en) 2014-11-27 2017-09-27 トヨタ自動車株式会社 Charge control device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140205A (en) * 1994-11-08 1996-05-31 Toyota Motor Corp Apparatus for managing battery for electric motor vehicle
JP2003087991A (en) * 2001-09-07 2003-03-20 Nissan Motor Co Ltd Charger and charging method
JP2006040689A (en) * 2004-07-27 2006-02-09 Auto Network Gijutsu Kenkyusho:Kk Battery condition management device
JP2007015477A (en) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd Deterioration discrimination device for engine starting storage battery and engine starting storage battery provided with the deterioration discrimination device
JP2010035327A (en) * 2008-07-29 2010-02-12 Mitsubishi Motors Corp Power generation control device
JP2012221788A (en) * 2011-04-11 2012-11-12 Hitachi Vehicle Energy Ltd Charge control system
JP2012244648A (en) * 2011-05-16 2012-12-10 Mitsubishi Electric Corp Full charge control device for on-vehicle battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140205A (en) * 1994-11-08 1996-05-31 Toyota Motor Corp Apparatus for managing battery for electric motor vehicle
JP2003087991A (en) * 2001-09-07 2003-03-20 Nissan Motor Co Ltd Charger and charging method
JP2006040689A (en) * 2004-07-27 2006-02-09 Auto Network Gijutsu Kenkyusho:Kk Battery condition management device
JP2007015477A (en) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd Deterioration discrimination device for engine starting storage battery and engine starting storage battery provided with the deterioration discrimination device
JP2010035327A (en) * 2008-07-29 2010-02-12 Mitsubishi Motors Corp Power generation control device
JP2012221788A (en) * 2011-04-11 2012-11-12 Hitachi Vehicle Energy Ltd Charge control system
JP2012244648A (en) * 2011-05-16 2012-12-10 Mitsubishi Electric Corp Full charge control device for on-vehicle battery

Also Published As

Publication number Publication date
WO2014167924A1 (en) 2014-10-16
JPWO2014167924A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
US9855854B2 (en) Charge control device and charge control method
JP6164168B2 (en) Vehicle control device
JP5954357B2 (en) Vehicle control device
WO2011155201A1 (en) Capacity estimating apparatus for secondary battery
WO2011089786A1 (en) Vehicle control device and control method
JP5396428B2 (en) In-vehicle battery full charge control device
JP6548699B2 (en) Power supply system
US20140008348A1 (en) Heating device
JP6686704B2 (en) Control device
JP6577981B2 (en) Power system
JP6209821B2 (en) Idle stop vehicle
JP6434798B2 (en) Power supply unit
KR101628507B1 (en) Control method for starting of fuel cell vehicle
JP2009126277A (en) Internal state detection device of on-board secondary battery
JP2015117633A (en) Charge control device
JP2011055575A (en) Electric vehicle
JP6011716B2 (en) Vehicle power generation control device and power generation control method
JP2010077836A (en) Idling speed determination device
JP2010031740A (en) Battery managing device
JP2010209733A (en) Battery state estimating method and battery control method
JP2018054423A (en) Charge amount calculation device
JP4635961B2 (en) Battery charge state control device
JP2017216827A (en) Controller
JP2008289318A (en) Controller of internal combustion engine
JP2007057422A (en) Error correction device for current sensor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R151 Written notification of patent or utility model registration

Ref document number: 6011716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151