JP6010454B2 - Aluminum alloy wire - Google Patents

Aluminum alloy wire Download PDF

Info

Publication number
JP6010454B2
JP6010454B2 JP2012284696A JP2012284696A JP6010454B2 JP 6010454 B2 JP6010454 B2 JP 6010454B2 JP 2012284696 A JP2012284696 A JP 2012284696A JP 2012284696 A JP2012284696 A JP 2012284696A JP 6010454 B2 JP6010454 B2 JP 6010454B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
treatment
less
content
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012284696A
Other languages
Japanese (ja)
Other versions
JP2014125665A (en
Inventor
亮 丹治
亮 丹治
西川 太一郎
太一郎 西川
中井 由弘
由弘 中井
東 健司
健司 東
順庸 瀧川
順庸 瀧川
徳照 上杉
徳照 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Osaka Prefecture University
Original Assignee
Sumitomo Electric Industries Ltd
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Osaka Prefecture University filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012284696A priority Critical patent/JP6010454B2/en
Publication of JP2014125665A publication Critical patent/JP2014125665A/en
Application granted granted Critical
Publication of JP6010454B2 publication Critical patent/JP6010454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、各種の部品の素材に利用されるアルミニウム合金、及びアルミニウム合金線に関するものである。特に、高強度で、陽極酸化処理後の光輝性に優れるアルミニウム合金に関するものである。   The present invention relates to aluminum alloys and aluminum alloy wires that are used as materials for various parts. In particular, it relates to an aluminum alloy having high strength and excellent luster after anodization.

従来、自動車や自転車などの部品の素材に、JIS規格の6000系アルミニウム合金が利用されている。6000系アルミニウム合金は、溶体化処理及び時効処理といった熱処理を施すことで、析出強化によって強度に優れるものの、上記熱処理が必要であり、製造性に劣る。また、6000系アルミニウム合金は、陽極酸化処理(いわゆるアルマイト処理)を施しても、金属光沢が得られ難く、艶消し状の表面となり、光輝性に劣る。   Conventionally, JIS standard 6000 series aluminum alloys have been used as materials for parts such as automobiles and bicycles. The 6000 series aluminum alloy is excellent in strength by precipitation strengthening by performing heat treatment such as solution treatment and aging treatment, but the above heat treatment is necessary and the productivity is poor. In addition, even when an anodic oxidation treatment (so-called alumite treatment) is applied to a 6000 series aluminum alloy, it is difficult to obtain a metallic luster, has a matte surface, and is inferior in glitter.

一方、JIS規格の5000系アルミニウム合金は、非熱処理型合金であり、上述の溶体化処理及び時効処理が不要である。また、5000系アルミニウム合金は、光輝仕上げ後に陽極酸化処理を施す(いわゆる光輝アルマイト処理を施す)と、金属光沢が得られ、光輝性に優れる傾向にある。しかし、5000系アルミニウム合金は、6000系アルミニウム合金よりも強度に劣る。   On the other hand, the JIS standard 5000 series aluminum alloy is a non-heat treatment type alloy and does not require the above solution treatment and aging treatment. In addition, 5000 series aluminum alloy tends to have excellent metallic luster and excellent luster when subjected to anodizing treatment after bright finish (so-called bright alumite treatment). However, 5000 series aluminum alloys are inferior in strength to 6000 series aluminum alloys.

他方、特許文献1は、非熱処理型合金でありながら、特定の組成とすることで強度に優れるアルミニウム合金を開示している。   On the other hand, Patent Document 1 discloses an aluminum alloy that is a non-heat-treatable alloy and has excellent strength by having a specific composition.

特開2012-082469号公報JP 2012-082469

高強度で、陽極酸化処理後の光輝性に優れるアルミニウム合金の開発が望まれている。   Development of an aluminum alloy having high strength and excellent luster after anodizing is desired.

6000系アルミニウム合金では、上述のように高強度であるものの、陽極酸化処理後(特に光輝アルマイト処理後)の外観に劣る。従来の5000系アルミニウム合金では、陽極酸化処理後(特に光輝アルマイト処理後)の光輝性に優れるものの、強度が十分ではない。   The 6000 series aluminum alloy has high strength as described above, but is inferior in appearance after anodizing (particularly after bright alumite treatment). A conventional 5000 series aluminum alloy is excellent in glitter after anodization (particularly after glitter alumite), but has insufficient strength.

特許文献1に記載されるアルミニウム合金は、強度に優れるものの、陽極酸化処理後(特に光輝アルマイト処理後)の光輝性に優れる構成を言及していない。   Although the aluminum alloy described in Patent Document 1 is excellent in strength, it does not mention a configuration excellent in glitter after anodizing treatment (particularly after glittering alumite treatment).

そこで、本発明の目的の一つは、高強度で、陽極酸化処理後の光輝性に優れるアルミニウム合金を提供することにある。また、本発明の他の目的は、高強度で、陽極酸化処理後の光輝性に優れるアルミニウム合金線を提供することにある。   Accordingly, one of the objects of the present invention is to provide an aluminum alloy that has high strength and excellent luster after anodizing. Another object of the present invention is to provide an aluminum alloy wire that is high in strength and excellent in glitter after anodizing.

本発明者らは、溶体化処理及び時効処理を必須としない合金種、具体的には、固溶強化元素であるMgを主たる添加元素とするJIS規格の5000系アルミニウム合金(Al-Mg系合金)を対象として、更なる高強度化と、陽極酸化処理後(特に光輝アルマイト処理後)の外観の改善とを検討した。   The inventors of the present invention are alloy types that do not require solution treatment and aging treatment, specifically, JIS standard 5000 series aluminum alloys (Al-Mg series alloys) containing Mg, which is a solid solution strengthening element, as a main additive element. ) Was studied for further strengthening and improving the appearance after anodizing (especially after bright alumite treatment).

Al-Mg系合金の強度の向上には、Mgの含有量を多くすることが効果的である。また、Al-Mg系合金中に水素を過剰に含有すると、合金の粒界などに水素が溜まって粒界強度が低下して材料強度の低下を招く恐れがある。更に、水素の過剰含有は、ブローホールが生じ易くなり、ブローホールに伴う外観の劣化も招き得る。   Increasing the Mg content is effective for improving the strength of the Al-Mg alloy. In addition, if the Al—Mg alloy contains excessive hydrogen, hydrogen accumulates at the grain boundaries of the alloy and the grain boundary strength may decrease, leading to a decrease in material strength. Furthermore, excessive hydrogen content tends to cause blowholes, which can lead to deterioration of the appearance accompanying the blowholes.

上述の知見により、Mgの含有量及び水素の含有量を調整したアルミニウム合金を作製し、このアルミニウム合金に光輝アルマイト処理を施したところ、陽極酸化皮膜に黒い斑点が生じており、外観に劣るものであった。断面観察などを行って、この原因を調べたところ、陽極酸化皮膜において上記黒い斑点が存在する部分の下のアルミニウム合金母材に、粗大な晶析出物が存在していた。そこで、粗大な晶析出物を低減したところ、上記黒い斑点が低減され、又は実質的に存在しなくなり、光輝性に優れる陽極酸化皮膜が得られた。本発明は、これらの知見に基づくものである。   Based on the above findings, an aluminum alloy with an adjusted Mg content and hydrogen content was prepared, and when this aluminum alloy was subjected to a bright anodized treatment, black spots were generated on the anodized film and the appearance was poor. Met. When the cause was examined by observing a cross section or the like, coarse crystal precipitates were present in the aluminum alloy base material under the portion where the black spots existed in the anodized film. Therefore, when coarse crystal precipitates were reduced, the black spots were reduced or substantially absent, and an anodized film excellent in glitter was obtained. The present invention is based on these findings.

本発明のアルミニウム合金は、Mgを4.5質量%以上12.0質量%以下含有し、残部がAl及び不可避不純物からなり、水素の含有量が10ml/100g以下である。そして、このアルミニウム合金の断面における直径10μm以上の晶析出物が3個/mm2以下である。 The aluminum alloy of the present invention contains Mg in an amount of 4.5% by mass to 12.0% by mass, the balance is made of Al and inevitable impurities, and the hydrogen content is 10 ml / 100 g or less. The number of crystal precipitates having a diameter of 10 μm or more in the cross section of the aluminum alloy is 3 pieces / mm 2 or less.

本発明のアルミニウム合金は、固溶強化元素であるMgを一般的な5000系アルミニウム合金よりも多く含むことから高強度である。また、本発明のアルミニウム合金は、水素の含有量が特定の範囲であることで、上述の特定の組成のアルミニウム合金を量産した場合にも、高強度なアルミニウム合金を安定して製造できる。   The aluminum alloy of the present invention has high strength because it contains more Mg, which is a solid solution strengthening element, than a general 5000 series aluminum alloy. Moreover, the aluminum alloy of the present invention can stably produce a high-strength aluminum alloy even when the aluminum alloy having the specific composition described above is mass-produced because the hydrogen content is in a specific range.

そして、本発明のアルミニウム合金は、粗大な晶析出物が少ないため、光輝アルマイト処理を施した場合にも、粗大な晶析出物に基づく外観不良を抑制でき、金属光沢を有して光輝性に優れる。また、本発明のアルミニウム合金は、水素の含有量が特定の範囲であることで、ブローホールに起因する外観不良も抑制できることからも、優れた外観を有することができる。   And since the aluminum alloy of the present invention has few coarse crystal precipitates, it can suppress appearance defects based on the coarse crystal precipitates even when the bright alumite treatment is performed, and has a metallic luster to make it bright. Excellent. Moreover, since the aluminum content of this invention can also suppress the appearance defect resulting from a blowhole because content of hydrogen is a specific range, it can have the outstanding external appearance.

更に、本発明のアルミニウム合金は、Mgを特定の範囲で含有することで、Mgの添加に伴う加工性の低下を抑制でき、伸線や圧延、鍛造などの加工性に優れる。また、水素の含有量が特定の範囲であることで、粒界強度の低下も抑制できることからも、本発明のアルミニウム合金は、加工性に優れる。加えて、本発明のアルミニウム合金は、溶体化処理及び時効処理を施すことなく製造可能である。これらの点から、本発明のアルミニウム合金は、生産性にも優れる。   Furthermore, the aluminum alloy of this invention can suppress the fall of workability accompanying addition of Mg by containing Mg in a specific range, and is excellent in workability, such as wire drawing, rolling, and forging. Moreover, since the fall of grain boundary intensity | strength can also be suppressed because hydrogen content is a specific range, the aluminum alloy of this invention is excellent in workability. In addition, the aluminum alloy of the present invention can be manufactured without performing solution treatment and aging treatment. From these points, the aluminum alloy of the present invention is also excellent in productivity.

本発明の一形態として、上記不可避不純物のうち、Siの含有量が0.1質量%以下であり、Feの含有量が0.3質量%以下である形態が挙げられる。   As one form of this invention, the form whose content of Si is 0.1 mass% or less and content of Fe is 0.3 mass% or less among the said inevitable impurities is mentioned.

Siの含有量が低い方が光輝性を高められたり、強度をより高められたりする傾向にある。また、Feの含有量が低い方が、Feを含有する晶析出物の生成を抑制でき、粗大な晶析出物が存在し難い。従って、上記形態は、強度により優れる上に、陽極酸化処理後の光輝性により優れる。   The lower the Si content, the higher the glitter and the higher the strength. Further, the lower the Fe content, the more the generation of crystal precipitates containing Fe can be suppressed, and the presence of coarse crystal precipitates is difficult. Therefore, the above-described form is excellent in strength and excellent in glitter after anodizing treatment.

本発明の一形態として、上記アルミニウム合金の引張強さが300MPa以上である形態が挙げられる。   As one form of this invention, the form whose tensile strength of the said aluminum alloy is 300 MPa or more is mentioned.

上記形態は、6000系アルミニウム合金と同等、更にはそれ以上の引張強さを有し、高強度である。   The above form has a tensile strength equal to or higher than that of the 6000 series aluminum alloy and is high in strength.

本発明の一形態として、上記アルミニウム合金の破断伸びが15%以上である形態が挙げられる。   As one form of this invention, the form whose breaking elongation of the said aluminum alloy is 15% or more is mentioned.

上記形態は、靭性にも優れ、6000系アルミニウム合金と同等、更にはそれ以上の高い破断伸びを有し、加工時に破断や割れが生じ難い。そのため、上記形態は、高強度である上に、加工性にも優れる。   The above form is excellent in toughness, has a high elongation at break equivalent to or higher than that of a 6000 series aluminum alloy, and hardly breaks or cracks during processing. Therefore, the said form is high intensity | strength and is excellent also in workability.

本発明の一形態として、更に、Zrを0.01質量%以上0.3質量%以下含有する形態が挙げられる。   As one form of this invention, the form which contains 0.01 mass% or more and 0.3 mass% or less of Zr is mentioned further.

上記形態は、Zrを特定の範囲で含有することで、強度により優れる。   The said form is more excellent in intensity | strength by containing Zr in a specific range.

本発明のアルミニウム合金線は、上記本発明のアルミニウム合金から構成されている。   The aluminum alloy wire of the present invention is composed of the aluminum alloy of the present invention.

本発明のアルミニウム合金線は、高強度で、陽極酸化処理後の光輝性に優れる本発明のアルミニウム合金から構成されることで、高強度で、陽極酸化処理後の光輝性に優れる。また、本発明のアルミニウム合金線は、加工性にも優れる本発明のアルミニウム合金から構成されることで、鋳造以降の種々の塑性加工、例えば、熱間鍛造や熱間圧延などの熱間加工や、冷間伸線などの冷間加工を施す際に割れなどが生じ難く、生産性に優れる。更に、本発明のアルミニウム合金線は、それ自体も加工性に優れるため、鍛造などの塑性加工(2次加工)も良好に施すことができ、塑性加工用の素材(2次加工用の素材)として好適に利用できる。鍛造などが施された2次加工材に光輝アルマイト処理を施すことで、金属光沢を有し、光輝性に優れるアルミニウム合金部材が得られる。   The aluminum alloy wire of the present invention is composed of the aluminum alloy of the present invention that is high in strength and excellent in glitter after anodization, and thus has high strength and excellent in glitter after anodization. In addition, the aluminum alloy wire of the present invention is composed of the aluminum alloy of the present invention which is excellent in workability, so that various plastic working after casting, for example, hot working such as hot forging and hot rolling, In the cold working such as cold wire drawing, cracks and the like hardly occur and the productivity is excellent. Furthermore, since the aluminum alloy wire of the present invention itself is excellent in workability, plastic processing such as forging (secondary processing) can be performed well, and the material for plastic processing (material for secondary processing) Can be suitably used. By subjecting the secondary processed material subjected to forging or the like to a bright alumite treatment, an aluminum alloy member having a metallic luster and excellent in glitter is obtained.

本発明のアルミニウム合金、及び本発明のアルミニウム合金線は、高強度で、陽極酸化処理後の光輝性に優れる。   The aluminum alloy of the present invention and the aluminum alloy wire of the present invention have high strength and excellent glitter after anodizing treatment.

以下、本発明の実施の形態を詳しく説明する。なお、元素の含有量は、質量割合を示す。   Hereinafter, embodiments of the present invention will be described in detail. In addition, content of an element shows a mass ratio.

[アルミニウム合金]
(組成)
本発明のアルミニウム合金(以下、Al合金と呼ぶ)は、主たる添加元素をMgとするAl-Mg系合金であることを特徴の一つとする。Mgは、強度の向上効果が高い固溶元素である。Mgを4.5%以上含有することで、強度の向上効果が得られる。Mgの含有量が多いほど、強度が高められ、5.5%以上、更に7%以上がより好ましい。また、Mgの含有量を12.0%以下とすることで、(1)添加されたMgが十分に固溶でき、固溶強化の効果を十分に得られる、(2)Mgの増加に伴う加工性の低下を抑制できる、(3)晶析出物の生成を抑制し易く、結果として陽極酸化処理後の光輝性の劣化を抑制できる、といった効果を有する。Mgの含有量を10.0%以下とすると、Mgの増加に伴う加工性の低下を更に抑制でき、加工性により優れ、生産性を向上できる。
[Aluminum alloy]
(composition)
One of the characteristics of the aluminum alloy of the present invention (hereinafter referred to as “Al alloy”) is an Al—Mg-based alloy whose main additive element is Mg. Mg is a solid solution element having a high strength improvement effect. By containing 4.5% or more of Mg, the effect of improving the strength can be obtained. The greater the Mg content, the higher the strength, and 5.5% or more, and more preferably 7% or more. In addition, by making the Mg content 12.0% or less, (1) the added Mg can be sufficiently dissolved, and the effect of solid solution strengthening can be obtained sufficiently. (2) Workability with increasing Mg (3) It is easy to suppress the formation of crystal precipitates, and as a result, it is possible to suppress degradation of glitter after anodizing treatment. When the Mg content is 10.0% or less, it is possible to further suppress a decrease in workability due to an increase in Mg, to improve the workability, and to improve the productivity.

Mg以外の添加元素として、Zrを含有することができる。Zrは、Al合金の結晶粒界に偏析して粒界強度の向上に寄与する。また、Zrは、結晶粒の微細化に効果があり、微細組織による強度の向上、加工性の向上にも寄与する。Zrの含有量を0.01%以上とすることで、上述の効果が得られ、Zrの含有量が多いほど上記効果を得易い。例えば、Zrの含有量を0.1%以上、更に0.15%以上とすることができる。但し、上記効果はZrの含有量が0.3%程度で飽和する傾向にある。また、Zrの含有量を0.3%以下とすると、Zrの添加による加工性の低下を抑制できる。従って、加工性などを考慮すると、Zrの含有量は0.25%以下が好ましい。   Zr can be contained as an additive element other than Mg. Zr segregates at the grain boundary of the Al alloy and contributes to the improvement of the grain boundary strength. Moreover, Zr is effective in refining crystal grains and contributes to improvement in strength and workability due to the fine structure. By making the content of Zr 0.01% or more, the above-mentioned effect can be obtained, and the above effect can be easily obtained as the Zr content increases. For example, the Zr content can be 0.1% or more, and further 0.15% or more. However, the above effect tends to saturate when the Zr content is about 0.3%. Further, when the Zr content is 0.3% or less, it is possible to suppress a decrease in workability due to the addition of Zr. Therefore, considering workability and the like, the content of Zr is preferably 0.25% or less.

本発明のAl合金は、水素の含有量が少ない点を特徴の一つとする。水素は、Al合金の結晶粒界に存在して粒界強度を低下させると考えられる。この結果、材料強度の低下や加工性の低下を招く可能性がある。また、水素は、鋳造時、ブローホールを発生させ、ブローホールに伴う表面性状の劣化、陽極酸化処理後の外観の劣化、といった品質の低下、外観の低下を招く。そこで、水素の含有量は、Al合金100g中に10ml以下、つまり10ml/100g以下とする。水素の含有量は少ない方が好ましく、5ml/100g以下、更に2ml/100g以下が好ましく、下限を設けない。特に、量産体制では、水素の含有量を特定の範囲に制御することで、一定水準の特性を満たすAl合金(ここでは、特に高強度なAl合金)を安定して提供できると期待される。水素は、主として、溶解時や鋳造時の雰囲気からAl合金中に混入されると考えられる。そのため、Al合金中の水素の含有量を低減するには、例えば、鋳造直前の溶湯に脱ガス処理を行うことが挙げられる。脱ガス処理には、適宜なフラックスを利用したり、アルゴン(Ar)などの不活性ガスによるバブリングなどを利用したりすることが挙げられる。溶湯の段階で水素を低減しておくことで、以降の製造工程においても、水素が低減された状態が実質的に維持され、水素の含有量が少ない鋳造材や伸線材、軟材、2次加工材などを得ることができる。   One of the features of the Al alloy of the present invention is that the content of hydrogen is small. Hydrogen is considered to be present at the grain boundaries of the Al alloy and reduce the grain boundary strength. As a result, the strength of the material and the workability may be reduced. In addition, hydrogen generates blow holes during casting, leading to deterioration of quality and appearance such as deterioration of surface properties accompanying blow holes and deterioration of appearance after anodization. Therefore, the hydrogen content is 10 ml or less, that is, 10 ml / 100 g or less in 100 g of the Al alloy. The content of hydrogen is preferably small, preferably 5 ml / 100 g or less, more preferably 2 ml / 100 g or less, and no lower limit is set. In particular, in a mass production system, it is expected that an Al alloy satisfying a certain level of characteristics (here, a particularly high-strength Al alloy) can be stably provided by controlling the hydrogen content within a specific range. It is considered that hydrogen is mainly mixed into the Al alloy from the atmosphere during melting or casting. Therefore, in order to reduce the content of hydrogen in the Al alloy, for example, degassing is performed on the molten metal immediately before casting. Examples of the degassing treatment include using an appropriate flux or using bubbling with an inert gas such as argon (Ar). By reducing the hydrogen at the molten metal stage, the reduced hydrogen state is substantially maintained in the subsequent manufacturing processes, and the cast material, wire drawing material, soft material, secondary material with a low hydrogen content are maintained. A processed material can be obtained.

Mg以外の添加元素は、Al自体が本来有する金属光沢を低下させる傾向にある。つまり、Mg以外の添加元素を複数、特に多く含有すると、晶析出物を生成し易くなり、晶析出物の成長によって陽極酸化処理後の光輝性の低下を招く。従って、本発明のAl合金は、Mg、適宜Zrを添加元素とし、残部をAl及び不可避不純物とする。不可避不純物は、Si,Fe,Cu,Mn,Zn,Cr,Tiなどが挙げられる。   Additive elements other than Mg tend to reduce the metallic luster inherent in Al itself. That is, when a plurality of additive elements other than Mg are contained, particularly in a large amount, crystal precipitates are easily generated, and the growth of crystal precipitates causes a decrease in glitter after anodization. Therefore, in the Al alloy of the present invention, Mg and, as appropriate, Zr are added elements, and the balance is Al and inevitable impurities. Inevitable impurities include Si, Fe, Cu, Mn, Zn, Cr, Ti and the like.

特に、Siは、Mg-Si系の晶析出物を形成し、この晶析出物が成長して粗大なものとなると、陽極酸化処理後の光輝性を低下させたり、加工性を低下させたり(粗大な晶析出物が割れの起点となったり)する。また、Siは、Zrを含有する場合にZrの粒界偏析による粒界強度の向上効果を低下させたりすると考えられる。そのため、Siの含有量は0.1%以下が好ましい。Siの含有量が0.1%以下であれば、陽極酸化処理後の光輝性に優れるが、Siの含有量が更に少ないほど材料強度を高められる。従って、Siの含有量を0.05%以下、更に0.01%以下とすることができ、Siの含有量の下限は特に設けない。   In particular, Si forms Mg-Si-based crystal precipitates, and when these crystal precipitates grow and become coarse, the brightness after anodizing treatment is reduced, and workability is reduced ( Coarse crystal precipitates may be the starting point of cracks). Further, when Si contains Zr, it is considered that the effect of improving the grain boundary strength due to the grain boundary segregation of Zr is reduced. Therefore, the Si content is preferably 0.1% or less. If the Si content is 0.1% or less, the brightness after anodization is excellent, but the material strength can be increased as the Si content is further reduced. Therefore, the Si content can be 0.05% or less, more preferably 0.01% or less, and there is no particular lower limit for the Si content.

特に、Feは、Al-Fe-Si系の晶析出物を形成し、この晶析出物が成長して粗大なものとなると、陽極酸化処理後の光輝性を低下させる。また、この晶析出物も粗大であると、加工性の低下、強度の向上効果の低下を招く。そのため、Feの含有量は0.3%以下が好ましく、0.1%以下、更に0.05%以下が好ましく、Feの含有量の下限は特に設けない。SiやFeの含有量は、例えば、純度の高い純アルミニウムを原料に用いたり、原料を精錬したりすることで低減できる。   In particular, Fe forms an Al—Fe—Si based crystal precipitate, and when this crystal precipitate grows and becomes coarse, the brightness after anodizing treatment is lowered. Moreover, when this crystal precipitate is also coarse, workability and strength improvement effect are reduced. Therefore, the Fe content is preferably 0.3% or less, preferably 0.1% or less, and more preferably 0.05% or less, and there is no particular lower limit for the Fe content. The content of Si or Fe can be reduced, for example, by using pure aluminum with high purity as a raw material or by refining the raw material.

(組織)
本発明のAl合金は、粗大な晶析出物の含有量が少ないことを特徴の一つとする。具体的には、Al合金の断面における直径10μm以上の晶析出物(粗大な晶析出物)の数が単位面積(mm2)あたり3個以下、つまり3個/mm2以下である。上記粗大な晶析出物が存在すると、光輝アルマイト処理後、上述のようにこの粗大な晶析出物の上に形成された陽極酸化皮膜に黒い斑点が生じて、陽極酸化皮膜を有する合金全体でみれば、一様な金属光沢が得られず、光輝性に劣る外観となる。このような粗大な晶析出物が多く存在するほど、黒い斑点が多くなり、光輝性に更に劣る外観となる。そこで、本発明では、陽極酸化処理後の光輝性に優れるAl合金として、粗大な晶析出物が少ない組織を提案する。直径10μm以上の晶析出物は少ないほど、光輝性に優れて好ましく、2.5個/mm2以下、更に2個/mm2以下、特に1.5個/mm2以下、さらには1.0個/mm2以下がより好ましい。粗大な晶析出物が少ないことで、粗大な晶析出物が割れや破断の原因となることも抑制できることから、強度の向上、伸びの向上も期待できる。晶析出物の組成は、Mg-Si系、Al-Mg-Si系、Al-Fe-Si系、Al-Zr系が挙げられる。粗大な晶析出物の最大径も小さいことが好ましい。特に、晶析出物の最大径が30μm以下、更に25μm以下であると、上述の黒い斑点の生成による外観の劣化をより抑制し易い上に、強度の向上、伸びの向上も期待できる。また、晶析出物の合計面積も少ないことが好ましい。特に、断面における晶析出物の合計面積割合が2%以下、更に1%以下、特に0.5%以下であると、上述の黒い斑点の生成による外観の劣化をより抑制し易いと期待される。晶析出物の含有量、最大径、合計面積割合の測定方法は、後述する。
(Organization)
One feature of the Al alloy of the present invention is that the content of coarse crystal precipitates is small. Specifically, the number of crystal precipitates (coarse crystal precipitates) having a diameter of 10 μm or more in the cross section of the Al alloy is 3 or less per unit area (mm 2 ), that is, 3 / mm 2 or less. If the coarse crystal precipitates are present, after the bright alumite treatment, black spots are formed on the anodized film formed on the coarse crystal precipitates as described above. In this case, a uniform metallic luster is not obtained and the appearance is inferior in glitter. The more such coarse crystal precipitates are present, the more black spots appear and the appearance is further inferior in glitter. Therefore, in the present invention, a structure with few coarse crystal precipitates is proposed as an Al alloy excellent in glitter after anodizing. The smaller the number of crystal precipitates having a diameter of 10 μm or more, the better the glitter, which is preferably 2.5 / mm 2 or less, more 2 / mm 2 or less, particularly 1.5 / mm 2 or less, and further 1.0 / mm 2 or less. More preferred. Since there are few coarse crystal precipitates, it is possible to suppress the coarse crystal precipitates from causing cracks and breaks, so that improvement in strength and improvement in elongation can be expected. Examples of the composition of the crystal precipitate include Mg-Si, Al-Mg-Si, Al-Fe-Si, and Al-Zr. It is preferable that the maximum diameter of the coarse crystal precipitate is also small. In particular, when the maximum diameter of the crystal precipitates is 30 μm or less, and further 25 μm or less, it is easier to suppress the deterioration of the appearance due to the generation of the black spots, and it is also expected to improve the strength and the elongation. It is also preferable that the total area of crystal precipitates is small. In particular, when the total area ratio of crystal precipitates in the cross section is 2% or less, further 1% or less, and particularly 0.5% or less, it is expected that the above-described deterioration of the appearance due to the generation of black spots is more easily suppressed. A method for measuring the content of crystal precipitates, the maximum diameter, and the total area ratio will be described later.

(特性)
本発明のAl合金は、高強度である。また、強度に優れる上に、靭性に優れることもできる。例えば、引張強さが300MPa以上、更に330MPa以上、特に350MPa以上、さらには380MPa以上を満たす形態が挙げられる。又は、破断伸びが15%以上、更に17%以上、特に20%以上を満たす形態が挙げられる。これらの機械的特性は、主として添加元素(Mg,Zr)の含有量によって変化させることができる。
(Characteristic)
The Al alloy of the present invention has high strength. In addition to being excellent in strength, it can also be excellent in toughness. For example, there is a form in which the tensile strength is 300 MPa or more, further 330 MPa or more, particularly 350 MPa or more, and further 380 MPa or more. Alternatively, a mode in which the elongation at break satisfies 15% or more, further 17% or more, particularly 20% or more can be mentioned. These mechanical characteristics can be changed mainly by the content of additive elements (Mg, Zr).

(形態)
本発明のAl合金の代表的な形態は、製造工程で区別すると、鋳造材、伸線材、圧延材、伸線及び圧延以外の塑性加工(例えば、押出、鍛造、プレス加工など)が施された塑性加工材(伸線材などを1次加工材として更に塑性加工を施した2次加工材を含む)、鋳造材・伸線材・圧延材・上記塑性加工材に均質化処理、軟化処理などの熱処理を施した熱処理材が挙げられる。一方、形状で区別すると、線材(本発明のアルミニウム合金線)、板材(代表的には、圧延板)、その他の種々の立体形状材などが挙げられる。線材や板材の一部に鍛造などの塑性加工が施された塑性加工部を具える形態などとすることもできる。線材は、断面円形状の丸線、丸棒が代表的であり、その他、断面形状が矩形状、多角形状、楕円状など、種々の形態が挙げられる。上記丸線、丸棒は、直径10mm〜30mm程度であると、自動車や自転車の部品の素材に利用し易い。
(Form)
Representative forms of the Al alloy of the present invention, when distinguished by the manufacturing process, were subjected to plastic processing (for example, extrusion, forging, press processing, etc.) other than cast material, wire drawing material, rolled material, wire drawing and rolling. Heat treatment such as homogenization treatment, softening treatment, etc. for plastic working materials (including secondary working materials that have been subjected to further plastic working using wire drawing materials as primary working materials), casting materials, wire drawing materials, rolled materials, and the above plastic working materials The heat processing material which gave is mentioned. On the other hand, when distinguished by shape, there are a wire (the aluminum alloy wire of the present invention), a plate (typically a rolled plate), and other various three-dimensional shapes. It can also be set as the form which provides the plastic processing part by which plastic processing, such as forging, was given to a part of wire and board | plate material. Typical examples of the wire include a round wire and a round bar having a circular cross section, and various other shapes such as a rectangular shape, a polygonal shape, and an elliptical shape. When the diameter of the round wire or round bar is about 10 mm to 30 mm, it can be easily used as a material for parts of automobiles and bicycles.

[製造方法]
本発明のAl合金は、代表的には、原料の準備→溶解・鋳造→適宜な加工(熱間加工や冷間加工などの塑性加工)や適宜な熱処理(均質化処理や軟化処理)、によって製造することができる。本発明のAl合金線は、原料の準備→溶解・鋳造→熱間加工(熱間鍛造、熱間圧延など)→冷間伸線によって製造することができ、適宜、熱処理(均質化処理や軟化処理)工程を含むことができる。
[Production method]
The Al alloy of the present invention is typically prepared by preparing raw materials → melting / casting → appropriate processing (plastic processing such as hot processing or cold processing) or appropriate heat treatment (homogenization processing or softening processing). Can be manufactured. The Al alloy wire of the present invention can be produced by raw material preparation → melting / casting → hot working (hot forging, hot rolling, etc.) → cold drawing, and heat treatment (homogenization treatment or softening as appropriate). Processing) step.

原料には、純アルミニウムと、Mg、適宜Zrを用いる。原料の純アルミニウムとして、4Nや6Nといった高純度の純アルミニウムを用いると、上述のように不可避不純物の含有量を低減できる。原料を溶解して溶湯を作製し、鋳造前(直前でもよい)の溶湯に上述の脱ガス処理を施して、水素の含有量が特定の範囲になるように調整する。水素の含有量を調整した溶湯を鋳造に供する。   As the raw material, pure aluminum, Mg, and optionally Zr are used. If pure aluminum of high purity such as 4N or 6N is used as the raw material pure aluminum, the content of inevitable impurities can be reduced as described above. The raw material is melted to prepare a molten metal, and the molten metal before casting (or immediately before) may be subjected to the above degassing treatment so that the hydrogen content is adjusted to a specific range. The molten metal with the adjusted hydrogen content is used for casting.

鋳造は、代表的には、所望の形状の固定鋳型を用いる金型鋳造(ビレット鋳造)を利用することができる。ビレット鋳造では、金型の材質や形状、冷却方法を適宜選定することで、冷却速度を容易に調整でき、例えば、急冷凝固などを行える。その他、可動鋳型又は枠状の固定鋳型を用いる連続鋳造を利用すると、溶湯を急冷凝固し易く、急冷凝固によって晶析出物の生成や晶析出物の成長を抑制し易い。急冷凝固によって、微細な結晶組織を有する鋳造材が得られる。この微細組織を有する鋳造材を素材にすると、微細な結晶組織を有するAl合金を製造し易く、微細組織による強度の向上、加工性の向上を図ることができる。また、連続鋳造は、長尺な鋳造材を容易に製造でき、この鋳造材を素材とすることで、長尺な線材や板材を製造できる。連続鋳造圧延機などを利用し、連続鋳造から引き続いて(熱間)圧延を行うと、鋳造材に蓄積される熱を利用して熱間圧延を容易に行えて、エネルギ効率がよい上に、長尺な熱間加工材を効率よく製造できる。連続鋳造には、例えば、ベルトアンドホイール法、双ロール法などを利用することができる。   For casting, typically, die casting (billet casting) using a fixed mold having a desired shape can be used. In billet casting, the cooling rate can be easily adjusted by appropriately selecting the material and shape of the mold and the cooling method, for example, rapid solidification can be performed. In addition, when continuous casting using a movable mold or a frame-shaped fixed mold is used, the molten metal is easily rapidly solidified, and generation of crystal precipitates and growth of crystal precipitates are easily suppressed by rapid solidification. A cast material having a fine crystal structure is obtained by rapid solidification. When a cast material having this fine structure is used as a raw material, an Al alloy having a fine crystal structure can be easily produced, and the strength and workability can be improved by the fine structure. In continuous casting, a long cast material can be easily manufactured. By using this cast material as a raw material, a long wire or plate can be manufactured. Using a continuous casting mill, etc., when performing continuous (hot) rolling from continuous casting, it is possible to easily perform hot rolling using the heat accumulated in the cast material, and energy efficiency is good. Long hot work materials can be manufactured efficiently. For continuous casting, for example, a belt-and-wheel method, a twin roll method, or the like can be used.

そして、本発明では、粗大な晶析出物を低減するために、原料の溶湯の温度を比較的高めにして、湯温の変動による晶出物の生成を抑制する。ここで、従来、Al合金の製造にあたり、溶湯の温度は、Alの融点(約660℃)程度又はより高い温度、具体的には、670℃〜720℃ぐらいが利用されている。しかし、この程度の温度では、湯温の変動に伴う晶出(特に、Al-Zr系の晶出)を回避することが難しい。そこで、本発明では、鋳造に供する溶湯の温度を積極的に高くする。具体的には、溶湯の温度を730℃以上とする。溶湯の温度を730℃以上と高めにすることで、湯温の変動に伴う晶出を抑制でき、ひいては粗大な晶析出物の生成を低減できる。溶湯の温度は、730℃以上、更に780℃以上が好ましく、エネルギの観点から850℃以下が好ましい。晶析出物をより効果的に低減するためには、鋳造工程での冷却速度を高くすることが好ましい。具体的な冷却速度は、5℃/sec以上が挙げられる。冷却速度は、鋳型の材質、鋳型の形状、冷却方法などにより調整できる。例えば、熱伝導性に優れる材質からなる鋳型を用いたり、薄い鋳型を用いたり、適宜な強制冷却を行ったりすると、冷却速度を大きくできる。連続鋳造では、更に、鋳造速度によっても冷却速度を調整できる。所望の冷却速度となるように、鋳型の材質や形状、冷却方法、鋳造条件などを選定するとよい。   And in this invention, in order to reduce a coarse crystal precipitate, the temperature of the raw material molten metal is made comparatively high, and the production | generation of the crystallization thing by the fluctuation | variation of hot water temperature is suppressed. Here, conventionally, in the production of an Al alloy, the temperature of the molten metal is about the melting point of Al (about 660 ° C.) or higher, specifically about 670 ° C. to 720 ° C. However, at such a temperature, it is difficult to avoid crystallization (particularly, Al—Zr crystallization) associated with fluctuations in hot water temperature. Therefore, in the present invention, the temperature of the molten metal used for casting is positively increased. Specifically, the temperature of the molten metal is set to 730 ° C. or higher. By increasing the temperature of the molten metal to 730 ° C. or higher, crystallization associated with fluctuations in the molten metal temperature can be suppressed, and as a result, the formation of coarse crystal precipitates can be reduced. The temperature of the molten metal is preferably 730 ° C. or higher, more preferably 780 ° C. or higher, and preferably 850 ° C. or lower from the viewpoint of energy. In order to reduce crystal precipitates more effectively, it is preferable to increase the cooling rate in the casting process. A specific cooling rate is 5 ° C./sec or more. The cooling rate can be adjusted by the material of the mold, the shape of the mold, the cooling method, and the like. For example, the cooling rate can be increased by using a mold made of a material having excellent thermal conductivity, using a thin mold, or performing appropriate forced cooling. In continuous casting, the cooling rate can also be adjusted by the casting rate. The material and shape of the mold, the cooling method, the casting conditions, etc. may be selected so as to achieve a desired cooling rate.

上記鋳造材に熱間鍛造、熱間圧延などの熱間加工を施したり、連続鋳造圧延を行ったりすることで、鋳造組織を低減、又は消滅でき、鋳造組織の粒界割れといった欠陥を解消することができる。   The cast structure can be reduced or eliminated by subjecting the cast material to hot working such as hot forging and hot rolling, or continuous casting and rolling, eliminating defects such as intergranular cracking in the cast structure. be able to.

上記熱間加工材に(冷間)伸線加工を施すことで、本発明のAl合金線(伸線材)が得られる。伸線加工度は、所望の線径に応じて適宜選択することができる。上記熱間加工材に(冷間)圧延を施すことで、Al合金板(圧延材)が得られる。圧下率は、所望の厚さに応じて適宜選択することができる。   By subjecting the hot-worked material to (cold) wire drawing, the Al alloy wire (wire-drawing material) of the present invention can be obtained. The degree of wire drawing can be appropriately selected according to a desired wire diameter. An Al alloy sheet (rolled material) is obtained by subjecting the hot-worked material to (cold) rolling. The rolling reduction can be appropriately selected according to the desired thickness.

上記伸線材や圧延材、上述した鋳造材、熱間加工材はそのまま利用することができるが、更に、熱処理を施すことができる。例えば、有害な偏析を抑えて加工性の向上などを目的として、上記鋳造材などに均質化熱処理を施したり、伸びや加工性の十分な確保などを目的として上記伸線材などに軟化処理を施したりできる。   The wire drawing material, rolled material, the above-described cast material, and hot-worked material can be used as they are, but heat treatment can be further performed. For example, for the purpose of suppressing harmful segregation and improving workability, the cast material is subjected to homogenization heat treatment, and the wire drawing material is subjected to softening for the purpose of ensuring sufficient elongation and workability. You can.

均質化処理の条件は、加熱温度が400℃以上550℃以下、加熱時間が1時間以上96時間以下、が挙げられる。軟化処理は、連続処理及びバッチ処理のいずれも利用でき、長尺材には、連続処理が実用的である。バッチ処理の条件は、加熱対象の加熱温度が250℃以上、好ましくは300℃以上500℃以下、加熱時間が0.5時間以上6時間以下、が好ましい。連続処理は、所望の特性となるように処理方法に応じた加熱に寄与するパラメータ(炉内温度(炉式)、電流値(通電式)、線速などの搬送速度、線径や厚さなど)を調整するとよい。   The conditions for the homogenization treatment include a heating temperature of 400 ° C. to 550 ° C. and a heating time of 1 hour to 96 hours. As the softening treatment, both continuous treatment and batch treatment can be used, and continuous treatment is practical for long materials. The batch treatment conditions are such that the heating temperature of the heating target is 250 ° C. or higher, preferably 300 ° C. or higher and 500 ° C. or lower, and the heating time is 0.5 hours or longer and 6 hours or shorter. Continuous processing is a parameter that contributes to heating according to the processing method to achieve the desired characteristics (furnace temperature (furnace type), current value (energization type), conveyance speed such as wire speed, wire diameter and thickness, etc. ) Should be adjusted.

[試験例]
種々の組成のAl合金を作製し、得られたAl合金の組織、機械的特性、光輝アルマイト後の外観を調べた。
[Test example]
Al alloys with various compositions were prepared, and the structure, mechanical properties, and appearance after bright alumite of the obtained Al alloys were examined.

ここでは、Al合金線と、Al合金板とを作製した。Al合金線は、原料の準備→溶解→脱ガス処理→鋳造→均質化処理→熱間鍛造→冷間伸線→軟化処理という手順で作製した。Al合金板は、原料の準備→溶解→脱ガス処理→鋳造→均質化処理→熱間圧延→冷間圧延→軟化処理という手順で作製した。   Here, an Al alloy wire and an Al alloy plate were produced. The Al alloy wire was prepared in the order of raw material preparation → melting → degassing treatment → casting → homogenization treatment → hot forging → cold drawing → softening treatment. The Al alloy sheet was prepared in the order of raw material preparation → melting → degassing treatment → casting → homogenization treatment → hot rolling → cold rolling → softening treatment.

いずれの試料も、ベース原料として、市販の純アルミニウム(99質量%以上Al)を用意して溶解し、得られた溶湯(溶融アルミニウム)に、Mg,Zrを表1に示す含有量となるように投入して、Al合金の溶湯を作製する。表1において「-」は元素を添加していないことを示す。成分調整を行ったAl合金溶湯にフラックスを添加して脱ガス処理を行い、水素の含有量を調整した。   In any sample, commercially available pure aluminum (99 mass% or more Al) is prepared and melted as a base material, and Mg and Zr are contained in the obtained molten metal (molten aluminum) as shown in Table 1. To prepare a molten Al alloy. In Table 1, “-” indicates that no element was added. A flux was added to the Al alloy molten metal whose components were adjusted, and degassing treatment was performed to adjust the hydrogen content.

Figure 0006010454
Figure 0006010454

いずれの試料も、バッチ処理による金型鋳造(ビレット鋳造)によって鋳造材を作製した。試料No.1〜No.3では、上記脱ガス処理を行ったAl合金溶湯の温度を800℃(≧730℃)に調整して直径φ30mmの鋳塊を作製する。試料No.1〜No.3では、Al合金溶湯の温度から室温(ここでは20℃程度)までの冷却速度が5℃/secである。一方、試料No.100では、上記脱ガス処理を行ったAl合金溶湯の温度を720℃(<730℃)に調整して直径φ30mmの鋳塊を作製する。試料No.100では、Al合金溶湯の温度から室温までの冷却速度が1℃/sec(<5℃/sec)である。ここでは、厚さの異なる鋳型を用いることで、試料No.1〜No.3の冷却速度と、試料No.100の冷却速度とを異ならせた。   In each sample, a cast material was produced by die casting (billet casting) by batch processing. In samples No. 1 to No. 3, the temperature of the molten Al alloy subjected to the degassing process is adjusted to 800 ° C. (≧ 730 ° C.) to produce an ingot having a diameter of 30 mm. In samples No. 1 to No. 3, the cooling rate from the temperature of the molten Al alloy to room temperature (here, about 20 ° C.) is 5 ° C./sec. On the other hand, in sample No. 100, the temperature of the molten Al alloy subjected to the degassing treatment is adjusted to 720 ° C. (<730 ° C.) to produce an ingot having a diameter of 30 mm. In sample No. 100, the cooling rate from the temperature of the molten Al alloy to room temperature is 1 ° C./sec (<5 ° C./sec). Here, the cooling rate of sample No. 1 to No. 3 and the cooling rate of sample No. 100 were made different by using molds having different thicknesses.

作製した各鋳塊を用いて、Al合金板を作製して、組織観察と外観とを調べた。ここでは、各鋳塊を切削して、幅16mm、厚さ8mmの板を切り出し、切削した鋳塊(板)に440℃×16時間の均質化処理を施した後、熱間圧延を施して、厚さ4mmの熱間圧延材を作製する。試料No.1〜No.3はいずれも、熱間圧延時、表面に実質的に割れが生じず、圧延を良好に行えた。得られた熱間圧延材に冷間圧延を施し、試料ごとに厚さ2mmの板材(圧延板)を作製する。得られた厚さ2mmの板材に軟化処理(バッチ処理、400℃×1時間)を施して軟材を作製する。   Using each of the produced ingots, an Al alloy plate was produced, and the structure observation and appearance were examined. Here, each ingot is cut, a plate having a width of 16 mm and a thickness of 8 mm is cut out, and the cut ingot (plate) is subjected to a homogenization treatment of 440 ° C. × 16 hours, followed by hot rolling. Then, a hot-rolled material having a thickness of 4 mm is produced. Samples No. 1 to No. 3 could be rolled well without substantial cracking on the surface during hot rolling. The obtained hot-rolled material is cold-rolled to produce a plate material (rolled plate) having a thickness of 2 mm for each sample. The obtained plate material having a thickness of 2 mm is softened (batch treatment, 400 ° C. × 1 hour) to produce a soft material.

得られた軟材(アルミニウム合金板)について、以下のように組織観察を行った。作製したアルミニウム合金板を厚さ方向に平行に切断した断面(横断面でも縦断面でもよい)をとり、断面を走査型電子顕微鏡(SEM)で観察し、観察像中の視野内に存在する晶析出物を抽出して各晶析出物の面積を求め、各晶析出物の面積相当円(等価面積円)の直径をその晶析出物の直径とする。ここでは、切断数を3、一つの断面についての視野数を5とし、合計15個の視野について、直径が10μm以上の晶析出物の合計数を、合計15個の視野の合計面積で除した値(個/mm2)を求めた。この値を10μm以上の晶析出物の含有量とし、この含有量(個/mm2)を表2に示す。また、晶析出物の合計面積割合を求めた。ここでは、上述の合計15個の視野中に存在する晶析出物を全て抽出して合計面積を求め、晶析出物の合計面積を合計15個の視野の合計面積で除した値(×100)を求めた。この値を合計面積割合とし、合計面積割合(%)を表2に示す。 The obtained soft material (aluminum alloy plate) was observed for the structure as follows. Take a cross-section (cross-sectional or vertical cross-section) cut in parallel to the thickness direction of the produced aluminum alloy plate, observe the cross-section with a scanning electron microscope (SEM), crystals existing in the field of view in the observed image The area of each crystal precipitate is obtained by extracting the precipitate, and the diameter of the circle corresponding to the area (equivalent area circle) of each crystal precipitate is defined as the diameter of the crystal precipitate. Here, the number of cuts was 3, the number of fields per cross section was 5, and the total number of crystal precipitates with a diameter of 10 μm or more was divided by the total area of the total 15 fields for a total of 15 fields. The value (pieces / mm 2 ) was determined. This value is the content of crystal precipitates of 10 μm or more, and this content (pieces / mm 2 ) is shown in Table 2. Further, the total area ratio of the crystal precipitates was determined. Here, the total area is obtained by extracting all the crystal precipitates present in the total 15 fields of view described above, and the value obtained by dividing the total area of the crystal precipitates by the total area of the total 15 fields (× 100) Asked. This value is taken as the total area ratio, and the total area ratio (%) is shown in Table 2.

なお、上述の断面観察は、光学顕微鏡を用いてもよい。また、上記直径の算出は、市販の画像処理装置や画像処理ソフトを利用してもよく、この場合、容易に算出できる。更に、断面は、厚さ方向に直交するように切断したもの、つまり、板の表裏面に平行に切断したものでもよい。断面観察から、いずれの試料の母材も、再結晶組織によって構成されていることを確認した。また、この組織の平均結晶粒径を測定した。平均結晶粒径は、以下のように求めた。上述の断面のSEM観察像を用い、断面における各結晶粒の面積を求め、各結晶粒の面積相当円(等価面積円)の直径をその結晶粒の直径とする。そして、上述の合計15個の各視野からそれぞれ10個以上の結晶粒を選択し、合計150個以上の結晶粒の直径の平均を平均結晶粒径とした。平均結晶粒径(μm)を表2に示す。   The cross-sectional observation described above may use an optical microscope. The diameter may be calculated using a commercially available image processing apparatus or image processing software, and in this case, it can be easily calculated. Furthermore, the cross section may be cut so as to be orthogonal to the thickness direction, that is, cut in parallel to the front and back surfaces of the plate. From cross-sectional observation, it was confirmed that the base material of any sample was constituted by a recrystallized structure. In addition, the average crystal grain size of this structure was measured. The average crystal grain size was determined as follows. Using the SEM observation image of the cross section described above, the area of each crystal grain in the cross section is obtained, and the diameter of the area equivalent circle (equivalent area circle) of each crystal grain is defined as the diameter of the crystal grain. Then, 10 or more crystal grains were selected from each of the 15 total fields of view described above, and the average of the diameters of the 150 or more total crystal grains was defined as the average crystal grain size. Table 2 shows the average crystal grain size (μm).

得られた軟材(アルミニウム合金板)について、光輝仕上げ処理を施した後、陽極酸化処理を施し、つまり、光輝アルマイト処理を施し、この処理後の外観の良否を調べた。その結果を表2に示す。ここでは、外観の良否は、光学顕微鏡を用いた顕微鏡観察によって行った。1.0mm×1.0mmの領域において、黒い斑点の合計面積を求め、合計面積が1000μm2以下の場合を○、1000μm2超の場合を×と評価した。黒い斑点の合計面積は、顕微鏡観察像に二値化処理などを施して黒い斑点を抽出し、抽出した各黒い斑点の面積を合計することで、容易に求められる。更に、光輝アルマイト処理後に得られた処理材の光沢度を測定した。その結果も表2に示す。光沢度の測定は、JIS Z 8741(鏡面光沢度-測定方法、1997、「鏡面光沢度測定方法」方法3)に準拠して行う。ここでは、汎用の光沢度計を使用し、入射角及び受光角を60度、銀鏡での光沢度を100%としたときの各試料の光沢度(%)を測定した。試料No.100は、目視でも確認できる黒い斑点が生じていたため、光沢度を測定していない。 The obtained soft material (aluminum alloy plate) was subjected to a bright finish treatment, followed by an anodizing treatment, that is, a bright alumite treatment, and the quality of the appearance after this treatment was examined. The results are shown in Table 2. Here, the quality of the appearance was determined by microscopic observation using an optical microscope. In the region of 1.0 mm × 1.0 mm, to find the total area of the black spots, the case of the total area is 1000 .mu.m 2 or less ○, was evaluated as × in the case of 1000 .mu.m 2 greater. The total area of the black spots is easily obtained by performing binarization processing or the like on the microscope observation image to extract the black spots and summing the areas of the extracted black spots. Furthermore, the glossiness of the treatment material obtained after the bright alumite treatment was measured. The results are also shown in Table 2. Glossiness is measured according to JIS Z 8741 (Specular Glossiness-Measurement Method, 1997, “Specular Glossiness Measurement Method” Method 3). Here, a general-purpose glossiness meter was used, and the glossiness (%) of each sample was measured when the incident angle and the light receiving angle were 60 degrees and the glossiness with a silver mirror was 100%. In sample No. 100, since black spots that can be visually confirmed were generated, the glossiness was not measured.

作製した各鋳塊を用いて、Al合金線を作製して、機械的特性を調べた。ここでは、各鋳塊の表面を切削して直径φ22mmとし、この切削した鋳塊(丸棒)に440℃×16時間の均質化処理を施した後、熱間鍛造を施して、直径φ13mmの鍛造材を作製する。試料No.1〜No.3はいずれも、熱間鍛造時、表面に実質的に割れが生じず、鍛造を良好に行えた。得られた鍛造材に冷間伸線加工を施し、試料ごとに線径φ6.5mmの線材を作製する。得られた線径φ6.5mmの線材に軟化処理(バッチ処理、400℃×1時間)を施して軟材を作製する。得られた軟材(アルミニウム合金線)について引張強さ(MPa)及び破断伸び(%)を測定した。その結果を表2に示す。引張強さ及び破断伸び(伸び)は、JIS Z 2241(金属材料引張試験方法、1998)に準拠して、汎用の引張試験機を用いて室温(20℃〜25℃程度)で測定した。   Using each ingot produced, an Al alloy wire was produced and the mechanical properties were examined. Here, the surface of each ingot is cut to a diameter of φ22 mm, and after this homogenized treatment of 440 ° C. × 16 hours is applied to the cut ingot (round bar), hot forging is applied to obtain a diameter of φ13 mm. A forging material is produced. Samples No. 1 to No. 3 were all capable of being forged satisfactorily without substantially cracking the surface during hot forging. The obtained forging material is subjected to cold drawing to produce a wire material having a wire diameter of φ6.5 mm for each sample. The obtained wire having a diameter of φ6.5 mm is subjected to a softening treatment (batch treatment, 400 ° C. × 1 hour) to produce a soft material. The obtained soft material (aluminum alloy wire) was measured for tensile strength (MPa) and elongation at break (%). The results are shown in Table 2. Tensile strength and elongation at break (elongation) were measured at room temperature (approximately 20 ° C. to 25 ° C.) using a general-purpose tensile tester in accordance with JIS Z 2241 (Metal Material Tensile Test Method, 1998).

Figure 0006010454
Figure 0006010454

表1,表2に示すように、Mg及び水素の含有量が特定の範囲であり、かつ、直径10μm以上の晶析出物の数が3個/mm2以下である試料No.1〜No.3は、一般的な5000系アルミニウム合金と比較してMgを多く含有していながら、光輝アルマイト処理後に高い光沢度を有することが分かる。かつ、試料No.1〜No.3は、陽極酸化皮膜に黒い斑点が実質的に存在せず、又は非常に少なく(合計面積割合が小さく)、光輝アルマイト処理後の外観に優れることが分かる。つまり、試料No.1〜No.3は、光輝アルマイト処理後において、全体に亘って、優れた光輝性を有する、といえる。一方、黒い斑点の合計面積割合が大きい試料No.100について、陽極酸化皮膜を具えた状態で厚さ方向に平行に切断した断面を観察すると、陽極酸化皮膜における黒い斑点が存在する部分の下には、直径10μm以上の粗大な晶析出物(ここでは最大径が34μm)が確認された。また、黒い斑点の合計面積割合が大きい試料No.100は、晶析出物が多く存在する(ここでは合計面積割合が2%超)。他方、粗大な晶析出物が非常に少なく、陽極酸化処理後の外観にも優れる試料No.1〜No.3はいずれも、晶析出物の最大径も小さく(ここでは22μm以下)、晶析出物自体も非常に少ない(ここでは合計面積割合が0.15%以下)。これらのことから、試料No.1〜No.3は、上述の粗大な晶析出物が少なかったこと、又は実質的に存在しなかったことで、全体として優れた光輝性を有することができたと考えられる。また、試料No.1〜No.3は、晶析出物自体も非常に少ないことで、陽極酸化処理時に、処理後の外観を損ねるような黒い斑点が生じ難くなったと考えられる。 As shown in Tables 1 and 2, Samples No. 1 to No. 3 in which the contents of Mg and hydrogen are in a specific range, and the number of crystal precipitates having a diameter of 10 μm or more are 3 pieces / mm 2 or less, It can be seen that, while containing a large amount of Mg as compared with a general 5000 series aluminum alloy, it has a high glossiness after the bright alumite treatment. In addition, it can be seen that Samples No. 1 to No. 3 are substantially free of black spots on the anodized film or very small (total area ratio is small), and have an excellent appearance after the bright alumite treatment. In other words, it can be said that Samples No. 1 to No. 3 have excellent glittering properties after the glittering alumite treatment. On the other hand, for sample No. 100 with a large total area ratio of black spots, when a cross-section cut in parallel with the thickness direction with an anodized film was observed, it was under the part where black spots were present in the anodized film. As a result, coarse crystal precipitates having a diameter of 10 μm or more (here, the maximum diameter was 34 μm) were confirmed. Sample No. 100 having a large total area ratio of black spots has a large amount of crystal precipitates (here, the total area ratio exceeds 2%). On the other hand, sample No.1 to No.3, which have very few coarse crystal precipitates and excellent appearance after anodizing treatment, all have a small maximum crystal precipitate size (22 μm or less in this case). The objects themselves are very small (here, the total area ratio is 0.15% or less). From these facts, samples No. 1 to No. 3 were able to have excellent luster as a whole because the above-mentioned coarse crystal precipitates were few or substantially absent. Conceivable. Samples No. 1 to No. 3 also have very few crystal precipitates themselves, and it is considered that black spots that impair the appearance after the treatment are less likely to occur during the anodizing treatment.

更に、Mgを特定の範囲で含有する試料No.1〜No.3は、高強度であることが分かる。ここでは、試料No.1〜No.3のいずれも、引張強さが300MPa以上であり、一般的な5000系アルミニウム合金よりも高強度であり、一般的な6000系アルミニウム合金並みの強度を有する。特に、Zrを含有することで、強度を更に向上できることが分かる。加えて、ここでは、試料No.1〜No.3のいずれも、破断伸び(伸び)も高く、高強度・高靭性であることも分かる。更に、試料No.1〜No.3のいずれも、微細組織(ここでは平均結晶粒径が25μm以下)であり、このような微細組織から構成されていることも、高強度・高靭性に寄与していると考えられる。   Furthermore, it can be seen that Samples No. 1 to No. 3 containing Mg in a specific range have high strength. Here, all of samples No. 1 to No. 3 have a tensile strength of 300 MPa or more, higher strength than a general 5000 series aluminum alloy, and have the same strength as a general 6000 series aluminum alloy. . In particular, it can be seen that the strength can be further improved by containing Zr. In addition, it can also be seen that all of Samples No. 1 to No. 3 have high elongation at break (elongation) and high strength and high toughness. Furthermore, all of samples No. 1 to No. 3 have a fine structure (here, the average crystal grain size is 25 μm or less), and the fact that they are composed of such a fine structure also contributes to high strength and high toughness. it seems to do.

そして、このような光輝性に優れる上に、高強度なアルミニウム合金は、原料組成を調整すると共に、製造条件を制御して(ここでは溶湯の温度を高めにしたり、冷却速度を大きくしたりして)、晶析出物の生成及び成長を抑制することで製造できることが分かる。   In addition to such excellent luster, a high-strength aluminum alloy adjusts the raw material composition and controls the production conditions (in this case, the temperature of the molten metal is increased or the cooling rate is increased). It can be seen that production can be achieved by suppressing the formation and growth of crystal precipitates.

その他、試料No.1〜No.3は、水素の含有量を低減したことでブローホールを抑制できたことからも、良好な外観を有することができたと考えられる。また、試料No.1〜No.3は、Mgを特定の範囲で含有することで加工性にも優れ、一般的な5000系アルミニウム合金と同等以上の加工性を有するといえる。更に、脱ガス処理を行って水素の含有量を低減することで、製造途中での割れを抑制し、加工性を向上できたと考えられる。これらの点から、試料No.1〜No.3は、生産性にも優れると期待される。   In addition, it is considered that Samples No. 1 to No. 3 could have a good appearance because the blowholes could be suppressed by reducing the hydrogen content. Samples No. 1 to No. 3 are excellent in workability by containing Mg in a specific range, and can be said to have workability equivalent to or higher than that of a general 5000 series aluminum alloy. Furthermore, it is considered that by performing degassing treatment to reduce the hydrogen content, cracking during the production was suppressed, and the workability was improved. From these points, samples No. 1 to No. 3 are expected to be excellent in productivity.

なお、得られた軟材の組成をICP発光分光分析法(Inductively Coupled Plasma Atomic Emission Spectrometry、ICP-AES)により調べたところ、MgやZrの含有量は表1に示す値と実質的に等しいことを確認した。また、軟材は、不可避不純物としてFe,Siを含有していた。Fe,Siの含有量を表1に示す。表1に示すように、試料No.1〜No.3はいずれも、Feの含有量が0.3質量%以下、Siの含有量が0.1質量%であることからも、粗大な晶析出物が存在し難かった、と考えられる。一方、試料No.100は、Fe及びSiの含有量が少なかったものの、製造条件が適切ではないことで(ここでは溶湯の温度が低く、冷却速度が小さいことで)、晶析出物が生成され易くなった上に、粗大な晶析出物が生成された、と考えられる。   The composition of the obtained soft material was examined by ICP emission spectroscopy (ICP-AES), and the Mg and Zr contents were substantially equal to the values shown in Table 1. It was confirmed. Moreover, the softwood contained Fe and Si as inevitable impurities. Table 1 shows the contents of Fe and Si. As shown in Table 1, all of sample Nos. 1 to 3 have coarse crystal precipitates because the Fe content is 0.3% by mass or less and the Si content is 0.1% by mass. It is thought that it was difficult. On the other hand, although sample No. 100 had a low content of Fe and Si, crystal precipitates were generated because the manufacturing conditions were not appropriate (here, the temperature of the molten metal was low and the cooling rate was low). It is considered that coarse crystal precipitates were generated in addition to the ease.

更に、得られた鋳造材の水素の含有量を、不活性ガス融解法を利用して調べたところ、表1に示す含有量であった。水素の含有量の測定には、市販の装置を利用でき、水素の質量を測定して、常温・1気圧(約0.1MPa)下で体積変換するとよい。得られた軟材の水素の含有量は、上記鋳造材の水素の含有量を実質的に維持する。   Furthermore, when the hydrogen content of the obtained cast material was examined using an inert gas melting method, the content shown in Table 1 was obtained. A commercially available apparatus can be used to measure the hydrogen content. The mass of the hydrogen can be measured, and the volume can be converted at room temperature and 1 atm (about 0.1 MPa). The hydrogen content of the obtained soft material substantially maintains the hydrogen content of the cast material.

また、ここでは、板材に対して、組織及び光輝アルマイト後の外観を確認し、線材に対して、機械的特性を確認したが、線材においても、板材と同様の組織、光輝アルマイト後の外観を有すること、板材においても、線材と同様に一般的な5000系合金の板材よりも強度に優れることを確認している。   In addition, here, the structure and the appearance after bright alumite were confirmed for the plate material, and the mechanical characteristics were confirmed for the wire material. It has also been confirmed that the plate material is superior in strength to a general 5000 series alloy plate material as well as the wire material.

上述のように特定の組成及び組織からなるAl-Mg系合金は、溶体化処理及び時効処理を行わなくても高強度でありながら、陽極酸化処理後の外観に優れることが分かる。そのため、このAl-Mg系合金は、良好な外観を有して商品価値の高いアルミニウム合金部材を構成する素材に好適に利用できると期待される。   As described above, it can be seen that the Al—Mg-based alloy having a specific composition and structure is excellent in appearance after anodizing treatment while having high strength without performing solution treatment and aging treatment. Therefore, it is expected that this Al—Mg alloy can be suitably used as a material for forming an aluminum alloy member having a good appearance and high commercial value.

なお、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を逸脱することなく、適宜変更することが可能である。例えば、Mg,Zr,水素の含有量を特定の範囲で変化させたり、溶湯の温度を変化させたりすることができる。また、ビレット鋳造に代えて、連続鋳造圧延を行うことができる。その他、アルミニウム合金線の大きさ(線径)や断面形状、アルミニウム合金板の厚さなどを適宜変更することができる。   In addition, this invention is not limited to embodiment mentioned above, It is possible to change suitably, without deviating from the summary of this invention. For example, the contents of Mg, Zr, and hydrogen can be changed within a specific range, or the temperature of the molten metal can be changed. Moreover, it can replace with billet casting and can perform continuous casting rolling. In addition, the size (wire diameter) and cross-sectional shape of the aluminum alloy wire, the thickness of the aluminum alloy plate, and the like can be appropriately changed.

本発明のアルミニウム合金、及び本発明のアルミニウム合金線は、自動車や自転車といった輸送機器の部品の素材、その他、高強度で軽量であることが望まれる種々の分野の部品の素材に好適に利用することができる。   The aluminum alloy of the present invention and the aluminum alloy wire of the present invention are suitably used as materials for parts of transportation equipment such as automobiles and bicycles, and other materials for parts in various fields where high strength and light weight are desired. be able to.

Claims (5)

Mgを7質量%以上12.0質量%以下含有し、残部がAl及び不可避不純物からなり、
前記不可避不純物のうち、Siの含有量が0.05質量%以下であり、かつFeの含有量が0.3質量%以下であり、
水素の含有量が2ml/100g以下であり、
断面における直径10μm以上の晶析出物が3個/mm2以下であり、
断面における晶析出物の合計面積割合が0.15%以下であるアルミニウム合金
Contains 7 % by mass or more and 12.0% by mass or less of Mg, with the balance consisting of Al and inevitable impurities,
Among the inevitable impurities, the Si content is 0.05% by mass or less, and the Fe content is 0.3% by mass or less,
The hydrogen content is 2 ml / 100 g or less,
Intermetallic compounds above diameter 10μm in cross section Ri Der three / mm 2 or less,
An aluminum alloy wire having a total area ratio of crystal precipitates in a cross section of 0.15% or less .
引張強さが300MPa以上である請求項1に記載のアルミニウム合金2. The aluminum alloy wire according to claim 1 , wherein the tensile strength is 300 MPa or more. 破断伸びが15%以上である請求項1又は請求項2に記載のアルミニウム合金 3. The aluminum alloy wire according to claim 1 , wherein the elongation at break is 15% or more. 更に、Zrを0.01質量%以上0.3質量%以下含有する請求項1から請求項3のいずれか1項に記載のアルミニウム合金4. The aluminum alloy wire according to claim 1, further comprising 0.01% by mass to 0.3% by mass of Zr. 平均結晶粒径が25μm以下である請求項1から請求項4のいずれか1項に記載のアルミニウム合金線 5. The aluminum alloy wire according to claim 1, wherein the average crystal grain size is 25 μm or less .
JP2012284696A 2012-12-27 2012-12-27 Aluminum alloy wire Active JP6010454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012284696A JP6010454B2 (en) 2012-12-27 2012-12-27 Aluminum alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012284696A JP6010454B2 (en) 2012-12-27 2012-12-27 Aluminum alloy wire

Publications (2)

Publication Number Publication Date
JP2014125665A JP2014125665A (en) 2014-07-07
JP6010454B2 true JP6010454B2 (en) 2016-10-19

Family

ID=51405413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012284696A Active JP6010454B2 (en) 2012-12-27 2012-12-27 Aluminum alloy wire

Country Status (1)

Country Link
JP (1) JP6010454B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6405145B2 (en) * 2014-08-05 2018-10-17 株式会社神戸製鋼所 Aluminum alloy filler
JP7137758B2 (en) * 2016-10-31 2022-09-15 住友電気工業株式会社 Aluminum alloy wires, aluminum alloy stranded wires, coated wires, and wires with terminals
DE112017005484T5 (en) * 2016-10-31 2019-07-18 Autonetworks Technologies, Ltd. Aluminum alloy wire, aluminum alloy stranded wire, jacketed electrical wire, and electric wire equipped with a terminal
WO2018079047A1 (en) * 2016-10-31 2018-05-03 住友電気工業株式会社 Aluminum alloy wire, aluminum alloy twisted wire, coated electrical wire, and electrical wire with terminal
CN113409989B (en) * 2016-10-31 2023-02-21 住友电气工业株式会社 Aluminum alloy wire, aluminum alloy stranded wire, coated electric wire, and electric wire with terminal
US11149332B2 (en) * 2017-04-15 2021-10-19 The Boeing Company Aluminum alloy with additions of magnesium and at least one of chromium, manganese and zirconium, and method of manufacturing the same
US11098391B2 (en) * 2017-04-15 2021-08-24 The Boeing Company Aluminum alloy with additions of magnesium, calcium and at least one of chromium, manganese and zirconium, and method of manufacturing the same
JP7414453B2 (en) * 2019-10-08 2024-01-16 株式会社Uacj Aluminum alloy material and its manufacturing method
JP7414452B2 (en) * 2019-10-08 2024-01-16 株式会社Uacj Aluminum alloy material and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216953A (en) * 1987-03-05 1988-09-09 Sumitomo Light Metal Ind Ltd Production of al alloyed substrate for magnetic disk
JP2640993B2 (en) * 1990-06-11 1997-08-13 スカイアルミニウム株式会社 Aluminum alloy rolled plate for superplastic forming
JP2005344173A (en) * 2004-06-03 2005-12-15 Kobe Steel Ltd Aluminum-alloy substrate for magnetic disk, and its manufacturing method
JP4542016B2 (en) * 2005-10-07 2010-09-08 株式会社神戸製鋼所 Manufacturing method of forming aluminum alloy sheet
JP4231529B2 (en) * 2007-03-30 2009-03-04 株式会社神戸製鋼所 Aluminum alloy plate manufacturing method and aluminum alloy plate
JP2012082469A (en) * 2010-10-08 2012-04-26 Sumitomo Electric Ind Ltd Aluminum alloy
JP5155464B2 (en) * 2011-04-11 2013-03-06 住友電気工業株式会社 Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, and wire harness

Also Published As

Publication number Publication date
JP2014125665A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP6010454B2 (en) Aluminum alloy wire
JP5863626B2 (en) Aluminum alloy forging and method for producing the same
KR101781669B1 (en) Aluminum alloy wire for use in bolts, bolt, and manufacturing method of these
JP6420553B2 (en) Aluminum alloy, aluminum alloy wire, aluminum alloy wire manufacturing method, aluminum alloy member manufacturing method, and aluminum alloy member
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
JP2013209715A (en) Aluminum alloy forged material for automobile and production method of the material
JP6465338B2 (en) Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy
JP6119937B1 (en) Aluminum alloy extruded material having anodized film with excellent appearance quality and method for producing the same
CN103732772A (en) High-strength aluminum alloy and method for producing same
US20160201179A1 (en) Copper alloy sheet material and method for producing same, and current-carrying component
CN105492640A (en) High-strength aluminum alloy and method for producing same
CN105934528B (en) High-strength aluminum alloy and its manufacturing method
JP2011017041A (en) Magnesium alloy sheet
JP5215710B2 (en) Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same
CN106574328B (en) Aluminium alloy plate
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
CN102031433A (en) Magnesium-zinc-manganese-cerium magnesium alloy material with high zinc content
WO2018088351A1 (en) Aluminum alloy extruded material
WO2017006816A1 (en) Aluminum alloy extruded material having positive electrode oxide film and excellent external appearance quality and production method therefor
JP2006316303A (en) Aluminum alloy extruded material for high temperature forming, and high temperature formed product
JP5802114B2 (en) Aluminum alloy wire for bolt, bolt and method for producing aluminum alloy wire for bolt
JP4996854B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP2012082469A (en) Aluminum alloy
US20210301373A1 (en) Wrought magnesium alloy having improved properties, method of manufacturing same, and high-speed extrusion method using same
JP6345016B2 (en) Aluminum alloy plate for hot forming and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160916

R150 Certificate of patent or registration of utility model

Ref document number: 6010454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250