JP6006799B2 - 最小二乗サポートベクターマシンを用いた貯留層特性予測 - Google Patents
最小二乗サポートベクターマシンを用いた貯留層特性予測 Download PDFInfo
- Publication number
- JP6006799B2 JP6006799B2 JP2014533595A JP2014533595A JP6006799B2 JP 6006799 B2 JP6006799 B2 JP 6006799B2 JP 2014533595 A JP2014533595 A JP 2014533595A JP 2014533595 A JP2014533595 A JP 2014533595A JP 6006799 B2 JP6006799 B2 JP 6006799B2
- Authority
- JP
- Japan
- Prior art keywords
- data
- reservoir
- training
- attribute
- underground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012843 least square support vector machine Methods 0.000 title 1
- 238000012549 training Methods 0.000 claims description 93
- 238000012706 support-vector machine Methods 0.000 claims description 75
- 238000012545 processing Methods 0.000 claims description 64
- 230000006870 function Effects 0.000 claims description 53
- 230000015572 biosynthetic process Effects 0.000 claims description 49
- 238000000034 method Methods 0.000 claims description 33
- 238000012360 testing method Methods 0.000 claims description 22
- 238000013500 data storage Methods 0.000 claims description 15
- 239000011435 rock Substances 0.000 claims description 12
- 238000002790 cross-validation Methods 0.000 claims description 11
- 238000000611 regression analysis Methods 0.000 claims description 9
- 239000013598 vector Substances 0.000 claims description 9
- 238000000638 solvent extraction Methods 0.000 claims 2
- 238000013528 artificial neural network Methods 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 238000005457 optimization Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000011022 operating instruction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/282—Application of seismic models, synthetic seismograms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
- G01V1/306—Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V99/00—Subject matter not provided for in other groups of this subclass
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Geophysics And Detection Of Objects (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161540263P | 2011-09-28 | 2011-09-28 | |
| US61/540,263 | 2011-09-28 | ||
| PCT/US2012/055711 WO2013048798A2 (en) | 2011-09-28 | 2012-09-17 | Reservoir properties prediction with least square support vector machine |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2014535044A JP2014535044A (ja) | 2014-12-25 |
| JP2014535044A5 JP2014535044A5 (enExample) | 2015-10-15 |
| JP6006799B2 true JP6006799B2 (ja) | 2016-10-12 |
Family
ID=47073493
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2014533595A Expired - Fee Related JP6006799B2 (ja) | 2011-09-28 | 2012-09-17 | 最小二乗サポートベクターマシンを用いた貯留層特性予測 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US9128203B2 (enExample) |
| EP (1) | EP2761331B1 (enExample) |
| JP (1) | JP6006799B2 (enExample) |
| CA (1) | CA2847864C (enExample) |
| WO (1) | WO2013048798A2 (enExample) |
Families Citing this family (67)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MY162927A (en) | 2010-05-28 | 2017-07-31 | Exxonmobil Upstream Res Co | Method for seismic hydrocarbon system anylysis |
| US9529115B2 (en) | 2012-12-20 | 2016-12-27 | Exxonmobil Upstream Research Company | Geophysical modeling of subsurface volumes based on horizon extraction |
| US9915742B2 (en) | 2012-12-20 | 2018-03-13 | Exxonmobil Upstream Research Company | Method and system for geophysical modeling of subsurface volumes based on label propagation |
| US10234583B2 (en) | 2012-12-20 | 2019-03-19 | Exxonmobil Upstream Research Company | Vector based geophysical modeling of subsurface volumes |
| WO2014099204A1 (en) | 2012-12-20 | 2014-06-26 | Exxonmobil Upstream Research Company | Method and system for geophysical modeling of subsurface volumes based on computed vectors |
| RU2015143556A (ru) * | 2013-05-24 | 2017-06-29 | Хэллибертон Энерджи Сервисиз, Инк. | Способы и системы сопоставления истории месторождений для улучшенной оценки продуктивности месторождений |
| CN103595568B (zh) * | 2013-11-17 | 2016-08-17 | 吉林大学 | 一种基于ls-svm的互联网实时信号传输方法 |
| CN105467449B (zh) * | 2014-09-04 | 2018-01-05 | 中国石油化工股份有限公司 | 基于地震分级敏感属性融合的深层薄互储层定量表征方法 |
| WO2016118223A1 (en) | 2015-01-22 | 2016-07-28 | Exxonmobil Upstream Research Company | Adaptive structure-oriented operator |
| JP6460523B2 (ja) * | 2015-01-22 | 2019-01-30 | 株式会社セオコンプ | 地下構造探査システム及び地下構造探査方法 |
| WO2016171778A1 (en) | 2015-04-24 | 2016-10-27 | Exxonmobil Upstream Research Company | Seismic stratigraphic surface classification |
| US10781686B2 (en) | 2016-06-27 | 2020-09-22 | Schlumberger Technology Corporation | Prediction of fluid composition and/or phase behavior |
| CN107783183B (zh) * | 2016-08-31 | 2019-10-29 | 中国石油化工股份有限公司 | 深度域地震波阻抗反演方法及系统 |
| US11320565B2 (en) * | 2016-10-13 | 2022-05-03 | Schlumberger Technology Corporation | Petrophysical field evaluation using self-organized map |
| US11694095B2 (en) | 2017-05-08 | 2023-07-04 | Schlumberger Technology Corporation | Integrating geoscience data to predict formation properties |
| CN107526117B (zh) * | 2017-07-06 | 2019-08-13 | 天津科技大学 | 基于自动编码和超限学习联合网络的声波速度预测方法 |
| WO2019017962A1 (en) * | 2017-07-21 | 2019-01-24 | Landmark Graphics Corporation | TANK MODELING BASED ON DEEP LEARNING |
| US10990882B2 (en) * | 2017-07-28 | 2021-04-27 | International Business Machines Corporation | Stratigraphic layer identification from seismic and well data with stratigraphic knowledge base |
| JP6945917B2 (ja) * | 2017-12-22 | 2021-10-06 | 株式会社奥村組 | トンネル切羽前方探査方法 |
| GB2570330B (en) * | 2018-01-22 | 2020-02-26 | Equinor Energy As | Regularization of non-linear inversions of geophysical data |
| US20210047910A1 (en) * | 2018-05-09 | 2021-02-18 | Landmark Graphics Corporation | Learning based bayesian optimization for optimizing controllable drilling parameters |
| CN109345007B (zh) * | 2018-09-13 | 2021-06-04 | 中国石油大学(华东) | 一种基于XGBoost特征选择的有利储层发育区预测方法 |
| CN109164491A (zh) * | 2018-10-15 | 2019-01-08 | 中国石油大学(北京) | 一种基于分类支持向量机的地震岩相识别方法及系统 |
| CN109492812A (zh) * | 2018-11-12 | 2019-03-19 | 北京航天智造科技发展有限公司 | 基于支持向量机、属性约简和遗传算法的物流货运需求预测方法 |
| RU2692100C1 (ru) * | 2018-12-03 | 2019-06-21 | Компания "Сахалин Энерджи Инвестмент Компани Лтд." | Способ определения коллекторских свойств тонкослоистых пластов |
| CN109611087B (zh) * | 2018-12-11 | 2021-10-08 | 中国石油大学(北京) | 一种火山岩油藏储层参数智能预测方法及系统 |
| CN109902390B (zh) * | 2018-12-13 | 2023-10-24 | 中国石油大学(华东) | 一种基于小样本扩充的有利储层发育区预测方法 |
| US12437231B2 (en) | 2019-02-05 | 2025-10-07 | Schlumberger Technology Corporation | Differential multi model training for multiple interpretation options |
| WO2020172019A1 (en) * | 2019-02-20 | 2020-08-27 | Saudi Arabian Oil Company | Method for fast calculation of seismic attributes using artificial intelligence |
| US10908308B1 (en) * | 2019-07-25 | 2021-02-02 | Chevron U.S.A. Inc. | System and method for building reservoir property models |
| CN112346116B (zh) * | 2019-08-09 | 2024-10-29 | 中国石油天然气集团有限公司 | 储层预测方法及装置 |
| CN112346118B (zh) * | 2019-08-09 | 2024-10-29 | 中国石油天然气集团有限公司 | 基于地震属性优选的储层特征预测方法及装置 |
| US12189075B2 (en) | 2019-08-26 | 2025-01-07 | Landmark Graphics Corporation | Building scalable geological property models using machine learning algorithms |
| CN112444860A (zh) * | 2019-08-27 | 2021-03-05 | 中国石油化工股份有限公司 | 一种基于支持矢量机算法的地震相分析方法 |
| CN112446391B (zh) * | 2019-08-28 | 2024-11-01 | 辽宁省交通高等专科学校 | 基于最小二乘支持向量机的太阳高度角预测方法 |
| CN112580673B (zh) * | 2019-09-27 | 2024-04-12 | 中国石油化工股份有限公司 | 基于空间概率分布的地震储层样本扩展方法和装置 |
| CN112649869A (zh) * | 2019-10-12 | 2021-04-13 | 中国石油化工股份有限公司 | 基于ga-wnn的储层特征参数预测方法及系统 |
| CN110737021A (zh) * | 2019-11-06 | 2020-01-31 | 中国矿业大学(北京) | 断层识别的方法及其模型训练方法、装置 |
| CN110806444B (zh) * | 2019-11-14 | 2022-06-07 | 山东科技大学 | 基于浅地层剖面仪与svm的海底底质识别与分类方法 |
| US11285673B2 (en) * | 2019-12-17 | 2022-03-29 | Northrop Grumman Systems Corporation | Machine-learning-based additive manufacturing using manufacturing data |
| CN110852657A (zh) * | 2019-12-20 | 2020-02-28 | 山东浪潮人工智能研究院有限公司 | 用于生产过程数据建模的基于互相关的特征构造方法 |
| CN111444963B (zh) * | 2020-03-27 | 2023-08-25 | 中南大学 | 一种基于ssa-svr模型的高炉铁水硅含量预测方法 |
| US11248455B2 (en) | 2020-04-02 | 2022-02-15 | Saudi Arabian Oil Company | Acoustic geosteering in directional drilling |
| CN113589376A (zh) * | 2020-04-30 | 2021-11-02 | 中国石油化工股份有限公司 | 基于多种地震属性的地层厚度预测方法 |
| EP4158154A1 (en) | 2020-05-26 | 2023-04-05 | Saudi Arabian Oil Company | Water detection for geosteering in directional drilling |
| EP4158153A1 (en) | 2020-05-26 | 2023-04-05 | Saudi Arabian Oil Company | Instrumented mandrel for coiled tubing drilling |
| US12000223B2 (en) | 2020-05-26 | 2024-06-04 | Openfield Technology | Geosteering in directional drilling |
| CN111723526A (zh) * | 2020-06-24 | 2020-09-29 | 中国地质大学(北京) | 动态回归委员会机器测井储层参数预测方法及系统 |
| CN112099087A (zh) * | 2020-09-27 | 2020-12-18 | 中国石油天然气股份有限公司 | 油藏渗流特征参数的地球物理智能预测方法、装置及介质 |
| CN112213797A (zh) * | 2020-10-28 | 2021-01-12 | 中国石油大学(华东) | 一种利用测井相联合叠后地震属性预测储层产能的方法 |
| US12044124B2 (en) | 2021-02-05 | 2024-07-23 | Saudi Arabian Oil Company | Method and system for real-time hole cleaning using a graphical user interface and user selections |
| US12292543B2 (en) * | 2021-02-12 | 2025-05-06 | Saudi Arabian Oil Company | Method and system for determining permeability and lost circulation |
| CN113064216A (zh) * | 2021-02-25 | 2021-07-02 | 中国石油天然气集团有限公司 | 一种储层孔隙度预测方法、系统、设备及可读存储介质 |
| CN113033074A (zh) * | 2021-02-25 | 2021-06-25 | 中国石油天然气集团有限公司 | 策略组合机制融合蜻蜓算法孔隙度预测方法、系统及设备 |
| CN115407424B (zh) * | 2021-05-28 | 2024-12-20 | 中国石油化工股份有限公司 | 一种基于频相特征的智能岩性识别方法 |
| CN115685314A (zh) * | 2021-07-23 | 2023-02-03 | 中国石油天然气股份有限公司 | 一种地震储层物性参数预测方法及装置 |
| US12037857B2 (en) | 2021-11-30 | 2024-07-16 | Saudi Arabian Oil Company | Method and system for determining hole cleaning efficiency based on wellbore segment lengths |
| CN114385970A (zh) * | 2021-12-24 | 2022-04-22 | 鞍钢集团矿业有限公司 | 基于函数型数据分析的球磨机能耗优化的方法 |
| US12111441B2 (en) * | 2022-03-28 | 2024-10-08 | Halliburton Energy Services, Inc. | Data driven approach to develop petrophysical interpretation models for complex reservoirs |
| CN115421181B (zh) * | 2022-07-27 | 2023-10-20 | 北京超维创想信息技术有限公司 | 一种基于深度学习的三维地质模型相控属性建模方法 |
| US12265192B2 (en) | 2022-08-12 | 2025-04-01 | Saudi Arabian Oil Company | Reconstructing carbonate sediment transport and pathways in the geological record |
| CN117950025A (zh) * | 2022-10-26 | 2024-04-30 | 中国石油天然气股份有限公司 | 储层物性参数预测方法及装置 |
| CN116307706B (zh) * | 2023-03-08 | 2023-11-03 | 东北石油大学 | 一种基于时序模型的储气库运行地质风险预警和注采气方案优化方法 |
| CN119716997B (zh) * | 2023-09-27 | 2025-10-28 | 中国石油天然气股份有限公司 | 基于正演模拟的多属性融合预测储层厚度的方法及装置 |
| CN117452518B (zh) * | 2023-12-22 | 2024-03-19 | 中国石油大学(华东) | 基于多学科数据融合聚类算法的储层岩性预测方法 |
| CN117909933B (zh) * | 2024-01-23 | 2024-12-10 | 西南石油大学 | 一种基于支持向量机回归模型的岩石可钻性预测方法 |
| CN119126220B (zh) * | 2024-08-02 | 2025-10-10 | 中海石油(中国)有限公司海南分公司 | 一种基于动态递进搜索算法的地震砂体预测方法 |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2526576A1 (en) | 2003-05-22 | 2004-12-02 | Schlumberger Canada Limited | Method for prospect identification in asset evaluation |
-
2012
- 2012-09-14 US US13/618,327 patent/US9128203B2/en active Active
- 2012-09-17 EP EP12777960.1A patent/EP2761331B1/en not_active Not-in-force
- 2012-09-17 JP JP2014533595A patent/JP6006799B2/ja not_active Expired - Fee Related
- 2012-09-17 WO PCT/US2012/055711 patent/WO2013048798A2/en not_active Ceased
- 2012-09-17 CA CA2847864A patent/CA2847864C/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| EP2761331B1 (en) | 2018-10-24 |
| WO2013048798A3 (en) | 2013-10-10 |
| US20130080066A1 (en) | 2013-03-28 |
| WO2013048798A2 (en) | 2013-04-04 |
| CA2847864A1 (en) | 2013-04-04 |
| EP2761331A2 (en) | 2014-08-06 |
| JP2014535044A (ja) | 2014-12-25 |
| CA2847864C (en) | 2016-11-01 |
| US9128203B2 (en) | 2015-09-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6006799B2 (ja) | 最小二乗サポートベクターマシンを用いた貯留層特性予測 | |
| US12055673B2 (en) | System for improved reservoir exploration and production | |
| US11704579B2 (en) | Earth modeling methods using machine learning | |
| Feng et al. | Uncertainty quantification in fault detection using convolutional neural networks | |
| AU2011283109B2 (en) | Systems and methods for predicting well performance | |
| Lee et al. | Electrofacies characterization and permeability predictions in complex reservoirs | |
| Jo et al. | Machine learning assisted history matching for a deepwater lobe system | |
| EP3987478B1 (en) | Field development planning based on deep reinforcement learning | |
| Ma et al. | Integration of artificial intelligence and production data analysis for shale heterogeneity characterization in steam-assisted gravity-drainage reservoirs | |
| Wang et al. | A hybrid framework for reservoir characterization using fuzzy ranking and an artificial neural network | |
| Asghar et al. | Spatial pseudo-labeling for semi-supervised facies classification | |
| Li et al. | Data-driven in-situ geomechanical characterization in shale reservoirs | |
| Akinyemi et al. | Machine learning application for prediction of sonic wave transit time-A case of Niger Delta basin | |
| Karmakar et al. | Mapping of rock types using a joint approach by combining the multivariate statistics, self-organizing map and Bayesian neural networks: an example from IODP 323 site | |
| Fadokun et al. | Supervised and unsupervised machine learning approach in facies prediction | |
| Behl et al. | Data-driven reduced-order models for volve field using reservoir simulation and physics-informed machine learning techniques | |
| Garini et al. | Filling-well: An effective technique to handle incomplete well-log data for lithology classification using machine learning algorithms | |
| Gohari Nezhad et al. | Enhancing water saturation predictions from conventional well logs in a carbonate gas reservoir with a hybrid CNN-LSTM model | |
| Nustes Andrade et al. | Real-time analysis and forecasting of the microseismic cloud size: Physics-based models versus machine learning | |
| Nguyen et al. | Advanced Prediction of Sand Production Onset Using Data Analysis and Machine Learning Techniques: Insights from Adriatic Sea Gas Wells | |
| Adeogun et al. | Machine learning approach in predicting water saturation using well data at “TM” Niger Delta | |
| Sharma et al. | Improved Workflow for Production Modeling in Unconventionals Using Gaussian Mixtures and Principal Components | |
| Chaki et al. | A Proxy Flow Modelling Workflow to Estimate Gridded Dynamic Properties and Well Production Rates by Deep Learning Algorithms | |
| Behl Jr | Development of Reduced Order Models Using Reservoir Simulation and Physics Informed Machine Learning Techniques | |
| Maldonado Cruz | Machine learning-based uncertainty models for reservoir property prediction and forecasting |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150825 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150825 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160816 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160909 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6006799 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |